1
|
Singh V, Chauhan DK, Pandey R. Supramolecular Ni(II)-Selective Gel Assembly toward Construction of a Schottky Barrier Diode. ACS OMEGA 2025; 10:378-389. [PMID: 39829584 PMCID: PMC11740625 DOI: 10.1021/acsomega.4c06387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
A mechanically stable and thermo-irreversible supramolecular Ni(II)-selective gel (MG) has been developed by utilizing the N,O-donor Schiff base (E)-1-((4-(diethylamino)phenylimino)-methyl)naphthalen-2-ol (HL) gelator and Et3N in binary THF:CH3OH (1:1) solutions at room temperature (rt). Metallogel MG has been characterized by spectral and analytical techniques, i.e., ESI-MS, FT-IR, NMR (1H & 13C), powder-XRD, FE-SEM, and rheological analysis. Further, noncovalent interactions responsible for the gelation mechanism have been illustrated with the aid of powder-XRD and FE-SEM analysis. The toughness, viscoelasticity, and flow behavior of MG were explored through rheological studies. Rheological and compressive measurements showed higher values of storage modulus and rigidity of MG; however, the flow property along with enrichment of toughness in MG can be an analytical metric for various engineering and industrial applications. Eventually, a Schottky barrier diode (SBD) was successfully constructed to mimic the functionality of MG-based metal-semiconductor (MS) junction devices for possible application in electrical engineering.
Collapse
Affiliation(s)
- Vaishali Singh
- National
Institute of Technology, Uttarakhand, Srinagar (Garhwal) 246174, India
| | - Deepak Kumar Chauhan
- Institute
of Nano Science and Technology (INST), Sector 81, SAS Nagar, Mohali 160062, India
| | - Rampal Pandey
- National
Institute of Technology, Uttarakhand, Srinagar (Garhwal) 246174, India
- Maulana
Azad National Institute of Technology, Bhopal, Bhopal 462003, Madhya Pradesh, India
| |
Collapse
|
2
|
Gridneva T, Khusnutdinova JR. Functional coordination compounds for mechanoresponsive polymers. Chem Commun (Camb) 2025; 61:441-454. [PMID: 39636308 DOI: 10.1039/d4cc05622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Small molecule probes that respond to a mechanical force ("mechanophores") have emerged as an important tool in the design of stimuli-responsive polymer materials. Although the majority of such mechanohphores are based on organic molecules, the utilization of metal complexes has also attracted attention as they offer a possibility to tune their spectroscopic properties and reactivity, and have the ability to reversibly form and break metal-ligand bonds through rational design of the ligand environment surrounding the metal. This review features representative examples of coordination compounds which were utilized as new, tunable tools to create various types of mechanoresponsive polymers.
Collapse
Affiliation(s)
- Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
3
|
Casimiro L, Volatron F, Boivin G, Abécassis B, Alves S, Brouri D, Montero D, Guigner JM, Chamoreau LM, Gontard G, Portehault D, Li Y, Proust A, Lescouëzec R, Ducouret G, Solé-Daura A, Davidson P, Merland T, Izzet G. Multifunctional Supramolecular Gels with Strong Mechanical Properties Formed by Self-Assembly of Polyoxometalate-Based Coordination Polymers. JACS AU 2024; 4:4948-4956. [PMID: 39735907 PMCID: PMC11672139 DOI: 10.1021/jacsau.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/31/2024]
Abstract
Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration. Using spectroscopy, microscopy, X-ray scattering, and rheometry, complemented by molecular dynamics simulations, we investigated the supramolecular organization of the chains in the fibers and the resulting processes leading to gelation. Compared to previously reported systems, these gels have improved rheological features and appealing properties, such as birefringence, luminescence, and spin crossover, paving the way for their use as building blocks for multifunctional smart materials.
Collapse
Affiliation(s)
- Lorenzo Casimiro
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Florence Volatron
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Grégoire Boivin
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | | | - Sandra Alves
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Dalil Brouri
- Sorbonne
Université, CNRS, Laboratoire
de Réactivité de Surface, LRS, F-75005 Paris, France
| | - David Montero
- Sorbonne
Université, CNRS, Fédération
de Chimie et Matériaux de Paris-Centre, Paris F-75005, France
| | - Jean-Michel Guigner
- Sorbonne
Université, CNRS, Muséum
National d’Histoire Naturelle, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| | - Lise-Marie Chamoreau
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - David Portehault
- Sorbonne
Université, CNRS, Laboratoire
de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Yanling Li
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Anna Proust
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Rodrigue Lescouëzec
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Guylaine Ducouret
- Laboratoire
Science et Ingénierie de la Matière Molle, SIMM, Sorbonne University, ESPCI Paris, CNRS, PSL University, Paris F-75005, France
| | - Albert Solé-Daura
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Patrick Davidson
- Université
Paris-Saclay, CNRS, Laboratoire de Physique
des Solides, Cedex 91405 Orsay, France
| | - Théo Merland
- Laboratoire
Science et Ingénierie de la Matière Molle, SIMM, Sorbonne University, ESPCI Paris, CNRS, PSL University, Paris F-75005, France
| | - Guillaume Izzet
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
4
|
Ahmed HB, Emam HE, Shaheen TI. Fluorescent antimicrobial hydrogel based on fluorophore N-doped carbon dots originated from cellulose nanocrystals. Sci Rep 2024; 14:29226. [PMID: 39587165 PMCID: PMC11589154 DOI: 10.1038/s41598-024-80222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
The current study represents a unique fabrication strategy for preparation of fluorescent hydrogels via incorporation of fluorescent quantum dots (QDs) as fluorophore entities into chitosan as a gelling matrix. QDs identified as carbon quantum dots (CQDs) & nitrogen containing carbon quantum dots (NCQDs) were preliminary synthesized from cellulose nanocrystals (CNCs) and cationic cellulose nanocrystals (CCNCs), respectively. Cationic CNCs was prepared via chemical grafting with poly-di-allyl dimethyl ammonium chloride (CNCs-g-poly-DADMAC) through free chain polymerization reaction. Additionally, both of the prepared CQDs & NCQDs were impregnated in 3D interpenetrating network of chitosan for preparation of microbicide/florescent hydrogels (CQDs@Chs hydrogel & NCQDs@Chs hydrogel). The represented data revealed that, exploitation of cationic CNCs resulted in preparation of NCQDs with more controllable size and superior photoluminescence. Moreover, the increment in concentration of CNCs reflected in nucleation of enlarged QDs, at variance of CCNCs, whereas, increment of concentration resulted in significantly smaller-sized QDs. Size distribution of CQDs ingrained from 2% CNCs was estimated to be 8.2 nm, while, NCQDs ingrained from 2% CCNCs exhibited with size distribution of 3.8 nm. The prepared florescent CQDs@Chs hydrogel & NCQDs@Chs hydrogel showed excellent antimicrobial performance and the diameter of inhibition zone was estimated to be 31 mm, 26 mm & 22 mm against E. Coli, S. Aureus & C. Albicans with CQDs@Chs, respectively. Whereas, treatment of the as-mentioned microbial strains with NCQDs@Chs resulted in detection of inhibition zone diameter to be significantly higher as 34 mm, 28 mm & 25 mm for E. Coli, S. Aureus & C. Albicans, respectively. In a conclusion, cationic CNCs showed seniority in nucleation of QDs with significantly higher photoluminescence and microbicide activities.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Tharwat I Shaheen
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Roy BC, Ramlal VR, Basak D, Basak S, Roy S, Ghosh S, Singha Mahapatra T. Light-Emitting Coordination Polymers: Stimuli-Responsive Gels, PMMA-Based Composite Films, and UV-Shielding. Inorg Chem 2024. [PMID: 39545711 DOI: 10.1021/acs.inorgchem.4c04333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Lanthanide-based light-emitting coordination polymers (CPs) and CP gels (CPGs) have significance for applications in optical systems, image processing/multiplexing, and optical sensors. In this study, we report two new luminescent CPs (EuL-CP (1) and TbL-CP (2)) and CPGs (EuL-gel (5) and TbL-gel (6)) using lanthanide(III) ions (Ln(III) = Eu(III) and Tb(III)) and 4-(4-carboxyphenyl)-2,2:6,2-terpyridine ligand (L) capable of forming stable thermoreversible gels. Probable structures of EuL-CP (1) and TbL-CP (2) and the formations of EuL-gel (5) and TbL-gel (6) are proposed based on adequate computational studies. The CPGs are stimuli-responsive and could be utilized as invisible security inks for encryption. Further, poly(methyl methacrylate) (PMMA) polymer doped with respective CPs (0.75 wt %) is found to be suitable for forming composite films with UV-shielding properties.
Collapse
Affiliation(s)
- Bilash Chandra Roy
- Department of Chemistry, Faculty of Science and Technology, ICFAI University Tripura, Agartala 799210, Tripura, India
| | - Vishwakarma Ravikumar Ramlal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR─Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dipmalya Basak
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla Sub-Division, Dist., Namchi, Sikkim 737139, India
| | - Suvramalya Basak
- Department of Information Technology, Indian Institute of Information Technology Allahabad, Prayagraj 211015, India
| | - Saheli Roy
- Department of Chemistry, Faculty of Science and Technology, ICFAI University Tripura, Agartala 799210, Tripura, India
| | - Samrat Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Tufan Singha Mahapatra
- Department of Chemistry, Faculty of Science and Technology, ICFAI University Tripura, Agartala 799210, Tripura, India
| |
Collapse
|
6
|
Sun Y, Wang K, Huang X, Wei S, Contreras E, Jain PK, Campos LM, Kulik HJ, Moore JS. Caged AIEgens: Multicolor and White Emission Triggered by Mechanical Activation. J Am Chem Soc 2024; 146:27117-27126. [PMID: 39306733 DOI: 10.1021/jacs.4c09926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Aggregation-induced emission luminogens (AIEgens) that respond to mechanical force are increasingly used as force probes, memory devices, and advanced security systems. Most of the known mechanisms to modulate mechanoresponsive AIEgens have been based on changes in aggregation states, involving only physical alterations. Instances that employ covalent bond cleavage are still rare. We have developed a novel mechanochemical uncaging strategy to unveil AIEgens with diverse emission characteristics using engineered norborn-2-en-7-one (NEO) mechanophores. These NEO mechanophores were covalently integrated into polymer molecules and activated in both the solution and solid states. This activation resulted in highly tunable fluorescence upon immobilization through solidification or aggregation, producing blue, green, yellow, and orange-red emissions. By designing the caged and uncaged forms as donor-acceptor pairs for Förster resonance energy transfer (FRET), we achieved multicolor mechanofluorescence, effectively broadening the color spectrum to include white emission. Additionally, we computationally explored the electronic structures of activated NEOs, providing insights into the observed regiochemical effects of the substituents. This understanding, together with the novel luminogenic characteristics of the caged and activated species, provides a highly tunable reporter that traces progress with continuous color evolution. This advancement paves the way for future applications of mechanoresponsive materials in areas like damage detection and bioimaging.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Enrique Contreras
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prashant K Jain
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Bera S, Dutta A, Dastidar P. Developing Supramolecular Metallogel Derived from Pd 2L 4 Cage Molecule for Delivering an Anti-Cancer Drug to Melanoma Cell B16-F10. Chem Asian J 2024; 19:e202400419. [PMID: 38872363 DOI: 10.1002/asia.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Supramolecular gels are an important class of materials that are promising for its wide range of applications including drug delivery. While supramolecular gels are intrinsically porous because of the 3D nano-matrix (gel matrix) that is being formed due to supramolecular self-assembly process involving the gelator molecules during gelation, additional nanopores can be introduced to the overall gel if the gelator molecule itself holds molecular cavity such as metal-organic-cage (MOC) molecules. A MOC having the molecular formula [(Pd2L24).4NO3].3H2O.2DMF.MeOH (Pd-cage) (L2=5-Azido-N,N'-di-pyridin-3-yl-isophthalamide) was successfully synthesized and characterized by FT-IR, 1H NMR, ESI-MS and single crystal X-ray diffraction. Stimuli-reversible supramolecular metallogel PdG could easily be formed from Pd-cage in DMSO/water mixture. The molecular cage of Pd-cage was demonstrated to be available for loading an anti-cancer drug namely doxorubicin (DOX). Subsequently, DOX was also loaded within PdG and delivered to melanoma cell line B16-F10 displaying significant anti-cancer activity as revealed by both MTT and scratch assay. Rheoreversibility of PdG and its ability to load and deliver DOX to cancer cells clearly raised hope for developing this metallogel further as topical anticancer gel.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, West Bengal, India
| | - Abhishek Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, West Bengal, India
| |
Collapse
|
8
|
Zhang MX, Yang X, Tan F, Zhang H, Xu N, Zeng G, Xu Z, Hua Liu S. Novel Dual-Emission Emitters Featuring Phenothiazine-S-Oxide and Phenothiazine-S,S-Dioxide Motifs. Chem Asian J 2024; 19:e202400195. [PMID: 38751300 DOI: 10.1002/asia.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Indexed: 07/04/2024]
Abstract
In this study, we have successfully designed and synthesized two novel dual-emission emitters featuring phenothiazine-5-oxide and phenothiazine-5,5-dioxide motifs, characterized by highly lopsided and asymmetric conformational states. Through rigorous spectral examinations and DFT calculations, the compounds exhibit distinctive ICT phenomena, coupled with efficient emission in solid states and AIEE characteristics under high water fractions in DMF/H2O mixtures. These non-planar luminogens exhibit vibrant green and blue solid-state luminescence, with fluorescence quantum yields of 24.1 % and 15.21 %, respectively. Additionally, they both emit green fluorescence in THF solution, with notable emission quantum yields (QYs) 36.4 % and 30.4 %. Comprehensive theoretical investigations unveil well-defined electron cloud density separation between the energies of HOMO/LUMO levels within the two luminogens. Notably, the targeted molecule harboring the phenothiazine-S,S-dioxide motif also demonstrates remarkable reversible mechanofluorochromic properties. Moreover, we testify their potential in applications such as solid-state rewritable information storage and live-cell imaging in solution states. Through theoretical calculations and comparative studies, we have explored the intrinsic relationship between molecular structure and performance, effectively screening and identifying new fluorescent molecules exhibiting outstanding luminescent attributes. These discoveries establish a robust theoretical and technical foundation for the synthesis and application of efficient DSE-based MFC materials, opening new avenues in the realm of advanced luminescent materials.
Collapse
Affiliation(s)
- Ming-Xing Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, PR China
| | - Xiaofei Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, PR China
| | - Fen Tan
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Hongquan Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Ningning Xu
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Guoping Zeng
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Zhiqiang Xu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, PR China
| |
Collapse
|
9
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Comparative Vision of Nonlinear Thermo-Optical Features and Third-Order Susceptibility of Mechanically Flexible Metallosupramolecular Self-Repairing Networks with Isomeric Organic Acids. Inorg Chem 2024; 63:12003-12016. [PMID: 38904106 DOI: 10.1021/acs.inorgchem.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Two self-healing-type supramolecular Ni(II)-metallogels are achieved. The choice of proper low-molecular-weight organic gelators such as trans-butenedioic acid (i.e., trans-BDA) and cis-butenedioic acid (i.e., cis-BDA) and triethylamine in N,N'-dimethylformamide solvent facilitates the metallogelation process. Through rheological investigations the mechanical robustness and viscoelastic properties of synthesized metallogels are explored. An in-depth exploration of thixotropic behavior also supports their self-healing features. Notably, distinct variations in morphologies of metallogels are also ascertained through field emission scanning electron microscopy studies. Furthermore, the existence of versatile noncovalent supramolecular interactions operating throughout the metallogel network is clearly revealed via Fourier transform infrared spectroscopy. Electrospray ionization-mass studies also explore the construction protocol of individual Ni(II)-metallogels. The Z-scan measurements with a 532 nm continuous wave laser were employed to unveil the nonlinear thermo-optical response of two synthesized self-healing metallogels, i.e., trans-BDA-TEA@Ni(II) and cis-BDA-TEA@Ni(II). Crucial parameters like the nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels are obtained. Metallogels show negative signs for the nonlinear refractive index and the nonlinear absorption coefficient. The real parts of the third-order susceptibility for these metallogels are much greater than the imaginary parts (i.e., χR(3) > χI(3)), making such metallogels very promising for all optical-switching applications.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Bolpur, 731236 Birbhum, West Bengal, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Bajkul Milani Mahavidyalaya, Purba Mednipur, West Bengal 721655, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
10
|
Zhan L, Xu W, Hu Z, Fan J, Sun L, Wang X, Zhang Y, Shi X, Ding B, Yu J, Ma Y. Full-Color "Off-On" Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310762. [PMID: 38366074 DOI: 10.1002/smll.202310762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.
Collapse
Affiliation(s)
- Luyao Zhan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Wanxuan Xu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zixi Hu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jiayin Fan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Luping Sun
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xingchi Wang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yingying Zhang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Ma
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
11
|
Wang TT, Tan Q, Sun WB. Two Three-Dimensional Ln III Coordination Polymers Exhibiting Luminescent Sensing and a Magnetocaloric Effect. Inorg Chem 2024; 63:11347-11353. [PMID: 38813991 DOI: 10.1021/acs.inorgchem.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Two lanthanide 3D coordination polymers [Ln2(L)4Cl2(H2O)4]n (Ln = Eu (1), Gd (2)) with quinoline-2-carboxylic acid (HL) as the ligand were successfully synthesized and characterized. Complex 1 exhibits a highly sensitive and selective luminescent response to 2,6-dipicolinic acid (DPA) in tap water and is virtually unaffected by interferences such as amino acids, aromatic carboxylic acids, and ions. With the addition of DPA, the luminescence intensity of complex 1 decreases rapidly to the naked eye. The detection limit of 1 toward DPA is 3.36 μM, which is much less than the infectious dose (60 μM) of the anthrax spores, indicating the high sensitivity of 1 to DPA. This study offers a basis for employing lanthanide complexes in real sample analysis, enabling direct and efficient detection of DPA with high sensitivity and specificity. Additionally, it is noteworthy that at a magnetic field strength of 7 T and a temperature of 3 K, the maximum entropy change for complex 2 attains a value of 23.56 J kg-1 K-1.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Qi Tan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| |
Collapse
|
12
|
Ono N, Seishima R, Shigeta K, Okabayashi K, Imai H, Fujii S, Oaki Y. High-Sensitive Spatiotemporal Distribution Imaging of Compression Stresses Based on Time-Evolutional Responsiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400938. [PMID: 38488737 DOI: 10.1002/smll.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Indexed: 06/13/2024]
Abstract
Mechanoresponsive materials have been studied to visualize and measure stresses in various fields. However, the high-sensitive and spatiotemporal imaging remain a challenging issue. In particular, the time evolutional responsiveness is not easily integrated in mechanoresponsive materials. In the present study, high-sensitive spatiotemporal imaging of weak compression stresses is achieved by time-evolutional controlled diffusion processes using conjugated polymer, capsule, and sponge. Stimuli-responsive polydiacetylene (PDA) is coated inside a sponge. A mechanoresponsive capsule is set on the top face of the sponge. When compression stresses in the range of 6.67-533 kPa are applied to the device, the blue color of PDA is changed to red by the diffusion of the interior liquid containing a guest polymer flowed out of the disrupted capsule. The applied strength (F/N), time (t/s), and impulse (F·t/N s) are visualized and quantified by the red-color intensity. When a guest metal ion is intercalated in the layered structure of PDA to tune the responsivity, the device visualizes the elapsed time (τ/min) after unloading the stresses. PDA, capsule, and sponge play the important roles to achieve the time evolutional responsiveness for the high-sensitive spatiotemporal distribution imaging through the controlled diffusion processes.
Collapse
Affiliation(s)
- Nahoko Ono
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Ryo Seishima
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kohei Shigeta
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
13
|
Chen Y, Li H, Zhang Y, Li Z, Yang D. Eu 3+-Directed Supramolecular Metallogels with Reversible Quadruple-Stimuli Response Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309542. [PMID: 38221683 DOI: 10.1002/smll.202309542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Smart luminescent materials that have the ability to reversibly adapt to external environmental stimuli and possess a wide range of responses are continually emerging, which place higher demands on the means of regulation and response sites. Here, europium ions (Eu3+)-directed supramolecular metallogels are constructed by orthogonal self-assembly of Eu3+ based coordination interactions and hydrogen bonding. A new organic ligand (L) is synthesized, consisting of crown ethers and two flexible amide bonds-linked 1,10-phenanthroline moieties to coordinate with Eu3+. Synergistic intermolecular hydrogen bonding in L and Eu3+-L coordination bonding enable Eu3+ and L to self-assemble into shape-persistent 3D coordination metallogels in MeOH solution. The key to success is the utilization of crown ethers, playing dual roles of acting both as building blocks to build L with C2-symmetrical structure, and as the ideal monomer for increasing the energy transfer from L to Eu3+'s excited state, thus maintaining the excellent luminescence of metallogels. Interestingly, such assemblies show K+, pH, F-, and mechano-induced reversible gel-sol transitions and tunable luminescence properties. Above findings are useful in the studies of molecular switches, dynamic assemblies, and smart luminescent materials.
Collapse
Affiliation(s)
- Yan Chen
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Huimin Li
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Yakun Zhang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Daqing Yang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| |
Collapse
|
14
|
Li L, Zhou J, Han J, Liu D, Qi M, Xu J, Yin G, Chen T. Finely manipulating room temperature phosphorescence by dynamic lanthanide coordination toward multi-level information security. Nat Commun 2024; 15:3846. [PMID: 38719819 PMCID: PMC11078970 DOI: 10.1038/s41467-024-47674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Room temperature phosphorescence materials have garnered significant attention due to their unique optical properties and promising applications. However, it remains a great challenge to finely manipulate phosphorescent properties to achieve desirable phosphorescent performance on demand. Here, we show a feasible strategy to finely manipulate organic phosphorescent performance by introducing dynamic lanthanide coordination. The organic phosphors of terpyridine phenylboronic acids possessing excellent coordination ability are covalently embedded into a polyvinyl alcohol matrix, leading to ultralong organic room temperature phosphorescence with a lifetime of up to 0.629 s. Notably, such phosphorescent performance, including intensity and lifetime, can be well controlled by varying the lanthanide dopant. Relying on the excellent modulable performance of these lanthanide-manipulated phosphorescence films, multi-level information encryption including attacker-misleading and spatial-time-resolved applications is successfully demonstrated with greatly improved security level. This work opens an avenue for finely manipulating phosphorescent properties to meet versatile uses in optical applications.
Collapse
Affiliation(s)
- Longqiang Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyi Han
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanfang Xu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangqiang Yin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
15
|
Dhibar S, Mohan A, Karmakar K, Mondal B, Roy A, Babu S, Garg P, Ruidas P, Bhattacharjee S, Roy S, Bera A, Ray SJ, Predeep P, Saha B. Novel supramolecular luminescent metallogels containing Tb(iii) and Eu(iii) ions with benzene-1,3,5-tricarboxylic acid gelator: advancing semiconductor applications in microelectronic devices. RSC Adv 2024; 14:12829-12840. [PMID: 38645531 PMCID: PMC11027726 DOI: 10.1039/d3ra07903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
A novel strategy was employed to create supramolecular metallogels incorporating Tb(iii) and Eu(iii) ions using benzene-1,3,5-tricarboxylic acid (TA) as a gelator in N,N-dimethylformamide (DMF). Rheological analysis demonstrated their mechanical robustness under varying stress levels and angular frequencies. FESEM imaging revealed a flake-like hierarchical network for Tb-TA and a rod-shaped architecture for Eu-TA. EDX analysis confirmed essential chemical constituents within the metallogels. FT-IR, PXRD, Raman spectroscopy, and thermogravimetric analysis assessed their gelation process and material properties, showing semiconducting characteristics, validated by optical band-gap measurements. Metal-semiconductor junction-based devices integrating Al metal with Tb(iii)- and Eu(iii)-metallogels exhibited non-linear charge transport akin to a Schottky diode, indicating potential for advanced electronic device development. Direct utilization of benzene-1,3,5-tricarboxylic acid and Tb(iii)/Eu(iii) sources underscores their suitability as semiconducting materials for device fabrication. This study explores the versatile applications of Tb-TA and Eu-TA metallogels, offering insights for material science researchers.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Saranya Babu
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Sanjay Roy
- Department of Chemistry, School of Science, Netaji Subhas Open University, Kalyani Regional Centre Kolkata 741251 India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
16
|
Munjal R, Kyarikwal R, Sarkar S, Nag P, Vennapusa SR, Mukhopadhyay S. A Siderophore Mimicking Gelation Component for Capturing and Self-Separation of Fe(III) from an Aqueous Solution of Mixture of Metal Ions. Inorg Chem 2024; 63:7089-7103. [PMID: 38573755 DOI: 10.1021/acs.inorgchem.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The carbohydrazide-based gelation component N2,N4,N6-(1,3,5-triazine-2,4,6-triyl)tris(benzene-1,3,5-tricarbohydrazide) (CBTC) was synthesized and characterized using various spectroscopic tools. CBTC and trimesic acid (TMA) get self-assembled to form metallogel with Fe3+, specifically through various noncovalent interactions in a DMSO and H2O mixture. The self-assembly shows remarkable specificity toward Fe(III) among different transition metal salts. It is pertinent to point out that the binding specificity for Fe3+ can also be found in nature in the form of siderophores, as they are mainly involved in scavenging iron selectively from the surroundings. DFT studies have been used to investigate the possible interaction between the different components of the iron metallogel. To determine the selectivity of CBTC for iron, CBTC, along with trimesic acid, is used to interact with other metal ions, including Fe(III) ions, in a single system. The gelation components CBTC and TMA selectively bind with iron(III), which leads to the formation of metallogel and gets separated as a discrete layer, leaving the other metal ions in the solution. Therefore, CBTC and TMA together show iron-scavenging properties. This selective scavenging property is explored through FE-SEM, XPS, PXRD, IR, and ICP-AES analysis. The FE-SEM analysis shows a flower-petal-like morphology for the Fe(III) metallogel. The resemblance in the CBTC-TMA-Fe metallogel and metallogel obtained from the mixture of different metal salts is established through FE-SEM images and XPS analysis. The release of iron from the metallogel is achieved with the help of ascorbic acid, which converts Fe3+ to Fe2+. In biological systems, iron also gets released similarly from siderophores. This is the first report where the synthesized gelation component CBTC molecule is capable of scavenging out iron in the form of metallogel and self-separating from the aqueous mixture in the presence of various other metal ions.
Collapse
Affiliation(s)
- Ritika Munjal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| |
Collapse
|
17
|
Jiang Q, Chen J, Liu B, Zhang Y, Qiu Y, Wang H, Liao Y, Xie X. Regulating Gelation and Luminescence Behaviors of Single Pyridine-Functionalized Cyanostilbene via Metal Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7158-7167. [PMID: 38517397 DOI: 10.1021/acs.langmuir.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Luminescent metal-organic gels (LMOGs) have gained much attention due to their crucial role in visual recognition and information encryption. However, it is still a challenge to simplify the design of ligands and enrich the stimuli responses in LMOGs simultaneously. Herein, although a single pyridine ligand cannot form gel alone, after coordination with metal ions, two kinds of LMOGs have been obtained with pyridine-metal complexes, where metal ions can act as cogelators and regulate luminescence of the pyridine-functionalized cyanostilbene ligand at the same time. The effects of metal types on the fluorescence emission color, the fluorescence quantum yield, the fibril network, and the assembly mode of the gel have been investigated systematically. In addition, two competitive ligands were used to regulate the fluorescence and phase transition of the gel. Finally, the logic gates and the information encryption and decryption have been successfully constructed. This kind of material is expected to be applied to fluorescence display, advanced information encryption, high-tech anticounterfeit, and so forth.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Beitong Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Chiang PY, Zeng PH, Yeh YC. Luminescent lanthanide-containing gelatin/polydextran/laponite nanocomposite double-network hydrogels for processing and sensing applications. Int J Biol Macromol 2024; 260:129359. [PMID: 38242388 DOI: 10.1016/j.ijbiomac.2024.129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Lanthanide-containing nanomaterials have gained significant popularity for their utilization in polymeric networks, enabling the creation of luminescent nanocomposites for advanced applications. In this study, we developed a new type of lanthanide-containing nanocomposite hydrogels by incorporating terbium-containing laponite (Tb3+@Lap) into the networks of polyethyleneimine-modified gelatin/polydextran aldehyde (PG/PDA) through dynamic bonds. The structures and properties of the Tb3+@Lap-containing nanocomposite double-network (ncDN) hydrogels were comprehensively investigated in comparison with the DN hydrogels with a pure polymeric network and the Lap-containing ncDN hydrogels. The PG/PDA/Tb3+@Lap ncDN hydrogels with multiple dynamic bonds (i.e., imine bonds, coordination bonds, hydrogen bonds, and electrostatic interactions) exhibited remarkable characteristics of shear-thinning and self-healing, making them suitable for the construction of hydrogel scaffolds on a macroscale using fabrication techniques such as electrospinning and 3D printing. Moreover, the PG/PDA/Tb3+@Lap ncDN hydrogels have been demonstrated to act as sensitive and selective luminescent sensors for detecting copper ions. Taken together, a versatile lanthanide-containing ncDN hydrogel platform capable of dynamic features is developed for processing and sensing applications.
Collapse
Affiliation(s)
- Pei-Yu Chiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Han Zeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
19
|
Dhibar S, Roy A, Sarkar T, Das P, Karmakar K, Bhattacharjee S, Mondal B, Chatterjee P, Sarkar K, Ray SJ, Saha B. Rapid Semiconducting Supramolecular Mg(II)-Metallohydrogel: Exploring Its Potential in Nonvolatile Resistive Switching Applications and Antiseptic Wound Healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:179-192. [PMID: 38112377 DOI: 10.1021/acs.langmuir.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An effective strategy was employed for the rapid development of a supramolecular metallohydrogel of Mg(II) ion (i.e., Mg@PEHA) using pentaethylenehexamine (PEHA) as a low-molecular-weight gelator in aqueous medium under ambient conditions. The mechanical stability of the synthesized Mg@PEHA metallohydrogel was characterized by using rheological analysis, which showed its robustness across different angular frequencies and oscillator stress levels. The metallohydrogel exhibited excellent thixotropic behavior, which signifies that Mg@PEHA has a self-healing nature. Field emission scanning electron microscopy and transmission electron microscopy images were utilized to explore the rectangular pebble-like hierarchical network of the Mg@PEHA metallohydrogel. Elemental mapping through energy-dispersive X-ray spectroscopy analysis confirmed the presence of primary chemical constituents in the metallohydrogel. Fourier transform infrared spectroscopy spectroscopy provided insights into the possible formation strategy of the metallohydrogel. In this work, Schottky diode structures in a metal-semiconductor-metal geometry based on a magnesium(II) metallohydrogel (Mg@PEHA) were constructed, and the charge transport behavior was observed. Additionally, a resistive random access memory (RRAM) device was developed using Mg@PEHA, which displayed bipolar resistive switching behavior at room temperature. The researchers investigated the switching mechanism, which involved the formation or rupture of conduction filaments, to gain insights into the resistive switching process. The RRAM device demonstrated excellent performance with a high ON/OFF ratio of approximately 100 and remarkable endurance of over 5000 switching cycles. RRAM devices exhibit good endurance, meaning they can endure a large number of read and write cycles without significant degradation in performance. RRAM devices have shown promising reliability in terms of long-term performance and stability, making them suitable for critical applications that require reliable memory solutions. Significant inhibitory activity against the drug-resistant Klebsiella pneumonia strain and its biofilm formation ability was demonstrated by Mg@PEHA. The minimum inhibitory concentration value of the metallohydrogel was determined to be 3 mg/mL when it was dissolved in 1% DMSO. To study the antibiofilm activity, an MTT assay was performed, revealing that biofilm inhibition (60%) commenced at 1 mg/mL of Mg@PEHA when dissolved in 1% DMSO. Moreover, in the mouse excisional wound model, Mg@PEHA played a crucial role in preventing postoperative wound infections and promoting wound healing.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Tuhin Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Priyanka Das
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol 713303 West Bengal, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009 Chhattisgarh, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| |
Collapse
|
20
|
Zhang R, He LH, Liu SJ, Liao JS, Wen HR, Chen JL, Zhao F. Multistimuli-responsive multicolor solid-state luminescence tuned by NH-dependent switchable hydrogen bonds. Dalton Trans 2023; 53:339-345. [PMID: 38050406 DOI: 10.1039/d3dt03124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4- induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Jin-Sheng Liao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China.
| |
Collapse
|
21
|
Karmakar K, Roy A, Dhibar S, Majumder S, Bhattacharjee S, Rahaman SKM, Saha R, Chatterjee P, Ray SJ, Saha B. Exploration of a wide bandgap semiconducting supramolecular Mg(II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing. Sci Rep 2023; 13:22318. [PMID: 38102201 PMCID: PMC10724216 DOI: 10.1038/s41598-023-48936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Shantanu Majumder
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
22
|
Dhibar S, Pal S, Karmakar K, Hafiz SA, Bhattacharjee S, Roy A, Rahaman SKM, Ray SJ, Dam S, Saha B. Two novel low molecular weight gelator-driven supramolecular metallogels efficient in antimicrobial activity applications. RSC Adv 2023; 13:32842-32849. [PMID: 38025858 PMCID: PMC10630960 DOI: 10.1039/d3ra05019j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
A remarkable ultrasonication technique was successfully employed to create two novel metallogels using citric acid as a low molecular weight gelator, in combination with cadmium(ii)-acetate and mercury(ii)-acetate dissolved in N,N-dimethyl formamide at room temperature and under ambient conditions. The mechanical properties of the resulting Cd(ii)- and Hg(ii)-metallogels were rigorously examined through rheological analyses, which revealed their robust mechanical stability under varying angular frequencies and shear strains. Detailed characterization of the chemical constituents within these metallogels was accomplished through EDX mapping experiments, while microstructural features were visualized using field emission scanning electron microscope (FESEM) images. Additionally, FT-IR spectroscopic analysis was employed to elucidate the metallogel formation mechanism. Significantly, the antimicrobial efficacy of these novel metallogels was assessed against a panel of bacteria, including Gram-positive strains such as Bacillus subtilis and Staphylococcus epidermidis, as well as Gram-negative species like Escherichia coli and Pseudomonas aeruginosa. The results demonstrated substantial antibacterial activity, highlighting the potential of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels as effective agents against a broad spectrum of bacteria. In conclusion, this study provides a comprehensive exploration of the synthesis, characterization, and antimicrobial properties of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels, shedding light on their promising applications in combating both Gram-positive and Gram-negative bacterial infections. These findings open up exciting prospects for the development of advanced materials with multifaceted industrial and biomedical uses.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
23
|
Zhou WL, Lin W, Chen Y, Dai XY, Liu Y. Tunable Multicolor Lanthanide Supramolecular Assemblies with White Light Emission Confined by Cucurbituril[7]. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304009. [PMID: 37442787 DOI: 10.1002/smll.202304009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Macrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G1 )/Ln (Eu3+ /Tb3+ ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G1 /Tb3+ by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times. Furthermore, the CB[7]/G1 /Ln assembly can further co-assemble with CD and diarylethene derivatives (DAE) to realize the intelligently-regulated full-color spectrum including white light, which results from the competitive encapsulation of adamantylamine and CB[7], the change of pH, and photochromic DAE. The multi-level logic gate based on lanthanide supramolecular assembly is successfully applied in anti-counterfeiting system and information storage, providing an effective method for the research of new luminescent intelligent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
24
|
Chen L, Cui Y, Ruan J, Zhang X, Zhang Y, Rao P, Ren W. Tough, Eu 3+ -Induced Luminescent Hydrogel as Flexible Chemosensor for Real-Time Quantitative Detection of Zn 2+ Ion. Macromol Rapid Commun 2023; 44:e2300170. [PMID: 37243910 DOI: 10.1002/marc.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Herein, a novel tough luminescent hydrogel with Europium is fabricated using a facile copolymerization process by introducing 2,2':6',2-terpyridine (TPy) into a dual physical cross-linked hydrogel. The obtained P(NAGA-co-MAAc)/Eu/TPy (x) (x refers to the feed ratio of NAGA to MAAc) hydrogels not only show outstanding mechanical performances (fracture strength, ≈2.5 MPa), but also give a special ability of rapid detection to low concentrations of zinc ions. Attractively, the theoretical limits of detection (LOD) of the hydrogel sensors are calculated as 1.6 µm, which is acceptable within the WHO limit. Furthermore, the continuous change in fluorescence of P(NAGA-co-MAAc)/Eu/TPy (10) strips upon contact with Zn2+ can be clearly observed by the naked eyes with the aid of a portable UV lamp, resulting in semi-quantitative naked-eyes detection through a standard colorimetric card. Moreover, by identifying the RGB value of the hydrogel sensor, it can also realize quantitative analysis. Therefore, excellence in sensing, simplicity in structure, and convenience in using make P(NAGA-co-MAAc)/Eu/TPy (10) hydrogel as a superior fluorescent chemosensor of Zn2+ ions.
Collapse
Affiliation(s)
- Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Chongqing key laboratory of soft-matter material chemistry and function manufacturing, Southwest University, Chongqing, 400715, China
| | - Yuanzhi Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiaping Ruan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xincheng Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yifan Zhang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ping Rao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Chongqing key laboratory of soft-matter material chemistry and function manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
25
|
Song Y, Huang C, Li Y. Nanozyme Rich in Oxygen Vacancies Derived from Mn-Based Metal-Organic Gel for the Determination of Alkaline Phosphatase. Inorg Chem 2023; 62:12697-12707. [PMID: 37526919 DOI: 10.1021/acs.inorgchem.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Vacancy engineering as an effective strategy has been widely employed to regulate the enzyme-mimic activity of nanomaterials by adjusting the surface, electronic structure, and creating more active sites. Herein, we purposed a facile and simple method to acquire transition metal manganese oxide rich in oxygen vacancies (OVs-Mn2O3-400) by pyrolyzing the precursor of the Mn(II)-based metal-organic gel directly. The as-prepared OVs-Mn2O3-400 exhibited superior oxidase-like activity as oxygen vacancies participated in the generation of O2•-. Besides, steady state kinetic constant (Km) and catalytic kinetic constant (Ea) suggested that OVs-Mn2O3-400 had a stronger affinity toward 3,3',5,5'-tetramethylbenzidine and possessed prominent catalytic performance. By taking 2-phospho-l-ascorbic acid as the substrate, which can be converted into reducing substance ascorbic acid in the presence of alkaline phosphatase (ALP), OVs-Mn2O3-400 can be applied as an efficient nanozyme for ALP colorimetric analysis without the help of destructive H2O2. The colorimetric sensor established by OVs-Mn2O3-400 for ALP detection showed a good linearity from 0.1 to 12 U/L and a lower limit of detection of 0.054 U/L. Our work paves the way for designing enhanced enzyme-like activity nanozymes, which is of significance in biosensing.
Collapse
Affiliation(s)
- Yunfei Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
26
|
Wang J, Lu T, Li Y, Wang J, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials. Adv Colloid Interface Sci 2023; 318:102964. [PMID: 37515864 DOI: 10.1016/j.cis.2023.102964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Niu Q, Han H, Li H, Li Z. Room-Temperature Self-Healing Glassy Luminescent Hybrid Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5979-5985. [PMID: 37079713 DOI: 10.1021/acs.langmuir.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The self-healing of glassy polymer materials on site has always been a huge challenge due to their frozen polymer network. We herein report self-repairable glassy luminescent film by assembling a lanthanide-containing polymer with randomly hyperbranched polymers possessing multiple hydrogen (H) bonds. Because of multiple H bonds, the hybrid film exhibits enhanced mechanical strength, with high glass transition temperature (Tg) of 40.3 °C and high storage modulus of 3.52 GPa, meanwhile, dynamic exchange of multiple H bonds enables its rapid room-temperature self-healing ability. This research provides new insights in preparing mechanical robust yet repairable polymeric functional materials.
Collapse
Affiliation(s)
- Qingyu Niu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hang Han
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
28
|
Liu JH, Tu T, Shen YL, Tu B, Qian DJ. Interfacial Self-Assembly of Organized Ultrathin Films of Tripodal Metal-Terpyridyl Coordination Polymers as Luminophores and Heterogeneous Catalysts for Photocatalytic CO 2 Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4777-4788. [PMID: 36947690 DOI: 10.1021/acs.langmuir.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-directed interfacial self-assembly of well-defined coordination polymer (CP) ultrathin films can control the metal complex arrangement and distribution at the molecular level, providing a convenient route for the design and fabrication of novel opto-electrical devices and heterogeneous catalysts. Here, we report the assembly of two series of CP multilayers with the transition-metal ions of Fe2+, Co2+, Zn2+ and Tb3+ as connectors and tripodal terpyridyl ligands of 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-(4-([2,2':6',2″-terpyridin]-4'-yl)benzyl)pyridin-1-ium) (TerPyTa) and 4,4',4″-(benzene-1,3,5-triyl)tris(1-(4-([2,2':6',2″-terpyridin]-4'-yl)benzyl)pyridin-1-ium) (TerPyBen) as linkers at the air-water interface. The as-prepared Langmuir-Blodgett (LB) films display strong luminescence, with the emission wavelength and relative intensity dependent on both the metal ions and linkers; among them, the Zn-TerPyTa and Zn-TerPyBen CPs give off the strongest luminescent emission centered at about 370 nm with an emission lifetime of approximately 0.2-0.3 ns. The Tb-TerPyTa CPs can give off emission at approximately 490, 546, 586, and 622 nm, attributed to the 5D4 to 7F3-6 electron transitions of typical Tb3+ ions. Finally, these CP LB films can act as efficient heterogeneous photocatalysts for the CO2 reduction to selectively produce CO. The catalytic efficiency can be optimized by adjusting the experimental conditions (light sensitizer, electron donor, and water content) and CP composition (metal ion and ligand) with an excellent yield of up to 248.1 mmol g-1. In particular, it is revealed that, under the same conditions, the catalytic efficiency of the Fe-TerPyTa CP LB film is nearly 2 to 3 orders of magnitude higher than that of the other metalated complexes investigated in the homogeneous system. UV-vis spectroscopy and cyclic voltammetry studies demonstrated that the dual active sites of Fe-terpyridine and TerPyTa units contribute to the enhanced catalytic activity. This work provides an effective method to introduce the earth-abundant metal complexes into CP films to construct efficient noble-metal-free photocatalysts for the CO2 reduction.
Collapse
Affiliation(s)
- Jian-Hong Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu-Luo Shen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bo Tu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
29
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Shape memory luminescent cellulose/chitosan hydrogel for high sensitive detection of formaldehyde. Int J Biol Macromol 2023; 233:123570. [PMID: 36758764 DOI: 10.1016/j.ijbiomac.2023.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Hybrid hydrogels containing biomacromolecules have been widely used in sensors, fluorescent probes, and other fields due to their high biocompatibility and nontoxicity. In this paper, tough hydrogels with interconnected macro-pores have been fabricated by freeze-induced chemical cross-linking of microfibrillated cellulose (MFC) and organic modified chitosan (CS). In this hydrogel materials, three-dimensional networks were formed by abundant hydrogen bonds and chemical cross-linking. Luminescent lanthanide complexes were covalently bonded to the hydrogel networks through coordination of Eu3+ ions with 2, 3-pyridine dicarboxylic acid modified chitosan. The luminescence of hydrogel materials was further improved by the replacement of coordination water with 2-thiophenyltrifluoroacetone (TTA). The prepared hydrogels showed excellent shape memory properties both under water and in air. The stress of the hybrid hydrogel at 80 % strain can reach 159 kPa, which is much higher than that of the traditional microfibrillated cellulose-based hydrogels. The obtained luminescent hybrid hydrogels exhibited an excellent fluorescence detection effect on formaldehyde. The detection limit for formaldehyde is 45.7 ppb, which is much lower than the WHO standard (80 ppb for indoor air). The novel, facile preparing procedure may extend the potential applications of hybrid lanthanide luminescent hydrogel as fluorescence probes for pollution monitoring, especially for formaldehyde and other organic aldehydes.
Collapse
|
31
|
Dhibar S, Pal B, Karmakar K, Kundu S, Bhattacharjee S, Sahoo R, Mehebub Rahaman SK, Dey D, Pratim Ray P, Saha B. Exploring a supramolecular gel to
in‐situ
crystal fabrication from the low molecular weight gelators: a crystal engineering approach towards microelectronic device application. ChemistrySelect 2023. [DOI: 10.1002/slct.202204214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
32
|
Xue SS, Li Y, Pan W, Li N, Tang B. Multi-stimuli-responsive molecular fluorescent probes for bioapplications. Chem Commun (Camb) 2023; 59:3040-3049. [PMID: 36786045 DOI: 10.1039/d2cc07008a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimuli-responsive fluorescent probes have been widely utilized in detecting the physiological and pathological states of living systems. Numerous stimuli-responsive fluorescent probes have been developed due to their advantages of good sensitivity, high resolution, and high contrast fluorescent signals. In this feature article, the progress of multi-stimuli-responsive probes, including organic molecules and metal complexes, for the detection of various biomarkers for bio-applications is summarized. The feature article focuses on the applications of organic-molecule- and metal-complex-based molecular probes in biological systems for detecting different biomarkers of cancer or other diseases. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
33
|
Roy BC, Mahapatra TS. Recent advances in the development of europium(III) and terbium(III)-based luminescent supramolecular metallogels. SOFT MATTER 2023; 19:1854-1872. [PMID: 36820826 DOI: 10.1039/d2sm00999d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the recent past, special attention has been paid to the development of metallogels as novel luminescent materials from rationally designed gelators with lanthanide ions, especially europium (Eu(III)) and terbium (Tb(III)) metal ions. Lanthanide (Ln(III)) based metallogels possess various useful properties with an extensive range of applications in the field of advanced materials, and electronic and bio-technologies. Lanthanide ions in coordination with appropriate sensitizer ligands can reproduce metal-based optical, redox, and electronic properties in soft gel materials. The optical properties of the luminescent Ln(III) based metallogels can be tuned over the complete visible spectrum (400-750 nm) including the generation of white light by mixing both Eu(III) and Tb(III) with the ligand in various stoichiometric ratios. Additionally, the dynamic nature of the lanthanide-ligand (Ln-N) coordination bond allows the Ln(III) based metallogels to respond to various external stimuli. Luminescent self-healing supramolecular gels using organic ligands as 'hosts' and Ln(III) ions as 'guests' are also a current topic of research interest. In this review, we discuss and summarize some selected recent examples of newly developed luminescent Eu(III) and Tb(III) based supramolecular metallogels with potential applications in the fields of optoelectronic devices, stimuli responsiveness, self-healing, luminescent films, and sensors.
Collapse
Affiliation(s)
- Bilash Chandra Roy
- Department of Chemistry, Faculty of Science and Technology, ICFAI University Tripura, Agartala 799210, Tripura (W), India.
| | - Tufan Singha Mahapatra
- Department of Chemistry, Faculty of Science and Technology, ICFAI University Tripura, Agartala 799210, Tripura (W), India.
| |
Collapse
|
34
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
35
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
36
|
Houard F, Cucinotta G, Guizouarn T, Suffren Y, Calvez G, Daiguebonne C, Guillou O, Artzner F, Mannini M, Bernot K. Metallogels: a novel approach for the nanostructuration of single-chain magnets. MATERIALS HORIZONS 2023; 10:547-555. [PMID: 36426997 DOI: 10.1039/d2mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study we demonstrate that single-chain magnets (SCMs) can be assembled in gel phase and transferred intact on surface. We take advantage of a family of SCMs based on TbIII ions and nitronyl-nitroxides radicals functionalized with short alkyl chains known to form crystalline supramolecular nanotubes interacting with heptane acting as crystallizing solvent. When the radicals are functionalized with long aliphatic chains a robust gel is formed with similar structural and functional properties respect to its crystalline parent. Indeed, a small-angle X-ray scattering (SAXS) study unambiguously demonstrates that the gel is made of supramolecular nanotubes: the high stability of the gel allows the determination from SAXS data of precise nanotube metrics such as diameter, helical pitch and monoclinic cell of the folded 2D crystal lattice along the tube direction. Additionally, static and dynamic magnetic investigations show the persistence of the SCM behavior in the metallogel. Last, on-surface gelation provides thick films as well as sub-monolayer deposits of supramolecular nanotubes on surface as evidenced by atomic force microscopy (AFM) observations. This paves the road toward magnetic materials and devices made of SCMs profiting of their isolation on surface as individual chains.
Collapse
Affiliation(s)
- Felix Houard
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Guiseppe Cucinotta
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via della Lastruccia n.3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Thierry Guizouarn
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Yan Suffren
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Carole Daiguebonne
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Olivier Guillou
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Franck Artzner
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Université de Rennes 1, F-35000 Rennes, France
| | - Matteo Mannini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via della Lastruccia n.3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Kevin Bernot
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
- Institut Universitaire de France, 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
37
|
Wang Z, Miao Y, Ou Q, Niu RX, Jiang Y, Zhang C. Full-Color-Tunable Nanohydrogels as High-Stability Intracellular Nanothermometers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55423-55430. [PMID: 36485011 DOI: 10.1021/acsami.2c18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Full-color-tunable hydrogels with ultrahigh stability can be used in various fields, including intracellular temperature sensing. However, constructing full-color-tunable organic nanohydrogels with excellent biocompatibility and stability for intracellular temperature sensing remains a great challenge. Here, we report a full-color-tunable nanohydrogel with ultrahigh stability as an intracellular nanothermometer. Three types of temperature-sensitive polymers with red, green, and blue fluorescence were synthesized. Through easy mixing of these three polymers with regulation of the mass ratio, these polymers can be encoded to full-color-tunable fluorescent nanohydrogels, including nanohydrogels with white-light emission (NWLEs), with sizes of about 200 nm in aqueous media. Further study suggested that the as-obtained NWLEs exhibited good performance in intracellular temperature sensing because of their ultrahigh stability on their fluorescence properties and morphologies.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
- Technology Institute, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan430200, Hubei, China
| | - Yu Miao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Qiang Ou
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Ruo-Xin Niu
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
38
|
A Transparent Self-Healable Multistimuli-Responsive novel Supramolecular Co(II)-Metallogel derived from Adipic Acid: Effective Hole Transport Layer for Polymer Solar Cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Dhibar S, Dey A, Dalal A, Bhattacharya S, Sahu R, Sahoo R, Mondal A, Mehebub Rahaman SK, Kundu S, Saha B. An Organic Acid consisted Multiresponsive Self-Healing Supramolecular Cu(II)-Metallogel: Fabrication and Analysis of semiconducting device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Manna K, Sutter JP, Natarajan S. Blue-Emitting Ligand-Mediated Assembly of Rare-Earth MOFs toward White-Light Emission, Sensing, Magnetic, and Catalytic Studies. Inorg Chem 2022; 61:16770-16785. [PMID: 36227059 DOI: 10.1021/acs.inorgchem.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New lanthanide carboxylate compounds with two- (2D) and three-dimensional (3D) structures have been prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as an organic linker. The compounds, [Ln(C14H8O6)(C7O3H4)·2H2O]·4(H2O), Ln = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy and [Ln(C7O3H4)3·(C3H7ON)·(H2O)]·2(H2O)(C3H7NO), Ln = La, Ce, Pr, have two- and three-dimensional structures, respectively. In all compounds, lanthanide ions are connected together, forming a dimer, which is connected by the 2,5-BPTA ligand. In the two-dimensional structure, there are two 2,5-BPTA moieties present, and in the three-dimensional structure, there are three 2,5-BPTA moieties present. The lanthanide centers are nine-coordinated, the 2D structure has a tricapped trigonal prismatic arrangement, and the 3D structure has a monocapped distorted square antiprismatic arrangement. The Pr compound forms in both 2D and 3D structures, whose formation depends on the time of the reaction (2 days─2D and 5-6 days─3D). The ligand emits in the blue region, and using the characteristic emission of Eu3+ (red) and Tb3+ (green) ions, we achieve white light emission in the (Y0.96Tb0.02Eu0.02) compound. The overall quantum yield for the white light emission is 28%. The strong green luminescence of the Tb3+-containing compound was employed to selectively sense the Cr3+ and Fe3+ ions in aqueous solution with limits of detection (LODs) at 0.41 and 8.6 ppm, respectively. The Tb compound was found to be a good heterogeneous catalyst for the Ullman-type O-arylation reaction between phenol and bromoarene with yields of 95%. Magnetic studies on the Gd-, Tb-, and Dy-containing compounds showed weak exchange interactions within the dimeric Ln2 units. The present work demonstrates the many utilities of the rare-earth-containing MOFs, especially toward white-light emission, metal-ion sensing, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jean-Pascal Sutter
- Laboratoire de Chime de Coordination du CNRS, Université de Toulouse, CNRS 205 route de Narbonne, 31077 Toulouse, France
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
41
|
Guin PS, Roy S. Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
A stimuli responsive lanthanide-based hydrogel possessing tunable luminescence by efficient energy transfer pathways. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Shen H, Cao Y, Lv M, Sheng Q, Zhang Z. Polymer mechanochemistry for the release of small cargoes. Chem Commun (Camb) 2022; 58:4813-4824. [PMID: 35352709 DOI: 10.1039/d2cc00147k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of force-induced release of small cargoes within polymeric materials has experienced rapid growth over the past decade, not only including achieving diversified functional materials that report force, trigger degradation, activate drugs and release catalysts, but also involving investigations on the interesting force-coupled reactivity of mechanophores, such as ferrocenes. In this highlight article, we review the recent progress on polymer mechanochemistry that releases small cargoes, including small molecules and metal ions. Since mechanophores play a key role in force-responsive materials, we introduce the progress by discussing different types of mechanophores and their mechanochemical reactions for the release of acids, gases, fluorophores, drugs, iron ions, and so on. At the end, we provide our perspectives on the remaining challenges and future targets in this growing field.
Collapse
Affiliation(s)
- Hang Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yunzheng Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Miaojiang Lv
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Qinxin Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
45
|
Hou LX, Ding H, Hao XP, Zhu CN, Du M, Wu ZL, Zheng Q. Multi-level encryption of information in morphing hydrogels with patterned fluorescence. SOFT MATTER 2022; 18:2149-2156. [PMID: 35212340 DOI: 10.1039/d2sm00083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent hydrogels have attracted tremendous attention recently in the field of information security due to the booming development of information technology. Along this line, it is highly desired to improve the security level of concealed information by the advancements of materials and encryption technologies. Here we report multi-level encryption of information in a bilayer hydrogel with shape-morphing ability and patterned fluorescence. This hydrogel is composed of a fluorescence layer containing chromophore units in the poly(acrylic acid) network and an active layer with UV-absorption agents in the poly(N-isopropylacrylamide-co-acrylic acid) network. The former layer exhibits tunable fluorescence tailored by UV light irradiation to induce unimer-to-dimer transformation of the chromophores, facilitating the write-in of information through photolithography. The latter layer is responsive to temperature, enabling morphing of the bilayer hydrogel. Therefore, the bilayer hydrogel encoded with patterned fluorescent patterns can deform into three-dimensional configurations at room temperature to conceal the information, which is readable only after successive procedures of shape recovery at an appropriate temperature and under UV light irradiation from the right direction. The combination of morphing materials and patterned fluorescence as a new avenue to improve the encryption level of information should merit the design of other smart materials with integrated functions for specific applications.
Collapse
Affiliation(s)
- Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongyao Ding
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Chao Nan Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
46
|
Clegg JK, Li F, Lindoy LF. Oligo-β-diketones as versatile ligands for use in metallo-supramolecular chemistry: Recent progress and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Yin G, Huang J, Liu D, Li R, Wei S, Si M, Ni F, Zheng Y, Yang Q, Zhou R, Le X, Lu W, Chen T. Mechanochemical transformation of fluorescent hydrogel based on dynamic lanthanide-terpyridine coordination. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Zhao SS, Liu T, Zhang H, Yang YS, Tian P, Li WC, Zhao Z. Synthesis, characterization, and luminescent temperature sensing of two resorcin[4]arene-based Zn(II) coordination polymers. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Tang Q, Liu S, Liu J, Wang Y, Wang Y, Wang S, Du Z, Huang L, Belfiore LA, Tang J. Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu 3+ Complexes Adjusted by Amphiphilic Molecules. Polymers (Basel) 2022; 14:905. [PMID: 35267728 PMCID: PMC8912808 DOI: 10.3390/polym14050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
With the growing needs for flexible fluorescence emission materials, emission fibers and related wearable fabrics with bright emission properties have become key factors for wearable applications. In this article, novel cuboid-like crystals of Eu3+ complexes were generated. Except for light-energy-harvesting ligands of thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline hydrate (Phen), the crystal structures were adjusted by other functional amphiphilic molecules. Not only does ETPC-SA, adjusted by stearic acid, have a regular cuboid-like crystal with a size of about 2 μm size, but it also generates the best photon emission property, with a fluorescence quantum yield of 98.4% fluorescence quantum yield in this report. Furthermore, we succeeded in producing novel fluorescent fibers by mini-twin-screw extrusion, and it was easy to form bright red fabrics, which are equipped with strong fluorescence intensity, flexibility, and a smooth hand feeling, with the normal fabricating method in our work. It is worth noting that ETPC-HQ fibers, which carry a crystal complex adjusted by hydroquinone, possess the lowest quantum yield but have the longest average fluorescence lifetime of 1259 µs. This result means that a low-density polyethylene (LDPE) matrix could make excited electrons stand in the excited state for a relatively long time when adjusted by hydroquinone, so as to increase the afterglow property of fluorescent fibers.
Collapse
Affiliation(s)
- Qinglin Tang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Shasha Liu
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Jin Liu
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Yao Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Yanxin Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Shichao Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Zhonglin Du
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Linjun Huang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Laurence A. Belfiore
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| |
Collapse
|
50
|
Tough and rapidly stimuli-responsive luminescent hydrogels for multi-dimensional information encryption and storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|