1
|
Son H, Kim D, Kim S, Gi Byun W, Bum Park S. Unveiling the Structure-Fluorogenic Property Relationship of Seoul-Fluor-Derived Bioorthogonal Tetrazine Probes. Angew Chem Int Ed Engl 2024:e202421982. [PMID: 39611583 DOI: 10.1002/anie.202421982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 11/30/2024]
Abstract
Tetrazine (Tz)-embedded fluorescent probes, known for their fluorogenicity following bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reactions, are extensively used in bioimaging. Despite extensive research on fluorogenic Tz probes, there has been limited systematic exploration of their fluorogenic responses with various dienophiles. In this study, we elucidate the structure-fluorogenic property relationship of bioorthogonal Tz probes. We synthesized a series of Seoul-Fluor-Tz (SFTz) probes designed to exhibit differentiated turn-on fluorescence upon iEDDA reactions with three dienophiles: trans-cyclooctene (TCO), bicyclo[6.1.0]nonyne (BCN), and spiro[2.3]hex-1-ene (Sph). Our findings revealed that the fluorogenic properties of the SFTz probes are highly dependent on the structures of Tz-dienophile adducts. By systematically modifying the electronic properties and employing quantum chemical calculations, we developed a series of SFTz probes with optimal dienophile-dependent fluorescence. These probes enabled simultaneous dual-color imaging of different cellular targets using a single probe, providing a robust approach for advanced bioimaging applications that require precise and efficient multicolor labeling strategies.
Collapse
Affiliation(s)
- Hayoung Son
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Dahham Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sohee Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Wan Gi Byun
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
2
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2024. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Teng X, Zhao X, Dai Y, Zhang X, Zhang Q, Wu Y, Hu D, Li J. ClickRNA-PROTAC for Tumor-Selective Protein Degradation and Targeted Cancer Therapy. J Am Chem Soc 2024; 146:27382-27391. [PMID: 39320981 DOI: 10.1021/jacs.4c06402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) show promise in tumor treatment. However, the E3 ligases VHL and CRBN, commonly used in PROTAC, are highly expressed in only a few tumors, thus limiting the application scope and efficacy of PROTAC drugs. Furthermore, the lack of tumor specificity in PROTAC drugs can result in toxic side effects. Therefore, there is an urgent need to develop tumor-selective PROTAC drugs that do not rely on endogenous E3 ligases. In this study, we introduce the ClickRNA-PROTAC system, which involves the expression of a fusion protein of the E3 ubiquitin ligase SIAH1 and SNAPTag through mRNA transfection and recruits the protein of interest (POI) using bio-orthogonal click chemistry. ClickRNA-PROTAC can effectively degrade various proteins such as BRD4, KRAS, and NFκB simply by replacing the warhead molecules. By employing a tumor-specific mRNA-responsive translation strategy, ClickRNA-PROTAC can selectively degrade POIs in tumor cells. Furthermore, ClickRNA-PROTAC demonstrated strong efficacy in targeted cancer therapy in a xenograft mouse model of adrenocortical carcinoma. In conclusion, this approach offers several advantages, including independence from endogenous E3 ubiquitin ligases, tumor specificity, and programmability, thereby paving the way for the development of PROTAC drugs.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Life Science Academy, Beijing 102209, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xuan Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xiangdong Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qiushuang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yuncong Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Difei Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Life Science Academy, Beijing 102209, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Wang J, Chao B, Piesner J, Kelly F, Petrie SK, Xiao X, Li BX. CG-SLENP: A Chemical Genetics Strategy To Selectively Label Existing Proteins and Newly Synthesized Proteins. JACS AU 2024; 4:3146-3156. [PMID: 39211582 PMCID: PMC11350722 DOI: 10.1021/jacsau.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Protein synthesis and subsequent delivery to the target locations in cells are essential for their proper functions. Methods to label and distinguish newly synthesized proteins from existing ones are critical to assess their differential properties, but such methods are lacking. We describe the first chemical genetics-based approach for selective labeling of existing and newly synthesized proteins that we termed as CG-SLENP. Using HaloTag in-frame fusion with lamin A (LA), we demonstrate that the two pools of proteins can be selectively labeled using CG-SLENP in living cells. We further employ our recently developed selective small molecule ligand LBL1 for LA to probe the potential differences between newly synthesized and existing LA. Our results show that LBL1 can differentially modulate these two pools of LA. These results indicate that the assembly states of newly synthesized LA are distinct from existing LA in living cells. The CG-SLENP method is potentially generalizable to study any cellular proteins.
Collapse
Affiliation(s)
- Jian Wang
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Bo Chao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Jake Piesner
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Felice Kelly
- Advanced
Light Microscopy Shared Resource, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Stefanie Kaech Petrie
- Department
of Neurology, Knight Cancer Institute, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Xiangshu Xiao
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Bingbing X. Li
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
6
|
Quan J, Ou Y, Long K, Li Y, Kang J, Wang Y, Zhao X, Zhao X. A self-catalyzing strategy for co-immobilization of two distinct proteins at equimolar ratio: A case study of 3A and 2C to develop a chromatographic method for finding prospective dual-target compoundsfrom complex matrices. Anal Chim Acta 2024; 1318:342950. [PMID: 39067927 DOI: 10.1016/j.aca.2024.342950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Immobilized proteins hold promise as the basic units that have enabled a broad range of analytical applications within chemical measurement science. As yet, the co-immobilization of diverse proteins at precise ratio and whether they give rise to improved analytical performance remain challengeable. Herein, we utilized a circularly permuted HaloTag (cpHaloTag) to achieve the co-immobilization of two proteins at precise ratio, which was applied in developing a chromatographic method with improved specificity for pursuing dual-target compounds. RESULTS The methodology involved the fusion 3A and 2C at N- and C-terminuses of cpHaloTag, the immobilization of the fusion protein onto silica gel through bioorthogonal reaction, the morphological and functional characterization, the application in finding dual-target compounds. Expression of the fusion protein in E. coli system showed a yield of milligram level with the presence of 3A and 2C domains. Immobilization of the protein was achieved in 10 min with a reaction efficiency more than 88.5 %. Immobilized 3A-cpHalo-2C exhibited higher specificity and better retentions of canonical compounds of the two enzymes in comparison with the column containing immobilized 3A or 2C alone. In real sample application, screening analysis found that hyperoside, cymaroside, and baicalin were dual-target compounds in concert with 3A and 2C in Shuanghuanglian extract. SIGNIFICANCE Taking 3A and 2C as probe, we proposed a simple method for direct co-immobilization of diverse proteins from cell lysates and demonstrated an affinity chromatographic-based dual-target compound screening platform. The implications of these methodology are possible to insight the de novo design of multi-target surface for fabricating new bioanalytical methods with improved performance.
Collapse
Affiliation(s)
- Jia Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuanyuan Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kaihua Long
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yaqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
7
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
8
|
Işık M, Kısaçam MA. Readily Accessible and Brightly Fluorogenic BODIPY/NBD-Tetrazines via S NAr Reactions. J Org Chem 2024; 89:6513-6519. [PMID: 38598957 PMCID: PMC11077493 DOI: 10.1021/acs.joc.3c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
We describe SNAr reactions of some commercial amino-tetrazines and halo-dyes, which give efficiently quenched BODIPY/NBD-tetrazines (ΦFl < 0.01) in high yields and, importantly, with high purities affordable via simple silica gel chromatography only. The dyes exhibit large Stokes shifts, moderate environmental sensitivity, and emission enhancements (up to 193-fold) upon Tz ligation with BCN─a strained dienophile. They successfully serve as labels for HSA protein premodified with BCN, resulting in bright blue-green emission upon ligation.
Collapse
Affiliation(s)
- Murat Işık
- Department
of Food Engineering, Bingöl University, 12000 Bingöl, Türkiye
| | - Mehmet Ali Kısaçam
- Department
of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
9
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
Hillman A, Hyland SN, Wodzanowski KA, Moore DL, Ratna S, Jemas A, Sandles LMD, Chaya T, Ghosh A, Fox JM, Grimes CL. Minimalist Tetrazine N-Acetyl Muramic Acid Probes for Rapid and Efficient Labeling of Commensal and Pathogenic Peptidoglycans in Living Bacterial Culture and During Macrophage Invasion. J Am Chem Soc 2024; 146:6817-6829. [PMID: 38427023 PMCID: PMC10941766 DOI: 10.1021/jacs.3c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.
Collapse
Affiliation(s)
- Ashlyn
S. Hillman
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - DeVonte L. Moore
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Sushanta Ratna
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Andrew Jemas
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Liam-Michael D. Sandles
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Timothy Chaya
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware
Biotechnology Institute, UDEL Flow Cytometry Core, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M. Fox
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
12
|
Segawa S, Wu J, Kwok RTK, Wong TTW, He X, Tang BZ. Co-aggregation as A Simple Strategy for Preparing Fluorogenic Tetrazine Probes with On-Demand Fluorogen Selection. Angew Chem Int Ed Engl 2024; 63:e202313930. [PMID: 38055202 DOI: 10.1002/anie.202313930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Life science has progressed with applications of fluorescent probes-fluorophores linked to functional units responding to biological events. To meet the varied demands across experiments, simple organic reactions to connect fluorophores and functional units have been developed, enabling the on-demand selection of fluorophore-functional unit combinations. However, organic synthesis requires professional equipment and skills, standing as a daunting task for life scientists. In this study, we present a simple, fast, and convenient strategy for probe preparation: co-aggregation of hydrophobic molecules. We focused on tetrazine-a difficult-to-prepare yet useful functional unit that provides effective bioorthogonal reactivity and strong fluorogenicity. Simply mixing the tetrazine molecules and aggregation-induced emission (AIE) luminogens in water, co-aggregation is induced, and the emission of AIE luminogens is quenched. Subsequent click reaction bioorthogonally turns on the emission, identifying these coaggregates as fluorogenic probes. Thanks to this bioorthogonal fluorogenicity, we established a new time-gated fluorescence bioimaging technique to distinguish overlapping emission signals, enabling multi-organelle imaging with two same-color fluorophores. Our study showcases the potential of this co-aggregation method for the on-demand preparation of fluorescent probes as well as protocols and molecular design principles in this approach, offering an effective solution to evolving needs in life science research.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Jiajie Wu
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Terence T W Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
13
|
Májek M, Trtúšek M. Discovery of new tetrazines for bioorthogonal reactions with strained alkenes via computational chemistry. RSC Adv 2024; 14:4345-4351. [PMID: 38304564 PMCID: PMC10828936 DOI: 10.1039/d3ra08712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tetrazines are widely employed reagents in bioorthogonal chemistry, as they react readily with strained alkenes in inverse electron demand Diels-Alder reactions, allowing for selective labeling of biomacromolecules. For optimal performance, tetrazine reagents have to react readily with strained alkenes, while remaining inert against nucleophiles like thiols. Balancing these conditions is a challenge, as reactivity towards strained alkenes and nucleophiles is governed by the same factor - the energy of unoccupied orbitals of tetrazine. Herein, we utilize computational chemistry to screen a set of tetrazine derivatives, aiming to identify structural elements responsible for a better ratio of reactivity with strained alkenes vs. stability against nucleophiles. This advantageous trait is present in sulfone- and sulfoxide-substituted tetrazines. In the end, the distortion/interaction model helped us to identify that the reason behind this enhanced reactivity profile is a secondary orbital interaction between the strained alkene and sulfone-/sulfoxide-substituted tetrazine. This insight can be used to design new tetrazines for bioorthogonal chemistry with improved reactivity/stability profiles.
Collapse
Affiliation(s)
- Michal Májek
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry Mlynská Dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Matej Trtúšek
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry Mlynská Dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
14
|
Eddins AJ, Bednar RM, Jana S, Pung A, Mbengi L, Meyer K, Perona JJ, Cooley RB, Andrew Karplus P, Mehl RA. Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations. Bioconjug Chem 2023; 34:2243-2254. [PMID: 38047550 PMCID: PMC11641772 DOI: 10.1021/acs.bioconjchem.3c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.
Collapse
Affiliation(s)
- Alex J. Eddins
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Riley M. Bednar
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Abigail Pung
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Lea Mbengi
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - Kyle Meyer
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - John J. Perona
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| |
Collapse
|
15
|
Šlachtová V, Chovanec M, Rahm M, Vrabel M. Bioorthogonal Chemistry in Cellular Organelles. Top Curr Chem (Cham) 2023; 382:2. [PMID: 38103067 PMCID: PMC10725395 DOI: 10.1007/s41061-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Marek Chovanec
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Milan Vrabel
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
16
|
Xu M, Ma X, Pigga JE, Zhang H, Wang S, Zhao W, Deng H, Wu AM, Liu R, Wu Z, Fox JM, Li Z. Development of 18F-Labeled hydrophilic trans-cyclooctene as a bioorthogonal tool for PET probe construction. Chem Commun (Camb) 2023; 59:14387-14390. [PMID: 37877355 PMCID: PMC10785124 DOI: 10.1039/d3cc04212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the development of a hydrophilic 18F-labeled a-TCO derivative [18F]3 (log P = 0.28) through a readily available precursor and a single-step radiofluorination reaction (RCY up to 52%). We demonstrated that [18F]3 can be used to construct not only multiple small molecule/peptide-based PET agents, but protein/diabody-based imaging probes in parallel.
Collapse
Affiliation(s)
- Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Jessica E Pigga
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - He Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Shuli Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Huaifu Deng
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Anna M Wu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California, 91010, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Joseph M Fox
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
17
|
Bi T, Liang P, Zhou Y, Wang H, Huang R, Sun Q, Shen H, Yang S, Ren W, Liu Z. Rational Design of Bioorthogonally Activatable PROTAC for Tumor-Targeted Protein Degradation. J Med Chem 2023; 66:14843-14852. [PMID: 37871321 DOI: 10.1021/acs.jmedchem.3c01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein degradation mediated by the proteolysis-targeting chimera (PROTAC) has emerged as an efficient strategy to accurately control intracellular protein levels. However, the development of PROTACs is limited by their systemic toxicity. Herein, we report a bioorthogonally activatable prodrug (BT-PROTAC) strategy to accurately control the activity of PROTACs. As a proof of concept, we introduced the highly reactive trans-cyclooctene into PROTAC molecule MZ1, the structure-acitivity relationships of which were well characterized previously, to construct the bioorthogonally activatable prodrug BT-PROTAC. Compared with MZ1, BT-PROTAC is incapable of degradation of BRD4 protein. However, BT-PROTAC can be activated by highly active tetrazine compound BODIPY-TZ in vitro. Furthermore, we could selectively degrade BRD4 protein in tumor tissue enabled by tumor-targeted tetrazine compound IR808-TZ. This strategy may represent an alternative to existing strategies and may be widely applied in the design of BT-PROTAC targeting other proteins.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Hong Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Rui Huang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| |
Collapse
|
18
|
Lightle HE, Kafley P, Lewis TR, Wang RE. Site-specific protein conjugates incorporating Para-Azido-L-Phenylalanine for cellular and in vivo imaging. Methods 2023; 219:95-101. [PMID: 37804961 PMCID: PMC10841489 DOI: 10.1016/j.ymeth.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
This work features the use of amber suppression-mediated unnatural amino acid (UAA) incorporation into proteins for various imaging purposes. The site-specific incorporation of the UAA, p-azido-L-phenylalanine (pAzF), provides an azide handle that can be used to complete the strain promoted azide-alkyne click cycloaddition (SPAAC) reaction to introduce an imaging modality such as a fluorophore or a positron emission tomography (PET) tracer on the protein of interest (POI). Such methodology can be pursued directly in mammalian cell lines or on proteins expressed in vitro, thereby conferring a homogeneous pool of protein conjugates. A general procedure for UAA incorporation to use with a site-specific protein labeling method is provided allowing for in vitro and in vivo imaging applications based on the representative proteins PTEN and PD-L1. This approach would help elucidate the cellular or in vivo biological activities of the POI.
Collapse
Affiliation(s)
- Hailey E Lightle
- Department of Chemistry, Temple University, 1901 N. 13(th) Street, Philadelphia, PA 19122, USA
| | - Parmila Kafley
- Department of Chemistry, Temple University, 1901 N. 13(th) Street, Philadelphia, PA 19122, USA
| | - Todd R Lewis
- Department of Chemistry, Temple University, 1901 N. 13(th) Street, Philadelphia, PA 19122, USA
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13(th) Street, Philadelphia, PA 19122, USA.
| |
Collapse
|
19
|
Yang S, Zou LH, Li R, Jiang Y, Ren F, Shao A. Construction of Coumarin-Based Bioorthogonal Macromolecular Probes for Photoactivation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37906696 DOI: 10.1021/acsami.3c10859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoactivatable fluorescence imaging is one of the most valuable methods for visualizing protein localization, trafficking, and interactions. Here, we designed four bioorthogonal fluorescent probes K1-K4 by installing photoactive cages and HaloTag ligands onto the different positions of the coumarin fluorophore. Although K1-K4 all exhibited rapid photostimulated responses in aqueous solution, only K3 was found to have an obvious aggregation-induced emission (AIE). Next, macromolecular fluorescent probes Kn=1/2/3/4_POIs were obtained by covalently attaching K1-K4 to HaloTag-fused proteins of interest (POIs). Kn=3/4_POIs exhibited a higher fluorescence increase than that of Kn=1/2_POIs upon photoactivation in both liquid and solid phases. Moreover, K3_GFP_Halo and K4_GFP_Halo presented the fluorescence resonance energy transfer (FRET) from photocleaved K3 and K4 to GFP in the protein complex. We further examined the fluorescence labeling ability of K1-K4 to intracellular IRE1_Halo protein and found that K3 and K4 containing the HaloTag ligand on the C4 position of coumarin could be retained in cells for long-term tracking of the IRE1_Halo protein. Hence, we established a platform of novel bioorthogonal fluorescent probes conjugating onto Halo-tagged POIs for rapid photoactivation in vitro and in cells.
Collapse
Affiliation(s)
- Shuke Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Runqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Ren
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Stone DJ, Macias-Contreras M, Crist SM, Bucag CFT, Seo G, Zhu L. SNAP-tagging live cells via chelation-assisted copper-catalyzed azide-alkyne cycloaddition. Org Biomol Chem 2023; 21:7419-7436. [PMID: 37665276 DOI: 10.1039/d3ob01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
SNAP-tag is a single-turnover enzyme that has become a powerful tool, hence a popular choice, of targeted cellular protein labeling. Three SNAP-tag substrates that carry the copper-chelating 2-picolyl azide moiety are prepared, one of which has an unconventional 5-pyridylmethyl-substituted guanine structure, rather than the usual benzylguanine that is optimized to be accepted by SNAP-tag. All three substrates are effective in transferring a 2-picolyl azide moiety to SNAP-tag in live cells under conventional labeling conditions (30-minute incubation of cells with labeling reagents at 37 °C under 5% CO2). Live cells that are decorated with chelating azido groups on the extracellular side of membranes undergo copper-catalyzed azide-alkyne cycloaddition (CuAAC) with an ethynyl-functionalized fluorophore to accomplish membrane protein labeling by a fluorescent dye. The chelation-assisted CuAAC labeling step is rapid (<1 minute) with a relatively low dose of the copper catalyst (20 μM), and consequently exerts no ill effect on the labeled cells. A SNAP-tag substrate that carries a non-chelating azide moiety, on the other hand, fails to produce satisfactory labeling under the same constraints. The rapid, live cell-compatible SNAP-tag/chelation-assisted CuAAC two-step method expands the utility of SNAP-tag in protein labeling applications.
Collapse
Affiliation(s)
- Daniel J Stone
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Miguel Macias-Contreras
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Shaun M Crist
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Christelle F T Bucag
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Gwimoon Seo
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
21
|
Šlachtová V, Bellová S, La-Venia A, Galeta J, Dračínský M, Chalupský K, Dvořáková A, Mertlíková-Kaiserová H, Rukovanský P, Dzijak R, Vrabel M. Triazinium Ligation: Bioorthogonal Reaction of N1-Alkyl 1,2,4-Triazinium Salts. Angew Chem Int Ed Engl 2023; 62:e202306828. [PMID: 37436086 DOI: 10.1002/anie.202306828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
The development of reagents that can selectively react in complex biological media is an important challenge. Here we show that N1-alkylation of 1,2,4-triazines yields the corresponding triazinium salts, which are three orders of magnitude more reactive in reactions with strained alkynes than the parent 1,2,4-triazines. This powerful bioorthogonal ligation enables efficient modification of peptides and proteins. The positively charged N1-alkyl triazinium salts exhibit favorable cell permeability, which makes them superior for intracellular fluorescent labeling applications when compared to analogous 1,2,4,5-tetrazines. Due to their high reactivity, stability, synthetic accessibility and improved water solubility, the new ionic heterodienes represent a valuable addition to the repertoire of existing modern bioorthogonal reagents.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Agustina La-Venia
- Current address: Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Juraj Galeta
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Peter Rukovanský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague, Czech Republic
| |
Collapse
|
22
|
Aktalay A, Lincoln R, Heynck L, Lima MADBF, Butkevich AN, Bossi ML, Hell SW. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS CENTRAL SCIENCE 2023; 9:1581-1590. [PMID: 37637742 PMCID: PMC10450876 DOI: 10.1021/acscentsci.3c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lukas Heynck
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultrafast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. J Am Chem Soc 2023; 145:14608-14620. [PMID: 37364003 PMCID: PMC10440187 DOI: 10.1021/jacs.3c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Site-directed spin-labeling (SDSL)─in combination with double electron-electron resonance (DEER) spectroscopy─has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. DEER combined with in situ SDSL in live cells is challenging since current bioorthogonal labeling approaches are too slow to allow for complete labeling with low concentrations of spin label prior to loss of signal from cellular reduction. Here, we overcome this limitation by genetically encoding a novel family of small, tetrazine-bearing noncanonical amino acids (Tet-v4.0) at multiple sites in proteins expressed in Escherichia coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans-cyclooctene (sTCO)-functionalized nitroxides─including a gem-diethyl-substituted nitroxide with enhanced stability in cells─with rate constants that can exceed 106 M-1 s-1. The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro. Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and support assignment of the conformational state of an MBP mutant within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
24
|
Abularrage NS, Levandowski BJ, Giancola JB, Graham BJ, Raines RT. Bioorthogonal 4 H-pyrazole "click" reagents. Chem Commun (Camb) 2023; 59:4451-4454. [PMID: 36987784 PMCID: PMC10088812 DOI: 10.1039/d3cc00112a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
4H-Pyrazoles are emerging as useful click reagents. Fluorinating the saturated center enables 4H-pyrazoles to react rapidly as Diels-Alder dienes without a catalyst but compromises the stability of these dienes under physiological conditions. To identify more stable 4H-pyrazoles for bioorthogonal chemistry applications, we investigated the Diels-Alder reactivity and biological stability of three 4-oxo-substituted 4H-pyrazoles. We found that these dienes undergo rapid Diels-Alder reactions with endo-bicyclo[6.1.0]non-4-yne (BCN) while being much more stable to biological nucleophiles than their fluorinated counterparts. We attribute the rapid Diels-Alder reactivity of the optimal oxygen-substituted pyrazole to a combination of antiaromaticity, predistortion, and spirocyclization. Their reactivity and stability suggest that 4-oxo-4H-pyrazoles can be useful bioorthogonal reagents.
Collapse
Affiliation(s)
- Nile S Abularrage
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Brian J Levandowski
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - JoLynn B Giancola
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Brian J Graham
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Ronald T Raines
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Syed Mohammed RD, Ablan FDO, McCann NM, Hindi MM, Maurer MC. Transglutaminase Activities of Blood Coagulant Factor XIII Are Dependent on the Activation Pathways and on the Substrates. Thromb Haemost 2023; 123:380-392. [PMID: 36473493 PMCID: PMC10719020 DOI: 10.1055/a-1993-4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor XIII (FXIII) catalyzes formation of γ-glutamyl-ε-lysyl crosslinks between reactive glutamines (Q) and lysines (K). In plasma, FXIII is activated proteolytically (FXIII-A*) by the concerted action of thrombin and Ca2+. Cellular FXIII is activated nonproteolytically (FXIII-A°) by elevation of physiological Ca2+ concentrations. FXIII-A targets plasmatic and cellular substrates, but questions remain on correlating FXIII activation, resultant conformational changes, and crosslinking function to different physiological substrates. To address these issues, the characteristics of FXIII-A* versus FXIII-A° that contribute to transglutaminase activity and substrate specificities were investigated. Crosslinking of lysine mimics into a series of Q-containing substrates were measured using in-gel fluorescence, mass spectrometry, and UV-Vis spectroscopy. Covalent incorporation of fluorescent monodansylcadaverine revealed that FXIII-A* exhibits greater activity than FXIII-A° toward Q residues within Fbg αC (233-425 WT, Q328P Seoul II, and Q328PQ366N) and actin. FXIII-A* and FXIII-A° displayed similar activities toward α2-antiplasmin (α2AP), fibronectin, and Fbg αC (233-388, missing FXIII-binding site αC 389-402). Furthermore, the N-terminal α2AP peptide (1-15) exhibited similar kinetic properties for FXIII-A* and FXIII-A°. MALDI-TOF mass spectrometry assays with glycine ethyl ester and Fbg αC (233-425 WT, αC E396A, and truncated αC (233-388) further documented that FXIII-A* exerts greater benefit from the αC 389-402 binding site than FXIII-A°. Conformational properties of FXIII-A* versus A° are proposed to help promote transglutaminase function toward different substrates. A combination of protein substrate disorder and secondary FXIII-binding site exposure are utilized to control activity and specificity. From these studies, greater understandings of how FXIII-A targets different substrates are achieved.
Collapse
Affiliation(s)
| | | | | | - Mohammed M. Hindi
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Muriel C. Maurer
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
26
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultra-Fast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525763. [PMID: 36747808 PMCID: PMC9901033 DOI: 10.1101/2023.01.26.525763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in E. coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans -cyclooctene (sTCO)-functionalized nitroxides-including a gem -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 6 M -1 s -1 . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification. TOC
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Equal contributors
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
- Equal contributors
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
27
|
Zerbib S, Khouili M, Catto M, Bouissane L. Sydnone: Synthesis, Reactivity and Biological Activities. Curr Med Chem 2023; 30:1122-1144. [PMID: 35726409 DOI: 10.2174/0929867329666220620123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Sydnones are among the most well-known mesoionic compounds. Since their synthesis in 1935 by Earl and Mecknay, numerous researches have shown that the chemical behavior, physical and biological properties of sydnones make them the most useful compounds in organic chemistry. Sydnones undergo thermal 1,3-dipolar cycloaddition reaction with dipolarophiles (alkynes or alkenes) to give exclusively derivatives containing a pyrazole moiety exhibiting numerous applications, such as pharmaceuticals and agrochemicals. However, the sydnone cycloaddition reaction with alkynes requires harsh conditions, like high temperatures and long reaction times, giving poor regioselectivity to the resulting products. To overcome these constraints, new reactions named CuSAC (Copper- Catalyzed Sydnone-Alkyne Cycloaddition) and SPSAC (Strain-Promoted Sydnone- Alkyne Cycloaddition) have been developed, leading to pyrazoles with interesting constant kinetics.
Collapse
Affiliation(s)
- Souad Zerbib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Mostafa Khouili
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| |
Collapse
|
28
|
Scinto SL, Reagle TR, Fox JM. Affinity Bioorthogonal Chemistry (ABC) Tags for Site-Selective Conjugation, On-Resin Protein-Protein Coupling, and Purification of Protein Conjugates. Angew Chem Int Ed Engl 2022; 61:e202207661. [PMID: 36058881 PMCID: PMC10029600 DOI: 10.1002/anie.202207661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/12/2022]
Abstract
The site-selective functionalization of proteins has broad application in chemical biology, but can be limited when mixtures result from incomplete conversion or the formation of protein containing side products. It is shown here that when proteins are covalently tagged with pyridyl-tetrazines, the nickel-iminodiacetate (Ni-IDA) resins commonly used for His-tags can be directly used for protein affinity purification. These Affinity Bioorthogonal Chemistry (ABC) tags serve a dual role by enabling affinity-based protein purification while maintaining rapid kinetics in bioorthogonal reactions. ABC-tagging works with a range of site-selective bioconjugation methods with proteins tagged at the C-terminus, N-terminus or at internal positions. ABC-tagged proteins can also be purified from complex mixtures including cell lysate. The combination of site-selective conjugation and clean-up with ABC-tagged proteins also allows for facile on-resin reactions to provide protein-protein conjugates.
Collapse
Affiliation(s)
- Samuel L Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| | - Tyler R Reagle
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| |
Collapse
|
29
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
30
|
Photoaffinity labeling and bioorthogonal ligation: Two critical tools for designing "Fish Hooks" to scout for target proteins. Bioorg Med Chem 2022; 62:116721. [PMID: 35358862 DOI: 10.1016/j.bmc.2022.116721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Small molecules remain an important category of therapeutic agents. Their binding to different proteins can lead to both desired and undesired biological effects. Identification of the proteins that a drug binds to has become an important step in drug development because it can lead to safer and more effective drugs. Parent bioactive molecules can be converted to appropriate probes that allow for visualization and identification of their target proteins. Typically, these probes are designed and synthesized utilizing some or all of five major tools; a photoactivatable group, a reporter tag, a linker, an affinity tag, and a bioorthogonal handle. This review covers two of the most challenging tools, photoactivation and bioorthogonal ligation. We provide a historical and theoretical background along with synthetic routes to prepare them. In addition, the review provides comparative analyses of the available tools that can assist decision making when designing such probes. A survey of most recent literature reports is included as well to identify recent trends in the field.
Collapse
|
31
|
Jemas A, Xie Y, Pigga JE, Caplan JL, am Ende CW, Fox JM. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. J Am Chem Soc 2022; 144:1647-1662. [PMID: 35072462 PMCID: PMC9364228 DOI: 10.1021/jacs.1c10390] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O2 to produce a tetrazine that immediately reacts with a trans-cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding k2 of 106 M-1 s-1. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.
Collapse
Affiliation(s)
- Andrew Jemas
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jessica E. Pigga
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey L. Caplan
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
32
|
Bioorthogonal Ligation‐Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Albitz E, Kern D, Kormos A, Bojtár M, Török G, Biró A, Szatmári Á, Németh K, Kele P. Bioorthogonal Ligation-Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022; 61:e202111855. [PMID: 34861094 PMCID: PMC9305863 DOI: 10.1002/anie.202111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/04/2022]
Abstract
An energy transfer-based signal amplification relay concept enabling transmission of bioorthogonally activatable fluorogenicity of blue-excitable coumarins to yellow/red emitting cyanine frames is presented. Such relay mechanism resulted in improved cyanine fluorogenicities together with increased photostabilities and large apparent Stokes-shifts allowing lower background fluorescence even in no-wash bioorthogonal fluorogenic labeling schemes of intracellular structures in live cells. These energy transfer dyads sharing the same donor moiety together with their parent donor molecule allowed three-color imaging of intracellular targets using one single excitation source with separate emission windows. Sub-diffraction imaging of intracellular structures using the bioorthogonally activatable FRET dyads by STED microscopy is also presented.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Dóra Kern
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Attila Kormos
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Márton Bojtár
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - György Török
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityTűzoltó u. 37–471094BudapestHungary
| | - Adrienn Biró
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Ágnes Szatmári
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Krisztina Németh
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
34
|
Mishra PK, Kang MG, Lee H, Kim S, Choi S, Sharma N, Park CM, Ko J, Lee C, Seo JK, Rhee HW. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem Sci 2022; 13:955-966. [PMID: 35211260 PMCID: PMC8790779 DOI: 10.1039/d1sc04871f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
We developed a proximity photo-crosslinking method (Spotlight) with a 4-azido-N-ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled. Using Spotlight, we further identified the host interactome of SARS-CoV-2 nucleocapsid (N) protein, which is essential for viral genome assembly. Mass analysis of the VL1-crosslinked product of N-HaloTag in HEK293T cells showed that RNA-binding proteins in stress granules were exclusively enriched in the cross-linked samples. These results tell that our method can reveal the interactome of protein of interest within a short distance in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Subin Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Nirmali Sharma
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- School of Biological Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
35
|
Blázquez-Moraleja A, Maierhofer L, Mann E, Prieto-Montero R, Oliden-Sánchez A, Celada L, Martínez-Martínez V, Chiara MD, Chiara JL. Acetoxymethyl-BODIPY dyes: a universal platform for the fluorescent labeling of nucleophiles. Org Chem Front 2022. [DOI: 10.1039/d2qo01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and robust methodology has been developed for the direct incorporation of a wide variety of C-, N-, P-, O-, S-, and halo-nucleophiles into functional BODIPY conjugates in a single reaction step.
Collapse
Affiliation(s)
| | - Larissa Maierhofer
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Mann
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Lucía Celada
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - María-Dolores Chiara
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
36
|
Bednar RM, Jana S, Kuppa S, Franklin R, Beckman J, Antony E, Cooley RB, Mehl RA. Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells. ACS Chem Biol 2021; 16:2612-2622. [PMID: 34590824 DOI: 10.1021/acschembio.1c00649] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to site-specifically modify proteins at multiple sites in vivo will enable the study of protein function in its native environment with unprecedented levels of detail. Here, we present a versatile two-step strategy to meet this goal involving site-specific encoding of two distinct noncanonical amino acids bearing bioorthogonal handles into proteins in vivo followed by mutually orthogonal labeling. This general approach, that we call dual encoding and labeling (DEAL), allowed us to efficiently encode tetrazine- and azide-bearing amino acids into a protein and demonstrate for the first time that the bioorthogonal labeling reactions with strained alkene and alkyne labels can function simultaneously and intracellularly with high yields when site-specifically encoded in a single protein. Using our DEAL system, we were able to perform topologically defined protein-protein cross-linking, intramolecular stapling, and site-specific installation of fluorophores all inside living Escherichia coli cells, as well as study the DNA-binding properties of yeast Replication Protein A in vitro. By enabling the efficient dual modification of proteins in vivo, this DEAL approach provides a tool for the characterization and engineering of proteins in vivo.
Collapse
Affiliation(s)
- Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Rachel Franklin
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| |
Collapse
|
37
|
Li Y, Liu Y, Huang X, Ren J. Analysis of protein phosphorylation combining capillary electrophoresis with ATP analog labeling technique. Electrophoresis 2021; 43:548-558. [PMID: 34783369 DOI: 10.1002/elps.202100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Protein phosphorylation is one of the most basic mechanisms for regulating and controlling protein biological activity and function, and it is also a very important posttranslational modification process. Protein phosphorylation participates in and regulates many life activities such as signal transduction, gene expression, cell cycle, and so on. In this paper, we propose a method for the determination of the protein phosphorylation combining capillary electrophoresis (CE) with ATP analog labeling technique. We synthesized two new ATP analogs (ATP-NB and ATP-TATD-NB) functionalized by norbornene. Using Abl kinase as a model, we established a method for the determination of the kinase activity in solution and lysate by CE with laser-induced fluorescence detection (CE-LIF). This method was used to evaluate the efficiencies of kinase inhibitors. The IC50 values obtained are basically consistent with the reports. By D-A reaction (inverse electron demand Diels-Alder reaction) to label TZ-BODIPY fluorescence, we also realized the phosphorylation fluorescence detection of substrate peptide. Then, we used fluorescence confocal microscopy imaging technology to study the phosphorylation of proteins in vivo by the D-A reaction of ATP-NB and TZ-BODIPY. Our preliminary results documented that the combination of CE-LIF with analog ATP-NB labeling technique is an effective strategy for the determination of the protein phosphorylation and the kinase activity and for screening of kinase inhibitors. The D-A reaction of ATP-NB and TZ-BODIPY also laid the foundation for the subsequent in situ study of protein phosphorylation.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yaoqi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
38
|
Sun L, Gai Y, Li Z, Zhang X, Li J, Ma Y, Li H, Barajas RJ, Zeng D. Development of Dual Receptor Enhanced Pre-Targeting Strategy-A Novel Promising Technology for Immuno-Positron Emission Tomography Imaging. ADVANCED THERAPEUTICS 2021; 4:2100110. [PMID: 35309962 PMCID: PMC8932640 DOI: 10.1002/adtp.202100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/06/2022]
Abstract
PET imaging has become an important diagnostic tool in the era of precise medicine. Various pre-targeting systems have been reported to address limitations associated with traditional immuno-PET. However, the application of these mono-receptor based pre-targeting (MRPT) strategies is limited to non-internalizable antibodies, and the tumor uptake is usually much lower than that in the corresponding immuno-PET. To circumvent these limitations, we develop the first Dual-Receptor Pre-Targeting (DRPT) system through entrapping the tumor-receptor-specific radioligand by the pre-administered antibody. Besides the similar ligation pathway happens in MRPT, incorporation of a tumor-receptor-specific peptide into the radioligand in DRPT enhances both concentration and retention of the radioligand on tumor, promoting its ligation with pre-administered mAb on cell-surface and/or internalized into tumor-cells. In this study, 64Cu based DRPT shows superior performance over corresponding MRPT and immuno-PET using internalizable antibodies. Besides, the compatibility of DRPT with short-lived and generator-produced 68Ga is demonstrated, leveraging its advantage in reducing radio-dose exposure. Furthermore, the feasibility of reducing the amount of the pre-administered antibody is confirmed, indicating the cost saving potential of DRPT. In summary, synergizing advantages of dual-receptor targeting and pre-targeting, we expect that this DRPT strategy can become a breakthrough technology in the field of antibody-based molecular imaging.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA; Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA
| | - Yongkang Gai
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Zhonghan Li
- Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA
| | - Xiaohui Zhang
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Jianchun Li
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Yongyong Ma
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Huiqiang Li
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Ramon J Barajas
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland 97239, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland 97239, USA; Translational Oncology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA; Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA; Department of Diagnostic Radiology, Oregon Health & Science University, Portland 97239, USA
| |
Collapse
|
39
|
Santos EM, Sheng W, Esmatpour Salmani R, Tahmasebi Nick S, Ghanbarpour A, Gholami H, Vasileiou C, Geiger JH, Borhan B. Design of Large Stokes Shift Fluorescent Proteins Based on Excited State Proton Transfer of an Engineered Photobase. J Am Chem Soc 2021; 143:15091-15102. [PMID: 34516091 DOI: 10.1021/jacs.1c05039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.
Collapse
Affiliation(s)
- Elizabeth M Santos
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Wei Sheng
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | | | - Setare Tahmasebi Nick
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Alireza Ghanbarpour
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Hadi Gholami
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - James H Geiger
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| |
Collapse
|
40
|
Ford EM, Kloxin AM. Rapid Production of Multifunctional Self-Assembling Peptides for Incorporation and Visualization within Hydrogel Biomaterials. ACS Biomater Sci Eng 2021; 7:4175-4195. [PMID: 34283566 DOI: 10.1021/acsbiomaterials.1c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides are of continued interest for therapeutic applications, from soluble and immobilized ligands that promote desired binding or uptake to self-assembled supramolecular structures that serve as scaffolds in vitro and in vivo. These applications require efficient and scalable synthetic approaches because of the large amounts of material that often are needed for studies of bulk material properties and their translation. In this work, we establish new methods for the synthesis, purification, and visualization of assembling peptides, with a focus on multifunctional collagen mimetic peptides (mfCMPs) relevant for formation and integration within hydrogel-based biomaterials. First, a methodical approach useful for the microwave-assisted synthesis of assembling peptide sequences prone to deletions was established, beginning with the identification of the deleted residues and their locations and followed by targeted use of dual chemistry couplings for those specific residues. Second, purification techniques that integrate the principles of heating and ion displacement with traditional chromatography and dialysis were implemented to improve separation and isolation of the desired multifunctional peptide product, which contained blocks for thermoresponsiveness and ionic interactions. Third, an approach for fluorescent labeling of these mfCMPs, which is orthogonal to their assembly and their covalent incorporation into a bulk hydrogel material, was established, allowing visualization of the resulting hierarchical fibrillar structures in three dimensions within hydrogels using confocal microscopy. The methods presented in this work allow the production of multifunctional peptides in scalable quantities and with minimal deletions, enabling future studies for better understanding of composition-structure-property relationships and for translating these biomaterials into a range of applications. Although mfCMPs are the focus of this work, the methods demonstrated could prove useful for other assembling peptide systems and for the production of peptides more broadly for therapeutic applications.
Collapse
Affiliation(s)
- Eden M Ford
- Department of Chemical and Biomolecular Engineering University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Material Science and Engineering University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
41
|
Szatmári Á, Cserép GB, Molnár TÁ, Söveges B, Biró A, Várady G, Szabó E, Németh K, Kele P. A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes. Molecules 2021; 26:4988. [PMID: 34443576 PMCID: PMC8402055 DOI: 10.3390/molecules26164988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/11/2023] Open
Abstract
Bioorthogonal click-reactions represent ideal means for labeling biomolecules selectively and specifically with suitable small synthetic dyes. Genetic code expansion (GCE) technology enables efficient site-selective installation of bioorthogonal handles onto proteins of interest (POIs). Incorporation of bioorthogonalized non-canonical amino acids is a minimally perturbing means of enabling the study of proteins in their native environment. The growing demand for the multiple modification of POIs has triggered the quest for developing orthogonal bioorthogonal reactions that allow simultaneous modification of biomolecules. The recently reported bioorthogonal [4 + 1] cycloaddition reaction of bulky tetrazines and sterically demanding isonitriles has prompted us to develop a non-canonical amino acid (ncAA) bearing a suitable isonitrile function. Herein we disclose the synthesis and genetic incorporation of this ncAA together with studies aiming at assessing the mutual orthogonality between its reaction with bulky tetrazines and the inverse electron demand Diels-Alder (IEDDA) reaction of bicyclononyne (BCN) and tetrazine. Results showed that the new ncAA, bulky-isonitrile-carbamate-lysine (BICK) is efficiently and specifically incorporated into proteins by genetic code expansion, and despite the slow [4 + 1] cycloaddition, enables the labeling of outer membrane receptors such as insulin receptor (IR) with a membrane-impermeable dye. Furthermore, double labeling of protein structures in live and fixed mammalian cells was achieved using the mutually orthogonal bioorthogonal IEDDA and [4 + 1] cycloaddition reaction pair, by introducing BICK through GCE and BCN through a HaloTag technique.
Collapse
Affiliation(s)
- Ágnes Szatmári
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Gergely B. Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Tibor Á. Molnár
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Bianka Söveges
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Adrienn Biró
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - György Várady
- Molecular Cell Biology Research Group, Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.V.); (E.S.)
| | - Edit Szabó
- Molecular Cell Biology Research Group, Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.V.); (E.S.)
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| |
Collapse
|
42
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen HY, Ye D. Enzyme-Mediated In Situ Self-Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021; 60:18082-18093. [PMID: 34010512 DOI: 10.1002/anie.202103307] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Pretargeted imaging has emerged as a promising approach to advance nuclear imaging of malignant tumors. Herein, we combine the enzyme-mediated fluorogenic reaction and in situ self-assembly with the inverse electron demand Diels-Alder (IEDDA) reaction to develop an activatable pretargeted strategy for multimodality imaging. The trans-cyclooctene (TCO) bearing small-molecule probe, P-FFGd-TCO, can be activated by alkaline phosphatase and in situ self-assembles into nanoaggregates (FMNPs-TCO) retained on the membranes, permitting to (1) amplify near-infrared (NIR) fluorescence (FL) and magnetic resonance imaging (MRI) signals, and (2) enrich TCOs to promote IEDDA ligation. The Gallium-68 (68 Ga) labeled tetrazine can readily conjugate the tumor-retained FMNPs-TCO to enhance radioactivity uptake in tumors. Strong NIR FL, MRI, and positron emission tomography (PET) signals are concomitantly achieved, allowing for pretargeted multimodality imaging of ALP activity in HeLa tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
43
|
Machado JH, Ting R, Lin JY, Rodriguez EA. A self-labeling protein based on the small ultra-red fluorescent protein, smURFP. RSC Chem Biol 2021; 2:1221-1226. [PMID: 34458834 PMCID: PMC8341759 DOI: 10.1039/d1cb00127b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Self-labeling proteins have revolutionized super-resolution and sensor imaging. Tags recognize a bioorthogonal substrate for covalent attachment. We show the small Ultra-Red Fluorescent Protein (smURFP) is a self-labeling protein. The substrate is fluorogenic, fluoresces when attached, and quenches fluorescent cargo. The smURFP-tag has novel properties for tool development.
Collapse
Affiliation(s)
- John-Hanson Machado
- Department of Chemistry, The George Washington University Washington DC 20052 USA
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
- Antelope Surgical, Biolabs@NYULangone New York NY 10014 USA
| | - John Y Lin
- Tasmanian School of Medicine, University of Tasmania Hobart Tasmania 7000 Australia
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University Washington DC 20052 USA
| |
Collapse
|
44
|
Kang D, Cheung ST, Kim J. Bioorthogonal Hydroamination of Push-Pull-Activated Linear Alkynes. Angew Chem Int Ed Engl 2021; 60:16947-16952. [PMID: 34019705 DOI: 10.1002/anie.202104863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/16/2021] [Indexed: 01/14/2023]
Abstract
A bioorthogonal reaction between N,N-dialkylhydroxylamines and push-pull-activated halogenated alkynes is described. We explore the use of rehybridization effects in activating alkynes, and we show that electronic effects, when competing stereoelectronic and inductive factors are properly balanced, sufficiently activate a linear alkyne in the uncatalyzed conjugative retro-Cope elimination reaction while adequately protecting it against cellular nucleophiles. This design preserves the low steric profile of an alkyne and pairs it with a comparably unobtrusive hydroxylamine. The kinetics are on par with those of the fastest strain-promoted azide-alkyne cycloaddition reactions, the products regioselectively formed, the components sufficiently stable and easily installed, and the reaction suitable for cellular labeling.
Collapse
Affiliation(s)
- Dahye Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sheldon T Cheung
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
45
|
Platts K, Michel R, Green E, Gillam T, Ghetia M, O'Brien-Simpson N, Li W, Blencowe C, Blencowe A. Pentafulvene-Maleimide Cycloaddition for Bioorthogonal Ligation. Bioconjug Chem 2021; 32:1845-1851. [PMID: 34254789 DOI: 10.1021/acs.bioconjchem.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The applications of bioconjugation chemistry are rapidly expanding, and the addition of new strategies to the bioconjugation and ligation toolbox will further advance progress in this field. Herein, we present a detailed study of the Diels-Alder cycloaddition (DAC) reaction between pentafulvenes and maleimides in aqueous solutions and investigate the reaction as an emerging bioconjugation strategy. The DAC reactions were found to proceed efficiently, quantitatively yielding cycloadducts with reaction rates ranging up to ∼0.7 M-1 s-1 for a series of maleimides, including maleimide-derivatized peptides and proteins. The absence of cross-reactivity of the pentafulvene with a large panel of functional (bio)molecules and biological media further demonstrated the bioorthogonality of this approach. The utility of the DAC reaction for bioorthogonal bioconjugation applications was further demonstrated in the presence of biological media and proteins, as well as through protein derivatization and labeling, which was comparable to the widely employed sulfhydryl-maleimide coupling chemistry.
Collapse
Affiliation(s)
- Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Michel
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Elise Green
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.,Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Maulik Ghetia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Neil O'Brien-Simpson
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Christopher Blencowe
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
46
|
Affiliation(s)
- Vincent Rigolot
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| | - Christophe Biot
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| | - Cedric Lion
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| |
Collapse
|
47
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen H, Ye D. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
48
|
Pigga JE, Rosenberger JE, Jemas A, Boyd SJ, Dmitrenko O, Xie Y, Fox JM. General, Divergent Platform for Diastereoselective Synthesis of
trans
‐Cyclooctenes with High Reactivity and Favorable Physiochemical Properties**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jessica E. Pigga
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Julia E. Rosenberger
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Andrew Jemas
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Samantha J. Boyd
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| |
Collapse
|
49
|
Pigga JE, Rosenberger JE, Jemas A, Boyd SJ, Dmitrenko O, Xie Y, Fox JM. General, Divergent Platform for Diastereoselective Synthesis of trans-Cyclooctenes with High Reactivity and Favorable Physiochemical Properties*. Angew Chem Int Ed Engl 2021; 60:14975-14980. [PMID: 33742526 DOI: 10.1002/anie.202101483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Indexed: 12/24/2022]
Abstract
trans-Cyclooctenes (TCOs) are essential partners in the fastest known bioorthogonal reactions, but current synthetic methods are limited by poor diastereoselectivity. Especially hard to access are hydrophilic TCOs with favorable physicochemical properties for live cell or in vivo experiments. Described is a new class of TCOs, "a-TCOs", prepared in high yield by stereocontrolled 1,2-additions of nucleophiles to trans-cyclooct-4-enone, which itself was prepared on a large scale in two steps from 1,5-cyclooctadiene. Computational transition-state models rationalize the diastereoselectivity of 1,2-additions to deliver a-TCO products, which were also shown to be more reactive than standard TCOs and less hydrophobic than even a trans-oxocene analogue. Illustrating the favorable physicochemical properties of a-TCOs, a fluorescent TAMRA derivative in live HeLa cells was shown to be cell-permeable through intracellular Diels-Alder chemistry and to wash out more rapidly than other TCOs.
Collapse
Affiliation(s)
- Jessica E Pigga
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Julia E Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Andrew Jemas
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Samantha J Boyd
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| |
Collapse
|
50
|
Kang D, Cheung ST, Kim J. Bioorthogonal Hydroamination of Push–Pull‐Activated Linear Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dahye Kang
- Department of Cancer Biology Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| | - Sheldon T. Cheung
- Department of Cancer Biology Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| | - Justin Kim
- Department of Cancer Biology Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| |
Collapse
|