1
|
Accomasso D, Jankowska J. Quantum-Classical Simulations Reveal the Photoisomerization Mechanism of a Prototypical First-Generation Molecular Motor. Chemistry 2025; 31:e202403768. [PMID: 39614724 DOI: 10.1002/chem.202403768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Indexed: 02/04/2025]
Abstract
Light-driven molecular rotary motors convert the energy of absorbed light into unidirectional rotational motion and are key components in the design of molecular machines. The archetypal class of light-driven rotary motors is chiral overcrowded alkenes, where the rotational movement is achieved through consecutive cis-trans photoisomerization reactions and thermal helix inversion steps. While the thermal steps have been rather well understood by now, our understanding of the photoisomerization reactions of overcrowded alkene-based motors still misses key points that would explain the striking differences in operation efficiency of the known systems. Here, we employ quantum-chemical calculations and nonadiabatic molecular dynamics simulations to investigate the excited-state decay and photoisomerization mechanism in a prototypical alkene-based first-generation rotary motor. We show that the initially excited bright state undergoes an ultrafast relaxation to multiple excited-state minima separated by low energy barriers and reveal a slow picosecond-timescale decay to the ground state, which only occurs from a largely twisted dark excited-state minimum, far from any conical-intersection point. Additionally, we attribute the origin of the high yields of forward photoisomerization in our investigated motor to the favorable topography of the ground-state potential energy surface, which is controlled by the conformation of the central cyclopentene rings.
Collapse
Affiliation(s)
- Davide Accomasso
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| |
Collapse
|
2
|
Bressan G, Chambrier I, Cammidge AN, Meech SR. Symmetry-Breaking Charge-Separation in a Subphthalocyanine Dimer Resolved by Two-Dimensional Electronic Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:1069-1077. [PMID: 39839069 PMCID: PMC11744789 DOI: 10.1021/acs.jpcc.4c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc2. Electronic structure calculations and 2D cross-peaks reveal the dimer's excitonic structure, while ultrafast evolution of the multidimensional spectra unveils subtle features of structural relaxation, solvation dynamics, and inhomogeneous broadening in the SB-CS. Analysis of coherently excited vibrational motions reveals dimer-specific low-frequency Raman active modes coupled to higher-frequency vibrations localized on the SubPc cores. Finally, beatmap amplitude distributions characteristic of excitonic dimers with multiple bright states are reported and analyzed.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University
of East Anglia, Norwich NR4 7TJ, U.K.
| | | | | | - Stephen R. Meech
- School of Chemistry, University
of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
3
|
Carfora R, Coppola F, Cimino P, Petrone A, Rega N. A Cost-Effective Computational Strategy for the Electronic Layout Characterization of a Second Generation Light-Driven Molecular Rotary Motor in Solution. J Comput Chem 2025; 46:e70023. [PMID: 39797623 PMCID: PMC11724392 DOI: 10.1002/jcc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet. For this aim, it is first required to rely on an accurate description at ab initio level of the system in this potential energy region before performing any further step, that is, dynamics. Thus, we present an extensive investigation aimed at accurately describing the electronic structure of low-lying electronic states (electronic layout) of a molecular rotor in the Franck-Condon region, belonging to the class of overcrowded alkenes: 9-(2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-fluorene. This system was chosen since its photophysics is very interesting for a more general understanding of similar compounds used as molecular rotors, where low-lying electronic states can be found (whose energetic interplay is crucial in the dynamics) and where the presence of different substituents can tune the HOMO-LUMO gap. For this scope, we employed different theory levels within the time-dependent density functional theory framework, presenting also a careful comparison adopting very accurate post Hartree-Fock methods and characterizing also the different conformations involved in the photocycle. Effects on the electronic layout of different functionals, basis sets, environment descriptions, and the role of the dispersion correction were all analyzed in detail. In particular, a careful treatment of the solvent effects was here considered in depth, showing how the implicit solvent description can be accurate for excited states in the Franck-Condon region by testing both linear-response and state-specific formalisms. As main results, we chose two cost-effective (accurate but relatively cheap) theory levels for the ground and excited state descriptions, and we also verified how choosing these different levels of theory can influence the curvature of the potential via a frequency analysis of the normal modes of vibrations active in the Raman spectrum. This theoretical survey is a crucial step towards a feasible characterization of the early stage of excited states in solution during photoisomerization processes wherein multiple electronic states might be populated upon the light radiation, leading to a future molecular-level interpretation of time-resolved spectroscopies.
Collapse
Affiliation(s)
- Raoul Carfora
- Scuola Superiore MeridionaleNapoliItaly
- Department of Chemical SciencesUniversity of Napoli Federico II, Complesso Universitario di M.S. AngeloNapoliItaly
| | | | - Paola Cimino
- Department of Chemical SciencesUniversity of Napoli Federico II, Complesso Universitario di M.S. AngeloNapoliItaly
| | - Alessio Petrone
- Scuola Superiore MeridionaleNapoliItaly
- Department of Chemical SciencesUniversity of Napoli Federico II, Complesso Universitario di M.S. AngeloNapoliItaly
- Istituto Nazionale Di Fisica Nuclearesezione di Napoli, Complesso Universitario di M.S. AngeloNapoliItaly
| | - Nadia Rega
- Scuola Superiore MeridionaleNapoliItaly
- Department of Chemical SciencesUniversity of Napoli Federico II, Complesso Universitario di M.S. AngeloNapoliItaly
- Istituto Nazionale Di Fisica Nuclearesezione di Napoli, Complesso Universitario di M.S. AngeloNapoliItaly
| |
Collapse
|
4
|
Fatima A, Bressan G, Ashworth EK, Page PCB, Bull JN, Meech SR. Substituent effects on the photophysics of the kaede chromophore. Phys Chem Chem Phys 2024; 26:29048-29059. [PMID: 39552575 DOI: 10.1039/d4cp03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kaede is the prototype of the optical highlighter proteins, which are an important subclass of the fluorescent proteins that can be permanently switched from green to red emitting forms by UV irradiation. This transformation has important applications in bioimaging. Optimising brightness, i.e. enhancing fluorescence characteristics, in these proteins is an important objective. At room temperature, the excited state dynamics of the red form of the kaede chromophore are dominated by a broad distribution of conformers with distinct excited state kinetics. Here, we investigate substituent effects on the photophysics of this form of the kaede chromophore. While an electron withdrawing substituent (nitro) red shifts the electronic spectra, the modified chromophores showed no significant solvatochromism. The lack of solvatochromism suggests small changes in permanent dipole moment between ground and excited electronic states, which is consistent with quantum chemical calculations. Ultrafast fluorescence and transient absorption spectroscopy reveal correlations between radiative and nonradiative decay rates of different conformers in the chromophores. The most significant effect of the substituents is to modify the distribution of conformers. The results are discussed in the context of enhancing brightness of optical highlighter proteins.
Collapse
Affiliation(s)
- Anam Fatima
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | - Philip C B Page
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
5
|
Jiang Z, Qin Y, Liao G, Liu L, Luo Y, Li Q, Guo K. Aggregation-Induced Emissive Feringa-Type Motor: Toward the Dual-Functional Motor in a Single Molecular Aggregation System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402785. [PMID: 39109945 DOI: 10.1002/smll.202402785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/29/2024] [Indexed: 10/25/2024]
Abstract
Aggregation-induced emission (AIE)allows tunable photoluminescence via the simple regulation of molecular aggregation. The research spurt along this vein has also offered tremendous opportunities for light-responsive artificial molecular machines that are to be fully explored for performing versatile functions. Herein, the study reports a light-driven Feringa-type motor, when in the appropriate aggregation state, not only demonstrates the light-activated rotary motion but emits photons with good quantum yield. A semi-quantitative TD-DFT calculation is also conducted to aid the understanding of the competitive photoluminescence and photoisomerization processes of the motor. Cytotoxicity test shows this motor possesses good biocompatibility, laying a solid foundation for applying it in the bio-environment. The results demonstrated that the engagement of the aggregation-induced emission concept and light-driven Feringa-motor can lead to the discovery of the novel motorized AIEgen, which will further stimulate the rise of more advanced molecular motors capable of executing multi-functionalities.
Collapse
Affiliation(s)
- Ziwei Jiang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Guohong Liao
- Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanling Luo
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Quan Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, P. R. China
| |
Collapse
|
6
|
Bressan G, Penty SE, Green D, Heisler IA, Jones GA, Barendt TA, Meech SR. Ultrafast and Coherent Dynamics in a Solvent Switchable "Pink Box" Perylene Diimide Dimer. Angew Chem Int Ed Engl 2024; 63:e202407242. [PMID: 39092492 DOI: 10.1002/anie.202407242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Samuel E Penty
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 9500, Brazil
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy A Barendt
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
7
|
Roy P, Sardjan AS, Danowski W, Browne WR, Feringa BL, Meech SR. Substituent effects on first generation photochemical molecular motors probed by femtosecond stimulated Raman. J Chem Phys 2024; 161:074504. [PMID: 39149991 DOI: 10.1063/5.0216442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Unidirectional photochemical molecular motors can act as a power source for molecular machines. The motors operate by successive excited state isomerization and ground state helix inversion reactions, attaining unidirectionality from an interplay of steric strain and stereochemistry. Optimizing the yield of the excited state isomerization reaction is an important goal that requires detailed knowledge of excited state dynamics. Here, we investigate the effect of electron withdrawing and donating substituents on excited state structure and ultrafast dynamics in a series of newly synthesized first generation photochemical molecular motors. All substituents red-shift the absorption spectra, while some modify the Stokes shift and render the fluorescence quantum yield solvent polarity dependent. Raman spectra and density functional theory calculations reveal that the stretching mode of the C=C "axle" in the electronic ground state shows a small red-shift when conjugated with electron withdrawing substituents. Ultrafast fluorescence measurements reveal substituent and solvent polarity effects, with the excited state decay being accelerated by both polar solvent environment and electron withdrawing substituents. Excited state structural dynamics are investigated by fluorescence coherence spectroscopy and femtosecond stimulated Raman spectroscopy. The time resolved Raman measurements are shown to provide structural data specifically on the Franck-Condon excited state. The C=C localized modes have a different substituent dependence compared to the ground state, with the unsubstituted motor having the most red-shifted mode. Such measurements provide valuable new insights into pathways to optimize photochemical molecular motor performance, especially if they can be coupled with high-quality quantum molecular dynamics calculations.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Andy S Sardjan
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, 9747AG Groningen, The Netherlands
| | - Wojciech Danowski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, 9747AG Groningen, The Netherlands
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, 9747AG Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
8
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
9
|
Roy P, Sardjan AS, Browne WR, Feringa BL, Meech SR. Excited State Dynamics in Unidirectional Photochemical Molecular Motors. J Am Chem Soc 2024; 146:12255-12270. [PMID: 38656968 PMCID: PMC11082934 DOI: 10.1021/jacs.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Unidirectional photochemically driven molecular motors (PMMs) convert the energy of absorbed light into continuous rotational motion. As such they are key components in the design of molecular machines. The prototypical and most widely employed class of PMMs is the overcrowded alkenes, where rotational motion is driven by successive photoisomerization and thermal helix inversion steps. The efficiency of such PMMs depends upon the speed of rotation, determined by the rate of ground state thermal helix inversion, and the quantum yield of photoisomerization, which is dependent on the excited state energy landscape. The former has been optimized by synthetic modification across three generations of overcrowded alkene PMMs. These improvements have often been at the expense of photoisomerization yield, where there remains room for improvement. In this perspective we review the application of ultrafast spectroscopy to characterize the excited state dynamics in PMMs. These measurements lead to a general mechanism for all generations of PMMs, involving subpicosecond decay of a Franck-Condon excited state to populate a dark excited state which decays within picoseconds via conical intersections with the electronic ground state. The model is discussed in the context of excited state dynamics calculations. Studies of PMM photochemical dynamics as a function of solvent suggest exploitation of intramolecular charge transfer and solvent polarity as a route to controlling photoisomerization yield. A test of these ideas for a first generation motor reveals a high degree of solvent control over isomerization yield. These results suggest a pathway to fine control over the performance of future PMMs.
Collapse
Affiliation(s)
- Palas Roy
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Andy S. Sardjan
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ben L. Feringa
- Centre
for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
10
|
Bressan G, Green D, Jones GA, Heisler IA, Meech SR. Two-Dimensional Electronic Spectroscopy Resolves Relative Excited-State Displacements. J Phys Chem Lett 2024; 15:2876-2884. [PMID: 38447068 PMCID: PMC10945572 DOI: 10.1021/acs.jpclett.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet. 2D coherence maps reveal that while the coherence amplitude of the dominant 585 cm-1 Raman-active mode is mainly localized in the ground-state bleach and stimulated emission regions, a 338 cm-1 mode is enhanced in excited-state absorption. Modeling these data with a three-level displaced harmonic oscillator model using the hierarchical equation of motion-phase matching approach (HEOM-PMA) shows that the S1 ← S0 PES displacement is greater along the 585 cm-1 coordinate than the 338 cm-1 coordinate, while Sn ← S1 displacements are similar along both coordinates. HB2DES is thus a powerful tool for exploiting nuclear wavepackets to extract quantitative multidimensional, vibrational coordinate information across multiple PESs.
Collapse
Affiliation(s)
- Giovanni Bressan
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Dale Green
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Garth A. Jones
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Ismael A. Heisler
- Instituto
de Fisica, Universidade Federal do Rio Grande
do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R. Meech
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| |
Collapse
|
11
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
12
|
Lynch P, Das A, Alam S, Rich CC, Frontiera RR. Mastering Femtosecond Stimulated Raman Spectroscopy: A Practical Guide. ACS PHYSICAL CHEMISTRY AU 2024; 4:1-18. [PMID: 38283786 PMCID: PMC10811773 DOI: 10.1021/acsphyschemau.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) is a powerful nonlinear spectroscopic technique that probes changes in molecular and material structure with high temporal and spectral resolution. With proper spectral interpretation, this is equivalent to mapping out reactive pathways on highly anharmonic excited-state potential energy surfaces with femtosecond to picosecond time resolution. FSRS has been used to examine structural dynamics in a wide range of samples, including photoactive proteins, photovoltaic materials, plasmonic nanostructures, polymers, and a range of others, with experiments performed in multiple groups around the world. As the FSRS technique grows in popularity and is increasingly implemented in user facilities, there is a need for a widespread understanding of the methodology and best practices. In this review, we present a practical guide to FSRS, including discussions of instrumentation, as well as data acquisition and analysis. First, we describe common methods of generating the three pulses required for FSRS: the probe, Raman pump, and actinic pump, including a discussion of the parameters to consider when selecting a beam generation method. We then outline approaches for effective and efficient FSRS data acquisition. We discuss common data analysis techniques for FSRS, as well as more advanced analyses aimed at extracting small signals on a large background. We conclude with a discussion of some of the new directions for FSRS research, including spectromicroscopy. Overall, this review provides researchers with a practical handbook for FSRS as a technique with the aim of encouraging many scientists and engineers to use it in their research.
Collapse
Affiliation(s)
- Pauline
G. Lynch
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aritra Das
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shahzad Alam
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher C. Rich
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Wen J, Mai S, González L. Excited-State Dynamics Simulations of a Light-Driven Molecular Motor in Solution. J Phys Chem A 2023; 127:9520-9529. [PMID: 37917883 PMCID: PMC10658450 DOI: 10.1021/acs.jpca.3c05841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Molecular motors, where light can be transformed into motion, are promising in the design of nanomechanical devices. For applications, however, finding relationships between molecular motion and the environment is important. Here, we report the study of excited-state dynamics of an overcrowded alkene in solution using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach combined with excited-state molecular dynamics simulations. Using QM/MM surface-hopping trajectories, we calculated time-resolved emission and transient absorption spectra. These show the rise of a short-lived Franck-Condon state, followed by the formation of a dark state in the first 150 fs before the molecular motor relaxes to the ground state in about 1 ps. From the analysis of radial distribution functions, we infer that the orientation of the solvent with respect to the molecular motor in the electronic excited state is similar to that in the ground state during the photoisomerization.
Collapse
Affiliation(s)
- Jin Wen
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna 1090, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna 1090, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna 1090, Austria
| |
Collapse
|
14
|
Roy P, Sardjan AS, Danowski W, Browne WR, Feringa BL, Meech SR. Control of Photoconversion Yield in Unidirectional Photomolecular Motors by Push-Pull Substituents. J Am Chem Soc 2023; 145:19849-19855. [PMID: 37646616 PMCID: PMC10510317 DOI: 10.1021/jacs.3c06070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 09/01/2023]
Abstract
Molecular motors based on the overcrowded alkene motif convert light energy into unidirectional mechanical motion through an excited state isomerization reaction. The realization of experimental control over conversion efficiency in these molecular motors is an important goal. Here, we combine the synthesis of a novel "push-pull" overcrowded alkene motor with photophysical characterization by steady state and ultrafast time-resolved electronic spectroscopy. We show that tuning of the charge transfer character in the excited state has a dramatic effect on the photoisomerization yield, enhancing it to near unity in nonpolar solvents while largely suppressing it in polar solvents. This behavior is explained through reference to solvent- and substituent-dependent potential energy surfaces and their effect on conical intersections to the ground state. These observations offer new routes to the fine control of motor efficiency and introduce additional degrees of freedom in the synthesis and exploitation of light-driven molecular motors.
Collapse
Affiliation(s)
- Palas Roy
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Andy S. Sardjan
- Molecular
Inorganic Chemistry, Stratingh Institute
for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wojciech Danowski
- Centre
for Systems Chemistry, Stratingh Institute
for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- University
of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute
for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Centre
for Systems Chemistry, Stratingh Institute
for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
15
|
Solaris J, Krueger TD, Chen C, Fang C. Photogrammetry of Ultrafast Excited-State Intramolecular Proton Transfer Pathways in the Fungal Pigment Draconin Red. Molecules 2023; 28:3506. [PMID: 37110741 PMCID: PMC10144053 DOI: 10.3390/molecules28083506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of -COH rocking and -C=C, -C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck-Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique "W"-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump-probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics.
Collapse
|
16
|
Liu L, Fang WH, Martinez TJ. A Nitrogen Out-of-Plane (NOOP) Mechanism for Imine-Based Light-Driven Molecular Motors. J Am Chem Soc 2023; 145:6888-6898. [PMID: 36920260 DOI: 10.1021/jacs.3c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Light-driven molecular motors have generated considerable interest due to their potential applications in material and biological systems. Recently, Greb and Lehn reported a new class of molecular motors, chiral N-alkyl imines, which undergo unidirectional rotation induced by light and heat. The mechanism of unidirectional motion in molecular motors containing a C═N group has been assumed to consist of photoinduced torsion about the double bond. In this work, we present a computational study of the photoisomerization dynamics of a chiral N-alkyl imine motor. We find that the location and energetics of minimal energy conical intersections (MECIs) alone are insufficient to understand the mechanism of the motor. Furthermore, a key part of the mechanism consists of out-of-plane distortions of the N atom (followed by isomerization about the double bond). Dynamic effects and out-of-plane distortions are critical to understand the observed (rather low) quantum yield for photoisomerization. Our results provide hints as to how the photoisomerization quantum yield might be increased, improving the efficiency of this class of molecular motors.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.,Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Todd J Martinez
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
17
|
Roy P, Browne WR, Feringa BL, Meech SR. Ultrafast motion in a third generation photomolecular motor. Nat Commun 2023; 14:1253. [PMID: 36878920 PMCID: PMC9988961 DOI: 10.1038/s41467-023-36777-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Controlling molecular translation at the nanoscale is a key objective for development of synthetic molecular machines. Recently developed third generation photochemically driven molecular motors (3GMs), comprising pairs of overcrowded alkenes capable of cooperative unidirectional rotation offer the possibility of converting light energy into translational motion. Further development of 3GMs demands detailed understanding of their excited state dynamics. Here we use time-resolved absorption and emission to track population and coherence dynamics in a 3GM. Femtosecond stimulated Raman reveals real-time structural dynamics as the excited state evolves from a Franck-Condon bright-state through weakly-emissive dark-state to the metastable product, yielding new insight into the reaction coordinate. Solvent polarity modifies the photoconversion efficiency suggesting charge transfer character in the dark-state. The enhanced quantum yield correlates with suppression of a low-frequency flapping motion in the excited state. This detailed characterization facilitates development of 3GMs, suggesting exploitation of medium and substituent effects to modulate motor efficiency.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.,School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
18
|
Srivastava G, Štacko P, Mendieta-Moreno JI, Edalatmanesh S, Kistemaker JCM, Heideman GH, Zoppi L, Parschau M, Feringa BL, Ernst KH. Driving a Third Generation Molecular Motor with Electrons Across a Surface. ACS NANO 2023; 17:3931-3938. [PMID: 36794964 DOI: 10.1021/acsnano.2c12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excitation of single molecules with electrons tunneling between a sharp metallic tip of a scanning tunneling microscope and a metal surface is one way to study and control dynamics of molecules on surfaces. Electron tunneling induced dynamics may lead to hopping, rotation, molecular switching, or chemical reactions. Molecular motors that convert rotation of subgroups into lateral movement on a surface can in principle also be driven by tunneling electrons. For such surface-bound motor molecules the efficiency of motor action with respect to electron dose is still not known. Here, the response of a molecular motor containing two rotor units in the form of overcrowded alkene groups to inelastic electron tunneling has been examined on a Cu(111) surface in ultrahigh vacuum at 5 K. Upon vibrational excitation, switching between different molecular conformations is observed, including conversion of enantiomeric states of chiral conformations. Tunneling at energies in the range of electronic excitations causes activation of motor action and movement across the surface. The expected unidirectional rotation of the two rotor units causes forward movements but with a low degree of translational directionality.
Collapse
Affiliation(s)
- Gitika Srivastava
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Peter Štacko
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jesús I Mendieta-Moreno
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Shayan Edalatmanesh
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Jos C M Kistemaker
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - G Henrieke Heideman
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Laura Zoppi
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Manfred Parschau
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Karl-Heinz Ernst
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
19
|
Krueger TD, Tang L, Fang C. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing. BIOSENSORS 2023; 13:bios13020218. [PMID: 36831983 PMCID: PMC9954042 DOI: 10.3390/bios13020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/14/2023]
Abstract
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.
Collapse
|
20
|
Roy P, Al-Kahtani F, Cammidge AN, Meech SR. Solvent Tuning Excited State Structural Dynamics in a Novel Bianthryl. J Phys Chem Lett 2023; 14:253-259. [PMID: 36594925 PMCID: PMC9841557 DOI: 10.1021/acs.jpclett.2c03469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Symmetry breaking charge separation (SBCS) is central to photochemical energy conversion. The widely studied 9,9-bianthryl (9,9'BA) is the prototype, but the role of bianthryl structure is hardly investigated. Here we investigate excited state structural dynamics in a bianthryl of reduced symmetry, 1,9-bianthryl (1,9'BA), through ultrafast electronic and vibrational spectroscopy. Resonance selective Raman in polar solvents reveals a Franck-Condon state mode that disappears concomitant with the rise of ring breathing modes of radical species. Solvent-dependent dynamics show that CS is driven by solvent orientational motion, as in 9,9'BA. In nonpolar solvents the excited state undergoes multistep structural relaxation, including subpicosecond Franck-Condon state decay and biexponential diffusion-controlled structural evolution to a distorted slightly polar state. These data suggest two possible routes to SBCS; the established solvent driven pathway in rapidly relaxing polar solvents and, in slowly relaxing media, initial intramolecular reorganization to a polar structure which drives solvent orientational relaxation.
Collapse
|
21
|
Bailey-Darland S, Krueger TD, Fang C. Ultrafast Spectroscopies of Nitrophenols and Nitrophenolates in Solution: From Electronic Dynamics and Vibrational Structures to Photochemical and Environmental Implications. Molecules 2023; 28:601. [PMID: 36677656 PMCID: PMC9866910 DOI: 10.3390/molecules28020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting ortho-, meta-, and para-substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP-), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional "nanomachines" that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor-acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the meta-substituted compound 3NP or 3NP- exhibits the strongest charge-transfer character with FSRS signatures (e.g., C-N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the ortho-substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications.
Collapse
|
22
|
Addison K, Roy P, Bressan G, Skudaite K, Robb J, Bulman Page PC, Ashworth EK, Bull JN, Meech SR. Photophysics of the red-form Kaede chromophore. Chem Sci 2023; 14:3763-3775. [PMID: 37035701 PMCID: PMC10074405 DOI: 10.1039/d3sc00368j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The chromophore responsible for colour switching in the optical highlighting protein Kaede has unexpectedly complicated excited state dynamics, which are measured and analysed here. This will inform the development of new imaging proteins.
Collapse
Affiliation(s)
- Kiri Addison
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Karolina Skudaite
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Josh Robb
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | - Eleanor K. Ashworth
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - James N. Bull
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
23
|
Pfeifer L, Hoang NV, Crespi S, Pshenichnikov MS, Feringa BL. Dual-function artificial molecular motors performing rotation and photoluminescence. SCIENCE ADVANCES 2022; 8:eadd0410. [PMID: 36332022 PMCID: PMC9635830 DOI: 10.1126/sciadv.add0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Molecular machines have caused one of the greatest paradigm shifts in chemistry, and by powering artificial mechanical molecular systems and enabling autonomous motion, they are expected to be at the heart of exciting new technologies. One of the biggest challenges that still needs to be addressed is designing the involved molecules to combine different orthogonally controllable functions. Here, we present a prototype of artificial molecular motors exhibiting the dual function of rotary motion and photoluminescence. Both properties are controlled by light of different wavelengths or by exploiting motors' outstanding two-photon absorption properties using low-intensity near-infrared light. This provides a noninvasive way to both locate and operate these motors in situ, essential for the application of molecular machines in complex (bio)environments.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Nong V. Hoang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Maxim S. Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
24
|
Schied M, Prezzi D, Liu D, Jacobson P, Corni S, Tour JM, Grill L. Inverted Conformation Stability of a Motor Molecule on a Metal Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9034-9040. [PMID: 35686222 PMCID: PMC9169611 DOI: 10.1021/acs.jpcc.2c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Indexed: 05/02/2023]
Abstract
Molecular motors have been intensely studied in solution, but less commonly on solid surfaces that offer fixed points of reference for their motion and allow high-resolution single-molecule imaging by scanning probe microscopy. Surface adsorption of molecules can also alter the potential energy surface and consequently preferred intramolecular conformations, but it is unknown how this affects motor molecules. Here, we show how the different conformations of motor molecules are modified by surface adsorption using a combination of scanning tunneling microscopy and density functional theory. These results demonstrate how the contact of a motor molecule with a solid can affect the energetics of the molecular conformations.
Collapse
Affiliation(s)
- Monika Schied
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Deborah Prezzi
- Nanoscience
Institute of the National Research Council (CNR-NANO), via G. Campi 213/a, 41125 Modena, Italy
| | - Dongdong Liu
- Departments
of Chemistry and Materials Science and NanoEngineering, the Smalley
Institute for Nanoscale Science and Technology, the Welch Institute
for Advanced Materials, Rice University, Houston, Texas 77005, United States
| | - Peter Jacobson
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Stefano Corni
- Nanoscience
Institute of the National Research Council (CNR-NANO), via G. Campi 213/a, 41125 Modena, Italy
- Dipartimento
di Scienze Chimiche, Università di
Padova, Padova I-35131, Italy
| | - James M. Tour
- Departments
of Chemistry and Materials Science and NanoEngineering, the Smalley
Institute for Nanoscale Science and Technology, the Welch Institute
for Advanced Materials, Rice University, Houston, Texas 77005, United States
| | - Leonhard Grill
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
25
|
Twisted intramolecular charge transfer of nitroaromatic push-pull chromophores. Sci Rep 2022; 12:6557. [PMID: 35449231 PMCID: PMC9023442 DOI: 10.1038/s41598-022-10565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
The structural changes during the intramolecular charge transfer (ICT) of nitroaromatic chromophores, 4-dimethylamino-4′-nitrobiphenyl (DNBP) and 4-dimethylamino-4′-nitrostilbene (DNS) were investigated by femtosecond stimulated Raman spectroscopy (FSRS) with both high spectral and temporal resolutions. The kinetically resolved Raman spectra of DNBP and DNS in the locally-excited and charge-transferred states of the S1 state appear distinct, especially in the skeletal vibrational modes of biphenyl and stilbene including ν8a and νC=C. The ν8a of two phenyls and the νC=C of the central ethylene group (only for stilbene), which are strongly coupled in the planar geometries, are broken with the twist of nitrophenyl group with the ICT. Time-resolved vibrational spectroscopy measurements and the time-dependent density functional theory simulations support the ultrafast ICT dynamics of 220–480 fs with the twist of nitrophenyl group occurring in the S1 state of the nitroaromatic chromophores. While the ICT of DNBP occurs via a barrier-less pathway, the ICT coordinates of DNS are strongly coupled to several low-frequency out-of-phase deformation modes relevant to the twist of the nitrophenyl group.
Collapse
|
26
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
27
|
Lee S, Jen M, Lee G, Jang T, Pang Y. Intramolecular charge transfer of a push-pull chromophore with restricted internal rotation of an electron donor. Phys Chem Chem Phys 2022; 24:5794-5802. [PMID: 35195633 DOI: 10.1039/d1cp05541k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intramolecular charge transfer (ICT) of 4-(dicyanomethylene)-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran (LD688) in DMSO solution was investigated by femtosecond stimulated Raman spectroscopy (FSRS) with 403 nm excitation. The molecular structure of LD688 is similar to that of a well-known push-pull chromophore, 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), except that the internal rotation of the electron-donating dimethylamino group is restricted with the introduction of the julolidine moiety. Upon photo-excitation, LD688 shows an ultrafast (1.0 ps) ICT followed by the vibrational relaxation (3-8 ps) in the charge-transfer (CT) state. Two distinct Raman spectra of LD688 in the locally excited (LE) and CT state of the S1 state were retrieved from FSRS measurements. Based on the time-dependent density functional theory (TDDFT) simulations, a "twisted" julolidine geometry of LD688 was proposed for the ICT state, which was further confirmed in comparison to the spectral changes of several push-pull chromophores with the π-conjugated backbone of stilbene, biphenyl, styrylpyran, styrylpyridinium, and styrene in terms of the skeletal vibrational modes of ν19b,py, νCC,ph, and νCN.
Collapse
Affiliation(s)
- Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Myungsam Jen
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Gisang Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
28
|
Intramolecular Charge Transfer of Curcumin and Solvation Dynamics of DMSO Probed by Time-Resolved Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms23031727. [PMID: 35163647 PMCID: PMC8835799 DOI: 10.3390/ijms23031727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Intramolecular charge transfer (ICT) of curcumin in dimethyl sulfoxide (DMSO) solution in the excited state was investigated by femtosecond electronic and vibrational spectroscopy. Excited-state Raman spectra of curcumin in the locally-excited and charge-transferred (CT) state of the S1 excited state were separated due to high temporal (<50 fs) and spectral (<10 cm−1) resolutions of femtosecond stimulated Raman spectroscopy. The ultrafast (0.6–0.8 ps) ICT and subsequent vibrational relaxation (6–9 ps) in the CT state were ubiquitously observed in the ground- and excited-state vibrational modes of the solute curcumin and the νCSC and νS=O modes of solvent DMSO. The ICT of curcumin in the excited state was preceded by the disruption of the solvation shells, including the breakage of hydrogen bonding between curcumin and DMSO molecules, which occurs at the ultrafast (20–50 fs) time scales.
Collapse
|
29
|
Pooler DRS, Lubbe AS, Crespi S, Feringa BL. Designing light-driven rotary molecular motors. Chem Sci 2021; 12:14964-14986. [PMID: 34909140 PMCID: PMC8612399 DOI: 10.1039/d1sc04781g] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
The ability to induce and amplify motion at the molecular scale has seen tremendous progress ranging from simple molecular rotors to responsive materials. In the two decades since the discovery of light-driven rotary molecular motors, the development of these molecules has been extensive; moving from the realm of molecular chemistry to integration into dynamic molecular systems. They have been identified as actuators holding great potential to precisely control the dynamics of nanoscale devices, but integrating molecular motors effectively into evermore complex artificial molecular machinery is not trivial. Maximising efficiency without compromising function requires conscious and judicious selection of the structures used. In this perspective, we focus on the key aspects of motor design and discuss how to manipulate these properties without impeding motor integrity. Herein, we describe these principles in the context of molecular rotary motors featuring a central double bond axle and emphasise the strengths and weaknesses of each design, providing a comprehensive evaluation of all artificial light-driven rotary motor scaffolds currently present in the literature. Based on this discussion, we will explore the trajectory of research into the field of molecular motors in the coming years, including challenges to be addressed, potential applications, and future prospects.
Collapse
Affiliation(s)
- Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anouk S Lubbe
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
30
|
Green D, Roy P, Hall CR, Iuliano JN, Jones GA, Lukacs A, Tonge PJ, Meech SR. Excited State Resonance Raman of Flavin Mononucleotide: Comparison of Theory and Experiment. J Phys Chem A 2021; 125:6171-6179. [PMID: 34240863 DOI: 10.1021/acs.jpca.1c04063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Blue light absorbing flavoproteins play important roles in a variety of photobiological processes. Consequently, there have been numerous investigations of their excited state structure and dynamics, in particular by time-resolved vibrational spectroscopy. The isoalloxazine chromophore of the flavoprotein cofactors has been studied in detail by time-resolved Raman, lending it a benchmark status for mode assignments in excited electronic states of large molecules. However, detailed comparisons of calculated and measured spectra have proven challenging, as there are many more modes calculated than are observed, and the role of resonance enhancement is difficult to characterize in excited electronic states. Here we employ a recently developed approach due to Elles and co-workers ( J. Phys. Chem. A 2018, 122, 8308-8319) for the calculation of resonance-enhanced Raman spectra of excited states and apply it to the lowest singlet and triplet excited states of the isoalloxazine chromophore. There is generally good agreement between calculated and observed enhancements, which allows assignment of vibrational bands of the flavoprotein cofactors to be refined. However, some prominently enhanced bands are found to be absent from the calculations, suggesting the need for further development of the theory.
Collapse
Affiliation(s)
- Dale Green
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | | | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
31
|
Roy P, Bressan G, Gretton J, Cammidge AN, Meech SR. Ultrafast Excimer Formation and Solvent Controlled Symmetry Breaking Charge Separation in the Excitonically Coupled Subphthalocyanine Dimer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palas Roy
- School of Chemistry University of East Anglia Nowich NR4 7TJ UK
| | - Giovanni Bressan
- Department of Life Sciences Imperial College London London SW7 2BX UK
| | - Jacob Gretton
- School of Chemistry University of East Anglia Nowich NR4 7TJ UK
| | | | | |
Collapse
|
32
|
Pooler DRS, Pierron R, Crespi S, Costil R, Pfeifer L, Léonard J, Olivucci M, Feringa BL. Effect of charge-transfer enhancement on the efficiency and rotary mechanism of an oxindole-based molecular motor. Chem Sci 2021; 12:7486-7497. [PMID: 34163839 PMCID: PMC8171491 DOI: 10.1039/d1sc01105g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023] Open
Abstract
Harvesting energy and converting it into mechanical motion forms the basis for both natural and artificial molecular motors. Overcrowded alkene-based light-driven rotary motors are powered through sequential photochemical and thermal steps. The thermal helix inversion steps are well characterised and can be manipulated through adjustment of the chemical structure, however, the insights into the photochemical isomerisation steps still remain elusive. Here we report a novel oxindole-based molecular motor featuring pronounced electronic push-pull character and a four-fold increase of the photoisomerization quantum yield in comparison to previous motors of its class. A multidisciplinary approach including synthesis, steady-state and transient absorption spectroscopies, and electronic structure modelling was implemented to elucidate the excited state dynamics and rotary mechanism. We conclude that the charge-transfer character of the excited state diminishes the degree of pyramidalisation at the alkene bond during isomerisation, such that the rotational properties of this oxindole-based motor stand in between the precessional motion of fluorene-based molecular motors and the axial motion of biomimetic photoswitches.
Collapse
Affiliation(s)
- Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Robin Pierron
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 F-67034 Strasbourg France
| | - Stefano Crespi
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Romain Costil
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Lukas Pfeifer
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 F-67034 Strasbourg France
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena 53100 Siena Italy
- Chemistry Department, Bowling Green State University Bowling Green Ohio 43403 USA
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
33
|
Roy P, Sardjan AS, Cnossen A, Browne WR, Feringa BL, Meech SR. Excited State Structure Correlates with Efficient Photoconversion in Unidirectional Motors. J Phys Chem Lett 2021; 12:3367-3372. [PMID: 33784091 DOI: 10.1021/acs.jpclett.1c00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of unidirectional photomolecular motors demands a critical understanding of an ultrafast photochemical isomerization. An intermediate dark excited state mediates the reaction via a conical intersection (CI) with the ground state, but a correlation between molecular structure and photoisomerization efficiency has remained elusive. Here femtosecond stimulated Raman spectroscopy captures vibrational spectra of the dark state in a set of molecular motors bearing different substituents. A direct correlation between isomerization quantum yield, dark state lifetime, and excited state vibrational spectrum is found. Electron withdrawing substituents lead to activity in lower frequency modes, which we correlate with a pyramidalization distortion at the ethylenic axle occurring within 100 fs. This structure is not formed with an electron donating substituent, where the axle retains double bond character. Further structural reorganization is observed and assigned to excited state reorganization and charge redistribution on the sub-picosecond time scale. The correlation of the dark state structure with photoconversion performance suggests guidelines for developing new more efficient motor derivatives.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Andy S Sardjan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Arjen Cnossen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
34
|
Tuning Single-Molecule Conductance by Controlled Electric Field-Induced trans-to-cis Isomerisation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.
Collapse
|
35
|
Roy P, Bressan G, Gretton J, Cammidge AN, Meech SR. Ultrafast Excimer Formation and Solvent Controlled Symmetry Breaking Charge Separation in the Excitonically Coupled Subphthalocyanine Dimer. Angew Chem Int Ed Engl 2021; 60:10568-10572. [PMID: 33606913 PMCID: PMC8251754 DOI: 10.1002/anie.202101572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/18/2022]
Abstract
Knowledge of the factors controlling excited state dynamics in excitonically coupled dimers and higher aggregates is critical for understanding natural and artificial solar energy conversion. In this work, we report ultrafast solvent polarity dependent excited state dynamics of the structurally well‐defined subphthalocyanine dimer, μ‐OSubPc2. Stationary electronic spectra demonstrate strong exciton coupling in μ‐OSubPc2. Femtosecond transient absorption measurements reveal ultrafast excimer formation from the initially excited exciton, mediated by intramolecular structural evolution. In polar solvents the excimer state decays directly through symmetry breaking charge transfer to form a charge separated state. Charge separation occurs under control of solvent orientational relaxation.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| | - Giovanni Bressan
- Department of Life Sciences, Imperial College London, London, SW7 2BX, UK
| | - Jacob Gretton
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| | | | - Stephen R Meech
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| |
Collapse
|
36
|
Lin TC, Liu ZY, Liu SH, Koshevoy IO, Chou PT. Counterion Migration Driven by Light-Induced Intramolecular Charge Transfer. JACS AU 2021; 1:282-293. [PMID: 34467293 PMCID: PMC8395631 DOI: 10.1021/jacsau.0c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/14/2023]
Abstract
A series of D-π-A + pyridinium compounds, in which D = -NPh2 and A+ = -PyMe+ are linked by various amounts of linear phenyl spacers, were strategically designed and synthesized. Their characterization revealed the presence of excited-state intramolecular charge transfer (ESICT) that triggers a corresponding response from the counterion. In medium and strong polar solvents, the fast solvent relaxation occurring after ESICT overwhelms the counterion effect, showing typical emission solvatochromism. In weakly polar solvents, ESICT induces counteranion migration for electrostatic stabilization, the time scale of which is dependent on the radius of the counteranion, the length of the π-linker, and the viscosity of the solvent. In low-viscosity organic solvents such as toluene, counteranion migration occurs within several tens to hundreds of picoseconds, resulting in a time-dependent continuous emission that can be resolved from the spectral temporal evolution. Concrete evidence for this is provided by the chemical synthesis of a D-π-A + pyridinium-sulfur trioxide- zwitterion, where anion migration is restricted due to its internally locked ion pair. As a result, only a single emission band can be observed. These comprehensive studies prove that the ion migration process may be significant for a wide range of ESICT-type ionic fluorophores. Such an ionic movement, triggered by optically pumped ESICT of the D-π-A + dyad, is similar to the molecular machine driven by the redox reaction, but with a facile access and fast response.
Collapse
Affiliation(s)
- Ta-Chun Lin
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Zong-Ying Liu
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Shih-Hung Liu
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Igor O. Koshevoy
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| |
Collapse
|
37
|
Roy P, Sardjan AS, Danowski W, Browne WR, Feringa BL, Meech SR. Photophysics of First-Generation Photomolecular Motors: Resolving Roles of Temperature, Friction, and Medium Polarity. J Phys Chem A 2021; 125:1711-1719. [PMID: 33606528 DOI: 10.1021/acs.jpca.0c11050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Light-driven unidirectional molecular rotary motors have the potential to power molecular machines. Consequently, optimizing their speed and efficiency is an important objective. Here, we investigate factors controlling the photochemical yield of the prototypical unidirectional rotary motor, a sterically overcrowded alkene, through detailed investigation of its excited-state dynamics. An isoviscosity analysis of the ultrafast fluorescence decay data resolves friction from barrier effects and reveals a 3.4 ± 0.5 kJ mol-1 barrier to excited-state decay in nonpolar media. Extension of this analysis to polar solvents shows that this barrier height is a strong function of medium polarity and that the decay pathway becomes near barrierless in more polar media. Thus, the properties of the medium can be used as a route for controlling the motor's excited-state dynamics. The connection between these dynamics and the quantum yield of photochemical isomerization is probed. The photochemical quantum yield is shown to be a much weaker function of solvent polarity, and the most efficient excited-state decay pathway does not lead to a strongly enhanced quantum yield for isomerization. These results are discussed in terms of the solvent dependence of the complex multidimensional excited-state reaction coordinate.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Andy S Sardjan
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wojciech Danowski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
38
|
Kang DG, Woo KC, Kang DH, Park C, Kim SK. Improved spectral resolution of the femtosecond stimulated Raman spectroscopy achieved by the use of the 2nd-order diffraction method. Sci Rep 2021; 11:3361. [PMID: 33564098 PMCID: PMC7873076 DOI: 10.1038/s41598-021-83090-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Prolongation of the picosecond Raman pump laser pulse in the femtosecond stimulated Raman spectroscopy (FSRS) setup is essential for achieving the high spectral resolution of the time-resolved vibrational Raman spectra. In this work, the 2nd-order diffraction has been firstly employed in the double-pass grating filter technique for realizing the FSRS setup with the sub-5 cm-1 spectral resolution. It has been experimentally demonstrated that our new FSRS setup gives rise to a highly-resolved Raman spectrum of the excited trans-stilbene, which is much improved from those reported in the literatures. The spectral resolution of the present FSRS system has been estimated to be the lowest value ever reported to date, giving Δν = 2.5 cm-1.
Collapse
Affiliation(s)
- Dong-Gu Kang
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chanho Park
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
39
|
Twisted Intramolecular Charge Transfer State of a "Push-Pull" Emitter. Int J Mol Sci 2020; 21:ijms21217999. [PMID: 33121185 PMCID: PMC7662227 DOI: 10.3390/ijms21217999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The excited state Raman spectra of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in the locally-excited (LE) and the intramolecular charge transfer (ICT) states have been separately measured by time-resolved stimulated Raman spectroscopy. In a polar dimethylsulfoxide solution, the ultrafast ICT of DCM with a time constant of 1.0 ps was observed in addition to the vibrational relaxation in the ICT state of 4–7 ps. On the other hand, the energy of the ICT state of DCM becomes higher than that of the LE state in a less polar chloroform solution, where the initially-photoexcited ICT state with the LE state shows the ultrafast internal conversion to the LE state with a time constant of 300 fs. The excited-state Raman spectra of the LE and ICT state of DCM showed several major vibrational modes of DCM in the LE and ICT conformer states coexisting in the excited state. Comparing to the time-dependent density functional theory simulations and the experimental results of similar push-pull type molecules, a twisted geometry of the dimethylamino group is suggested for the structure of DCM in the S1/ICT state.
Collapse
|
40
|
Pfeifer L, Hoang NV, Scherübl M, Pshenichnikov MS, Feringa BL. Powering rotary molecular motors with low-intensity near-infrared light. SCIENCE ADVANCES 2020; 6:6/44/eabb6165. [PMID: 33115739 PMCID: PMC7608792 DOI: 10.1126/sciadv.abb6165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/14/2020] [Indexed: 05/03/2023]
Abstract
Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Nong V Hoang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Maximilian Scherübl
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
41
|
Batignani G, Ferrante C, Scopigno T. Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2020; 11:7805-7813. [PMID: 32841039 PMCID: PMC7735730 DOI: 10.1021/acs.jpclett.0c01971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 05/08/2023]
Abstract
Excited state vibrations are crucial for determining the photophysical and photochemical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally restricted to ground state properties. Working under resonance conditions enables cross-section enhancement and selective excitation to a targeted electronic level but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information about ground and excited state vibrations can be disentangled by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring with the signal generation. The proposed method is then exploited to elucidate the vibrational properties of the ground and excited electronic states in the paradigmatic case of cresyl violet. We anticipate that the presented approach holds the potential for selective mapping of the reaction coordinates pertaining to transient electronic stages implied in photoactive compounds.
Collapse
Affiliation(s)
- Giovanni Batignani
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
| | - Carino Ferrante
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Center
for Life Nano Science @Sapienza, Istituto
Italiano di Tecnologia, Roma I-00161, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| | - Tullio Scopigno
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Center
for Life Nano Science @Sapienza, Istituto
Italiano di Tecnologia, Roma I-00161, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
42
|
Iuliano JN, Hall CR, Green D, Jones GA, Lukacs A, Illarionov B, Bacher A, Fischer M, French JB, Tonge PJ, Meech SR. Excited State Vibrations of Isotopically Labeled FMN Free and Bound to a Light-Oxygen-Voltage (LOV) Protein. J Phys Chem B 2020; 124:7152-7165. [PMID: 32786715 PMCID: PMC7533957 DOI: 10.1021/acs.jpcb.0c04943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flavoproteins are important blue light sensors in photobiology and play a key role in optogenetics. The characterization of their excited state structure and dynamics is thus an important objective. Here, we present a detailed study of excited state vibrational spectra of flavin mononucleotide (FMN), in solution and bound to the LOV-2 (Light-Oxygen-Voltage) domain of Avena sativa phototropin. Vibrational frequencies are determined for the optically excited singlet state and the reactive triplet state, through resonant ultrafast femtosecond stimulated Raman spectroscopy (FSRS). To assign the observed spectra, vibrational frequencies of the excited states are calculated using density functional theory, and both measurement and theory are applied to four different isotopologues of FMN. Excited state mode assignments are refined in both states, and their sensitivity to deuteration and protein environment are investigated. We show that resonant FSRS provides a useful tool for characterizing photoactive flavoproteins and is able to highlight chromophore localized modes and to record hydrogen/deuterium exchange.
Collapse
Affiliation(s)
- James N. Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Dale Green
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Garth A. Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Boris Illarionov
- Institut für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Adelbert Bacher
- Institut für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Markus Fischer
- Institut für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Jarrod B. French
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
43
|
Cassabaum AA, Bera K, Rich CC, Nebgen BR, Kwang SY, Clapham ML, Frontiera RR. Femtosecond stimulated Raman spectro-microscopy for probing chemical reaction dynamics in solid-state materials. J Chem Phys 2020; 153:030901. [DOI: 10.1063/5.0009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alyssa A. Cassabaum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kajari Bera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Christopher C. Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bailey R. Nebgen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Margaret L. Clapham
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
44
|
Kim J, Yoon TH, Cho M. Time-Resolved Impulsive Stimulated Raman Spectroscopy with Synchronized Triple Mode-Locked Lasers. J Phys Chem Lett 2020; 11:2864-2869. [PMID: 32212699 DOI: 10.1021/acs.jpclett.0c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A complete understanding of a photochemical reaction dynamics begins with real-time measurements of both electronic and vibrational structures of photoexcited molecules. Time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS) with femtosecond actinic pump, Raman pump, and Raman probe pulses is one of the incisive techniques enabling one to investigate the structural changes of photoexcited molecules. Herein, we demonstrate that such femtosecond TR-ISRS is feasible with synchronized triple mode-locked lasers without using any time-delay devices. Taking advantage of precise control of the three repetition rates independently, we could achieve automatic scanning of two delay times between the three pulses, which makes both rapid data acquisition and wide dynamic range measurement of the fifth-order TR-ISRS signal achievable. We thus anticipate that the present triple mode-locked laser-based TR-ISRS technique will be of critical use for long-term monitoring of photochemical reaction dynamics in condensed phases and biological systems.
Collapse
Affiliation(s)
- JunWoo Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Tai Hyun Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
45
|
Sardjan AS, Roy P, Danowski W, Bressan G, Nunes Dos Santos Comprido L, Browne WR, Feringa BL, Meech SR. Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor. Chemphyschem 2020; 21:594-599. [PMID: 31975490 PMCID: PMC7187380 DOI: 10.1002/cphc.201901179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Efficient photomolecular motors will be critical elements in the design and development of molecular machines. Optimisation of the quantum yield for photoisomerisation requires a detailed understanding of molecular dynamics in the excited electronic state. Here we probe the primary photophysical processes in the archetypal first generation photomolecular motor, with sub‐50 fs time resolved fluorescence spectroscopy. A bimodal relaxation is observed with a 100 fs relaxation of the Franck‐Condon state to populate a red‐shifted state with a reduced transition moment, which then undergoes multi‐exponential decay on a picosecond timescale. Oscillations due to the excitation of vibrational coherences in the S1 state are seen to survive the ultrafast structural relaxation. The picosecond relaxation reveals a strong solvent friction effect which is thus ascribed to torsion about the C−C axle. This behaviour is contrasted with second generation photomolecular motors; the principal differences are explained by the existence of a barrier on the excited state surface in the case of the first‐generation motors which is absent in the second generation. These results will help to provide a basis for designing more efficient molecular motors in the future.
Collapse
Affiliation(s)
- Andy S Sardjan
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Palas Roy
- School of Chemistry, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Wojciech Danowski
- Synthetic Organic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Laura Nunes Dos Santos Comprido
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ben L Feringa
- Synthetic Organic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
46
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
47
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
48
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|
49
|
Schapiro I, Gueye M, Paolino M, Fusi S, Marchand G, Haacke S, Martin ME, Huntress M, Vysotskiy VP, Veryazov V, Léonard J, Olivucci M. Synthesis, spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor. Photochem Photobiol Sci 2019; 18:2259-2269. [PMID: 31347633 DOI: 10.1039/c9pp00223e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular motor potentially performing a continuous unidirectional rotation is studied by a multidisciplinary approach including organic synthesis, transient spectroscopy and excited state trajectory calculations. A stereogenic center was introduced in the N-alkylated indanylidene-pyrroline Schiff base framework of a previously investigated light-driven molecular switch in order to achieve the unidirectional C[double bond, length as m-dash]C rotary motion typical of Feringa's motor. Here we report that the specific substitution pattern of the designed chiral molecule must critically determine the unidirectional efficiency of the light-induced rotary motion. More specifically, we find that a stereogenic center containing a methyl group and a hydrogen atom as substituents does not create a differential steric effect large enough to fully direct the motion in either the clockwise or counterclockwise direction especially along the E→Z coordinate. However, due to the documented ultrafast character and electronic circular dichroism activity of the investigated system, we find that it provides the basis for development of a novel generation of rotary motors with a biomimetic framework and operating on a picosecond time scale.
Collapse
Affiliation(s)
- Igor Schapiro
- Université de Strasbourg, CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg, 23 du Loess, 67034 Strasbourg, France
| | - Moussa Gueye
- Université de Strasbourg, CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg, 23 du Loess, 67034 Strasbourg, France
| | - Marco Paolino
- Dipartimento di Biotecnologia, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| | - Stefania Fusi
- Dipartimento di Biotecnologia, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| | - Gabriel Marchand
- Université de Strasbourg, CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg, 23 du Loess, 67034 Strasbourg, France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg, 23 du Loess, 67034 Strasbourg, France
| | - M Elena Martin
- Area de Química Física, Universidad de Extremadura, Avenida de Elvas sn, E-06071, Badajoz, Spain
| | - Mark Huntress
- Chemistry Department, Bowling Green State University, Bowling Green Ohio 43403, USA
| | - Victor P Vysotskiy
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| | - Valera Veryazov
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg, 23 du Loess, 67034 Strasbourg, France
| | - Massimo Olivucci
- Dipartimento di Biotecnologia, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy. and Chemistry Department, Bowling Green State University, Bowling Green Ohio 43403, USA
| |
Collapse
|
50
|
Bressan G, Cammidge AN, Jones GA, Heisler IA, Gonzalez-Lucas D, Remiro-Buenamañana S, Meech SR. Electronic Energy Transfer in a Subphthalocyanine-Zn Porphyrin Dimer Studied by Linear and Nonlinear Ultrafast Spectroscopy. J Phys Chem A 2019; 123:5724-5733. [PMID: 31257894 DOI: 10.1021/acs.jpca.9b04398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The efficient harvesting and transport of visible light by electronic energy transfer (EET) are critical to solar energy conversion in both nature and molecular electronics. In this work, we study EET in a synthetic dyad comprising a visible absorbing subphthalocyanine (SubPc) donor and a Zn tetraphenyl porphyrin (ZnTPP) acceptor. Energy transfer is probed by steady-state spectroscopy, ultrafast transient absorption, and two-dimensional electronic spectroscopy. Steady-state and time-resolved experiments point to only weak electronic coupling between the components of the dimer. The weak coupling supports energy transfer from the SubPc to the zinc porphyrin in 7 ps, which itself subsequently undergoes intersystem crossing to populate the triplet state. The rate of the forward energy transfer is discussed in terms of the structure of the dimer, which is calculated by density functional theory. There is evidence of back energy transfer from the ZnTPP on the hundreds of picoseconds time scale. Sub-picosecond spectral diffusion was also observed and characterized, but it does not influence the picosecond energy transfer.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , United Kingdom
| | - Andrew N Cammidge
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , United Kingdom
| | - Garth A Jones
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , United Kingdom
| | - Ismael A Heisler
- Departamento de Física , Universidade Federal do Paraná , Caixa Postal 19044 , 81531-990 Curitiba , Parana , Brazil
| | | | | | - Stephen R Meech
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , United Kingdom
| |
Collapse
|