1
|
Iwasaki H, Yamanaka K, Sato Y, Mikie T, Saito M, Ohkita H, Osaka I. Efficient Derivatization of a Thienobenzobisthiazole-Based π-Conjugated Polymer Through Late-Stage Functionalization Towards High-Efficiency Organic Photovoltaic Cells. Angew Chem Int Ed Engl 2024; 63:e202409814. [PMID: 39405474 DOI: 10.1002/anie.202409814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 11/12/2024]
Abstract
Derivatization is essential for optimizing organic material properties. However, because functional groups are often introduced at an early stage of the synthesis, similar intermediates have to be repeatedly synthesized to produce derivatives, which amounts to a daunting and time-consuming task. Using thienobenzobisthiazole (TBTz) as a building unit of donor polymers for organic photovoltaics (OPVs), we demonstrate an efficient derivatization of a TBTz-based π-conjugated polymer by late-stage functionalization. In the developed synthetic route, functional groups are introduced at the last step of monomer synthesis, enabling us to easily synthesize several derivatives from a common intermediate. Ester and acyl groups are introduced into the polymer instead of the alkyl group, giving rise to deep HOMO energy levels and resulting in OPV cells with high open-circuit voltage even in the absence of halogen substituents that are typically introduced into the donor polymers. Notably, the ester-functionalized TBTz-based polymer shows a small nonradiative voltage loss (ΔVnr) of 0.19 V and has one of the highest charge generation efficiencies among the halogen-free donor polymers with similar ΔVnr, improving the critical trade-off relationship between voltage loss and charge generation. Our results provide an important guideline for the efficient development of high-performance polymers for OPVs.
Collapse
Affiliation(s)
- Hiroto Iwasaki
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Kodai Yamanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Yuki Sato
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tsubasa Mikie
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Masahiko Saito
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Hideo Ohkita
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Itaru Osaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
2
|
Karuppusamy M, Panneer SVK, Varathan E, Ravva MK, Easwaramoorthi S, Subramanian V. Design of Isoindigo-Based Small-Molecule Donors for Bulk Heterojunction Organic Solar Cell Applications in Combination with Nonfullerene Acceptors. J Phys Chem A 2024; 128:4206-4224. [PMID: 38752229 DOI: 10.1021/acs.jpca.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The development of small-molecule organic solar cells with the required efficiency depends on the information obtained from molecular-level studies. In this context, 39 small-molecule donors featuring isoindigo as an acceptor moiety have been meticulously crafted for potential applications in bulk heterojunction organic solar cells. These molecules follow the D2-A-D1-A-D2 and D2-A-π-D1-π-A-D2 framework. Similar molecules considered in the previous experimental study (molecules R1 ((3E,3″E)-6,6″-(benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(1,1'-dimethyl-[3,3'-biindolinylidene]-2,2'-dione)) and R2 ((3E,3″E)-6,6″-(4,8-dimethoxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(1,1'-dimethyl-[3,3'-biindolinylidene]-2,2'-dione))) have been chosen as reference molecules. Molecules with and without π-spacers have been considered to understand the impact of the length of the π-spacer on intramolecular charge-transfer transitions and absorption properties. A detailed investigation is carried out to establish the relationship between the structure and photovoltaic parameters using density functional theory and time-dependent density functional theory methods. The newly developed molecules exhibit better electronic, excited-state, and charge transport properties than the reference molecules. Additionally, model donor-acceptor interfaces are constructed by integrating the designed donor molecules with fullerene/nonfullerene acceptors. The electronic and excited-state properties of these interfaces are rigorously evaluated. Results elucidate that the donor comprising of isoindigo-bithiophene-pyrroloindacenodithiophene (IIG-T2-PIDT) emerges as a promising candidate for bulk heterojunction solar cells based on nonfullerene acceptors. This research provides systematic design strategies for the development of small-molecule donors for organic solar cells.
Collapse
Affiliation(s)
- Masiyappan Karuppusamy
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shyam Vinod Kumar Panneer
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
| | - Elumalai Varathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Inorganic and Physical Chemistry Lab, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
| | - Venkatesan Subramanian
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Inorganic and Physical Chemistry Lab, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
- Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
3
|
Kim S, Oh J, Park J, Lee B, Mai TLH, Sun Z, Jeong S, Cho Y, Kim W, Yang C. High-Precision Tailored Polymer Molecular Weights for Specific Photovoltaic Applications through Ultrasound-Induced Simultaneous Physical and Chemical Events. Angew Chem Int Ed Engl 2024; 63:e202401097. [PMID: 38308505 DOI: 10.1002/anie.202401097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
It is highly challenging to reproducibly prepare semiconducting polymers with targeted molecular weight tailored for next-generation photovoltaic applications. Once such an easily accessible methodology is established, which can not only contribute to overcome the current limitation of the statistically determined nature of semiconducting polymers, but also facilitate rapid incorporation into the broad synthetic chemists' toolbox. Here, we describe a simple yet robust ultrasonication-assisted Stille polymerization for accessing semiconducting polymers with high-precision tailored molecular weights (from low to ultrahigh molecular weight ranges) while mitigating their interbatch variations. We propose that ultrasound-induced simultaneous physical and chemical events enable precise control of the semiconducting polymers' molecular weights with high reproducibility to satisfy all the optical/electrical and morphological demands of diverse types of high-performance semiconducting polymer-based devices; as demonstrated in in-depth experimental screenings in applications of both organic and perovskite photovoltaics. We believe that this methodology provides a fast development of new and existing semiconducting polymers with the highest-level performances possible on various photovoltaic devices.
Collapse
Affiliation(s)
- Seoyoung Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Jiyeon Oh
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Jeewon Park
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Byongkyu Lee
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Thi Le Huyen Mai
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Zhe Sun
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Yongjoon Cho
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Wonjun Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
4
|
Ji J, Wu Z, Xie J, Wang W, Qian H, Liang Z. Dual Polymerized Y-Acceptors of Distinct-Dimensionality Create Neuron-Like Interpenetrating Hierarchical Network towards Efficient and Stable All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313237. [PMID: 38214364 DOI: 10.1002/adma.202313237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/13/2024]
Abstract
All-polymer solar cells have garnered particular attention thanks to their superior thermal, photo, and mechanical stabilities for large-scale manufacturing, yet the performance enhancement remains largely restrained by inherent morphological challenges of the bulk-heterojunction active layer. Herein, a 3D Y-branched polymerized small-molecule acceptor named PYBF, characteristic of high molecular weight and glass transition temperature, is designed and synthesized by precisely linking C3h-symmetric benzotrifuran with Y6 acceptors. In comparison to the benchmark thiophene-bridged linear PYIT acceptor, an optical blue-shift absorption is observed for PYBF yet a slightly higher power conversion efficiency (PCE) of 15.7% (vs 15.14%) is obtained when paired with polymer donor PM6, which benefit from the more crystalline and face-on-oriented PYBF domains. However, the star-like bulky structure of PYBF results in the nucleation-growth dominant phase-separation in polymeric blends, which generates stumpy droplet-like acceptor fibrils and impairs the continuity of acceptor phases. This issue is however surprisingly resolved by incorporating a small amount of PYIT, which leads to the formation of the more interconnective neuron-like dual-acceptor domains by long-chain entanglements of linear acceptors and alleviates bimolecular recombination. Thus, the champion device realizes a respectable PCE of up to ≈17% and importantly exhibits thermal and storage stabilities superior to the linear counterpart.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zhiyuan Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Jiaqi Xie
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Ziqi Liang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Yang X, Shao Y, Wang S, Chen M, Xiao B, Sun R, Min J. Processability Considerations for Next-Generation Organic Photovoltaic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307863. [PMID: 38048536 DOI: 10.1002/adma.202307863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Indexed: 12/06/2023]
Abstract
The evolution of organic semiconductors for organic photovoltaics (OPVs) has resulted in unforeseen outcomes. This has provided substitute choices of photoactive layer materials, which effectively convert sunlight into electricity. Recently developed OPV materials have narrowed down the gaps in efficiency, stability, and cost in devices. Records now show power conversion efficiency in single-junction devices closing to 20%. Despite this, there is still a gap between the currently developed OPV materials and those that meet the requirements of practical applications, especially the solution processability issue widely concerned in the field of OPVs. Based on the general rule that structure determines properties, methodologies to enhance the processability of OPV materials are reviewed and explored from the perspective of material design and views on the further development of processable OPV materials are presented. Considering the current dilemma that the existing evaluation indicators cannot reflect the industrial processability of OPV materials, a more complete set of key performance indicators are proposed for their processability considerations. The purpose of this perspective is to raise awareness of the boundary conditions that exist in industrial OPV manufacturing and to provide guidance for academic research that aspires to contribute to technological advancements.
Collapse
Affiliation(s)
- Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Mingxia Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bo Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Cheng Y, Mao Q, Zhou C, Huang X, Liu J, Deng J, Sun Z, Jeong S, Cho Y, Zhang Y, Huang B, Wu F, Yang C, Chen L. Regulating the Sequence Structure of Conjugated Block Copolymers Enables Large-Area Single-Component Organic Solar Cells with High Efficiency and Stability. Angew Chem Int Ed Engl 2023; 62:e202308267. [PMID: 37539636 DOI: 10.1002/anie.202308267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Single-component organic solar cells (SCOSCs) based on conjugated block copolymers (CBCs) by covalently bonding a polymer donor and polymer acceptor become more and more appealing due to the formation of a favorable and stable morphology. Unfortunately, a deep understanding of the effect of the assembly behavior caused by the sequence structure of CBCs on the device performance is still missing. Herein, from the aspect of manipulating the sequence length and distribution regularity of CBCs, we synthesized a series of new CBCs, namely D18(20)-b-PYIT, D18(40)-b-PYIT and D18(60)-b-PYIT by two-pot polymerization, and D18(40)-b-PYIT(r) by traditional one-pot method. It is observed that precise manipulation of sequence length and distribution regularity of the polymer blocks fine-tunes the self-assembly of the CBCs, optimizes film morphology, improves optoelectronic properties, and reduces energy loss, leading to simultaneously improved efficiency and stability. Among these CBCs, the D18(40)-b-PYIT-based device achieves a high efficiency of 13.4 % with enhanced stability, which is an outstanding performance among SCOSCs. Importantly, the regular sequence distribution and suitable sequence length of the CBCs enable a facile film-forming process of the printed device. For the first time, the blade-coated large-area rigid/flexible SCOSCs are fabricated, delivering an impressive efficiency of 11.62 %/10.73 %, much higher than their corresponding binary devices.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qilong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunxiang Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xuexiang Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiabin Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiawei Deng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhe Sun
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seonghun Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yongjoon Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Youhui Zhang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology 156 Ke Jia Road, Ganzhou, 341000 (China)
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
7
|
Forti G, Pankow RM, Qin F, Cho Y, Kerwin B, Duplessis I, Nitti A, Jeong S, Yang C, Facchetti A, Pasini D, Marks TJ. Anthradithiophene (ADT)-Based Polymerized Non-Fullerene Acceptors for All-Polymer Solar Cells. Chemistry 2023; 29:e202300653. [PMID: 37191934 DOI: 10.1002/chem.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Realizing efficient all-polymer solar cell (APSC) acceptors typically involves increased building block synthetic complexity, hence potentially unscalable syntheses and/or prohibitive costs. Here we report the synthesis, characterization, and implementation in APSCs of three new polymer acceptors P1-P3 using a scalable donor fragment, bis(2-octyldodecyl)anthra[1,2-b : 5,6-b']dithiophene-4,10-dicarboxylate (ADT) co-polymerized with the high-efficiency acceptor units, NDI, Y6, and IDIC. All three copolymers have comparable photophysics to known polymers; however, APSCs fabricated by blending P1, P2 and P3 with donor polymers PM5 and PM6 exhibit modest power conversion efficiencies (PCEs), with the champion P2-based APSC achieving PCE=5.64 %. Detailed morphological and microstructural analysis by AFM and GIWAXS reveal a non-optimal APSC active layer morphology, which suppresses charge transport. Despite the modest efficiencies, these APSCs demonstrate the feasibility of using ADT as a scalable and inexpensive electron rich/donor building block for APSCs.
Collapse
Affiliation(s)
- Giacomo Forti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Robert M Pankow
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Fei Qin
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Yongjoon Cho
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Brendan Kerwin
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Isaiah Duplessis
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
| | - Antonio Facchetti
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, 30332, Atlanta, Georgia, USA
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Tobin J Marks
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| |
Collapse
|
8
|
Li Y, Yuan X, Kim S, Zhang Y, Xie D, Tan X, Yang C, Huang X, Huang F, Cao Y, Duan C. Revealing the Molecular Weight Effect on Highly Efficient Polythiophene Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294863 DOI: 10.1021/acsami.3c05411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polythiophenes (PTs) are promising electron donors in organic solar cells (OSCs) due to their simple structures and excellent synthetic scalability. Benefiting from the rational molecular design, the power conversion efficiency (PCE) of PT solar cells has been greatly improved. Herein, five batches of the champion PT (P5TCN-F25) with molecular weights ranging from 30 to 87 kg mol-1 were prepared, and the effect of the molecular weight on the blend film morphology and photovoltaic performance of PT solar cells was systematically investigated. The results showed that the PCEs of the devices improved first and then maintained a high value with the increase of molecular weight, and the highest PCE of 16.7% in binary PT solar cells was obtained. Further characterizations revealed that the promotion in photovoltaic performance mainly comes from finer phase separation structures and more compact molecular packing in the blend film. The best device stabilities were also achieved by polymers with high molecular weights. Overall, this study highlights the importance of optimizing the molecular weight for PTs and offers directions to further improve the PCE of PT solar cells.
Collapse
Affiliation(s)
- Youle Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiyue Yuan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Yue Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dongsheng Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiaoxin Tan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Xuelong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
9
|
Pankow RM, Harbuzaru A, Zheng D, Kerwin B, Forti G, Duplessis ID, Musolino B, Ponce Ortiz R, Facchetti A, Marks TJ. Oxidative-Reductive Near-Infrared Electrochromic Switching Enabled by Porous Vertically Stacked Multilayer Devices. J Am Chem Soc 2023. [PMID: 37279083 DOI: 10.1021/jacs.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we demonstrate for the first time the ability of a porous π-conjugated semiconducting polymer film to enable facile electrolyte penetration through vertically stacked redox-active polymer layers, thereby enabling electrochromic switching between p-type and/or n-type polymers. The polymers P1 and P2, with structures diketopyrrolopyrrole (DPP)-πbridge-3,4,-ethylenedioxythiophene (EDOT)-πbridge [πbridge = 2,5-thienyl for P1 and πbridge = 2,5-thiazolyl for P2] are selected as the p-type polymers and N2200 (a known naphthalenediimide-dithiophene semiconductor) as the n-type polymer. Single-layer porous and dense (control) polymer films are fabricated and extensively characterized using optical microscopy, atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. The semiconducting films are then incorporated into single and multilayer electrochromic devices (ECDs). It is found that when a p-type (P2) porous top layer is used in a multilayer ECD, it enables electrolyte penetration to the bottom layer, enabling oxidative electrochromic switching of the P1 bottom layer at low potentials (+0.4 V versus +1.2 V with dense P2). Importantly, when using a porous P1 as the top layer with an n-type N2200 bottom layer, dynamic oxidative-reductive electrochromic switching is also realized. These results offer a proof of concept for development of new types of multilayer electrochromic devices where precise control of the semiconductor film morphology and polymer electronic structure is essential.
Collapse
Affiliation(s)
- Robert M Pankow
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexandra Harbuzaru
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brendan Kerwin
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Giacomo Forti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Isaiah D Duplessis
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | | | - Rocio Ponce Ortiz
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Jia S, Qi S, Xing Z, Li S, Wang Q, Chen Z. Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers. Molecules 2023; 28:2056. [PMID: 36903301 PMCID: PMC10004708 DOI: 10.3390/molecules28052056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, donor-acceptor (D-A)-type conjugated polymers have been widely used in the field of organic solar cells (OSCs) and electrochromism (EC). Considering the poor solubility of D-A conjugated polymers, the solvents used in material processing and related device preparation are mostly toxic halogenated solvents, which have become the biggest obstacle to the future commercial process of the OSC and EC field. Herein, we designed and synthesized three novel D-A conjugated polymers, PBDT1-DTBF, PBDT2-DTBF, and PBDT3-DTBF, by introducing polar oligo (ethylene glycol) (OEG) side chains of different lengths in the donor unit benzodithiophene (BDT) as side chain modification. Studies on solubility, optics, electrochemical, photovoltaic and electrochromic properties are conducted, and the influence of the introduction of OEG side chains on its basic properties is also discussed. Studies on solubility and electrochromic properties show unusual trends that need further research. However, since PBDT-DTBF-class polymers and acceptor IT-4F failed to form proper morphology under the low-boiling point solvent THF solvent processing, the photovoltaic performance of prepared devices is not ideal. However, films with THF as processing solvent showed relatively desirable electrochromic properties and films cast from THF display higher CE than CB as the solvent. Therefore, this class of polymers has application feasibility for green solvent processing in the OSC and EC fields. The research provides an idea for the design of green solvent-processable polymer solar cell materials in the future and a meaningful exploration of the application of green solvents in the field of electrochromism.
Collapse
Affiliation(s)
- Songrui Jia
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shiying Qi
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Zhen Xing
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shiyi Li
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qilin Wang
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zheng Chen
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Huu Nguyen T, Nguyen LTT, Ha Hoang M, Nguyen TQ, Thanh Cu S, Simada R, Ohta Y, Yokozawa T, Tran Nguyen H. Intramolecular catalyst transfer on N-acyl dithieno[3,2-b:2′,3′-d]pyrroles in nonstoichiometric Suzuki-Miyaura polycondensation toward high molecular weight conjugated copolymers at room temperature. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Liu Y, Fan Q, Liu H, Jalan I, Jin Y, Stam JV, Moons E, Wang E, Lu X, Inganäs O, Zhang F. In Situ Optical Spectroscopy Demonstrates the Effect of Solvent Additive in the Formation of All-Polymer Solar Cells. J Phys Chem Lett 2022; 13:11696-11702. [PMID: 36512444 PMCID: PMC9791685 DOI: 10.1021/acs.jpclett.2c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
1-Chloronaphthalene (CN) has been a common solvent additive in both fullerene- and nonfullerene-based organic solar cells. In spite of this, its working mechanism is seldom investigated, in particular, during the drying process of bulk heterojunctions composed of a donor:acceptor mixture. In this work, the role of CN in all-polymer solar cells is investigated by in situ spectroscopies and ex situ characterization of blade-coated PBDB-T:PF5-Y5 blends. Our results suggest that the added CN promotes self-aggregation of polymer donor PBDB-T during the drying process of the blend film, resulting in enhanced crystallinity and hole mobility, which contribute to the increased fill factor and improved performance of PBDB-T:PF5-Y5 solar cells. Besides, the nonradiative energy loss of the corresponding device is also reduced by the addition of CN, corresponding to a slightly increased open-circuit voltage. Overall, our observations deepen our understanding of the drying dynamics, which may guide further development of all-polymer solar cells.
Collapse
Affiliation(s)
- Yanfeng Liu
- Biomolecular
and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581
83, Sweden
- College
of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Qunping Fan
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Göteborg SE-412 96, Sweden
- State
Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Heng Liu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin 999077, Hong Kong, China
| | - Ishita Jalan
- Department
of Engineering and Chemical Sciences, Karlstad
University, Karlstad SE-651 88, Sweden
| | - Yingzhi Jin
- China-Australia
Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Jan van Stam
- Department
of Engineering and Chemical Sciences, Karlstad
University, Karlstad SE-651 88, Sweden
| | - Ellen Moons
- Department
of Engineering and Physics, Karlstad University, Karlstad SE-651 88, Sweden
| | - Ergang Wang
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Göteborg SE-412 96, Sweden
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin 999077, Hong Kong, China
| | - Olle Inganäs
- Biomolecular
and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581
83, Sweden
| | - Fengling Zhang
- Biomolecular
and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581
83, Sweden
| |
Collapse
|
13
|
Zhou J, Guo Q, Zhang B, Cheng SX, Hao XT, Zhong Y, Tang A, Sun X, Zhou E. Improving the Photovoltaic Performance of Dithienobenzodithiophene-Based Polymers via Addition of an Additional Eluent in the Soxhlet Extraction Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52244-52252. [PMID: 36346919 DOI: 10.1021/acsami.2c14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT) is a kind of pentacyclic aromatic electron-donating unit with unique optoelectronic properties, but it has received less attention in the design of photovoltaic polymers. In this work, we copolymerized DTBDT with the electron-deficient unit of dithieno[3',2':3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) and obtained two polymers, PE55 and PE56, with a synergistic heteroatom substitution strategy. When blended with the classic nonfullerene acceptor Y6, PE55 and PE56 achieve power conversion efficiencies (PCEs) of 13.78% and 14.49%, respectively, which indicates that the introduction of sulfur atoms on the conjugated side chain of the D unit is a promising method to enhance the performance of DTBDT-based polymers. Besides, we utilize dichloromethane and chloroform to separate the low molecular weight (Mw) fractions in the solvent extraction process to obtain PE55-CF and PE56-CB, and the PCEs are further improved to 15.00% and 16.11%, respectively. The stronger π-π stacking, optimized blend film morphology, and higher charge mobilities contribute to the enhanced PCEs for polymers with higher Mw obtained via the multistep solvent extraction strategy. Our results not only provide a simple and effective way to improve the photovoltaic performance of conjugated polymers but also imply that some reported polymers purified from the traditional one-step solvent extraction method might be seriously underestimated.
Collapse
Affiliation(s)
- Jialing Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qing Guo
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou450003, China
| | - Bao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou450003, China
| | - Si-Xuan Cheng
- School of Physics, Shandong University, Jinan250100, China
| | - Xiao-Tao Hao
- School of Physics, Shandong University, Jinan250100, China
| | - Yufei Zhong
- School of Materials Science and Engineering, NingboTech University, Ningbo315100, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
14
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
15
|
Sankar G, Vinoth N, Nagasundaram N, Lalitha A. A Green Synthesis of Nitrogen Containing Novel Tetraazaaceanthrylene Derivatives Under Catalyst‐free Conditions: Docking studies, ADME and Antibacterial Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gunasekaran Sankar
- Appaswami Lalitha Department of Chemistry Periyar University Salem 636011 Tamil Nadu India
| | - Nangagoundan Vinoth
- Appaswami Lalitha Department of Chemistry Periyar University Salem 636011 Tamil Nadu India
| | - Nagarajan Nagasundaram
- Appaswami Lalitha Department of Chemistry Periyar University Salem 636011 Tamil Nadu India
| | - Appaswami Lalitha
- Appaswami Lalitha Department of Chemistry Periyar University Salem 636011 Tamil Nadu India
| |
Collapse
|
16
|
Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Near-Infrared Materials: The Turning Point of Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107330. [PMID: 34710251 DOI: 10.1002/adma.202107330] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR)-absorbing organic semiconductors have opened up many exciting opportunities for organic photovoltaic (OPV) research. For example, new chemistries and synthetical methodologies have been developed; especially, the breakthrough Y-series acceptors, originally invented by our group, specifically Y1, Y3, and Y6, have contributed immensely to boosting single-junction solar cell efficiency to around 19%; novel device architectures such as tandem and transparent organic photovoltaics have been realized. The concept of NIR donors/acceptors thus becomes a turning point in the OPV field. Here, the development of NIR-absorbing materials for OPVs is reviewed. According to the low-energy absorption window, here, NIR photovoltaic materials (p-type (polymers) and n-type (fullerene and nonfullerene)) are classified into four categories: 700-800 nm, 800-900 nm, 900-1000 nm, and greater than 1000 nm. Each subsection covers the design, synthesis, and utilization of various types of donor (D) and acceptor (A) units. The structure-property relationship between various kinds of D, A units and absorption window are constructed to satisfy requirements for different applications. Subsequently, a variety of applications realized by NIR materials, including transparent OPVs, tandem OPVs, photodetectors, are presented. Finally, challenges and future development of novel NIR materials for the next-generation organic photovoltaics and beyond are discussed.
Collapse
Affiliation(s)
- Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ran Zheng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elizabeth Zhang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Letian Dou
- Davidson School of Chemical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Abstract
Polymer science is one of the few fundamental research fields where the results can be transferred into real-life products almost immediately. Industries need collaborations with the best researchers (universities or national laboratories) to elevate the field and favor the development of new materials, which will boost the chemical and materials business economy and ensure that innovative and sustainable polymer products are constantly being brought to the market. The mechanisms to ensure a seamless and fruitful collaboration are numerous, but few approaches really manage to incorporate the full range of polymer research from a molecular understanding to a macroscopic control of properties. We review some of the main components of standard industry-academia collaborations and propose to develop polymer open centers that put the business development objective as the starting point of the collaboration and allow those to gather and focus on different scientific fields toward a common objective.
Collapse
|
18
|
Liang Q, Hu Z, Yao J, Wu Z, Ding Z, Zhao K, Jiao X, Liu J, Huang W. Blending Donors with Different Molecular Weights: An Efficient Strategy to Resolve the Conflict between Coherence Length and Intermixed Phase in Polymer/Nonfullerene Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103804. [PMID: 34825447 DOI: 10.1002/smll.202103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Long coherence lengths (CLs) of crystals and proper intermixed phase amount guarantee charge transport and exciton dissociate efficiently, which is crucial for organic solar cells (OSCs) to achieve high device performance. However, extending CLs usually reduces the intermixed phase, leading to an insufficient interface for exciton dissociation. Herein, a strategy using a binary polymer with different molecular weights as donor is employed, that is, poly(3-hexylthiophene-2,5-diyl) (P3HT) with high (P3HT-H) and low (P3HT-L) molecular weight are blended as donor, and (5Z,5'Z)-5,5'-(((4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR) is used as acceptor. In kinetics, the entanglements of P3HT-H are relieved due to the higher molecular diffusivity of P3HT-L. In thermodynamics, the miscibility of P3HT-L/O-IDTBR, P3HT-H/O-IDTBR, and P3HT-L/P3HT-H blends increases in turn. Hence, P3HT forms a more ordered structure with longer CLs after adding P3HT-L, which also drives O-IDTBR dispersed in P3HT crystalline regions diffuse to the O-IDTBR crystalline regions to further self-organize. Consequently, the CLs of both P3HT and O-IDTBR are extended, while keeping the intermixed phase amount proper. The optimized microstructure boosts device performance from 7.03% to 7.80%, which is one of the highest values reported for P3HT/O-IDTBR blends. This is a novel way to solve the conflict mentioned above, which may provide guidance to finely regulating the morphology of the active layer.
Collapse
Affiliation(s)
- Qiuju Liang
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhangbo Hu
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jianhong Yao
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zihao Wu
- Northwestern Polytechnical University, Xi'an, 710129, China
| | | | - Kui Zhao
- Shaanxi Normal University, Xi'an, 710119, China
| | - Xuechen Jiao
- Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Jiangang Liu
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Huang
- Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
19
|
|
20
|
Fu H, Fan Q, Gao W, Oh J, Li Y, Lin F, Qi F, Yang C, Marks TJ, Jen AKY. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1140-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Li S, Zhang H, Yue S, Yu X, Zhou H. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. NANOTECHNOLOGY 2021; 33:072002. [PMID: 34822343 DOI: 10.1088/1361-6528/ac020b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Solution-processed organic photovoltaic (OPV) as a new energy device has attracted much attention due to its huge potential in future commercial manufacturing. However, so far, most of the studies on high-performance OPV have been treated with halogenated solvents. Halogenated solvents not only pollute the environment, but are also harmful to human health, which will negatively affect the large-scale production of OPV in the future. Therefore, it is urgent to develop low-toxic or non-toxic non-halogen solvent-processable OPV. Compared with conventional fullerene OPVs, non-fullerene OPVs exist with stronger absorption, better-matched energy levels and lower energy loss. Processing photoactive layers with non-fullerenes as the acceptor material has broad potential advantages in non-halogenated solvents. This review introduces the research progress of non-fullerene OPV treated by three different kinds of green solvents as the non-halogenated and aromatic solvent, the non-halogenated and non-aromatic solvent, alcohol and water. Furthermore, the effects of different optimization strategies on the photoelectric performance and stability of non-fullerene OPV are analyzed in detail. The current optimization strategy can increase the power conversion efficiency of non-fullerene OPV processed with non-halogen solvents up to 17.33%, which is close to the performance of processing with halogen-containing solvents. Finally, the commercial potential of non-halogen solvent processing OPVs is discussed. The green solvent processing of non-fullerene-based OPVs will become a key development direction for the future of the OPV industry.
Collapse
Affiliation(s)
- Shilin Li
- Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Hong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Shengli Yue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Xi Yu
- Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| |
Collapse
|
22
|
Pan L, Zhan T, Oh J, Zhang Y, Tang H, Yang M, Li M, Yang C, Liu X, Cai P, Duan C, Huang F, Cao Y. N-Type Quinoidal Polymers Based on Dipyrrolopyrazinedione for Application in All-Polymer Solar Cells. Chemistry 2021; 27:13527-13533. [PMID: 34406681 DOI: 10.1002/chem.202102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.
Collapse
Affiliation(s)
- Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tao Zhan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yue Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mingqun Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Science, Beijing, 100029, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Xi Liu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, P. R. China
| | - Ping Cai
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
23
|
Liu X, Yan Y, Zhang Q, Zhao K, Han Y. n-Type D-A Conjugated Polymers: Relationship Between Microstructure and Electrical/Mechanical Performance. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1269-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Wang N, Yu YJ, Zhao RY, Zhang JD, Liu J, Wang LX. Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2609-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1020-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
He K, Kumar P, Yuan Y, Zhang Z, Li X, Liu H, Wang J, Li Y. A Wide Bandgap Polymer Donor Composed of Benzodithiophene and Oxime-Substituted Thiophene for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26441-26450. [PMID: 34034487 DOI: 10.1021/acsami.1c02442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxime-substituted thiophene (TO) is used as an acceptor (A) unit to copolymerize with the benzodithiophene (BDT) donor (D) unit to form a novel D-A polymer donor, PBDTTO, which has a low-lying highest occupied molecular orbital energy level (EHOMO) of -5.60 eV and a wide bandgap of 2.03 eV, forming complementary absorption and matching energy levels with the narrow bandgap nonfullerene acceptors. Organic solar cells using PBDTTO and Y6 as the donor and acceptor, respectively, exhibited a JSC of 27.03 mA cm-2, a VOC of 0.83 V, and a fill factor of 0.59, reaching a high power conversion efficiency of 13.29%. The unencapsulated devices show good long-term stability in ambient air. Compared with the acceptor monomers used in other high-performance BDT-based D-A polymer donors, which are synthesized tediously in low yields, the TO acceptor monomer can be conveniently synthesized in only two steps with a high overall yield of 70%. These results demonstrate that TO unit can be used as a promising acceptor unit for developing BDT-based D-A polymer donors at low cost while maintaining high photovoltaic performance.
Collapse
Affiliation(s)
- Keqiang He
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pankaj Kumar
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yi Yuan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhifang Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002A, China
| | - Haitao Liu
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002A, China
| | - Jinliang Wang
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002A, China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
28
|
Zhao T, Wang H, Pu M, Lai H, Chen H, Zhu Y, Zheng N, He F. Tuning the Molecular Weight of
Chlorine‐Substituted
Polymer Donors for Small Energy Loss
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tingxing Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Huan Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China, University of Technology Guangzhou, Guangdong 510640, China Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China, University of Technology Guangzhou, Guangdong 510640, China Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
29
|
Guo X, Zhang Y, Hu Y, Yang J, Li Y, Ni Z, Dong H, Hu W. Molecular Weight Engineering in High‐Performance Ambipolar Emissive Mesopolymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaofei Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Yihan Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yongxu Hu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Jiaxin Yang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yang Li
- Normal College Shenyang University Shenyang 110044 China
| | - Zhenjie Ni
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
30
|
Guo X, Zhang Y, Hu Y, Yang J, Li Y, Ni Z, Dong H, Hu W. Molecular Weight Engineering in High-Performance Ambipolar Emissive Mesopolymers. Angew Chem Int Ed Engl 2021; 60:14902-14908. [PMID: 33908682 DOI: 10.1002/anie.202105036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Mesopolymers with high solubility, free of structural defects, and negligible batch-to-batch variation open a new avenue for organic optoelectronics. Organic light emitting transistors that combine the functions of organic light-emitting diodes and organic field-effect transistors. However, charge transport ability and light emitting strength are contradictory within one conjugated polymer. Herein, three low-molecular-weight mesopolymers with thienopyrroledione-benzothiadiazole repeating units (meso-TBTF) were obtained. The mesopolymers show strong solid-state emission and high ambipolar carrier mobility. The molecular weights of meso-TBTF can be tuned by polymerization temperature. The mesopolymers have photoluminescence quantum yields (PLQY) of about 50 % in solution and 10 % in solid state. Polymer light emitting diodes of this material are fabricated to explore its potential use in optoelectronic devices.
Collapse
Affiliation(s)
- Xiaofei Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yihan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongxu Hu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jiaxin Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
31
|
Zhang R, Yan Y, Zhang Q, Liang Q, Zhang J, Yu X, Liu J, Han Y. To Reveal the Importance of the Crystallization Sequence on Micro-Morphological Structures of All-Crystalline Polymer Blends by In Situ Investigation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21756-21764. [PMID: 33908242 DOI: 10.1021/acsami.1c02984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In crystalline/crystalline polymer blend systems, complex competition and coupling of crystallization and morphology usually happen due to the different crystal nucleation and growth processes of polymers, making the morphology and crystallization behavior difficult to control. Herein, we probe the crystallization sequence during the film formation process (crystallize simultaneously, component A crystallizes prior to B or inverse) to illustrate the micro-morphology evolution process in poly(3-hexylthiophene) (P3HT) and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5, 5'-(2,2'-bithiophene)] (N2200) blend using in situ UV-vis absorption spectra and in situ two-dimensional grazing incidence X-ray diffraction (2D GIXRD). When P3HT and N2200 crystallize simultaneously, a large-sized morphology structure is formed. When strengthening the solution aggregation of P3HT by increasing the solvent-polymer interaction, P3HT crystallizes prior to N2200. A P3HT-based micro-morphology structure is obtained. As the molecular weight of N2200 increases to a critical value (72.0 kDa), the crystallization of N2200 dominates the film formation process. A N2200-based micro-morphology is formed guided by N2200 domains. The results confirm that the crystallization sequence is one of the most important factors to determine the micro-morphology structure in all-crystalline polymer blends.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Ye Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Qiuju Liang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Jiangang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
32
|
Pan G, Hu L, Zhang F, Chen Q. Out-of-Plane Alignment of Conjugated Semiconducting Polymers by Horizontal Rotation in a High Magnetic Field. J Phys Chem Lett 2021; 12:3476-3484. [PMID: 33792335 DOI: 10.1021/acs.jpclett.1c00385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effective control of film morphology and molecular packing in the out-of-plane direction of semiconductor polymers plays a critical role in governing charge carrier transport in the direction perpendicular to the substrate. In this study, a highly out-of-plane alignment of the n-type polymer P(NDI2OD-T2) film has been successfully achieved by horizontal rotation in a high magnetic field (HR-HMF). The out-of-plane alignment of the P(NDI2OD-T2) film has showed a change from 72% face-on to 98.2% face-on lamellar texture as well as a 1.6-fold increase of the π-π stacking crystalline correlation length compared with that of as-cast polymer films without HR-HMF-induced alignment. Meanwhile, the film with near-perfect face-on molecular packing exhibited more than 18-fold enhancement of electron mobility compared to the unaligned film. The excellent electrical performance achieved with the HR-HMF process indicates its application potential for fabricating high-performance sandwich-type organic electronic devices, such as solar cells and light-emitting diodes.
Collapse
Affiliation(s)
- Guoxing Pan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Lin Hu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
- CAS Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Fapei Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qianwang Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
33
|
Wang X, Huang D, Han J, Hu L, Xiao C, Li Z, Yang R. Backbone Engineering with Asymmetric Core to Finely Tune Phase Separation for High-Performance All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11108-11116. [PMID: 33635071 DOI: 10.1021/acsami.0c21986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to obtain high-performance all-small-molecule organic solar cells (ASM-OSCs), it is crucial to exploit the available strategy for molecular design and to further understand key structure-property relationship that can rationally control the blend nanomorphology and influence the physical process. In this work, we design two small molecule donors FBD-S1 and TBD-S2 with identical electron-withdrawing units but various asymmetric central cores, which exhibit differing phase separation in Y6-based blend films. It is found that TBD-S2 with increased phase separation between donor and acceptor can lead to more favorable interpenetrating networks, effective exciton dissociation, and enhanced and more balanced charge transport. Importantly, a remarkable PCE of 13.1% is obtained for TBD-S2:Y6 based ASM-OSCs, which is an attractive photovoltaic performance for ASM-OSCs. This result demonstrates that the central core modification at the atomic level for small molecule donors can delicately control the phase separation and optimize photophysical processes, and refines device performance, which facilitate development in the ASM-OSC research field.
Collapse
Affiliation(s)
- Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Da Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jianhua Han
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Liwen Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Cong Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhiya Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| |
Collapse
|
34
|
Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo HY, Gao F, Zhu Z, Jen AKY. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J Am Chem Soc 2021; 143:2665-2670. [DOI: 10.1021/jacs.0c12527] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, P.R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianwei Yu
- Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Qunping Fan
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Feng Gao
- Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Alex K.-Y. Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
35
|
Chiu KL, Ho JKW, Zhang C, Cheung SH, Yin H, Chan MH, So SK. Heat transfer in photovoltaic polymers and bulk‐heterojunctions investigated by scanning photothermal deflection technique. NANO SELECT 2021. [DOI: 10.1002/nano.202000226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ka Lok Chiu
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Johnny Ka Wai Ho
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Chujun Zhang
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Sin Hang Cheung
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Hang Yin
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Mau Hing Chan
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Shu Kong So
- Department of Physics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| |
Collapse
|
36
|
Wang L, Park JS, Lee HG, Kim GU, Kim D, Kim C, Lee S, Kim FS, Kim BJ. Impact of Chlorination Patterns of Naphthalenediimide-Based Polymers on Aggregated Structure, Crystallinity, and Device Performance of All-Polymer Solar Cells and Organic Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56240-56250. [PMID: 33280373 DOI: 10.1021/acsami.0c18351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aggregation properties of conjugated polymers can play a crucial role in their thin film structures and performance of electronic devices. Control of these aggregated structures is particularly important in producing efficient all-polymer solar cells (all-PSCs), considering that strong demixing of the polymer donor and polymer acceptor typically occurs during film formation because of the low entropic contribution to the thermodynamics of the system. Here, three naphthalenediimide (NDI)-based polymer acceptors with different backbone chlorination patterns are developed to investigate the effect of the chlorination patterns on the aggregation tendencies of the polymer acceptors, which greatly influence their crystalline structures, electrical properties, and device performances of the resultant all-PSCs and organic field-effect transistors (OFETs). The counterparts of NDI units, dichlorinated bithiophene (Cl2T2), monochlorinated bithiophene (ClT2), and dichlorinated thienylene-vinylene-thienylene (Cl2TVT), are employed to synthesize a series of P(NDIOD-Cl2T2), P(NDIOD-ClT2), and P(NDIOD-Cl2TVT) polymers. The P(NDIOD-Cl2T2) polymer takes advantage of strong noncovalent bonding induced by its chlorine substituents, resulting in the formation of optimal face-on oriented crystalline structures which are suitable for efficient all-PSC devices. In comparison, the P(NDIOD-Cl2TVT) polymer forms bimodal crystalline structures in thin films to yield optimal performances in the resultant OFETs. When the three chlorinated polymers are applied to all-PSCs with the PBDTTTPD polymer donor, P(NDIOD-Cl2T2) achieves a maximum power conversion efficiency (PCE) of 7.22% with an appropriate blend morphology and high fill factor, outperforming P(NDIOD-ClT2) (PCE = 4.80%) and P(NDIOD-Cl2TVT) (PCE = 5.78%). Our observations highlight the effectiveness of the chlorination strategy for developing efficient polymer acceptors and demonstrate the important role of polymer aggregation in modulating the blend morphology and all-PSC performance.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Gyeong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Donguk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changkyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Jessop I, Albornoz J, Ramírez O, Durán B, Molero L, Bonardd S, Kortaberria G, Diaz Diaz D, Leiva A, Saldías C. Optical, morphological and photocatalytic properties of biobased tractable films of chitosan/donor-acceptor polymer blends. Carbohydr Polym 2020; 249:116822. [DOI: 10.1016/j.carbpol.2020.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
|
38
|
Fan Q, Su W, Chen S, Liu T, Zhuang W, Ma R, Wen X, Yin Z, Luo Z, Guo X, Hou L, Moth-Poulsen K, Li Y, Zhang Z, Yang C, Yu D, Yan H, Zhang M, Wang E. A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells. Angew Chem Int Ed Engl 2020; 59:19835-19840. [PMID: 32666653 PMCID: PMC7692906 DOI: 10.1002/anie.202005662] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/28/2020] [Indexed: 11/06/2022]
Abstract
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm-1 , a high LUMO level of -3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.
Collapse
Affiliation(s)
- Qunping Fan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Wenyan Su
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Shanshan Chen
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Wenliu Zhuang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology, Advanced Research Center for Polymer Processing Engineering of Guangdong Province, Guangdong Industry Polytechnic, Guangzhou, 510300, P. R. China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Xin Wen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Zhihong Yin
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenghui Luo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Yu Li
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology, Advanced Research Center for Polymer Processing Engineering of Guangdong Province, Guangdong Industry Polytechnic, Guangzhou, 510300, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
- Sino-Danish Center for Education and Research, 8000, Aarhus, Denmark
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
39
|
Mechanistic Studies of Hydrogen Evolution Reaction on Donor-Acceptor Conjugated Polymer Photocatalysts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The application of donor-acceptor (D-A) conjugated polymer catalysts for hydrogen evolution reaction (HER) has shown great promise because of the tunability of such catalysts to have desired properties. Herein, we synthesized two polymer catalysts: poly[4,4′-(9-(4-aminophenyl)-9H-carbazole-3,6-diamine-alt-5-oxido-5-phenylbenzo[b]phosphindole-3,7-diyl)dibenzaldehyde] (PCzPO) and poly[N1,N1-bis(4-amino-2-fluorophenyl)-2-fluorobenzene-1,4-diamine-alt-5-oxido-5-phenylbenzo[b]phosphindole-3,7-diyl)dibenzaldehyde] (PNoFPO). The UV-vis absorption spectra showed that the less planar structure and the presence of electronegative fluorine atoms in the donor group of PNoFPO led to a higher optical gap compared to PCzPO, leading to almost five times faster HER rate using PCzPO compared to PNoFPO. However, density functional theory (DFT) calculations show that the frontier orbitals and the highest occupied molecular orbitals – lowest unoccupied molecular orbitals (HOMO-LUMO) gaps of PCzPO and PNoFPO D-A moiety models are very similar, such that, during light absorption, electrons move from donor to acceptor group where proton binding is preferred to happen thereafter. For both PCzPO and PNoFPO D-A moieties, H2 formation through an intramolecular reaction with a barrier of 0.6–0.7 eV, likely occurs at the acceptor group atoms where protons bind through electrostatic interaction. The intermolecular reaction has nearly zero activation energy but is expected to occur only when the repulsion is low between separate polymers chains. Finally, experimental and DFT results reveal the importance of extended configurations of D-A polymers on HER rate.
Collapse
|
40
|
Wadsworth A, Hamid Z, Kosco J, Gasparini N, McCulloch I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001763. [PMID: 32754970 DOI: 10.1002/adma.202001763] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors require an energetic offset in order to photogenerate free charge carriers efficiently, owing to their inability to effectively screen charges. This is vitally important in order to achieve high power conversion efficiencies in organic solar cells. Early heterojunction-based solar cells were limited to relatively modest efficiencies (<4%) owing to limitations such as poor exciton dissociation, limited photon harvesting, and high recombination losses. The development of the bulk heterojunction (BHJ) has significantly overcome these issues, resulting in dramatic improvements in organic photovoltaic performance, now exceeding 18% power conversion efficiencies. Here, the design and engineering strategies used to develop the optimal bulk heterojunction for solar-cell, photodetector, and photocatalytic applications are discussed. Additionally, the thermodynamic driving forces in the creation and stability of the bulk heterojunction are presented, along with underlying photophysics in these blends. Finally, new opportunities to apply the knowledge accrued from BHJ solar cells to generate free charges for use in promising new applications are discussed.
Collapse
Affiliation(s)
- Andrew Wadsworth
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Zeinab Hamid
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
41
|
Fan Q, Su W, Chen S, Liu T, Zhuang W, Ma R, Wen X, Yin Z, Luo Z, Guo X, Hou L, Moth‐Poulsen K, Li Y, Zhang Z, Yang C, Yu D, Yan H, Zhang M, Wang E. A Non‐Conjugated Polymer Acceptor for Efficient and Thermally Stable All‐Polymer Solar Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qunping Fan
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
| | - Wenyan Su
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Shanshan Chen
- Department of Energy Engineering School of Energy and Chemical Engineering Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems CQU-NUS Renewable Energy Materials & Devices Joint Laboratory School of Energy & Power Engineering Chongqing University Chongqing 400044 China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Wenliu Zhuang
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology Advanced Research Center for Polymer Processing Engineering of Guangdong Province Guangdong Industry Polytechnic Guangzhou 510300 P. R. China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Xin Wen
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
| | - Zhihong Yin
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhenghui Luo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Kasper Moth‐Poulsen
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
| | - Yu Li
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology Advanced Research Center for Polymer Processing Engineering of Guangdong Province Guangdong Industry Polytechnic Guangzhou 510300 P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Changduk Yang
- Department of Energy Engineering School of Energy and Chemical Engineering Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience Aalborg University 9220 Aalborg East Denmark
- Sino-Danish Center for Education and Research 8000 Aarhus Denmark
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
42
|
Abstract
ConspectusOrganic photovoltaics (OPVs), in which blend films of organic or polymer electron donor and electron acceptor are used as the active layer, are a promising photovoltaic technology with the great advantages of solution processing, low cost, and flexibility. The development of small molecular or polymer electron acceptors has boosted power conversion efficiency (PCE) of OPVs from 10% to 18%. Among them, polymer acceptors have the merits of superior morphology stability and excellent mechanical properties. However, owing to the key requirement of very low-lying LUMO/HOMO energy levels for polymer acceptors, very few conjugated polymers can work as polymer acceptors in OPVs. The majority of polymer electron acceptors are based on strong electron-withdrawing imide units or cyano substituents. Since 2015, conjugated polymers containing the boron-nitrogen coordination bond (B←N) have emerged as a new kind of polymer electron acceptor with excellent photovoltaic performance in various kinds of organic photovoltaic devices. In this Account, we summarize our research progress on polymer acceptors containing B←N units.At first, we introduce the principle of B←N to greatly down shift LUMO/HOMO energy levels, which enables B←N to be used to design polymer acceptors. Then we describe the two molecular design strategies for polymer acceptors containing B←N units. For high-efficiency OPVs, polymer acceptors should have wide absorption spectra, proper LUMO/HOMO energy levels, high electron mobility, and good donor/acceptor blend morphology. We discuss how to use molecular design to finely tune the absorption spectra, energy levels, and electron mobility of the B←N-containing polymer acceptors. We also discuss how to improve the phase separation morphology of the blends of these polymer acceptors with small molecular donors or polymer donors. These improvements lead to excellent performance of the polymer acceptors containing B←N units in three kinds of organic photovoltaic devices. The small molecular donor/polymer acceptor type organic solar cells show excellent thermal stability and PCE of 8.0%, which is the highest value reported so far. The all-polymer solar cells exhibit PCE of 10.1%. The all-polymer indoor photovoltaics show PCE as high as 27.4% under fluorescent lamp illumination at 2000 lx. This PCE is fairly comparable to those of the best organic or inorganic indoor photovoltaics. These results provide a solid foundation for future advances. Finally, we propose that great attention should be paid to further PCE enhancement of OPVs and indoor photovoltaic applications of this new emerging kind of polymer acceptor.
Collapse
Affiliation(s)
- Ruyan Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
43
|
|
44
|
Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic Properties. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Yan Y, Liu Y, Zhang Q, Han Y. Increasing N2200 Charge Transport Mobility to Improve Performance of All Polymer Solar Cells by Forming a Percolation Network Structure. Front Chem 2020; 8:394. [PMID: 32509729 PMCID: PMC7251163 DOI: 10.3389/fchem.2020.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
The poor electron transport ability of the polymer acceptor is one of the factors restricting the performance of all-polymer solar cells. The percolation network of conjugated polymers can promote its charge transfer. Hence, we aim to find out the critical molecular weight (MW) of N2200 on the forming of the percolation network and to improve its charge mobility and thus photovoltaic performance of J51:N2200 blend. Detailed measurements demonstrate that when the MW of N2200 is larger than 96k, a percolation network structure is formed due to the chain tangled and multi-chain aggregations. Analysis of kinetic experiments reveals that it is the memory of the N2200 long chain conformation and the extent of aggregation in solution are carried into cast films for the formation of the percolation network. Thus, the electron mobility increases from 5.58 × 10-6 cm2V-1s-1 (N220017k) to 9.03 × 10-5 cm2V-1s-1 when the MW of N2200 is >96k. It led to a balance between hole and electron mobility. The μh/μe decrease from 16.9 to 1.53, causing a significant enhancement in the PCEs, from 5.87 to 8.28% without additives.
Collapse
Affiliation(s)
- Ye Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yadi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
46
|
Wang N, Yu Y, Zhao R, Ding Z, Liu J, Wang L. Improving Active Layer Morphology of All-Polymer Solar Cells by Solution Temperature. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00633] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yingjian Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Ruyan Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zicheng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
47
|
Wang SH, Wang TW, Tsai HC, Yang PC, Huang CF, Lee RH. Synthesis of the diketopyrrolopyrrole/terpyridine substituted carbazole derivative based polythiophenes for photovoltaic cells. RSC Adv 2020; 10:9525-9535. [PMID: 35497255 PMCID: PMC9050168 DOI: 10.1039/c9ra09649c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
A series of conjugated polythiophenes (PTs) having low band gap energies (PDPP, PDPCz21, PDPCz11), with 2-ethylhexyl-functionalized 2,5-thienyl diketopyrrolopyrrole (TDPP) as the electron acceptor and terpyridine-substituted carbazole (TPCz) as the electron donor, have been synthesized and studied for their applicability in polymer-based photovoltaic cells (PVCs). The thermal stability and solvent solubility of PTs increased upon increasing the content of the TPCz derivative. PVCs were fabricated having the following architecture: indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/PT:6,6-phenyl-C71-butyric acid methyl ester (PC71BM)/Ca/Ag. The compatibility between the PT and PC71BM improved upon increasing the TPCz content. The photovoltaic properties of the PDPCz21-based PVCs were superior to those of their PDPP- and PDPCz11-based counterparts. A series of conjugated polythiophenes (PTs) having low band gap energies (PDPP, PDPCz21, PDPCz11) have been synthesized and studied for their applicability in polymer-based photovoltaic cells (PVCs).![]()
Collapse
Affiliation(s)
- Shih-Hao Wang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Teng-Wei Wang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Sci. and Tech
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Advanced Membrane Materials Center
| | - Po-Chih Yang
- Department of Chemical Engineering and Materials Science
- Yuan Ze University
- Taoyuan City 320
- Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| |
Collapse
|
48
|
Spakowitz AJ. Polymer physics across scales: Modeling the multiscale behavior of functional soft materials and biological systems. J Chem Phys 2019; 151:230902. [DOI: 10.1063/1.5126852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
49
|
|
50
|
Zhang Z, Wang T, Ding Z, Miao J, Wang J, Dou C, Meng B, Liu J, Wang L. Small Molecular Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Molecular Weight on Active Layer Morphology. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zijian Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Tao Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Zicheng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiahui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|