1
|
Guo LF, Wang M, Zhao CH. The Solid-State Multi-Color Fluorescence Switching from a [2.2]Paracyclophane-Based Triarylborane. Chemistry 2024; 30:e202402287. [PMID: 39119858 DOI: 10.1002/chem.202402287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
The fluorophores, the fluorescence of which can be switched between multi bright colors in the solid state, show promising applications not only in the sophisticated multicolor display but also in the advanced encryption and anti-counterfeiting systems. However, it is very challenging to obtain such fluorophores. Herein, we disclose such an example, g-BPhANMe2-Cp, which contains an electron-donating dimethylamino (NMe2) and an electron-accepting [(2-dimesitylboryl)phenyl]acetyl at the pseudo-gem position of [2.2]paracyclophane skeleton. This molecule can display tricolor mechanochromic luminescence (MCL) due to the different responses of the mechanically ground amorphous state to heating and solvent-fuming. Owing to the absence of intermolecular π-π interactions in the solid state, the fluorescence efficiency is very high irrespective of its morphological state (ΦF=0.60-0.87). Moreover, this molecule also displays reversible acidochromic luminescence (ACL) by protonation and deprotonation of NMe2 with trifluoroacetic acid (TFA) and triethylamine (TEA), respectively. The protonated sample fluoresces (ΦF=0.31) at much shorter wavelength due to the interruption of intramolecular charge transfer process. Therefore, with the combination of tricolor MCL and ACL properties, the solid-state emission of g-BPhANMe2-Cp can be switched among four bright fluorescence colors of yellow, green, cyan and blue via treatment with appropriate stimulus.
Collapse
Affiliation(s)
- Lian-Feng Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Cui-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Sheng J, Danowski W, Sardjan AS, Hou J, Crespi S, Ryabchun A, Domínguez MP, Jan Buma W, Browne WR, Feringa BL. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat Chem 2024; 16:1330-1338. [PMID: 38671301 DOI: 10.1038/s41557-024-01521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Artificial molecular motors and machines constitute a critical element in the transition from individual molecular motion to the creation of collective dynamic molecular systems and responsive materials. The design of artificial light-driven molecular motors operating with high efficiency and selectivity constitutes an ongoing fundamental challenge. Here we present a highly versatile synthetic approach based on Rieche formylation that boosts the quantum yield of the forward photoisomerization reaction while reaching near-perfect selectivity in the steps involved in the unidirectional rotary cycle and drastically reducing competing photoreactions. This motor is readily accessible in its enantiopure form and operates with nearly quantitative photoconversions. It can easily be functionalized further and outperforms its direct predecessor as a reconfigurable chiral dopant in cholesteric liquid crystal materials.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Institute of Supramolecular Science and Engineering (ISIS), Université de Strasbourg, CNRS, Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andy S Sardjan
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Jiaxin Hou
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | | | - Wybren Jan Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Xia Z, Yang Y, Song YF, Shi S. Self-Assembly of Polyoxometalate-Based Nanoparticle Surfactants in Solutions. ACS Macro Lett 2024:99-104. [PMID: 38190249 DOI: 10.1021/acsmacrolett.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nanoparticle surfactants (NPSs) are an emergent class of amphiphiles attractive for their controllable assembly at the liquid-liquid interface. In this work, intriguing self-assembly behavior and stimuli-responsiveness of NPSs in homogeneous solutions are presented. With β-cyclodextrin-grafted polyoxometalates (POMs) and ferrocene (or azobenzene)-terminated polystyrene in water/tetrahydrofuran, POM-based NPSs are formed via host-guest interactions and self-organize to vesicles driven by solvent-phobic effects. The tunable supramolecular interactions allow these assemblies to be responsive to redox or light stimulus, respectively, affording an on-demand assembly/disassembly capacity that shows promise in delivery and release applications.
Collapse
Affiliation(s)
- Zhiqin Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, Zhejiang Province, China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
6
|
Qi X, Du Y, Zhang Z, Zhang X. Amphiphilic Bowl-Shaped Janus Particles Prepared via Thiol-Ene Click Reaction for Effective Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:455. [PMID: 36770416 PMCID: PMC9921205 DOI: 10.3390/nano13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Janus particles for oil-water separation have attracted widespread attention in recent years. Herein, we prepared a bowl-shaped Janus particle that could rapidly separate oil and water through a thiol-ene click reaction and selective etching. Firstly, snowman-like composite microspheres based on silica and mercaptopropyl polysilsesquioxane (SiO2@MPSQ) were prepared by a hydrolytic condensation reaction and phase separation, and the effects of the rotational speed and molar ratios on their microscopic morphologies were investigated. Subsequently, bowl-shaped Janus particles with convex hydrophilic and concave oleophilic surfaces were prepared via a thiol-ene click reaction followed by HF etching. Our amphiphilic bowl-shaped Janus particles could remarkably separate micro-sized oil droplets from an n-heptane-water emulsion with a separation efficiency of >98% within 300 s. Based on the experimental and theoretical results, we proposed the underlying mechanism for the coalescence of oil droplets upon the addition of the amphiphilic bowl-shaped Janus particles.
Collapse
|
7
|
A Versatile Strategy for Multi‐Stimuli‐Responsive Fluorescent Material Based on Cross‐Linking‐Induced Emission: Applications in Encryption. Angew Chem Int Ed Engl 2022; 61:e202208516. [DOI: 10.1002/anie.202208516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/07/2022]
|
8
|
Jiang Y, Ma J, Ran Z, Zhong H, Zhang D, Hadjichristidis N. Versatile Strategy for Multi‐Stimuli‐Responsive Fluorescent Material Based on Cross‐Linking‐Induced Emission. Application in Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Jiang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science Minzu Road Wuhan CHINA
| | - Jiahui Ma
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Ziyu Ran
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Huiqing Zhong
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Daohong Zhang
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Nikos Hadjichristidis
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center SAUDI ARABIA
| |
Collapse
|
9
|
Li J, Peng X, Hou C, Shi S, Ma J, Qi Q, Lai W. Discriminating Chiral Supramolecular Motions by Circularly Polarized Luminescence. Chemistry 2022; 28:e202202336. [DOI: 10.1002/chem.202202336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xuelei Peng
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chenxi Hou
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shunan Shi
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiamian Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Qi Qi
- School of Chemistry and Chemical Engineering Southeast University No.2 SEU Road Nanjing 211189 China
| | - Wen‐Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
10
|
Triphenylamine, Carbazole or Tetraphenylethylene-Functionalized Benzothiadiazole Derivatives: Aggregation-Induced Emission (AIE), Solvatochromic and Different Mechanoresponsive Fluorescence Characteristics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154740. [PMID: 35897916 PMCID: PMC9331885 DOI: 10.3390/molecules27154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
The development of mechanochromic fluorophors with high-brightness, solid-state fluorescence is very significant and challenging. Herein, highly solid-state emissive triphenylamine, carbazole and tetraphenylethylene-functionalized benzothiadiazole derivatives were developed. These compounds showed remarkable aggregation-induced emission and solvatochromic fluorescence characteristics. Furthermore, these fluorogenic compounds also displayed different mechanically triggering fluorescence responses.
Collapse
|
11
|
Ihara Y, Yamagishi H, Lin C, Jhu CH, Tsai MC, Horie M, Yamamoto Y. Hydrothermal crosslinking of poly(fluorenylamine) with styryl side chains to produce insoluble fluorescent microparticles. Polym J 2022. [DOI: 10.1038/s41428-022-00679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Santiago-Sampedro GI, Aguilar-Granda A, Torres-Huerta A, Flores-Álamo M, Maldonado-Domínguez M, Rodríguez-Molina B, Iglesias-Arteaga MA. Self-Assembly of an Amphiphilic Bile Acid Dimer: A Combined Experimental and Theoretical Study of Its Medium-Responsive Fluorescence. J Org Chem 2022; 87:2255-2266. [PMID: 35166535 DOI: 10.1021/acs.joc.1c01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work describes the synthesis and aggregation behavior of a dimeric bile acid derivative in which two steroid cores are bridged by a p-di(phenylethynyl)phenylene fluorophore. The studied compound contains three key characteristics: (a) restricted conformational equilibrium in solution, (b) efficient fluorescence conferred by the bridge, and (c) medium responsiveness encoded in the steroid fragments. The incorporation of the three components afforded a compound that generates nano- and micrometric spherical particles with aggregation-responsive fluorescence emission. The observed self-assembly process of the featured molecule was induced by the gradual addition of water to the tetrahydrofuran (THF) solution. This aggregation led to significant changes in fluorescence that went from two bands at λem values of 370 and 390 nm in pure THF to a new spectrum with two maxima at λem values of 395 and 418 nm at high water contents, without a decrease in emission. The observed changes can be ascribed to weakly coupled aggregation, a hypothesis supported by multiscale molecular modeling, which sheds light on the mechanism of the self-assembly of this unconventional amphiphile.
Collapse
Affiliation(s)
- Gerardo I Santiago-Sampedro
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Andrés Aguilar-Granda
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Aaron Torres-Huerta
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Marcos Flores-Álamo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Martín A Iglesias-Arteaga
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
13
|
Zhang RY, Cui MH, Wang WW, Li WL, Zhao JP, Liu FC. Dicarboxylate Modulating Molecular-Ionic Platinum Compounds with Variable Stacking and Photoluminescence. Inorg Chem 2022; 61:1997-2009. [PMID: 35029375 DOI: 10.1021/acs.inorgchem.1c03146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under solvothermal conditions, 10 molecular-ionic platinum compounds [Pt(NIA)2]·(L)·nH2O (L = dicarboxylate) were synthesized. In the reaction, acetonitrile undergoes trimerization in situ to generate N-(1-iminoethyl)acetamidine (NIA), which coordinates to PtII ions in forming the N-(1-iminoethyl)acetamidine platinum cation, while the organic carboxylates act as anions. Structural analysis shows that carboxylate ligands regulate the mode of packing of [Pt(NIA)2] in those compounds. Photoluminescence studies show that the photoluminescence behaviors of those compounds also depended on the carboxylate ligands. 1-4, 6, and 7 show blue light emission with fluorescence emission wavelengths of 437-440 nm despite the different carboxylate ligands used. 5 and 8 show green emissions with maximum intensity peak positions of 522 nm. Compared with that of 5 and 8, the emission of 9 and 10 has the same red shifts with peak positions of 567 and 528 nm. The variable-temperature photoluminescence studies reveal that 8 and 10 show two different thermal quenching (TQ) zones in the range of 80-420 K, while the emission intensity of 9 shows negative thermal quenching at low temperatures of 80-220 K and TQ in the range of 220-420 K.
Collapse
Affiliation(s)
- Ruo-Yi Zhang
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ming-Hui Cui
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wei-Wei Wang
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wen-Liang Li
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiong-Peng Zhao
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Fu-Chen Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
14
|
Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Stimuli-Responsive AIEgens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008071. [PMID: 34137087 DOI: 10.1002/adma.202008071] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The unique advantages and the exciting application prospects of AIEgens have triggered booming developments in this area in recent years. Among them, stimuli-responsive AIEgens have received particular attention and impressive progress, and they have been demonstrated to show tremendous potential in many fields from physical chemistry to materials science and to biology and medicine. Here, the recent achievements of stimuli-responsive AIEgens in terms of seven most representative types of stimuli including force, light, polarity, temperature, electricity, ion, and pH, are summarized. Based on typical examples, it is illustrated how each type of systems realize the desired stimuli-responsive performance for various applications. The key work principles behind them are ultimately deciphered and figured out to offer new insights and guidelines for the design and engineering of the next-generation stimuli-responsive luminescent materials for more broad applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
15
|
Lin S, Sun H, Cornel EJ, Jiang JH, Zhu YQ, Fan Z, Du JZ. Denting Nanospheres with a Short Peptide. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021; 9:942-959. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric nanostructures such as nanobowls (NBs) can exhibit superior drug delivery performances owing to their concave structure and interior asymmetric cavities. Here, we present a facile one-step method for the fabrication of NB like structures from a mere single amino acid mimetic, N-(9-fluorenylmethoxycarbonyl)-S-triphenylmethyl-l-cysteine following continuous-flow microfluidics enabled supramolecular self-assembly. Following fabrication, NBs were further infused into a vesicular shell consisting of the amino acid N-(tert-butoxycarbonyl)-S-triphenylmethyl-l-cysteine, carrying dual acid labile groups, the triphenylmethyl and the tert-butyloxycarbonyl groups. The NB infused core-shell like microstructures formed after the shell coating will now be addressed as NB-shells. Presence of pH-responsive shells bestowed the core-shell NB like structures with the ability to actively tune their surface pore opening and closing in response to environmental pH switch. To illustrate the potential use of the NB-shells in the field of anticancer drug delivery, the particles were loaded with doxorubicin (Dox) with an encapsulation efficiency of 42% and Dox loaded NB-shells exhibited enhanced efficacy in C6 glioma cells. Additionally, when tested in an animal model of glioblastoma, the nanoformulations demonstrated significantly higher retardation of tumour growth as compared to free Dox. Thus, this work strives to provide a new research area in the development of well turned-out and neatly fabricated pH switchable on/off anti-cancer drug delivery systems with significant translational potential.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Avneet Kour
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Farheen Khanam
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Amit Singh Yadav
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Manish Singh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Gopal C Kundu
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
17
|
Zhao Z, Bian Z, Chen Y, Kang C, Gao L, Zhu G. Self-assembly of chiral oligo(methylene-p-phenylene-ethynylene)s into vesicle-like particles independent of hydrophobicity/hydrophilicity of side chains and solvents. SOFT MATTER 2021; 17:637-644. [PMID: 33210672 DOI: 10.1039/d0sm01648a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is difficult for the same molecule to form vesicular assemblies in water and alipatic hydrocarbon (oil), respectively. Here, we report that chiral oligo(methylene-p-phenyleneethynylene)s bearing hydrophobic or hydrophilic side chains can take extended conformations to self-assemble into vesicle-like particles in a hydrophobic or hydrophilic solvent system. The self-assembly processes are highly independent of molecular design and chemical environments. Based on the analyses of TEM, UV, CD and PXRD data, it is plausible to expect that the vesicular membranes could be stabilized together by π-π stacking interactions between foldamer backbones and collective van der Waals interactions between side chains.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China and University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.
| | - Yu Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chuanqing Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China and University of Science and Technology of China, 230026, Hefei, China
| | - Lianxun Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China and University of Science and Technology of China, 230026, Hefei, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
18
|
Huang J, Su L, Hang Y, Shi B, Wang X, Xu H. Water-Soluble Fluorescent Nanobowls Constructed by Multiple Supramolecular Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jin Huang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Linlin Su
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Yixiao Hang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Binbin Shi
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Xiaodong Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Hui Xu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| |
Collapse
|
19
|
Franken LE, Grünewald K, Boekema EJ, Stuart MCA. A Technical Introduction to Transmission Electron Microscopy for Soft-Matter: Imaging, Possibilities, Choices, and Technical Developments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906198. [PMID: 32130784 DOI: 10.1002/smll.201906198] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/30/2019] [Indexed: 05/24/2023]
Abstract
With a significant role in material sciences, physics, (soft matter) chemistry, and biology, the transmission electron microscope is one of the most widely applied structural analysis tool to date. It has the power to visualize almost everything from the micrometer to the angstrom scale. Technical developments keep opening doors to new fields of research by improving aspects such as sample preservation, detector performance, computational power, and workflow automation. For more than half a century, and continuing into the future, electron microscopy has been, and is, a cornerstone methodology in science. Herein, the technical considerations of imaging with electrons in terms of optics, technology, samples and processing, and targeted soft materials are summarized. Furthermore, recent advances and their potential for application to soft matter chemistry are highlighted.
Collapse
Affiliation(s)
- Linda E Franken
- Department of Structural Cell Biology of Viruses, Heinrich-Pette Institute-Leibniz-Institute of Experimental Virology University of Hamburg, Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany
| | - Kay Grünewald
- Department of Structural Cell Biology of Viruses, Heinrich-Pette Institute-Leibniz-Institute of Experimental Virology University of Hamburg, Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Marc C A Stuart
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
20
|
Chattaraj KG, Paul R, Paul S. Switching of Self-Assembly to Solvent-Assisted Assembly of Molecular Motor: Unveiling the Mechanisms of Dynamic Control on Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1773-1792. [PMID: 32024360 DOI: 10.1021/acs.langmuir.9b03718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural biological molecular motors are capable of performing several biological functions, such as fuel production, mobility, transport, and many other dynamic features. Inspired by these biological motors, scientists effectively synthesized artificial molecular motors to mimic several biological functionalities. Several molecular systems, from sensitive materials to molecular motors, are essential for controlling dynamic processes in larger assemblies. In this work, we discuss the self-assembly of molecular motors in water and how this self-assembly switches to the solvent-assisted assembly as solvent changes to a water-THF (tetrahydrofuran) mixture. We present an elaborate description of the morphological changes of molecular motor assemblies from pure water to a water-THF mixture to pure THF. Under the influence of THF solvent, molecular motors form an assembled structure by taking a sufficient number of THF molecules in between themselves, resulting in an assembled molecular motor with a softened core. So, molecular motor assembly swells in the water-THF mixture, and in pure water, it shrinks. This solvent-assisted assembled structure has a specific shape. We have confirmed this assembly as a solvent-assisted assembly with the help of molecular dynamics simulation and quantum chemical analysis. Molecular motor-THF and THF-THF interactions are the main responsible interactions for solvent-assisted assembly over self-assembly. This work is a perfect example of conversion between self-assembly (shrinking) and solvent-assisted assembly (swelling) of molecular motors by adding THF into water or vice versa. A spectacular check on the shrinking and swelling by merely altering solvents illustrates so many intriguing possibilities for an alteration of dynamic processes at the nanoscale.
Collapse
Affiliation(s)
| | - Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
21
|
Color-tunable single-fluorophore supramolecular system with assembly-encoded emission. Nat Commun 2020; 11:158. [PMID: 31919416 PMCID: PMC6952351 DOI: 10.1038/s41467-019-13994-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Regulating the fluorescent properties of organic small molecules in a controlled and dynamic manner has been a fundamental research goal. Although several strategies have been exploited, realizing multi-color molecular emission from a single fluorophore remains challenging. Herein, we demonstrate an emissive system by combining pyrene fluorophore and acylhydrazone units, which can generate multi-color switchable fluorescent emissions at different assembled states. Two kinds of supramolecular tools, amphiphilic self-assembly and γ-cyclodextrin mediated host-guest recognition, are used to manipulate the intermolecular aromatic stacking distances, resulting in the tunable fluorescent emission ranging from blue to yellow, including a pure white-light emission. Moreover, an external chemical signal, amylase, is introduced to control the assembly states of the system on a time scale, generating a distinct dynamic emission system. The dynamic properties of this multi-color fluorescent system can be also enabled in a hydrogel network, exhibiting a promising potential for intelligent fluorescent materials. Regulating fluorescent properties of small molecules in a controlled manner has been a fundamental research goal but realizing multi-color emission from a single fluorophore remains challenging. Here the authros demonstrate that combined pyrene fluorophore and acylhydrazone units show multi-color switchable fluorescent at different assembled states.
Collapse
|
22
|
Dang D, Zhang H, Xu Y, Xu R, Wang Z, Kwok RTK, Lam JWY, Zhang L, Meng L, Tang BZ. Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS NANO 2019; 13:11863-11873. [PMID: 31584798 DOI: 10.1021/acsnano.9b05914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic fluorophores for stimulated emission depletion (STED) nanoscopy usually suffer from quenched emission in the aggregate state and inferior photostability, which largely limit their application in real-time, in situ, and long-term imaging at an ultrahigh resolution. Herein, an aggregation-induced emission (AIE) luminogen of DP-TBT with bright emission in solid state (photoluminescence quantum yields = 25%) and excellent photostability was designed to meet the requirements in STED nanoscopy. In addition to its excellent fluorescence properties, DP-TBT could also easily form self-assembling helixes and finally be well-visualized by super-resolution STED nanoscopy. The observations showed that helical fibers of DP-TBT as dashed lines had a much decreased fiber width with also a full width at half-maximum value of only 178 nm, which is ∼6 times higher than solid lines obtained by confocal microscopy (1154 nm). The STED nanoscopic data were also used to reconstruct 3D images of assembled helixes. Finally, by long-term tracking and dynamic monitoring, the formation and growth of helical fibers by DP-TBT in self-assembly processes were successfully obtained. These findings imply that highly emissive AIEgens with good photostability are highly suitable for real-time, in situ, and dynamic imaging at super-resolution using STED nanoscopy.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Haoke Zhang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ryan T K Kwok
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Jacky W Y Lam
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Lei Zhang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| |
Collapse
|
23
|
Srinivasan V, Jhonsi MA, Dhenadhayalan N, Lin KC, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A. Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117150. [PMID: 31176291 DOI: 10.1016/j.saa.2019.117150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Herein, we have meticulously derived the nanosized fluorescent aggregates from pyrene Schiff base (PS) in DMSO:water (10:90) ratio. The aggregation property of PS molecule was characterized by SEM and TEM measurements, revealed the aggregated particles are in spherical shape with ~3 nm in size. Moreover, aggregates exhibit a high fluorescence quantum yield (48%) which was effectively used for the in vitro bioimaging of two different cancer cells such as A549 and MCF-7 cells in which it exhibiting excellent biocompatibility. Further, it was estimated the capability of twofold acridine orange/ethidium bromide (AO/EB) staining to identify the apoptotic associated changes in cancer cells. Additionally, the aggregates were successfully demonstrated as a luminescent probe for the perceptive biomolecule detection of bilirubin. On the other hand, the PS molecule was successfully utilized for protein binding and metal ion sensing studies. The interaction of bovine serum albumin (BSA) with PS molecule in DMSO was using fluorescence spectroscopic method and nature of interaction was also confirmed through molecular docking analysis. The PS molecule also acts as an excellent sensor for biologically important Fe3+ ion with detection limit of 336 nM. Overall, PS molecule can be a prospective material in biological field both in solution as well as aggregated forms.
Collapse
Affiliation(s)
- Venkatesan Srinivasan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India
| | - Mariadoss Asha Jhonsi
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India.
| | - Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Devanesan Arul Ananth
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Radhakrishnan Narayanaswamy
- Department of Biotechnology, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India.
| |
Collapse
|
24
|
Wang J, Pan M, Yuan J, Wang Y, Liu G, Zhu L. Revisiting the Classical Emulsion Polymerization: An Intriguing Occurrence of Monodispersed Bowl-Shaped Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yajiao Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
25
|
Datta D, Tiwari O, Gupta MK. Self-Assembly of Diphenylalanine-Peptide Nucleic Acid Conjugates. ACS OMEGA 2019; 4:10715-10728. [PMID: 31460170 PMCID: PMC6649282 DOI: 10.1021/acsomega.9b00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 05/31/2023]
Abstract
The synthesis and self-assembled nanostructures of a series of nucleopeptides (NPs) derived from the dipeptide Phe-Phe and the peptide nucleic acid unit which are covalently attached through an amide or a triazole linker are described. Depending on the variables such as protecting groups, linkers, and nucleobases, spherical nanoparticles were observed through scanning electron microscopy and high-resolution transmission electron microscopy images, and the porous nature of representative NPs was corroborated by carboxyfluorescein entrapment. Hydrophobic substituents on different sites of NPs and solvents employed for peptide self-assembly played a crucial role for corresponding morphologies. The stability of nanoparticles was also probed under external stimuli such as pH, temperature, and enzymatic hydrolysis using proteolytic enzymes. The semiconducting nature of the NP-modified carbon electrodes suggested their potential use as a new capacitor material.
Collapse
|
26
|
A platinum(II) molecular hinge with motions visualized by phosphorescence changes. Proc Natl Acad Sci U S A 2019; 116:13856-13861. [PMID: 31243146 DOI: 10.1073/pnas.1908034116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the rapidly growing exploration of artificial molecular machines and their applications, there is a strong demand to develop molecular machines that can have their motional states and configuration/conformation changes detectable by more sensitive and innovative methods. A visual artificial molecular hinge with phosphorescence behavior changes is designed and synthesized using square-planar cyclometalated platinum(II) complex and rigid aromatic alkynyl groups as the building blocks to construct the wings/flaps and axis, respectively. The molecular motions of this single molecular hinge and its reversible processes can be powered by both solvent and temperature changes. The rotary motion can be conveniently observed by the visual phosphorescence changes from deep-red to green emission in real time.
Collapse
|
27
|
Abstract
Organic particles have attracted extensive attention due to their broad scientific and industrial applications. Solvents play important roles in producing organic particles with fine-tuned sizes, shapes, and surface morphologies, thus the advancement of microfluidic devices with a thorough understanding of solvent miscibility offers additional opportunities to fabricate organic particles in large quantities. In this issue of ACS Nano, Chen et al. report that solvents could play a seemingly magical role in switching both reaction directions and particle morphologies from the same starting materials. Through monitoring the particle formulation kinetics, both social self-sorting and narcissistic self-sorting mechanisms have been proposed, which offer powerful methods to yield organic particles with desirable shapes and compositions.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| |
Collapse
|
28
|
Ma X, Wang J, Tian H. Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence. Acc Chem Res 2019; 52:738-748. [PMID: 30816706 DOI: 10.1021/acs.accounts.8b00620] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pure organic emitting materials with room-temperature phosphorescence (RTP), showing large Stokes shifts with long emitting lifetime, low preparation cost, good processability, and wide applications in analysis, bioimaging, organic light emitting diode, and so forth, have been drawing great attentions recently. Related to the design strategy for metal-free RTP materials, the phosphors containing heavy atoms (Br, I, etc.) and other heteroatoms (O, S, etc.) to facilitate the singlet-to-triplet intersystem crossing (ISC) to populate the triplet are usually employed. Besides this factor, the pathways of nonradiative relaxation are inhibited as much as possible. Crystalline packing was the commonly used strategy to engender the rigid environment to suppress the nonradiative decay, and thus to enhance the RTP emission. However, crystal RTP materials might usually be provided with not good enough repeatability and processability, which would restrict their specific practical applications special for biosystem. Instead, amorphous metal-free RTP materials could overcome such deficiencies. Recently, great efforts have been devoted to develop challengeable amorphous metal-free materials and expand their potential applications. This Account mainly focuses on the recent progress on amorphous pure organic RTP system, focusing on the rigid effect to restrict the nonradiative decay to induce or enhance the RTP emission via supramolecular interactions such as host-guest interaction and hydrogen-bonding rigid matrix. Typical host-guest assembling and supramolecular polymer systems, hydrogen-binding copolymers, and small molecules for RTP emission, as well as the heavy-atom free assembling systems for RTP emission are well illustrated in this Account. In the summary, we also give some future perspectives and research direction of the area of pure organic RTP systems, such as enhancement of emission quantum yield, emission color tuning, possible device applications, and the remaining challenge. Moreover, based on these amorphous RTP material examples and beyond, we herein would like to conclude and propose a new concept as "Assembling-Induced Emission", the key thought of which systems is "control molecular motions, then control emission" via supramolecular dynamic assembling. This assembling-induced emission strategy is applicable in many emissive assembling systems besides such amorphous RTP materials introduced in this Account. We hope this concept will be a helpful guide for understanding the emissive mechanism and constructing strategy of various emissive materials.
Collapse
Affiliation(s)
- Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
29
|
Ferreira Q, Delfino CL, Morgado J, Alcácer L. Bottom-Up Self-Assembled Supramolecular Structures Built by STM at the Solid/Liquid Interface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E382. [PMID: 30691079 PMCID: PMC6384807 DOI: 10.3390/ma12030382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
One of the lines of research on organic devices is focused on their miniaturization to obtain denser and faster electronic circuits. The challenge is to build devices adding atom by atom or molecule by molecule until the desired structures are achieved. To do this job, techniques able to see and manipulate matter at this scale are needed. Scanning tunneling microscopy (STM) has been the selected technique by scientists to develop smart and functional unimolecular devices. This review article compiles the latest developments in this field giving examples of supramolecular systems monitored and fabricated at the molecular scale by bottom-up approaches using STM at the solid/liquid interface.
Collapse
Affiliation(s)
- Quirina Ferreira
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Catarina L Delfino
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Department of Bioengineering , Instituto Superior Técnico, University of Lisbon, Av.Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Luís Alcácer
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
30
|
Sun H, Liu D, Du J. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem Sci 2019; 10:657-664. [PMID: 30774866 PMCID: PMC6349061 DOI: 10.1039/c8sc03995j] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
Asymmetric nanoparticles such as nanobowls have promising potential in many fields due to their interior asymmetric cavities and specific concave structure. However, the fabrication of nanobowls and control over their openings and interior holes are still challenging. Herein we demonstrate a versatile strategy for preparing nanobowls with precisely controlled openings and interior holes based on the synergy of hydrogen bonding and π-π interaction of homopolymers. We designed and synthesized a series of amphiphilic homopolymers with an amino alcohol moiety and azobenzene pendant (poly(2-hydroxy-3-((4-(phenyldiazenyl)phenyl)amino)propyl methacrylate) (PHAzoMA)). The homopolymers can self-assemble into nanobowls due to the heterogeneous shrinkage of the preformed spheres. Upon increasing the molecular weight of the homopolymers from 10.1 to 76.9 kg mol-1, the sizes of the openings of nanobowls can be precisely controlled from 242 to 423 nm with a linear relationship as a result of the enhancement of the hydrogen bonding and π-π interaction between homopolymer chains. Overall, we have prepared finely controlled nanobowls by the synergy of non-covalent interactions such as hydrogen bonding and π-π interaction of polymers, which opens a new avenue for the preparation of asymmetric nanoparticles.
Collapse
Affiliation(s)
- Hui Sun
- Department of Polymeric Materials , School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China . ; ; Tel: +86-21-6958-0239
| | - Danqing Liu
- Department of Polymeric Materials , School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China . ; ; Tel: +86-21-6958-0239
| | - Jianzhong Du
- Department of Polymeric Materials , School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China . ; ; Tel: +86-21-6958-0239
- Department of Orthopedics , Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , China
| |
Collapse
|
31
|
|