1
|
Tamayo A, Danowski W, Han B, Jeong Y, Samorì P. Light-Modulated Humidity Sensing in Spiropyran Functionalized MoS 2 Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404633. [PMID: 39263764 DOI: 10.1002/smll.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.
Collapse
Affiliation(s)
- Adrián Tamayo
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Wojciech Danowski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Yeonsu Jeong
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
2
|
Hassan F, Tang Y, Bisoyi HK, Li Q. Photochromic Carbon Nanomaterials: An Emerging Class of Light-Driven Hybrid Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401912. [PMID: 38847224 DOI: 10.1002/adma.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 06/28/2024]
Abstract
Photochromic molecules have remarkable potential in memory and optical devices, as well as in driving and manipulating molecular motors or actuators and many other systems using light. When photochromic molecules are introduced into carbon nanomaterials (CNMs), the resulting hybrids provide unique advantages and create new functions that can be employed in specific applications and devices. This review highlights the recent developments in diverse photochromic CNMs. Photochromic molecules and CNMs are also introduced. The fundamentals of different photochromic CNMs are discussed, including design principles and the types of interactions between CNMs and photochromic molecules via covalent interactions and non-covalent bonding such as π-π stacking, amphiphilic, electrostatic, and hydrogen bonding. Then the properties of photochromic CNMs, e.g., in photopatterning, fluorescence modulation, actuation, and photoinduced surface-relief gratings, and their applications in energy storage (solar thermal fuels, photothermal batteries, and supercapacitors), nanoelectronics (transistors, molecular junctions, photo-switchable conductance, and photoinduced electron transfer), sensors, and bioimaging are highlighted. Finally, an outlook on the challenges and opportunities in the future of photochromic CNMs is presented. This review discusses a vibrant interdisciplinary research field and is expected to stimulate further developments in nanoscience, advanced nanotechnology, intelligently responsive materials, and devices.
Collapse
Affiliation(s)
- Fathy Hassan
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, El-Gharbia, Egypt
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| |
Collapse
|
3
|
Xie Y, Zhang H, Hu H, He Z. Large-Scale Production and Integrated Application of Micro-Supercapacitors. Chemistry 2024; 30:e202304160. [PMID: 38206572 DOI: 10.1002/chem.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Micro-supercapacitors, emerging as promising micro-energy storage devices, have attracted significant attention due to their unique features. This comprehensive review focuses on two key aspects: the scalable fabrication of MSCs and their diverse applications. The review begins by elucidating the energy storage mechanisms and guiding principles for designing high-performance devices. It subsequently explores recent advancements in scalable fabrication techniques for electrode materials and micro-nano fabrication technologies for micro-devices. The discussion encompasses critical application domains, including multifunctional MSCs, energy storage integration, integrated power generation, and integrated applications. Despite notable progress, there are still some challenges such as large-scale production of electrode material, well-controlled fabrication technology, and scalable integrated manufacture. The summary concludes by emphasizing the need for future research to enhance micro-supercapacitor performance, reduce production costs, achieve large-scale production, and explore synergies with other energy storage technologies. This collective effort aims to propel MSCs from laboratory innovation to market viability, providing robust energy storage solutions for MEMS and portable electronics.
Collapse
Affiliation(s)
- Yanting Xie
- School of Materials Science and Engineering, Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haitao Zhang
- School of Materials Science and Engineering, Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haitao Hu
- Institute of Smart City and Intelligent Transportation, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhengyou He
- Institute of Smart City and Intelligent Transportation, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
4
|
Hillers-Bendtsen AE, Todarwal Y, Norman P, Mikkelsen KV. Dynamical Effects of Solvation on Norbornadiene/Quadricyclane Systems. J Phys Chem A 2024; 128:2602-2610. [PMID: 38511966 DOI: 10.1021/acs.jpca.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Molecules that can undergo reversible chemical transformations following the absorption of light, the so-called molecular photoswitches, have attracted increasing attention in technologies, such as solar energy storage. Here, the optical and thermochemical properties of the photoswitch are central to its applicability, and these properties are influenced significantly by solvation. We investigate the effects of solvation on two norbornadiene/quadricyclane photoswitches. Emphasis is put on the energy difference between the two isomers and the optical absorption as these are central to the application of the systems in solar energy storage. Using a combined classical molecular dynamics and quantum mechanical/molecular mechanical computational scheme, we showcase that the dynamic effects of solvation are important. In particular, it is found that standard implicit solvation models generally underestimate the energy difference between the two isomers and overestimate the strength of the absorption, while the explicit solvation spectra are also less red-shifted than those obtained using implicit solvation models. We also find that the absorption spectra of the two systems are strongly correlated with specific dihedral angles. Altogether, this highlights the importance of including the dynamic effects of solvation.
Collapse
Affiliation(s)
| | - Yogesh Todarwal
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Patrick Norman
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Xie J, Hou H, Lu H, Lu F, Liu W, Wang X, Cheng L, Zhang Y, Wang Y, Wang Y, Diwu J, Hu B, Chai Z, Wang S. Photochromic Uranyl-Based Coordination Polymer for Quantitative and On-Site Detection of UV Radiation Dose. Inorg Chem 2023; 62:15834-15841. [PMID: 37724987 DOI: 10.1021/acs.inorgchem.3c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.
Collapse
Affiliation(s)
- Jian Xie
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifan Lu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Hillers-Bendtsen AE, Elholm JL, Obel OB, Hölzel H, Moth-Poulsen K, Mikkelsen KV. Searching the Chemical Space of Bicyclic Dienes for Molecular Solar Thermal Energy Storage Candidates. Angew Chem Int Ed Engl 2023; 62:e202309543. [PMID: 37489860 DOI: 10.1002/anie.202309543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Photoswitches are molecular systems that are chemically transformed subsequent to interaction with light and they find potential application in many new technologies. The design and discovery of photoswitch candidates require intricate molecular engineering of a range of properties to optimize a candidate to a specific applications, a task which can be tackled efficiently using quantum chemical screening procedures. In this paper, we perform a large scale screening of approximately half a million bicyclic diene photoswitches in the context of molecular solar thermal energy storage using ab initio quantum chemical methods. We further device an efficient strategy for scoring the systems based on their predicted solar energy conversion efficiency and elucidate potential pitfalls of this approach. Our search through the chemical space of bicyclic dienes reveals systems with unprecedented solar energy conversion efficiencies and storage densities that show promising design guidelines for next generation molecular solar thermal energy storage systems.
Collapse
Affiliation(s)
| | - Jacob Lynge Elholm
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, 08193, Bellaterra, Barcelona, Spain
| | - Oscar Berlin Obel
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Kasper Moth-Poulsen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, 08193, Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Singhania A, Kalita S, Chettri P, Ghosh S. Accounts of applied molecular rotors and rotary motors: recent advances. NANOSCALE ADVANCES 2023; 5:3177-3208. [PMID: 37325522 PMCID: PMC10262963 DOI: 10.1039/d3na00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Molecular machines are nanoscale devices capable of performing mechanical works at molecular level. These systems could be a single molecule or a collection of component molecules that interrelate with one another to produce nanomechanical movements and resulting performances. The design of the components of molecular machine with bioinspired traits results in various nanomechanical motions. Some known molecular machines are rotors, motors, nanocars, gears, elevators, and so on based on their nanomechanical motion. The conversion of these individual nanomechanical motions to collective motions via integration into suitable platforms yields impressive macroscopic output at varied sizes. Instead of limited experimental acquaintances, the researchers demonstrated several applications of molecular machines in chemical transformation, energy conversion, gas/liquid separation, biomedical use, and soft material fabrication. As a result, the development of new molecular machines and their applications has accelerated over the previous two decades. This review highlights the design principles and application scopes of several rotors and rotary motor systems because these machines are used in real applications. This review also offers a systematic and thorough overview of current advancements in rotary motors, providing in-depth knowledge and predicting future problems and goals in this area.
Collapse
Affiliation(s)
- Anup Singhania
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sudeshna Kalita
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prerna Chettri
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Subrata Ghosh
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
8
|
Adedoja OS, Sadiku ER, Hamam Y. An Overview of the Emerging Technologies and Composite Materials for Supercapacitors in Energy Storage Applications. Polymers (Basel) 2023; 15:2272. [PMID: 37242851 PMCID: PMC10221622 DOI: 10.3390/polym15102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Energy storage is one of the challenges currently confronting the energy sector. However, the invention of supercapacitors has transformed the sector. This modern technology's high energy capacity, reliable supply with minimal lag time, and extended lifetime of supercapacitors have piqued the interest of scientists, and several investigations have been conducted to improve their development. However, there is room for improvement. Consequently, this review presents an up-to-date investigation of different supercapacitor technologies' components, operating techniques, potential applications, technical difficulties, benefits, and drawbacks. In addition, it thoroughly highlights the active materials used to produce supercapacitors. The significance of incorporating every component (electrode and electrolyte), their synthesis approach, and their electrochemical characteristics are outlined. The research further examines supercapacitors' potential in the next era of energy technology. Finally, concerns and new research prospects in hybrid supercapacitor-based energy applications that are envisaged to result in the development of ground-breaking devices, are highlighted.
Collapse
Affiliation(s)
- Oluwaseye Samson Adedoja
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
- Institute of Nano Engineering Research (INER), Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
| | - Emmanuel Rotimi Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
- Institute of Nano Engineering Research (INER), Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
| | - Yskandar Hamam
- Department of Electrical Engineering, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
- Ecole Superieure d’Ingenieurs en Electrotechnique et Electronique, 2 Boulevard Blaise Pascal, 93160 Noisy-Le-Grand, France
| |
Collapse
|
9
|
Chu X, Yang W, Li H. Recent advances in polyaniline-based micro-supercapacitors. MATERIALS HORIZONS 2023; 10:670-697. [PMID: 36598367 DOI: 10.1039/d2mh01345b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The rapid development of the Internet of Things (IoTs) and proliferation of wearable electronics have significantly stimulated the pursuit of distributed power supply systems that are small and light. Accordingly, micro-supercapacitors (MSCs) have recently attracted tremendous research interest due to their high power density, good energy density, long cycling life, and rapid charge/discharge rate delivered in a limited volume and area. As an emerging class of electrochemical energy storage devices, MSCs using polyaniline (PANI) electrodes are envisaged to bridge the gap between carbonaceous MSCs and micro-batteries, leading to a high power density together with improved energy density. However, despite the intensive development of PANI-based MSCs in the past few decades, a comprehensive review focusing on the chemical properties and synthesis of PANI, working mechanisms, design principles, and electrochemical performances of MSCs is lacking. Thus, herein, we summarize the recent advances in PANI-based MSCs using a wide range of electrode materials. Firstly, the fundamentals of MSCs are outlined including their working principle, device design, fabrication technology, and performance metrics. Then, the working principle and synthesis methods of PANI are discussed. Afterward, MSCs based on various PANI materials including pure PANI, PANI hydrogel, and PANI composites are discussed in detail. Lastly, concluding remarks and perspectives on their future development are presented. This review can present new ideas and give rise to new opportunities for the design of high-performance miniaturized PANI-based MSCs that underpin the sustainable prosperity of the approaching IoTs era.
Collapse
Affiliation(s)
- Xiang Chu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
10
|
Lei Y, Yuan Y, Zhao S, Yuan A, Zhou S, Xiao Y, lei J, Jiang L. Catalyst-free, highly sensitive and adjustable photo-responsive azobenzene liquid crystal elastomers based on dynamic multiple hydrogen bond. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Yu SH, Hassan SZ, So C, Kang M, Chung DS. Molecular-Switch-Embedded Solution-Processed Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203401. [PMID: 35929102 DOI: 10.1002/adma.202203401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent improvements in the performance of solution-processed semiconductor materials and optoelectronic devices have shifted research interest to the diversification/advancement of their functionality. Embedding a molecular switch capable of transition between two or more metastable isomers by light stimuli is one of the most straightforward and widely accepted methods to potentially realize the multifunctionality of optoelectronic devices. A molecular switch embedded in a semiconductor can effectively control various parameters such as trap-level, dielectric constant, electrical resistance, charge mobility, and charge polarity, which can be utilized in photoprogrammable devices including transistors, memory, and diodes. This review classifies the mechanism of each optoelectronic transition driven by molecular switches regardless of the type of semiconductor material or molecular switch or device. In addition, the basic characteristics of molecular switches and the persisting technical/scientific issues corresponding to each mechanism are discussed to help researchers. Finally, interesting yet infrequently reported applications of molecular switches and their mechanisms are also described.
Collapse
Affiliation(s)
- Seong Hoon Yu
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingyun Kang
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Tang Z, Dai J, Wei W, Gao Z, Liang Z, Wu C, Zeng B, Xu Y, Chen G, Luo W, Yuan C, Dai L. In Situ Generation of Ultrathin MoS 2 Nanosheets in Carbon Matrix for High Energy Density Photo-Responsive Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201685. [PMID: 35798314 PMCID: PMC9404387 DOI: 10.1002/advs.202201685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/29/2022] [Indexed: 05/09/2023]
Abstract
Stimuli-responsive supercapacitors have attracted broad interest in constructing self-powered smart devices. However, due to the demand for high cyclic stability, supercapacitors usually utilize stable or inert electrode materials, which are difficult to exhibit dynamic or stimuli-responsive behavior. Herein, this issue is addressed by designing a MoS2 @carbon core-shell structure with ultrathin MoS2 nanosheets incorporated in the carbon matrix. In the three-electrode system, MoS2 @carbon delivers a specific capacitance of 1302 F g-1 at a current density of 1.0 A g-1 and shows a 90% capacitance retention after 10 000 charging-discharging cycles. The MoS2 @carbon-based asymmetric supercapacitor displays an energy density of 75.1 Wh kg-1 at the power density of 900 W kg-1 . Because the photo-generated electrons can efficiently migrate from MoS2 nanosheets to the carbon matrix, the assembled photo-responsive supercapacitor can answer the stimulation of ultraviolet-visible-near infrared illumination by increasing the capacitance. Particularly, under the stimulation of UV light (365 nm, 0.08 W cm-2 ), the device exhibits a ≈4.50% (≈13.9 F g-1 ) increase in capacitance after each charging-discharging cycle. The study provides a guideline for designing multi-functional supercapacitors that serve as both the energy supplier and the photo-detector.
Collapse
Affiliation(s)
- Zhenbin Tang
- College of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Juguo Dai
- College of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Wenkang Wei
- College of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zhi Gao
- College of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zhixuan Liang
- College of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Chenzhi Wu
- College of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Birong Zeng
- College of MaterialsXiamen UniversityXiamen361005P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsXiamen UniversityXiamen361005P. R. China
| | - Yiting Xu
- College of MaterialsXiamen UniversityXiamen361005P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsXiamen UniversityXiamen361005P. R. China
| | - Guorong Chen
- College of MaterialsXiamen UniversityXiamen361005P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsXiamen UniversityXiamen361005P. R. China
| | - Weiang Luo
- College of MaterialsXiamen UniversityXiamen361005P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsXiamen UniversityXiamen361005P. R. China
| | - Conghui Yuan
- College of MaterialsXiamen UniversityXiamen361005P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsXiamen UniversityXiamen361005P. R. China
| | - Lizong Dai
- College of MaterialsXiamen UniversityXiamen361005P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
13
|
Padha B, Verma S, Mahajan P, Gupta V, Khosla A, Arya S. Role of Electrochemical Techniques for Photovoltaic and Supercapacitor Applications. Crit Rev Anal Chem 2022; 54:707-741. [PMID: 35830363 DOI: 10.1080/10408347.2022.2096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Electrochemistry forms the base of large-scale production of various materials, encompassing numerous applications in metallurgical engineering, chemical engineering, electrical engineering, and material science. This field is important for energy harvesting applications, especially supercapacitors (SCs) and photovoltaic (PV) devices. This review examines various electrochemical techniques employed to fabricate and characterize PV devices and SCs. Fabricating these energy harvesting devices is carried out by electrochemical methods, including electroreduction, electrocoagulation, sol-gel process, hydrothermal growth, spray pyrolysis, template-assisted growth, and electrodeposition. The characterization techniques used are cyclic voltammetry, electrochemical impedance spectroscopy, photoelectrochemical characterization, galvanostatic charge-discharge, and I-V curve. A study on different recently reported materials is also presented to analyze their performance in various energy harvesting applications regarding their efficiency, fill factor, power density, and energy density. In addition, a comparative study of electrochemical fabrication techniques with others (including physical vapor deposition, mechanical milling, laser ablation, and centrifugal spinning) has been conducted. The various challenges of electrochemistry in PVs and SCs are also highlighted. This review also emphasizes the future perspectives of electrochemistry in energy harvesting applications.
Collapse
Affiliation(s)
- Bhavya Padha
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| | - Sonali Verma
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| | - Prerna Mahajan
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| | - Vinay Gupta
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ajit Khosla
- Department of Mechanical System Science, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| |
Collapse
|
14
|
Parsimehr H, Ehsani A. Stimuli-Responsive Electrochemical Energy Storage Devices. CHEM REC 2022; 22:e202200075. [PMID: 35832003 DOI: 10.1002/tcr.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Electrochemical energy storage (EES) devices have been swiftly developed in recent years. Stimuli-responsive EES devices that respond to different external stimuli are considered the most advanced EES devices. The stimuli-responsive EES devices enhanced the performance and applications of the EES devices. The capability of the EES devices to respond to the various external stimuli due to produced advanced EES devices that distinguished the best performance and interactions in different situations. The stimuli-responsive EES devices have responsive behavior to different external stimuli including chemical compounds, electricity, photons, mechanical tensions, and temperature. All of these advanced responsiveness behaviors have originated from the functionality and specific structure of the EES devices. The multi-responsive EES devices have been recognized as the next generation of stimuli-responsive EES devices. There are two main steps in developing stimuli-responsive EES devices in the future. The first step is the combination of the economical, environmental, electrochemical, and multi-responsiveness priorities in an EES device. The second step is obtaining some advanced properties such as biocompatibility, flexibility, stretchability, transparency, and wearability in novel stimuli-responsive EES devices. Future studies on stimuli-responsive EES devices will be allocated to merging these significant two steps to improve the performance of the stimuli-responsive EES devices to challenge complicated situations.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
15
|
She P, Qin Y, Wang X, Zhang Q. Recent Progress in External-Stimulus-Responsive 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101175. [PMID: 34240479 DOI: 10.1002/adma.202101175] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Indexed: 05/26/2023]
Abstract
Recently, smart 2D covalent organic frameworks (COFs), combining the advantages of both inherent structure features and functional building blocks, have been demonstrated to show reversible changes in conformation, color, and luminescence in response to external stimuli. This review provides a summary on the recent progress of 2D COFs that are responsive to external stimuli such as metal ions, gas molecules, pH values, temperature, electricity, light, etc. Moreover, the responsive mechanisms and design strategies, along with the applications of these stimulus-responsive 2D COFs in chemical sensors and photoelectronic devices are also discussed. It is believed that this review would provide some guidelines for designing novel single-/multistimulus-responsive 2D COFs with controllable responsive behaviors for advanced photoelectronic applications.
Collapse
Affiliation(s)
- Pengfei She
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yanyan Qin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
16
|
Tan P, Jiang Y, Wu Q, Gu C, Qi S, Zhang Q, Liu X, Sun L. Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Wang C, Ma X, Guo P, Jiang C, Liu Y, Liu G, Xu X, Liu Y. Highly Reversible Supramolecular Light Switch for NIR Phosphorescence Resonance Energy Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103041. [PMID: 34738729 PMCID: PMC8805551 DOI: 10.1002/advs.202103041] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Indexed: 05/23/2023]
Abstract
Although purely organic room-temperature phosphorescence (RTP) has drawn widespread attention in recent years, regulatable phosphorescence resonance energy transfer (PRET) supramolecular switch is still rare. Herein, single molecular dual-fold supramolecular light switches, which are constructed by phenylpyridinium salts modified diarylethene derivatives (DTE-Cn, n = 3, 5) and cucurbit[8]uril (CB[8]) are reported. Significantly, biaxial [3]pseudorotaxane displayed efficiently reversible RTP after binding with CB[8] and the phosphorescence quenching efficiency is calculated up to be 99%. Furthermore, the binary supramolecular assembly can coassemble with Cy5 to form ternary supramolecular assembly showing efficiently PRET, which is successfully applied in switchable near infrared (NIR) mitochondria-targeted cell imaging and photocontrolled data encryption. This supramolecular strategy involving energy transfer provides a convenient approach for phosphorescent application in biology and material fields.
Collapse
Affiliation(s)
- Conghui Wang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Xin‐Kun Ma
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Peng Guo
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Chunhui Jiang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Yao‐Hua Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Guoxing Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
18
|
Wang QF, Fan HC, Zhou Q, Chen X, Wang LJ, Lu ZX, Yang SX, Zheng LY, Cao QE. Reversible Photochromic Coordination Polymer by Phototriggered Subtle Molecular Conformation Variations. Inorg Chem 2021; 60:18870-18878. [PMID: 34855375 DOI: 10.1021/acs.inorgchem.1c02657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photochromic materials are constructed with molecules accompanied by structural change after triggering by light, which are of great importance and necessity for various applications. However, because of space-confinement effects, molecule stacking of these photoresponsive chromophores within coordination polymers (CPs) always results in an efficiency decrement and a response delay, and this phenomenon will lead to a poor photochromic property. Herein, a CP (named CIT-E) with a 3-fold-interpenetrating network structure, which was prepared with (Z)-1,2-diphenyl-1,2-bis[4-(pyridin-3-ylmethoxy)phenyl]ethene (1Z) and a CuI cluster, showed fast reversible photochromic behavior. Under UV-light illumination, the color of CIT-Z changed from pale yellow to reddish brown. With the illumination of green light, the polymer could return to its initial color within 10 s. To reveal the mechanism of reversible photochromic behavior of CIT-Z, single-crystal structures of each color state were fully studied, and other scientific study methods were also used, such as time-dependent density functional theory calculation and control experiments. It was found that, with light illumination, this behavior of CIT-Z was the result of a ligand-to-metal charge-transfer process, and this process was triggered by subtle molecular conformation variation of tetraphenylethylene. It should be noted that CIT-Z has high thermal and chemical stability, which are excellent advantages as smart photoresponsive materials. As a proof of concept, a uniform thin film with such a fascinating photochromic property allows applications in invisible anticounterfeiting and dynamic optical data storage. Overall, the present study opens up a new avenue toward reversible photochromic materials.
Collapse
Affiliation(s)
- Qiu-Feng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Hong-Chuan Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Long-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhi-Xiang Lu
- Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, People's Republic of China
| | - Shao-Xiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Li-Yan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
19
|
Lu B, Jin X, Han Q, Qu L. Planar Graphene-Based Microsupercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006827. [PMID: 33667025 DOI: 10.1002/smll.202006827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Indexed: 05/21/2023]
Abstract
With the development of wearable, portable, and implantable electronic devices, flexible and on-chip microsupercapacitors (MSCs) are urgently needed for miniaturized energy storage. Planar MSCs have high power density, fast charge/discharge rate, and long operating lifetime, and can adapt to future flexible, integrated, and miniaturized electronic systems for wide application foreground. Due to the high specific surface area, outstanding electrical conductivity, and excellent electron mobility, graphene shows promising advantages in planar MSCs devices, thus stimulates wide-ranging research in the last few years. Herein, the recent progress of planar graphene-based MSCs, including the intrinsic structure regulation of graphene-based electrode materials, the specific fabrication techniques, the multifunctional integration, and various applications of MSCs as flexible and on-chip energy storage is systematically summarized. The key challenges and prospects of future planar graphene-based MSCs are also discussed targeting to realize their practical applications.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xuting Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Han
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
20
|
A Review of Supercapacitors: Materials Design, Modification, and Applications. ENERGIES 2021. [DOI: 10.3390/en14227779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have received much interest due to their enhanced electrochemical performance, superior cycling life, excellent specific power, and fast charging–discharging rate. The energy density of SCs is comparable to batteries; however, their power density and cyclability are higher by several orders of magnitude relative to batteries, making them a flexible and compromising energy storage alternative, provided a proper design and efficient materials are used. This review emphasizes various types of SCs, such as electrochemical double-layer capacitors, hybrid supercapacitors, and pseudo-supercapacitors. Furthermore, various synthesis strategies, including sol-gel, electro-polymerization, hydrothermal, co-precipitation, chemical vapor deposition, direct coating, vacuum filtration, de-alloying, microwave auxiliary, in situ polymerization, electro-spinning, silar, carbonization, dipping, and drying methods, are discussed. Furthermore, various functionalizations of SC electrode materials are summarized. In addition to their potential applications, brief insights into the recent advances and associated problems are provided, along with conclusions. This review is a noteworthy addition because of its simplicity and conciseness with regard to SCs, which can be helpful for researchers who are not directly involved in electrochemical energy storage.
Collapse
|
21
|
A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. ENERGIES 2021. [DOI: 10.3390/en14185819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ion transport is a significant concept that underlies a variety of technologies including membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility exploration techniques. These applications are based on the concepts of capacitance and ion transport, so a prior understanding of capacitance and ion transport phenomena is crucial. In this review, the principles of capacitance and ion transport are described from a theoretical and practical point of view. The review covers the concepts of Helmholtz capacitance, diffuse layer capacitance and space charge capacitance, which is also referred to as quantum capacitance in low-dimensional materials. These concepts are attributed to applications in the electrochemical technologies such as energy storage and excitable ion sieving in membranes. This review also focuses on the characteristic role of channel heights (from micrometer to angstrom scales) in ion transport. Ion transport technologies can also be used in newer applications including biological sensors and multifunctional microsupercapacitors. This review improves our understanding of ion transport phenomena and demonstrates various applications that is applicable of the continued development in the technologies described.
Collapse
|
22
|
Bokare A, Arif J, Erogbogbo F. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2211. [PMID: 34578524 PMCID: PMC8467028 DOI: 10.3390/nano11092211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Graphene represents a new generation of materials which exhibit unique physicochemical properties such as high electron mobility, tunable optics, a large surface to volume ratio, and robust mechanical strength. These properties make graphene an ideal candidate for various optoelectronic, photonics, and sensing applications. In recent years, numerous efforts have been focused on azobenzene polymers (AZO-polymers) as photochromic molecular switches and thermal sensors because of their light-induced conformations and surface-relief structures. However, these polymers often exhibit drawbacks such as low photon storage lifetime and energy density. Additionally, AZO-polymers tend to aggregate even at moderate doping levels, which is detrimental to their optical response. These issues can be alleviated by incorporating graphene derivatives (GDs) into AZO-polymers to form orderly arranged molecules. GDs such as graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs) can modulate the optical response, energy density, and photon storage capacity of these composites. Moreover, they have the potential to prevent aggregation and increase the mechanical strength of the azobenzene complexes. This review article summarizes and assesses literature on various strategies that may be used to incorporate GDs into azobenzene complexes. The review begins with a detailed analysis of structures and properties of GDs and azobenzene complexes. Then, important aspects of GD-azobenzene composites are discussed, including: (1) synthesis methods for GD-azobenzene composites, (2) structure and physicochemical properties of GD-azobenzene composites, (3) characterization techniques employed to analyze GD-azobenzene composites, and most importantly, (4) applications of these composites in various photonics and thermal devices. Finally, a conclusion and future scope are given to discuss remaining challenges facing GD-azobenzene composites in functional science engineering.
Collapse
Affiliation(s)
| | | | - Folarin Erogbogbo
- Department of Biomedical Engineering, San José State University, 1 Washington Square, San José, CA 95112, USA; (A.B.); (J.A.)
| |
Collapse
|
23
|
Diez Cabanes V, Van Dyck C, Osella S, Cornil D, Cornil J. Challenges for Incorporating Optical Switchability in Organic-Based Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27737-27748. [PMID: 34105343 DOI: 10.1021/acsami.1c05489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transistors operate by controlling the current flowing from a source to a drain electrode via a third electrode (gate), thus giving access to a binary treatment (ON/OFF or 0/1) of the signal currently exploited in microelectronics. Introducing a second independent lever to modulate the current would allow for more complex logic functions amenable to a single electronic component and hence to new opportunities for advanced electrical signal processing. One avenue is to add this second dimension with light by incorporating photochromic molecules in current organic-based electronic devices. In this Spotlight, we describe different concepts that have been implemented in organic thin films and in molecular junctions as well as some pitfalls that have been highlighted thanks to theoretical modeling.
Collapse
Affiliation(s)
- Valentin Diez Cabanes
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine & CNRS, 54000 Nancy, France
| | - Colin Van Dyck
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - David Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
24
|
Wu T, Ma Z, He Y, Wu X, Tang B, Yu Z, Wu G, Chen S, Bao N. A Covalent Black Phosphorus/Metal–Organic Framework Hetero‐nanostructure for High‐Performance Flexible Supercapacitors. Angew Chem Int Ed Engl 2021; 60:10366-10374. [DOI: 10.1002/anie.202101648] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Tianyu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Yunya He
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| |
Collapse
|
25
|
Wu T, Ma Z, He Y, Wu X, Tang B, Yu Z, Wu G, Chen S, Bao N. A Covalent Black Phosphorus/Metal–Organic Framework Hetero‐nanostructure for High‐Performance Flexible Supercapacitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tianyu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Yunya He
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| |
Collapse
|
26
|
Liu Z, Chen Z, Wang C, Wang HI, Wuttke M, Wang XY, Bonn M, Chi L, Narita A, Müllen K. Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors. J Am Chem Soc 2020; 142:17881-17886. [PMID: 33021787 PMCID: PMC7582623 DOI: 10.1021/jacs.0c06109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bottom-up-synthesized graphene nanoribbons (GNRs) with excellent electronic properties are promising materials for energy storage systems. Herein, we report bottom-up-synthesized GNR films employed as electrode materials for micro-supercapacitors (MSCs). The micro-device delivers an excellent volumetric capacitance and an ultra-high power density. The electrochemical performance of MSCs could be correlated with the charge carrier mobility within the differently employed GNRs, as determined by pump-probe terahertz spectroscopy studies.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zongping Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Can Wang
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Wuttke
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiao-Ye Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
27
|
Hattori Y, Maejima T, Sawae Y, Kitai JI, Morimoto M, Toyoda R, Nishihara H, Yokojima S, Nakamura S, Uchida K. Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry 2020; 26:11441-11450. [PMID: 32432373 DOI: 10.1002/chem.202001671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
The cyclization reaction of diarylethenes having an azulene ring occurs only via higher excited states. Novel diarylethenes having an azulene ring with a strong donor or acceptor were synthesized and examined in these reactions. A derivative having an electron-donating 1,3-benzodithiol-2-ylidenemethyl group at the 1-position of the azulene ring showed photochromism, whereas neither a derivative having a π-conjugated electron-donating group at the 3-position of the azulene ring nor derivatives having a π-conjugated electron-withdrawing group at the 1- or 3-position of the azulene ring showed any photochromism. The photoreactivities of these compounds were explained by calculating forces and bond orders on the excited states using density functional theory (DFT) and time-dependent (TD)-DFT.
Collapse
Affiliation(s)
- Yohei Hattori
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Tatsuya Maejima
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Yumi Sawae
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Jun-Ichiro Kitai
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shinichiro Nakamura
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
28
|
Wang Z, Zhao K, Lu S, Xu W. Application of flammulina-velutipes-like CeO2/Co3O4/rGO in high-performance asymmetric supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Saes BWH, Wienk MM, Janssen RAJ. Photochromic organic solar cells based on diarylethenes. RSC Adv 2020; 10:30176-30185. [PMID: 35518260 PMCID: PMC9056290 DOI: 10.1039/d0ra04508j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Photovoltaic devices that switch color depending on illumination conditions may find application in future smart window applications. Here a photochromic diarylethene molecule is used as sensitizer in a ternary bulk heterojunction blend, employing poly(4-butylphenyldiphenylamine) (poly-TPD) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) for the transport of holes and electrons, respectively. Sandwiched between two electrodes, the blend creates a photochromic photovoltaic device that changes color, light absorption, and photon-to-electron conversion efficiency in the visible spectral range after having been illuminated with UV light.
Collapse
Affiliation(s)
- Bart W H Saes
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Martijn M Wienk
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - René A J Janssen
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
- Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| |
Collapse
|
30
|
Singh A, Verma P, Laha S, Samanta D, Roy S, Maji TK. Photochromic Conjugated Microporous Polymer Manifesting Bio-Inspired pcFRET and Logic Gate Functioning. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20991-20997. [PMID: 32283917 DOI: 10.1021/acsami.0c05182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Design and synthesis of solid-state photochromic materials remain a challenge because of high structural constrain. However, this can be mitigated in attaining structural flexibility by introducing permanent porosity into the system. Here, we report for the first time the design and synthesis of a photochromic conjugated microporous polymer (pcCMP) by assembling photochromic dithienylethene aldehyde and benzene-1,3,5-tricarbohydrazide. The yellow photo-isomer pcCMP-O gets converted to a deep-green photo-isomer pcCMP-C by UV-light irradiation, which can be reverted to pcCMP-O by visible light or thermal treatment. Owing to the thermo-irreversible nature, the pcCMP is found to be suitable for designing an INH functioning logic gate. pcCMP-C shows highly enhanced conductivity (92 times) because of enhanced conjugation compared to pcCMP-O. Furthermore, we demonstrate the bio-inspired photo-switchable pcFRET process by encapsulation of a red-emissive green fluorescent protein (gfp) chromophore analogue into the pcCMP. This material shows high processibility and has been exploited further for secret writing.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Parul Verma
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Subhajit Laha
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Syamantak Roy
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
31
|
Goulet-Hanssens A, Eisenreich F, Hecht S. Enlightening Materials with Photoswitches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905966. [PMID: 31975456 DOI: 10.1002/adma.201905966] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Indexed: 05/05/2023]
Abstract
Incorporating molecular photoswitches into various materials provides unique opportunities for controlling their properties and functions with high spatiotemporal resolution using remote optical stimuli. The great and largely still untapped potential of these photoresponsive systems has not yet been fully exploited due to the fundamental challenges in harnessing geometrical and electronic changes on the molecular level to modulate macroscopic and bulk material properties. Herein, progress made during the past decade in the field of photoswitchable materials is highlighted. After pointing to some general design principles, materials with an increasing order of the integrated photoswitchable units are discussed, spanning the range from amorphous settings over surfaces/interfaces and supramolecular ensembles, to liquid crystalline and crystalline phases. Finally, some potential future directions are pointed out in the conclusion. In view of the exciting recent achievements in the field, the future emergence and further development of light-driven and optically programmable (inter)active materials and systems are eagerly anticipated.
Collapse
Affiliation(s)
- Alexis Goulet-Hanssens
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| | - Fabian Eisenreich
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| |
Collapse
|
32
|
Li Y, Feng Z, Li Y, Jin W, Peng Q, Zhang P, He J, Li K. Metal ions-triggered photo-induced fluorescence change in rhodamine B-based photo-responsive complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118069. [PMID: 31958605 DOI: 10.1016/j.saa.2020.118069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Photo-responsive materials with tunable properties by multiple stimuli have been widely used as molecular machines, molecular logic gates, optical data storages, etc. In this work, we report a rhodamine B-based photo-responsive system, whose properties could be facilely modulated by metal ions (Zn(II), Ni(II) and Hg(II)). These metal ions endow the complexes (L-Zn, L-Ni and L-Hg) with similar photochromic property but distinctly different photo-induced fluorescence change. Upon UV light irradiation, the spirolactam ring in rhodamine B moiety turned from a close form to an open form, along with enlarged conjugated structure with intense absorbance. Interestingly, fluorescence "turn off", "no change" and "turn on" responses were induced by Zn(II), Ni(II) and Hg(II) respectively upon UV light irradiation. Taking advantage of the prominently different characteristics caused by metal ions, different logic gates were designed by simply varying the inputs of metal ions and UV light. This work provided a new strategy for developing multifunctional photo-responsive materials, which were further beneficial for constructing photo-controlled logic gates with tunable performance.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Zining Feng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Yajing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Wenhui Jin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Qiuchen Peng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Panke Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Juan He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Kai Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China.
| |
Collapse
|
33
|
Jiang K, Weng Q. Miniaturized Energy Storage Devices Based on Two-Dimensional Materials. CHEMSUSCHEM 2020; 13:1420-1446. [PMID: 31637825 DOI: 10.1002/cssc.201902520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Indexed: 06/10/2023]
Abstract
A growing demand for miniaturized biomedical sensors, microscale self-powered electronic systems, and many other portable, wearable, and integratable electronic devices is continually stimulating the rapid development of miniaturized energy storage devices (MESDs). Miniaturized batteries (MBs) and supercapacitors (MSCs) were considered to be suitable energy storage devices to power microelectronics uninterruptedly with reasonable energy and power densities. However, in addition to similar challenges encountered with electrode materials in conventional energy storage devices, their performances are also greatly affected by microfabrication technologies, as well as the challenges of how to realize stable and high-performance MESDs in such a limited footprint area. Benefiting from the unique architectural engineering of two-dimensional materials and the emergence of precise and controllable microfabrication techniques, the output electrochemical performances of MSCs and MBs are improving rapidly. This minireview summarizes recent advances in MSCs and MBs built from two-dimensional materials, including electrode/device configuration designs, material synthesis, microfabrication processes, smart function incorporations, and system integrations. An introduction to configurations of the MESDs, from linear fibrous shapes, planar sandwich thin-film or interdigital structures, to three-dimensional configurations, is presented. The fundamental influences of the electrode material and configuration designs on the exhibited MB/MSC electrochemical performances are also highlighted.
Collapse
Affiliation(s)
- Kang Jiang
- School of Materials Science and Engineering, Hunan University, Changsha, 110016, P.R. China
| | - Qunhong Weng
- School of Materials Science and Engineering, Hunan University, Changsha, 110016, P.R. China
| |
Collapse
|
34
|
Qiu H, Liu Z, Yao Y, Herder M, Hecht S, Samorì P. Simultaneous Optical Tuning of Hole and Electron Transport in Ambipolar WSe 2 Interfaced with a Bicomponent Photochromic Layer: From High-Mobility Transistors to Flexible Multilevel Memories. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907903. [PMID: 31977121 DOI: 10.1002/adma.201907903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The interfacing of 2D materials (2DMs) with photochromic molecules provides an efficient solution to reversibly modulate their outstanding electronic properties and offers a versatile platform for the development of multifunctional field-effect transistors (FETs). Herein, optically switchable multilevel high-mobility FETs based on few-layer ambipolar WSe2 are realized by applying on its surface a suitably designed bicomponent diarylethene (DAE) blend, in which both hole and electron transport can be simultaneously modulated for over 20 cycles. The high output current modulation efficiency (97% for holes and 52% for electrons) ensures 128 distinct current levels, corresponding to a data storage capacity of 7 bit. The device is also implemented on a flexible and transparent poly(ethylene terephthalate) substrate, rendering 2DM/DAE hybrid structures promising candidates for flexible multilevel nonvolatile memories.
Collapse
Affiliation(s)
- Haixin Qiu
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| | - Zhaoyang Liu
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| | - Yifan Yao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| | - Martin Herder
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Stefan Hecht
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
35
|
Patel DG, Mitchell TB, Myers SD, Carter DA, Novak FA. A Suzuki Approach to Quinone-Based Diarylethene Photochromes. J Org Chem 2020; 85:2646-2653. [PMID: 31896258 DOI: 10.1021/acs.joc.9b02632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diarylethene photochromes show promise for use in advanced organic electronic and photonic materials with burgeoning considerations for biological applications; however, these compounds typically require UV light for photoswitching in at least one direction, thus limiting their appeal. We here introduce a naphthoquinone-based diarylethene that switches between open and closed forms with visible light. The synthesis of this quinone diarylethene relies on Suzuki methodology, allowing for the inclusion of functional groups not otherwise accessible with current synthetic routes.
Collapse
Affiliation(s)
- Dinesh G Patel
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| | - Travis B Mitchell
- Department of Chemistry , The State University of New York at Buffalo , Buffalo , New York 14260-3000 , United States
| | - Shea D Myers
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| | - Dorothy A Carter
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| | - Frank A Novak
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| |
Collapse
|
36
|
Kong M, Feng X, Li J, Wang J, Zhang YQ, Song Y. Switchable slow relaxation of magnetization in photochromic dysprosium( iii) complexes manipulated by a dithienylethene ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04457a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The admirable photochromic and magnetic properties of two dithienylethene-based complexes can be modulated with UV/Vis light irradiation.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Jing Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory For NSLSCS, School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- People's Republic of China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| |
Collapse
|
37
|
Jia X, Hu M, Soundarapandian K, Yu X, Liu Z, Chen Z, Narita A, Müllen K, Koppens FHL, Jiang J, Tielrooij KJ, Bonn M, Wang HI. Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene. NANO LETTERS 2019; 19:9029-9036. [PMID: 31742413 PMCID: PMC6909232 DOI: 10.1021/acs.nanolett.9b04053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Indexed: 05/31/2023]
Abstract
Due to its outstanding electrical properties and chemical stability, graphene finds widespread use in various electrochemical applications. Although the presence of electrolytes strongly affects its electrical conductivity, the underlying mechanism has remained elusive. Here, we employ terahertz spectroscopy as a contact-free means to investigate the impact of ubiquitous cations (Li+, Na+, K+, and Ca2+) in aqueous solution on the electronic properties of SiO2-supported graphene. We find that, without applying any external potential, cations can shift the Fermi energy of initially hole-doped graphene by ∼200 meV up to the Dirac point, thus counteracting the initial substrate-induced hole doping. Remarkably, the cation concentration and cation hydration complex size determine the kinetics and magnitude of this shift in the Fermi level. Combined with theoretical calculations, we show that the ion-induced Fermi level shift of graphene involves cationic permeation through graphene. The interfacial cations located between graphene and SiO2 electrostatically counteract the substrate-induced hole doping effect in graphene. These insights are crucial for graphene device processing and further developing graphene as an ion-sensing material.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- The
Graduate School of Excellence Materials Science in Mainz, University of Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Min Hu
- Hefei
National Laboratory for Physical Sciences at the Microscale, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
CAS Center for Excellence in Nanoscience, School of Chemistry and
Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Karuppasamy Soundarapandian
- ICFO
- Institut de Ciéncies Fotóniques, Mediterranean Technology Park, Castelldefels, Barcelona 08860, Spain
| | - Xiaoqing Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhaoyang Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zongping Chen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank H. L. Koppens
- ICFO
- Institut de Ciéncies Fotóniques, Mediterranean Technology Park, Castelldefels, Barcelona 08860, Spain
| | - Jun Jiang
- Hefei
National Laboratory for Physical Sciences at the Microscale, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
CAS Center for Excellence in Nanoscience, School of Chemistry and
Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Klaas-Jan Tielrooij
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hai I. Wang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
38
|
Huang G, Xia Q, Huang W, Tian J, He Z, Li BS, Tang BZ. Multiple Anti‐Counterfeiting Guarantees from a Simple Tetraphenylethylene Derivative – High‐Contrasted and Multi‐State Mechanochromism and Photochromism. Angew Chem Int Ed Engl 2019; 58:17814-17819. [DOI: 10.1002/anie.201910530] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/12/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Guangxi Huang
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Qing Xia
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Wenbin Huang
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Jianwu Tian
- Institute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Zikai He
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Bing Shi Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering ResearchCenter for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
39
|
Zheng S, Shi X, Das P, Wu ZS, Bao X. The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900583. [PMID: 31222810 DOI: 10.1002/adma.201900583] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Indexed: 05/23/2023]
Abstract
The rapid development and further modularization of miniaturized and self-powered electronic systems have substantially stimulated the urgent demand for microscale electrochemical energy storage devices, e.g., microbatteries (MBs) and micro-supercapacitors (MSCs). Recently, planar MBs and MSCs, composed of isolated thin-film microelectrodes with extremely short ionic diffusion path and free of separator on a single substrate, have become particularly attractive because they can be directly integrated with microelectronic devices on the same side of one single substrate to act as a standalone microsized power source or complement miniaturized energy-harvesting units. The development of and recent advances in planar MBs and MSCs from the fundamentals and design principle to the fabrication methods of 2D and 3D planar microdevices in both in-plane and stacked geometries are highlighted. Additonally, a comprehensive analysis of the primary aspects that eventually affect the performance metrics of microscale energy storage devices, such as electrode materials, electrolyte, device architecture, and microfabrication techniques are presented. The technical challenges and prospective solutions for high-energy-density planar MBs and MSCs with multifunctionalities are proposed.
Collapse
Affiliation(s)
- Shuanghao Zheng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100039, China
| | - Xiaoyu Shi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Pratteek Das
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100039, China
| | - Zhong-Shuai Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinhe Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
40
|
Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials. Science 2019; 366:366/6468/eaan8285. [DOI: 10.1126/science.aan8285] [Citation(s) in RCA: 658] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.
Collapse
|
41
|
Pang T, Zhou Z, Li D, Liu H, Zhang Z, Qi L, Song CY, Gao GG, Lv Y. Crystal Structure and Reversible Photochromism of Pb(II)-N
,N
-Dimethylformamide Modified Keggin-Type Polyoxometalates. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201900153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Pang
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
| | - Zhen Zhou
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Dong Li
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Hong Liu
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
- School of Materials Science and Engineering; University of Jian; Jinan 250022 China
| | - Zhanshu Zhang
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Liwei Qi
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Chao-Yu Song
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
| | - Guang-Gang Gao
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
- School of Materials Science and Engineering; University of Jian; Jinan 250022 China
| | - Yuguang Lv
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
| |
Collapse
|
42
|
Huang G, Xia Q, Huang W, Tian J, He Z, Li BS, Tang BZ. Multiple Anti‐Counterfeiting Guarantees from a Simple Tetraphenylethylene Derivative – High‐Contrasted and Multi‐State Mechanochromism and Photochromism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910530] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangxi Huang
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Qing Xia
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Wenbin Huang
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Jianwu Tian
- Institute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Zikai He
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Bing Shi Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering ResearchCenter for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
43
|
Xu F, Yu C, Tries A, Zhang H, Kläui M, Basse K, Hansen MR, Bilbao N, Bonn M, Wang HI, Mai Y. Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase. J Am Chem Soc 2019; 141:10972-10977. [DOI: 10.1021/jacs.9b04927] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory
of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory
of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Alexander Tries
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128 Mainz, Germany
| | - Heng Zhang
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Mathias Kläui
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128 Mainz, Germany
| | - Kristoffer Basse
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michael Ryan Hansen
- Institute of Physical
Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Nerea Bilbao
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan, 200 F, B-3001 Leuven, Belgium
| | - Mischa Bonn
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Hai I. Wang
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory
of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
44
|
Lvov AG, Yokoyama Y, Shirinian VZ. Post-Modification of the Ethene Bridge in the Rational Design of Photochromic Diarylethenes. CHEM REC 2019; 20:51-63. [PMID: 31063675 DOI: 10.1002/tcr.201900015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
Fine-tuning of the molecular structure of organic bistable compounds to improve their photochromic performance or to introduce additional functions remains an important issue in the development of photoresponsive materials. Diarylethenes bearing heterocyclic moieties belong to the most intensively studied class of organic photochromes due to their excellent photochemical properties. A huge number of diarylethenes have been synthesized so far. Analysis of the literature data shows that there are very worthy examples of diarylethenes developed by the Irie and Feringa groups, which can be the common starting material for a number of diarylethenes functionalized in hetaryl moieties. We refer to these structures as photochromic diarylethene precursors. These diarylethenes have proved to be very useful in the construction of functional molecules with desired properties. On the other hand, in our groups, we have elaborated on diarylethene precursors with modifiable ethene bridges. In this review, we have collected examples of such structures and their chemical modifications, leading to the improvement or fine-tuning of photochromic switching.
Collapse
Affiliation(s)
- Andrey G Lvov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991, Moscow, Russian Federation
| | - Yasushi Yokoyama
- Department of Chemistry and Life Science Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan
| | - Valerii Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991, Moscow, Russian Federation
| |
Collapse
|
45
|
Zhou Y, Zhu Y, Xu B, Zhang X. High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors. Chem Commun (Camb) 2019; 55:4083-4086. [DOI: 10.1039/c9cc01277j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D hierarchical nanocomposites always lead to excellent electrochemical properties.
Collapse
Affiliation(s)
- Yongsheng Zhou
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
- Key Laboratory of Inorganic Coating Materials CAS
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Bioengineering
- University of Science & Technology Beijing
- Haidian District
| |
Collapse
|
46
|
Fu QT, Yan X, Li T, Zhang XY, He Y, Zhang WD, Liu Y, Li Y, Gu ZG. Diarylethene-based conjugated polymer networks for ultrafast photochromic films. NEW J CHEM 2019. [DOI: 10.1039/c9nj02596k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two new diarylethene-based conjugated polymers were synthesized, and their films exhibited ultrafast photochromism properties and excellent fatigue resistance.
Collapse
Affiliation(s)
- Qiu-Ting Fu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Tao Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xin-Yue Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yue He
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
47
|
Liu R, Yang Y, Cui Q, Xu W, Peng R, Li L. A Diarylethene-Based Photoswitch and its Photomodulation of the Fluorescence of Conjugated Polymers. Chemistry 2018; 24:17756-17766. [DOI: 10.1002/chem.201803473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ronghua Liu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Yu Yang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Qianling Cui
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Wenqiang Xu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Rui Peng
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Lidong Li
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| |
Collapse
|
48
|
Liu D, Ni K, Ye J, Xie J, Zhu Y, Song L. Tailoring the Structure of Carbon Nanomaterials toward High-End Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802104. [PMID: 30129275 DOI: 10.1002/adma.201802104] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Carbon nanomaterials are perceived to be ideally suited candidates for high-end energy applications, owing to their unparalleled advantages including superior electric and thermal conductivity, excellent mechanical properties, and high specific surface areas. It has been demonstrated through several research contributions that the electrochemical performance of carbon nanomaterials significantly depends upon their versatile electronic structures and microstructures. These can be precisely tailored by rational defect engineering, heteroatom doping, heterostructure coupling, and pore fabrication, which largely affect the intrinsic nature of active sites and facilitate the ion/electron transfer. Herein, the recent progress in tailoring carbon nanostructures toward high-end electrocatalysis and supercapacitor applications is summarized, with an emphasis on synthesis strategies, advanced characterizations, and specific elucidation of structure-performance relationship. The challenges and opportunities for the rational design and detection of variously tailored carbon nanomaterials that can further improve the fundamental understanding and practical applications in the field of energy storage and conversion are also discussed.
Collapse
Affiliation(s)
- Daobin Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Kun Ni
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jianglin Ye
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jian Xie
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanwu Zhu
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
49
|
Ai Q, Hong SJ, Khan MA, Ahn KH. Turn-On Fluorescent Photochromic Disulfonylarylthiophenes: Effect of Sulfone Groups on Fluorescence and Conversion. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi Ai
- Department of Applied Chemistry; Kyung Hee University; Yongin 446-701 Republic of Korea
| | - Seung-Ju Hong
- Department of Applied Chemistry; Kyung Hee University; Yongin 446-701 Republic of Korea
| | | | - Kwang-Hyun Ahn
- Department of Applied Chemistry; Kyung Hee University; Yongin 446-701 Republic of Korea
| |
Collapse
|
50
|
Pang Y, Zhang S, Chen S, Liang J, Li M, Ding D, Ding S. Transition-Metal Oxides Anchored on Nitrogen-Enriched Carbon Ribbons for High-Performance Pseudocapacitors. Chemistry 2018; 24:16104-16112. [DOI: 10.1002/chem.201802951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yuanchao Pang
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Shuyang Zhang
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Sheng Chen
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Jin Liang
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Mingyan Li
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Dawei Ding
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Shujiang Ding
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| |
Collapse
|