1
|
Sharma A, Nair K U, Kundu S. Bicyclic (alkyl)(amino)carbenes (BICAACs): synthesis, characteristics, and applications. Dalton Trans 2024. [PMID: 39625415 DOI: 10.1039/d4dt02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Carbenes in general and isolable NHCs (N-heterocyclic carbenes) in particular have been useful ligands in recent years. The emergence of CAACs [cyclic(alkyl)(amino)carbenes], BICAACs [bicyclic(alkyl)(amino)carbenes], and many other carbenes has marked revolutionary milestones in this field. These carbenes possess an intriguing blend of highly electrophilic and nucleophilic characteristics, owing to their remarkably narrow HOMO-LUMO energy gap. The isolation and characterization of these carbenes hold significance not only due to their fascinating electronic properties but have demonstrated their prowess across various domains, including isolation of transition metal complexes, medicinal applications, catalysis, and radical stabilization. While the chemistry of 5-membered NHCs and CAACs has been extensively explored, the investigation of BICAACs has just begun. This review covers the synthesis, characterization, and reactivity of BICAACs and outlines the diverse applications of BICAACs in organometallic chemistry, metal-free catalysis, and main-group chemistry.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Unnikrishnan Nair K
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
- Department of Chemistry, Ashoka University, Sonepat, Haryana-131029, India
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
2
|
Utecht-Jarzyńska G, Shi S, Gao P, Jarzyński S, Mahbubur Rahman M, Lalancette R, Szostak R, Szostak M. IPr* F - Highly Hindered, Fluorinated N-Heterocyclic Carbenes. Chemistry 2024; 30:e202402847. [PMID: 39298645 DOI: 10.1002/chem.202402847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The introduction of fluorine atom has attracted considerable interest in molecular design owing to the high electronegativity and the resulting polarization of carbon-fluorine bonds. Simultaneously, sterically-hindered N-heterocyclic carbenes (NHCs) have received major interest due to high stabilization of the reactive metal centers, which has paved the way for the synthesis of stable and reactive organometallic compounds with broad applications in main group chemistry, inorganic synthesis and transition-metal-catalysis. Herein, we report the first class of sterically-hindered, fluorinated N-heterocyclic carbenes. These ligands feature variable fluorine substitution at the N-aromatic wingtip, permitting to rationally vary steric and electronic characteristics of the carbene center imparted by the fluorine atom. An efficient, one-pot synthesis of fluorinated IPr*F ligands is presented, enabling broad access of academic and industrial researchers to the fluorinated ligands. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(I), Rh(I) and Se is presented. Considering the unique properties of carbon-fluorine bonds, we anticipate that this novel class of fluorinated carbene ligands will find widespread application in stabilizing reactive metal centers.
Collapse
Affiliation(s)
- Greta Utecht-Jarzyńska
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Szymon Jarzyński
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
3
|
Erdélyi Á, Farkas V, Turczel G, Nagyházi M, Bényei A, Recta MLL, Nagy T, Kéki S, Osterthun O, Klankermayer J, Tuba R. Synthesis and Application of Robust Spiro [Fluorene-9] CAAC Ruthenium Alkylidene Complexes for the "One-Pot" Conversion of Allyl Acetate to Butane-1,4-diol. Chemistry 2024; 30:e202401918. [PMID: 38865343 DOI: 10.1002/chem.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
A series of a novel CAAC ligands featuring a spiro-fluorene group have been synthesized and complexed with ruthenium alkylidenes, yielding the corresponding Hoveyda-type derivatives as a new family of olefin metathesis catalysts. The novel complexes have been characterized by XRD, HRMS and NMR measurements. The synthetised complexes were tested in catalysis and showed good activity in olefin metathesis, as demonstrated on diethyl diallylmalonate and allyl acetate substrates. The unique backbone in the ligand with the large, yet inflexible condensed system renders interesting properties to the catalyst, exemplified by the good catalytic performance and improved Z-selectivity. In addition, the complex can also serve as a hydrogenation catalyst in a consecutive (one-pot) reaction. The latter reaction can convert allyl acetate to butane-1,4-diol, a valuable chemical intermediate for biodegradable polybutylene succinate (PBS).
Collapse
Affiliation(s)
- Ádám Erdélyi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, 8210, Hungary
| | - Vajk Farkas
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest, 1111, Hungary
| | - Gábor Turczel
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Márton Nagyházi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, 8210, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Merell Lystra Ledesma Recta
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Ole Osterthun
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Róbert Tuba
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, 8210, Hungary
| |
Collapse
|
4
|
Madron du Vigné A, Cramer N. Streamlined synthetic assembly of α-chiral CAAC ligands and catalytic performance of their copper and ruthenium complexes. Chem Sci 2024:d4sc04278f. [PMID: 39129771 PMCID: PMC11306997 DOI: 10.1039/d4sc04278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
The unique electronic and steric parameters of chiral cyclic alkyl amino carbene (CAAC) ligands render them appealing steering ligands for enantioselective transition-metal catalyzed transformations. Due to the lack of efficient synthetic strategies to access particularly attractive α-chiral CAACs assessment and exploitation of their full synthetic potential remain difficult. Herein, we report a streamlined strategy to assemble a library of diastereo- and enantiomerically pure CAAC ligands featuring the notoriously difficult to access α-quaternary stereogenic centers. A tailored Julia-Kocienski olefination reagent allows the Claisen-rearrangement to be leveraged as an expedient route to form the synthetically pivotal racemic α-chiral methallyl aldehydes. Subsequent condensation with chiral amines and further cyclization provided a library of diastereomeric mixtures of the targeted ligand precursors. The CAAC salts as well as their corresponding metal complexes are conveniently separable by standard silica gel flash chromatography closing a long-standing accessibility gap in chiral CAAC ligands with proximal α-chirality. The rapid availability of both diastereomers enables testing of the relevance and synergistic effects of two chiral centers on the ligand in catalytic applications. A broad range of metal complexes with copper, gold, rhodium and ruthenium were obtained and structurally analyzed. The catalytic performances of the corresponding chiral CAAC copper and ruthenium complexes were assessed in enantioselective conjugate borylations and asymmetric ring closing metathesis, displaying selectivities of up 95 : 5 er.
Collapse
Affiliation(s)
- Adrien Madron du Vigné
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
5
|
Magis D, Cabrera-Trujillo JJ, Vignolle J, Sotiropoulos JM, Taton D, Miqueu K, Landais Y. Expedient Synthesis of Thermally Stable Acyclic Amino(haloaryl)carbenes: Experimental and Theoretical Evidence of "Push-Pull" Stabilized Carbenes. J Am Chem Soc 2024. [PMID: 38857384 DOI: 10.1021/jacs.4c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A library of novel structurally related singlet carbenes, namely, acyclic amino(haloaryl)carbenes, was designed by a high-yielding two-step procedure, and their chemical stability explored both experimentally and theoretically. Thanks to a careful selection of both the amino and the aryl substitution pattern, these carbenes exhibit a wide range of stability and reactivity, spanning from rapid self-dimerization for carbenes featuring ortho-F substituents to very high chemical stability as bare carbenes, up to 60 °C for several hours for compounds carrying ortho-Br substituents. Their structure was determined through NMR and X-ray diffraction studies, and their reactivity evaluated in benchmark reactions, highlighting the ambiphilic character of this novel class of singlet carbenes. In contrast with previously reported aryl substituents incorporating o-CF3 and t-Bu groups, which were considered "spectator", the high chemical stability of some of these carbenes relates to the stabilization of the σ-orbital of the carbene center by the π-accepting haloaryl substituent through delocalization. Kinetic protection of the carbene center is also provided by the ortho-halogen atoms, as demonstrated computationally. This push-pull stabilization effect makes acyclic amino(haloaryl) carbenes among the most ambiphilic stable carbenes reported to date, holding promise for a variety of applications.
Collapse
Affiliation(s)
- Damien Magis
- CNRS, Bordeaux INP, Institut des Sciences Moléculaires (ISM, UMR 5255), Université de Bordeaux, 351 Cours de la Libération, 33400 Talence, France
| | - Jorge Juan Cabrera-Trujillo
- E2S-UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Joan Vignolle
- CNRS, Bordeaux INP-ENSMAC, Laboratoire de Chimie des Polymères Organiques (LCPO, UMR 5629), Université de Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France
| | - Jean-Marc Sotiropoulos
- E2S-UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Daniel Taton
- CNRS, Bordeaux INP-ENSMAC, Laboratoire de Chimie des Polymères Organiques (LCPO, UMR 5629), Université de Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France
| | - Karinne Miqueu
- E2S-UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Yannick Landais
- CNRS, Bordeaux INP, Institut des Sciences Moléculaires (ISM, UMR 5255), Université de Bordeaux, 351 Cours de la Libération, 33400 Talence, France
| |
Collapse
|
6
|
Das A, Saha S, Maji S, Sarkar P, Jose A, Bhatt MM, Bhunia A, Dutta A, Pati SK, Mandal SK. Highly Stable Self-Regenerating Organic Multi-Redox Systems derived from Bicyclic (Alkyl)(amino)carbenes (BICAACs). Chemistry 2024; 30:e202303411. [PMID: 38441342 DOI: 10.1002/chem.202303411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/04/2024]
Abstract
An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range. These organic compounds exhibited four different stable redox states (dication, radical cation, neutral and radical anion), and all of them were characterized either by single crystal X-ray study and/or various spectroscopic studies. Three of the four redox states are stable to air and moisture. The availability of stable multiple redox states demonstrated promise towards their efficacy in the symmetric H-cell charge/discharge cycling. Among various redox states, the dication/neutral state works efficiently and continuously for 1500 cycles in 2e- charge/discharge process outside glovebox in commercially available DMF with minimum capacity loss (retaining nearly 90 % Coulombic efficiency). Surprisingly, the efficiency of the redox cycle was retained even if the system was exposed to air for 30 days when it slowly regenerated to the initial deep blue radical cation, and it exhibited another 100 charge/discharge cycles with a minimal capacity loss. Such a stable H-cell cycling ability is not well known among organic molecule-based systems.
Collapse
Affiliation(s)
- Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Sukanta Saha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India
| | - Anex Jose
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Madhur Mahesh Bhatt
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Anup Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| |
Collapse
|
7
|
Puerta Lombardi BM, Faas MR, West D, Suvinen RA, Tuononen HM, Roesler R. An isolable, chelating bis[cyclic (alkyl)(amino)carbene] stabilizes a strongly bent, dicoordinate Ni(0) complex. Nat Commun 2024; 15:3417. [PMID: 38653986 DOI: 10.1038/s41467-024-47036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Chelating ligands have had a tremendous impact in coordination chemistry and catalysis. Notwithstanding their success as strongly σ-donating and π-accepting ligands, to date no chelating bis[cyclic (alkyl)(amino)carbenes] have been reported. Herein, we describe a chelating, C2-symmetric bis[cyclic (alkyl)(amino)carbene] ligand, which was isolated as a racemic mixture. The isolation and structural characterization of its isostructural, pseudotetrahedral complexes with iron, cobalt, nickel, and zinc dihalides featuring eight-membered metallacycles demonstrates the binding ability of the bis(carbene). Reduction of the nickel(II) dibromide with potassium graphite produces a dicoordinate nickel(0) complex that features one of the narrowest angles measured in any unsupported dicoordinate transition metal complexes.
Collapse
Affiliation(s)
| | - Morgan R Faas
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - Daniel West
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - Roope A Suvinen
- Department of Chemistry, NanoScience Centre, University of Jyvӓskylӓ, Jyvӓskylӓ, Finland
| | - Heikki M Tuononen
- Department of Chemistry, NanoScience Centre, University of Jyvӓskylӓ, Jyvӓskylӓ, Finland.
| | - Roland Roesler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada.
| |
Collapse
|
8
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
10
|
Nahon EE, Nelmes GR, Brothers PJ, Hicks J. Intramolecular C-N bond activation by a transient boryl anion. Chem Commun (Camb) 2023; 59:14281-14284. [PMID: 37964585 DOI: 10.1039/d3cc05182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Using a flexible diamido framework, a bulky boron bromide has been prepared as a precusor to a boryl anion with an extremely wide N-B-N angle. Reduction of the compound with lithium metal resulted in intramolecular C-N bond activation and migration of an aryl group onto the boron centre. Reaction of the boron bromide with K[FeCp(CO)2] resulted in nucleophilic reactivity of a carbonyl oxygen and the cooperative activation of CO.
Collapse
Affiliation(s)
- Emily E Nahon
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Gareth R Nelmes
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Penelope J Brothers
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Jamie Hicks
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
11
|
Ying A, Gong S. A Rising Star: Luminescent Carbene-Metal-Amide Complexes. Chemistry 2023; 29:e202301885. [PMID: 37431981 DOI: 10.1002/chem.202301885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Coinage metal (gold, silver, and copper) complexes are attractive candidates to substitute the widely studied noble metal complexes, such as, iridium(III) and platinum(II), as luminescent materials in organic light-emitting diodes (OLEDs). However, the development of coinage metal complexes exhibiting high emission quantum yields and short exciton lifetimes is still a formidable challenge. In the past few years, coinage metal complexes featuring a carbene-metal-amide (CMA) motif have emerged as a new class of luminescent materials in OLEDs. Thanks to the coinage metal-bridged linear geometry, coplanar conformation, and the formation of excited states with dominant ligand-to-ligand charge transfer character and reduced metal d-orbital participation, most CMA complexes have high radiative rates via thermally activated delayed fluorescence. Currently, the family of CMA complexes have rapidly evolved and remarkable progresses in CMA-based OLEDs have been made. Here, a Concept article on CMA complexes is presented, with a focus on molecular design principles, the correlation between molecular structure/conformation and optoelectronic properties, as well as OLED performance. The future prospects of CMA complexes are also discussed.
Collapse
Affiliation(s)
- Ao Ying
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Guthardt R, Jacob HL, Bruhn C, Siemeling U. A complete series of N-heterocyclic tetrylenes (Si-Pb) with a 1,1'-ferrocenediyl backbone enabled by 1,3,2-diazaborolyl N-substituents. Dalton Trans 2023; 52:14380-14389. [PMID: 37781741 DOI: 10.1039/d3dt02684a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The use of bulky 1,3,2-diazaborolyl N-substituents has allowed the synthesis of the complete series of ferrocene-based N-heterocyclic tetrylenes fc[(N{B})2E] (fc = 1,1'-ferrocenediyl, {B} = (HCNC6H3-2,6-iPr2)2B, E = Si-Pb). The silylene fc[(N{B})2Si] is inert towards NH3, CO2 or N2O under ambient conditions and thus significantly less reactive than the N-aryl homologue fc[(NC6H3-2,6-iPr2)2Si]. In accord with its higher reactivity, computational results indicate a more pronounced ambiphilicity of fc[(NC6H3-2,6-iPr2)2Si]. Our computational investigation of the model compound fc[(NBMe2)2Si] suggests that silylenes of this type may be superior to fc[(NC6H3-2,6-iPr2)2Si] in terms of ambiphilicity.
Collapse
Affiliation(s)
- Robin Guthardt
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
13
|
Podchorodecka P, Dziuk B, Szostak R, Szostak M, Bisz E. IPr* Oxa - a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands. Dalton Trans 2023; 52:13608-13617. [PMID: 37698540 DOI: 10.1039/d3dt02255b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as a major direction in ancillary ligand development for stabilization of reactive metal centers in inorganic and organometallic chemistry. In particular, wingtip-flexible NHCs have attracted significant attention due to their unique ability to provide a sterically-demanding environment for transition metals in various oxidation states. Herein, we report a new class of sterically-hindered, wingtip-flexible NHC ligands that feature N,C-chelating oxazole donors. These ligands are readily accessible through a modular arylation of oxazole derivatives. We report their synthesis and complete structural and electronic characterization. The evaluation of steric, electron-donating and π-accepting properties and coordination chemistry to Ag(I), Pd(II) and Rh(I) is described. Preliminary studies of catalytic activity in Ag, Pd and Rh-catalyzed coupling and hydrosilylation reactions are presented. This study establishes the fluxional behavior of a freely-rotatable oxazole unit, wherein the oxazolyl ring adjusts to the steric and electronic environment of the metal center. Considering the tremendous impact of sterically-hindered NHCs and their potential to stabilize reactive metals by N-chelation, we expect that this class of NHC ligands will be of broad interest in inorganic and organometallic chemistry.
Collapse
Affiliation(s)
- Pamela Podchorodecka
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| |
Collapse
|
14
|
Perera TA, Taylor WV, Gildner MB, Reinheimer EW, Ito S, Nelson A, Yost SR, Hudnall TW. Photochemical reactions of a diamidocarbene: cyclopropanation of bromonaphthalene, addition to pyridine, and activation of sp 3 C-H bonds. Chem Sci 2023; 14:7867-7874. [PMID: 37502328 PMCID: PMC10370591 DOI: 10.1039/d2sc05122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/26/2023] [Indexed: 07/29/2023] Open
Abstract
We report unprecedented photochemistry for the diamidocarbene 1. Described within are the double cyclopropanation of 1-bromonaphthalene, the double addition to pyridine, and remarkably, the insertion into the unactivated sp3 C-H bonds of cyclohexane, tetramethylsilane, and n-pentane to give compounds 2-6, respectively. All compounds have been fully characterized, and the solid state structure of 4 was obtained using single crystal electron diffraction.
Collapse
Affiliation(s)
- Tharushi A Perera
- Department of Chemistry and Biochemistry, Texas State University 601 University Dr San Marcos TX 78666 USA
| | - William V Taylor
- Department of Chemistry and Biochemistry, Texas State University 601 University Dr San Marcos TX 78666 USA
| | - M Brenton Gildner
- Department of Chemistry and Biochemistry, Texas State University 601 University Dr San Marcos TX 78666 USA
| | - Eric W Reinheimer
- Rigaku Americas Corporation 9009 New Trails Dr, The Woodlands TX 77381 USA
| | - Sho Ito
- Rigaku Corporation 3-9-12, Matsubara Akishima Tokyo 196-8666 Japan
| | - Anna Nelson
- Department of Chemistry and Biochemistry, Texas State University 601 University Dr San Marcos TX 78666 USA
| | - Shane R Yost
- Department of Chemistry and Biochemistry, Texas State University 601 University Dr San Marcos TX 78666 USA
| | - Todd W Hudnall
- Department of Chemistry and Biochemistry, Texas State University 601 University Dr San Marcos TX 78666 USA
| |
Collapse
|
15
|
Baguli S, Kundu A, Nath S, Adhikari D, Mukherjee D. A Donor-Acceptor Cyclopropane by Intramolecular C(sp 3)-H Activation at a Cyclic(alkyl)(amino)carbene Center and Its Fascinating Ring-Opening Chemistry. Org Lett 2023; 25:3141-3145. [PMID: 37093744 DOI: 10.1021/acs.orglett.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Virtually irreversible intramolecular C-H activations are deleterious for aza-carbenes. A picolyl-tethered cyclic(alkyl)(amino)carbene (CAAC) isomerizes into a donor-acceptor cyclopropane in this manner but restores the CAAC status by retro-C-H activation in the presence of trapping agents like Se or CuCl. The same DA cyclopropane is readily hydrolyzed to a pyrrolidin-2-ol that acts as another picoCAAC precursor by undergoing 1,1-dehydration in the presence of Se or CuCl. The chemistry is distinct from the N-heterocyclic carbene analogue throughout.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli, Punjab 140306, India
| | - Soumajit Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli, Punjab 140306, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
16
|
Koike T, Iwamoto T. Cyclobutenylidene: A Multifaceted Two-Coordinate Carbon Species Obtained via Skeletal Editing of a Cyclopropenylidene. J Am Chem Soc 2023; 145:9264-9272. [PMID: 37040540 DOI: 10.1021/jacs.3c01906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
C4H4 isomers not only serve as a basis to understand the chemical properties of hydrocarbons but are possible intermediates in combustion and organic reactions in outer space. Cyclobutenylidene (CBY), an elusive C4H4 isomer, is often proposed as a key intermediate in transition-metal-catalyzed metathesis and cycloaddition reactions between carbon-carbon multiple bonds. The geometrical structure of cyclobutenylidene predicted by calculations had been debated as whether it should be regarded as a carbocyclic carbene or a strained bridgehead alkene. Here, we report the synthesis of a crystalline cyclobutenylidene derivative, namely, a 3-silacyclobut-2-en-4-ylidene (SiCBY) via "carbene-to-carbene ring-expansion" reaction of an isolable diaminocyclopropenylidene induced by a silicon analogue of a carbene (silylene). The SiCBY exhibits multifaceted electronic properties which are corroborated by its extremely strong electron-donating properties and ambiphilic reactivity toward small gaseous molecules and C-H bonds. This result introduces an exciting strategy as well as a molecular motif to access low-valent carbon species with unusual electronic properties.
Collapse
Affiliation(s)
- Taichi Koike
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Muniz CN, Schaab J, Razgoniaev A, Djurovich PI, Thompson ME. π-Extended Ligands in Two-Coordinate Coinage Metal Complexes. J Am Chem Soc 2022; 144:17916-17928. [PMID: 36126274 DOI: 10.1021/jacs.2c06948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-coordinate carbene-MI-amide (cMa, MI = Cu, Ag, Au) complexes have emerged as highly efficient luminescent materials for use in a variety of photonic applications due to their extremely fast radiative rates through thermally activated delayed fluorescence (TADF) from an interligand charge transfer (ICT) process. A series of cMa derivatives was prepared to examine the variables that affect the radiative rate, with the goal of understanding the parameters that control the radiative TADF process in these materials. We find that blue-emissive complexes with high photoluminescence efficiencies (ΦPL > 0.95) and fast radiative rates (kr = 4 × 106 s-1) can be achieved by selectively extending the π-system of the carbene and amide ligands. Of note is the role played by the increased separation between the hole and electron in the ICT excited state. Analysis of temperature-dependent luminescence data and theoretical calculations indicate that the hole-electron separation exerts a primary effect on the energy gap between the lowest-energy singlet and triplet states (ΔEST) while keeping the radiative rate for the singlet state relatively unchanged. This interpretation provides guidelines for the design of new cMa derivatives with even faster radiative rates in addition to those with slower radiative rates and thus extended excited state lifetimes.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anton Razgoniaev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
Madron du Vigné A, Cramer N. Chiral Cyclic Alkyl Amino Carbene (CAAC) Transition-Metal Complexes: Synthesis, Structural Analysis, and Evaluation in Asymmetric Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adrien Madron du Vigné
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC, BCH 4305, 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC, BCH 4305, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Kim H, Lee E. Ambiphilic singlet carbenes: Electron donors and acceptors. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyunho Kim
- Department of Chemistry Pohang University of Science and Technology Pohang Republic of Korea
| | - Eunsung Lee
- Department of Chemistry Pohang University of Science and Technology Pohang Republic of Korea
| |
Collapse
|
20
|
Volk J, Heinz M, Leibold M, Bruhn C, Bens T, Sarkar B, Holthausen MC, Siemeling U. A crystalline cyclic (alkyl)(amino)carbene with a 1,1'-ferrocenylene backbone. Chem Commun (Camb) 2022; 58:10396-10399. [PMID: 36039867 DOI: 10.1039/d2cc03871d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic (alkyl)(amino)carbenes with a 1,1'-ferrocenylene backbone (fcCAACs) are established as an original family by the preparation of a crystalline congener. The Ccarbene bond angle is unprecedentedly wide for a CAAC, causing an exceptionally pronounced ambiphilicity. The redox-active backbone opens the door to unconventional metalloradicals and oligoradicals.
Collapse
Affiliation(s)
- Julia Volk
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Myron Heinz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Leibold
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Clemens Bruhn
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 50659 Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 50659 Stuttgart, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Ulrich Siemeling
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
21
|
Chaturvedi A, McCarver GA, Sinha S, Hix EG, Vogiatzis KD, Jiang J. A PEGylated Tin Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main‐Group‐Element Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206325. [DOI: 10.1002/anie.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ashwin Chaturvedi
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Gavin A. McCarver
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Soumalya Sinha
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Elijah G. Hix
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Jianbing Jiang
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
22
|
Nagyházi M, Lukács Á, Turczel G, Hancsók J, Valyon J, Bényei A, Kéki S, Tuba R. Catalytic Decomposition of Long-Chain Olefins to Propylene via Isomerization-Metathesis Using Latent Bicyclic (Alkyl)(Amino)Carbene-Ruthenium Olefin Metathesis Catalysts. Angew Chem Int Ed Engl 2022; 61:e202204413. [PMID: 35420225 PMCID: PMC9400880 DOI: 10.1002/anie.202204413] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 02/02/2023]
Abstract
One of the most exciting scientific challenges today is the catalytic degradation of non-biodegradable polymers into value-added chemical feedstocks. The mild pyrolysis of polyolefins, including high-density polyethylene (HDPE), results in pyrolysis oils containing long-chain olefins as major products. In this paper, novel bicyclic (alkyl)(amino)carbene ruthenium (BICAAC-Ru) temperature-activated latent olefin metathesis catalysts, which can be used for catalytic decomposition of long-chain olefins to propylene are reported. These thermally stable catalysts show significantly higher selectivity to propylene at a reaction temperature of 75 °C compared to second generation Hoveyda-Grubbs or CAAC-Ru catalysts under ethenolysis conditions. The conversion of long-chain olefins (e.g., 1-octadecene or methyl oleate) to propylene via isomerization-metathesis is performed by using a (RuHCl)(CO)(PPh3 )3 isomerization co-catalyst. The reactions can be carried out at a BICAAC-Ru catalyst loading as low as 1 ppm at elevated reaction temperature (75 °C). The observed turnover number and turnover frequency are as high as 55 000 and 10 000 molpropylene molcatalyst -1 h-1 , respectively.
Collapse
Affiliation(s)
- Márton Nagyházi
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1519, Budapest, Hungary.,Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111, Budapest, Hungary
| | - Ádám Lukács
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1519, Budapest, Hungary.,Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111, Budapest, Hungary
| | - Gábor Turczel
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1519, Budapest, Hungary
| | - Jenő Hancsók
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, 8210, Veszprém, Hungary
| | - József Valyon
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1519, Budapest, Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Róbert Tuba
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1519, Budapest, Hungary
| |
Collapse
|
23
|
Chaturvedi A, McCarver GA, Sinha S, Hix EG, Vogiatzis KD, Jiang JJ. A PEGylated Tin‐Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main‐Group Element Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwin Chaturvedi
- University of Cincinnati Chemistry 312 College Dr. 45221 Cincinnati UNITED STATES
| | - Gavin A McCarver
- UT Knoxville: The University of Tennessee Knoxville Chemistry UNITED STATES
| | | | - Elijah G Hix
- UT Knoxville: The University of Tennessee Knoxville Chemistry UNITED STATES
| | - Konstantinos D Vogiatzis
- UT Knoxville: The University of Tennessee Knoxville Chemistry Buehler Hall1420 Circle Dr. 37996 Knoxville UNITED STATES
| | - Jianbing Jimmy Jiang
- University of Cincinnati Chemistry 312 College Dr. 45221 Cincinnati UNITED STATES
| |
Collapse
|
24
|
Serrato MR, Melaimi M, Bertrand G. Cyclic (amino)(barrelene)carbenes: an original family of CAACs through a novel synthetic pathway. Chem Commun (Camb) 2022; 58:7519-7521. [PMID: 35699417 DOI: 10.1039/d2cc02565e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel family of cyclic (alkyl)(amino)carbenes, which we name cyclic (amino)(barrelene)carbenes (CABCs) is reported. The key synthetic step involves an intramolecular [4+2] cyclization of an anthracene derivative with an alkyne. This synthetic approach allows for the attachment of both aryl and alkyl groups on the nitrogen atom. When used as ligand, two of the barrelene hydrogens are in close contact with the metal, which could stabilize low valent catalytic intermediates.
Collapse
Affiliation(s)
- Melinda R Serrato
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA.
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA.
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA.
| |
Collapse
|
25
|
Gao Y, Kim N, Mendoza SD, Yazdani S, Faria Vieira A, Liu M, Kendrick A, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. (CAAC)Copper Catalysis Enables Regioselective Three-Component Carboboration of Terminal Alkynes. ACS Catal 2022; 12:7243-7247. [PMID: 37143933 PMCID: PMC10153597 DOI: 10.1021/acscatal.2c00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic(alkyl)(amino)carbene (CAAC) ligands are found to perturb regioselectivity of the copper-catalyzed carboboration of terminal alkynes, favoring the less commonly observed internal alkenylboron regiosomer through an α-selective borylcupration step. A variety of carbon electrophiles participate in the reaction, including allyl alcohols derivatives and alkyl halides. The method provides a straightforward and selective route to versatile tri-substituted alkenylboron compounds that are otherwise challenging to access.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nana Kim
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Skyler D. Mendoza
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Sima Yazdani
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Andre Faria Vieira
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Mingyu Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Aaron Kendrick
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Puerta Lombardi BM, Pezoulas ER, Suvinen RA, Harrison A, Dubrawski ZS, Gelfand BS, Tuononen HM, Roesler R. Bis[cyclic (alkyl)(amino)carbene] isomers: Stable trans-bis(CAAC) versus facile olefin formation for cis-bis(CAAC). Chem Commun (Camb) 2022; 58:6482-6485. [PMID: 35583166 DOI: 10.1039/d2cc01476a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomeric bis(aldiminium) salts with a 1,4-cyclohexylene framework were synthesized. The first isolable bis(CAAC) was prepared from the trans-stereoisomer and its ditopic ligand competency was proven by conversion to iridium(I) and rhodium(I) complexes. Upon deprotonation, the cis-isomer yielded an electron rich olefin via a classic, proton-catalyzed pathway. The CC bond formation from the desired cis-bis(CAAC) was shown to be thermodynamically very favorable and to involve a small activation barrier. Compounds that can be described as insertion products of the cis-bis(CAAC) into the E-H bonds of NH3, CH3CN and H2O were also identified.
Collapse
Affiliation(s)
- Braulio M Puerta Lombardi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Ethan R Pezoulas
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Roope A Suvinen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Alexander Harrison
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Heikki M Tuononen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Roland Roesler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
27
|
|
28
|
Zhang J, Li T, Li X, Lv A, Li X, Wang Z, Wang R, Ma Y, Fang R, Szostak R, Szostak M. Thiazol-2-ylidenes as N-Heterocyclic carbene ligands with enhanced electrophilicity for transition metal catalysis. Commun Chem 2022; 5:60. [PMID: 36697942 PMCID: PMC9814509 DOI: 10.1038/s42004-022-00675-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 01/28/2023] Open
Abstract
Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant direction in ligand development in transition metal catalysis. In particular, strong σ-donation in combination with tunable steric environment make NHCs to be among the most common ligands used for C-C and C-heteroatom bond formation. Herein, we report the study on steric and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle and enhanced π-electrophilicity result in a class of highly active carbene ligands for electrophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of steric, electron-donating and π-accepting properties as well as structural characterization and coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug functionalization to furnish attractive building blocks for medicinal chemistry. Considering the key role of N-heterocyclic ligands, we anticipate that N-aryl thiazol-2-ylidenes will be of broad interest as ligands in modern chemical synthesis.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Tao Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiangyang Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Anqi Lv
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zheng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ran Fang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA.
| |
Collapse
|
29
|
Synthesis and characterization of novel PEPPSI type bicyclic (alkyl)(amino)carbene (BICAAC)-Pd complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zhang J, Wang Y, Zhang Y, Liu T, Fang S, Wang R, Ma Y, Fang R, Szostak R, Szostak M. Application of Indazolin-3-ylidenes in Catalysis: Steric Tuning of Nonclassical Formally Normal N-Heterocyclic Carbenes with Dual Electronic Character for Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yue Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuting Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Shuai Fang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ran Fang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
31
|
Nagyházi M, Lukács Á, Turczel G, Hancsók J, Valyon J, Bényei A, Kéki S, Tuba R. Catalytic Decomposition of Long‐Chain Olefins to Propylene via Isomerization‐Metathesis Using Latent Bicyclic (Alkyl)(Amino)Carbene‐Ruthenium Olefin Metathesis Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Márton Nagyházi
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Institute of Material and Environmental Chemistry HUNGARY
| | - Ádám Lukács
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Institute of Material and Environmental Chemistry HUNGARY
| | - Gábor Turczel
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Institute of Materials and Environmental Chemistry Magyar Tudósok körútja 2 1117 Budapest HUNGARY
| | - Jenő Hancsók
- University of Pannonia: Pannon Egyetem Biochemical, Environmental and Chemical Engineering HUNGARY
| | - József Valyon
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Institute of Material and Environmental Chemistry HUNGARY
| | - Attila Bényei
- University of Debrecen: Debreceni Egyetem Department of Pharmaceutical Chemistry HUNGARY
| | - Sándor Kéki
- University of Debrecen: Debreceni Egyetem Department of Applied Chemistry HUNGARY
| | - Robert Tuba
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences Institute of Materials and Environmental Chemistry Magyar tudosok korutja 2. 1117 Budapest HUNGARY
| |
Collapse
|
32
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
33
|
Vermersch F, Oliveira L, Hunter J, Soleilhavoup M, Jazzar R, Bertrand G. Cyclic (Alkyl)(amino)carbenes: Synthesis of Iminium Precursors and Structural Properties. J Org Chem 2022; 87:3511-3518. [PMID: 35133152 DOI: 10.1021/acs.joc.1c03075] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using readily available preallylated aldehydes, we report a simple and divergent synthesis of cyclic (alkyl)(amino)carbene (CAAC) iminium precursors. Using a combination of crystallographic data and steric maps, we further elaborate on the specific steric properties of CAAC ligands with respect to state-of-the-art phosphine and carbene ligands.
Collapse
Affiliation(s)
- François Vermersch
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Luana Oliveira
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Joseph Hunter
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michele Soleilhavoup
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
34
|
Correia Bicho BA, Guthardt R, Bruhn C, Großhennig D, Orth T, Pfeiffer F, Siemeling U. N
‐
tert
‐Alkyl‐Substituted N‐Heterocyclic Carbenes with a 1,1’‐Ferrocenediyl Backbone. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bruno A. Correia Bicho
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Robin Guthardt
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Clemens Bruhn
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - David Großhennig
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Till Orth
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Florian Pfeiffer
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Ulrich Siemeling
- Institute of Chemistry University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| |
Collapse
|
35
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Byun S, Park DA, Kim S, Kim S, Ryu JY, Lee J, Hong S. Highly selective ethenolysis with acyclic-aminooxycarbene ruthenium catalysts. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01132d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acyclic carbene–ruthenium catalysts were developed for the ethenolysis. Remarkable catalytic efficiency (turnover numbers of 100 000) and excellent α-olefin selectivity (up to 98%) were exhibited.
Collapse
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Da-Ae Park
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seyong Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
37
|
Zhou L, Yao C, Ma W, Hu J, Wu Y, Zhang Z, Hu X. CO2 hydrogenation to formate catalyzed by highly stable and recyclable carbene-iridium under mild condition. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
|
39
|
Vermersch F, Yazdani S, Junor GP, Grotjahn DB, Jazzar R, Bertrand G. Stable Singlet Carbenes as Organic Superbases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- François Vermersch
- UCSD-CNRS Joint Research Laboratory (IRL 3555) Department of Chemistry and Biochemistry University of California San Diego, La Jolla CA 92093-0358 USA
| | - Sima Yazdani
- UCSD-CNRS Joint Research Laboratory (IRL 3555) Department of Chemistry and Biochemistry University of California San Diego, La Jolla CA 92093-0358 USA
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Glen P. Junor
- UCSD-CNRS Joint Research Laboratory (IRL 3555) Department of Chemistry and Biochemistry University of California San Diego, La Jolla CA 92093-0358 USA
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555) Department of Chemistry and Biochemistry University of California San Diego, La Jolla CA 92093-0358 USA
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555) Department of Chemistry and Biochemistry University of California San Diego, La Jolla CA 92093-0358 USA
| |
Collapse
|
40
|
Shibahara F, Shibata Y, Murai T. Imidazo[1,5- a]pyridinylidenes as π-Accepting NHC Ligands in Catalysis. CHEM LETT 2021. [DOI: 10.1246/cl.210461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fumitoshi Shibahara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Yoshifuru Shibata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
41
|
Vermersch F, Yazdani S, Junor GP, Grotjahn DB, Jazzar R, Bertrand G. Stable Singlet Carbenes as Organic Superbases. Angew Chem Int Ed Engl 2021; 60:27253-27257. [PMID: 34729888 DOI: 10.1002/anie.202111588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Indexed: 11/10/2022]
Abstract
A simple experimental procedure for scaling carbene Brønsted basicity is described. The results highlight the strong basicity of pyrazol-4-ylidenes, a type of mesoionic carbene, also named cyclic-bentallenes (CBA). They are more basic (pKaH >42.7 in acetonitrile) than the popular proazaphosphatrane Verkade bases, and even the Schwesinger phosphazene superbase P4 (t Bu). The basicity of these compounds can readily be tuned, and they are accessible in multigram quantities. These results open new avenues for carbon centered superbases.
Collapse
Affiliation(s)
- François Vermersch
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Sima Yazdani
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA.,Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Glen P Junor
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Douglas B Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
42
|
Bellotti P, Koy M, Hopkinson MN, Glorius F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat Rev Chem 2021; 5:711-725. [PMID: 37118184 DOI: 10.1038/s41570-021-00321-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
N-Heterocyclic carbenes, despite being isolated and characterized three decades ago, still capture scientists' interest as versatile, modular and strongly coordinating moieties. In the last decade, driven by the increasingly refined fundamental understanding of their behaviour, the emergence of new carbene frameworks and cogent sustainability issues, N-heterocyclic carbenes have experienced a tremendous increase in utilization across several disparate fields. In this Review, a concise overview of N-heterocyclic carbenes encompassing their history, properties and applications in transition metal catalysis, on-surface chemistry, main group chemistry and organocatalysis is provided. Emphasis is placed on developments emerging in the last seven years and on envisaging future directions.
Collapse
|
43
|
Gao Y, Yazdani S, Kendrick A, Junor GP, Kang T, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu‐Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yang Gao
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| | - Sima Yazdani
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Aaron Kendrick
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| | - Glen P. Junor
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
| | - Taeho Kang
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Guy Bertrand
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
| | - Rodolphe Jazzar
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| |
Collapse
|
44
|
Zhao Q, Meng G, Li G, Flach C, Mendelsohn R, Lalancette R, Szostak R, Szostak M. IPr# - highly hindered, broadly applicable N-heterocyclic carbenes. Chem Sci 2021; 12:10583-10589. [PMID: 34447551 PMCID: PMC8356752 DOI: 10.1039/d1sc02619d] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(i), Rh(i) and Pd(ii) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application. We report novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420.![]()
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangrong Meng
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangchen Li
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Carol Flach
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Richard Mendelsohn
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roger Lalancette
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University F. Joliot-Curie 14 Wroclaw 50-383 Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
45
|
Gao Y, Yazdani S, Kendrick A, Junor GP, Kang T, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu-Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes*. Angew Chem Int Ed Engl 2021; 60:19871-19878. [PMID: 34159696 DOI: 10.1002/anie.202106107] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Indexed: 12/19/2022]
Abstract
Regioselective hydrofunctionalization of alkynes represents a straightforward route to access alkenyl boronate and silane building blocks. In previously reported catalytic systems, high selectivity is achieved with a limited scope of substrates and/or reagents, with general solutions lacking. Herein, we describe a selective copper-catalyzed Markovnikov hydrofunctionalization of terminal alkynes that is facilitated by strongly donating cyclic (alkyl)(amino)carbene (CAAC) ligands. Using this method, both alkyl- and aryl-substituted alkynes are coupled with a variety of boryl and silyl reagents with high α-selectivity. The reaction is scalable, and the products are versatile intermediates that can participate in various downstream transformations. Preliminary mechanistic experiments shed light on the role of CAAC ligands in this process.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| | - Sima Yazdani
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA.,Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Aaron Kendrick
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| | - Glen P Junor
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA
| | - Taeho Kang
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| | - Douglas B Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Guy Bertrand
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA
| | - Rodolphe Jazzar
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| |
Collapse
|
46
|
Collado A, Nelson DJ, Nolan SP. Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis-Ligand Development. Chem Rev 2021; 121:8559-8612. [PMID: 34259505 DOI: 10.1021/acs.chemrev.0c01320] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review considers phosphine and N-heterocyclic carbene complexes of gold(I) that are used as (pre)catalysts for a range of reactions in organic synthesis. These are divided according to the structure of the ligand, with the narrative focusing on studies that offer a quantitative comparison between the ligands and readily available or widely used existing systems.
Collapse
Affiliation(s)
- Alba Collado
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - David J Nelson
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
| |
Collapse
|
47
|
Zhou L, Zhang D, Hu J, Wu Y, Geng J, Hu X. Thermal Dehydrogenation and Hydrolysis of BH3NH3 Catalyzed by Cyclic (Alkyl)(amino)carbene Iridium Complexes under Mild Conditions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Dejin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jinling Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jiao Geng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
48
|
Song H, Lee E. Theoretical Assessment of Dinitrogen Fixation on Carbon Atom. Chem Asian J 2021; 16:2421-2425. [PMID: 34250740 DOI: 10.1002/asia.202100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Indexed: 11/07/2022]
Abstract
Dinitrogen activation in non-metallic systems has received considerable attention in recent years. Herein, we report the theoretical feasibility of N2 fixation using aminocarbenes (L) or their anionic derivatives. The molecular descriptors of L and anionic L- , which affect the interaction of L and anionic L- with N2 , were identified through multiple linear regression analysis. Additionally, the electron flow during C-N bond formation was confirmed by performing intrinsic reaction coordination calculations with intrinsic bond orbital analysis for the reaction of anionic L- with N2 .
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate school of artificial intelligence, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
49
|
|
50
|
Rajendran NM, Gautam N, Sarkar P, Ahmed J, Das A, Das S, Pati SK, Mandal SK. Bicyclic (alkyl)(amino)carbene stabilized zinc(0) complex with singlet biradicaloid ground state. Chem Commun (Camb) 2021; 57:5282-5285. [PMID: 33942839 DOI: 10.1039/d1cc01298c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A storable bicyclic (alkyl)(amino)carbene (BICAAC) stabilized two coordinate zinc(0) complex [(BICAAC)2Zn] (2) was synthesized. DFT calculations reveal that BICAAC plays a decisive role in imparting the stability to 2. This complex activates the C(sp3)-Cl bond of trityl chloride generating the Gomberg's free radical with greater efficiency than metallic Zn powder.
Collapse
Affiliation(s)
- N M Rajendran
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | - Nimisha Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Bangalore 560064, India.
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | - Shubhajit Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Bangalore 560064, India.
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Bangalore 560064, India.
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| |
Collapse
|