1
|
Yang WW, Ren ZH, Feng J, Lv ZB, Cheng X, Zhang J, Du D, Chi C, Shen JJ. A Deep-Red Emissive Sulfur-Doped Double [7]Helicene Photosensitizer: Synthesis, Structure and Chiral Optical Properties. Angew Chem Int Ed Engl 2024; 63:e202412681. [PMID: 39115363 DOI: 10.1002/anie.202412681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 10/26/2024]
Abstract
Doping of polycyclic conjugated hydrocarbons (PCHs) with sulfur atoms is becoming more and more important as a means of creating unique functional materials. Recently, thiophene-containing multiple helicenes have garnered enormous attention due to their intriguing electronic and (chir)optical properties compared with carbohelicenes. However, the efficient synthesis of thiopyran-containing multiple helicenes and the underlying sulfur doping mechanisms are rather unexplored. Herein, the synthesis and structural analysis of a thiopyran-containing double [7]helicene 3 are reported. X-ray crystallographic analysis reveals 3 and its dication with C2-symmetric propeller-shape structures and compact interactions in the solid state. 3 exhibits deep-red to near-infrared (NIR) fluorescence emission. Tunable aromaticity of the central benzene ring and thiopyran rings is found by chemical oxidation, which is further confirmed by nucleus-independent chemical shift (NICS), anisotropy of the induced current density (ACID) and harmonic oscillator model of aromaticity (HOMA) analysis. Furthermore, the chiral and photosensitizing characters of 3 are investigated. The excellent deep-red to NIR fluorescence, circularly polarized luminescence (CPL) and photosensitizing activities suggest that 3 can be used as an outstanding photosensitizer in photodynamic therapy (PDT) and bioimaging, especially paving the way for future CPL-PDT and CPL-bio-probe applications.
Collapse
Affiliation(s)
- Wen-Wen Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zi-Heng Ren
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jiao Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zhi-Bang Lv
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xingwen Cheng
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jianming Zhang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jun-Jian Shen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| |
Collapse
|
2
|
Mutoh K, Abe J. Fast photochromism of helicene-bridged imidazole dimers. Chem Sci 2024; 15:13343-13350. [PMID: 39183935 PMCID: PMC11339945 DOI: 10.1039/d4sc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
The unique optical and magnetic properties of organic biradicaloids on polycyclic aromatic hydrocarbons are of fundamental interest in the development of novel organic optoelectronic materials. Open-shell π-conjugated molecules with helicity have recently attracted a great deal of attention due to the magnetic-field-dependence and spin-selectivity arising from the combination of helical chirality and electron spins. However, the molecular design for helical biradicaloids is limited due to the thermal instability and high reactivity. Herein, we achieved fast photochromic reactions and reversible photo-generation of biradical species using helicene-bridged imidazole dimers. A [9]helicene-bridged imidazole dimer exhibits reversible photochromism upon UV light irradiation. The transient species produced reversibly by UV light irradiation exhibited ESR spectra with a fine structure characteristic of a triplet radical pair, indicating the reversible generation of the biradical. The half-life of the thermal recombination reaction of the biradical was estimated to be 29 ms at 298 K. Conversely, a substantial activation energy barrier was confirmed for the intramolecular recombination reaction in the [7]helicene-bridged imidazole dimer, attributed to the extended pitch length of [7]helicene. The temperature dependence of the thermal back reactions revealed that the [7]helicene and [9]helicene moieties functioned as 'soft' and 'hard' molecular bridges, respectively. These findings pave the way for future advances in the development of photoswitchable helical biradicaloids.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara Kanagawa 252-5258 Japan
| | - Jiro Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara Kanagawa 252-5258 Japan
| |
Collapse
|
3
|
Yu Y, Wang C, Hung FF, Chen C, Pan D, Che CM, Liu J. Benzo-Extended Heli(aminoborane)s: Inner Rim BN-Doped Helical Molecular Carbons with Remarkable Chiroptical Properties. J Am Chem Soc 2024; 146:22600-22611. [PMID: 39101597 DOI: 10.1021/jacs.4c06997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Atomically precise synthesis of three-dimensional boron-nitrogen (BN)-based helical structures constitutes an undeveloped field with challenges in synthetic chemistry. Herein, we synthesized and comprehensively characterized a new class of helical molecular carbons, named benzo-extended [n]heli(aminoborane)s ([n]HABs), in which the helical structures consisted of n = 8 and n = 10 ortho-condensed conjugated rings with alternating BN atoms at the inner rims. X-ray crystallographic analysis, photophysical studies, and density functional theory calculations revealed the unique characteristics of this novel [n]HAB system. Owing to the high enantiomerization energy barriers, the optical resolution of [8]HAB and [10]HAB was achieved with chiral high-performance liquid chromatography. The isolated enantiomers of [10]HAB exhibited record absorption and luminescence dissymmetry factors (|gabs|=0.061; |glum|=0.048), and boosted CPL brightness up to 292 M-1 cm-1, surpassing most helicene derivatives, demonstrating that the introduction of BN atoms into the inner positions of helicenes can increase both the |gabs| and |glum| values.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Chang Wang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Chen Chen
- Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, PR China
| | - Ding Pan
- Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, PR China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| |
Collapse
|
4
|
Urgel JI, Sánchez-Grande A, Vicent DJ, Jelínek P, Martín N, Écija D. On-Surface Covalent Synthesis of Carbon Nanomaterials by Harnessing Carbon gem-Polyhalides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402467. [PMID: 38864470 DOI: 10.1002/adma.202402467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/19/2024] [Indexed: 06/13/2024]
Abstract
The design of innovative carbon-based nanostructures stands at the forefront of both chemistry and materials science. In this context, π-conjugated compounds are of great interest due to their impact in a variety of fields, including optoelectronics, spintronics, energy storage, sensing and catalysis. Despite extensive research efforts, substantial knowledge gaps persist in the synthesis and characterization of new π-conjugated compounds with potential implications for science and technology. On-surface synthesis has emerged as a powerful discipline to overcome limitations associated with conventional solution chemistry methods, offering advanced tools to characterize the resulting nanomaterials. This review specifically highlights recent achievements in the utilization of molecular precursors incorporating carbon geminal (gem)-polyhalides as functional groups to guide the formation of π-conjugated 0D species, as well as 1D, quasi-1D π-conjugated polymers, and 2D nanoarchitectures. By delving into reaction pathways, novel structural designs, and the electronic, magnetic, and topological features of the resulting products, the review provides fundamental insights for a new generation of π-conjugated materials.
Collapse
Affiliation(s)
- José I Urgel
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| | - Ana Sánchez-Grande
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Diego J Vicent
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Nazario Martín
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Écija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
5
|
Fukuda H, Tsurumaki E, Wakamatsu K, Toyota S. Unusually Short H⋅⋅⋅H Contacts in Intramolecularly Cyclized Helically Fused Anthracenes. Chemistry 2024; 30:e202401627. [PMID: 38751350 DOI: 10.1002/chem.202401627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/27/2024]
Abstract
The intramolecular coupling of dichloro-substituted helically fused anthracenes using the Yamamoto coupling yielded cyclized products with sterically congested molecular structures. The X-ray analysis and DFT calculations showed that the aromatic framework adopted a nonplanar structure with a twisted conformation about the newly formed single bond, which acts as a chiral axis. Interestingly, the X-ray structure obtained through the Hirshfeld atom refinement revealed short interatomic distances between the inner hydrogen atoms (1.648-1.692 Å), much shorter than the sum of their van der Waals radii. Owing to these unusually short contacts, the 1H NMR spectrum exhibited a significant deshielding (12.5 ppm) and a large nuclear Overhauser effect (44 %). Additionally, the IR spectrum displayed a high-frequency shift of the C-H stretching vibration. These observations, along with the noncovalent interaction plot indicative of a characteristic steric environment, strongly support the presence of steric hindrance. Moreover, dynamic NMR measurement of the mesityl-substituted derivative yielded a barrier to helical inversion of 84 kJ mol-1. The optical properties and crystal packing of the cyclized products are also reported.
Collapse
Affiliation(s)
- Hiroki Fukuda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
6
|
Matsuo Y, Gon M, Tanaka K, Seki S, Tanaka T. Synthesis of Aza[ n]helicenes up to n = 19: Hydrogen-Bond-Assisted Solubility and Benzannulation Strategy. J Am Chem Soc 2024; 146:17428-17437. [PMID: 38866732 DOI: 10.1021/jacs.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Synthetic challenges toward anomalous structures and electronic states often involve handling problems such as insolubility in common organic solvents and oxidative degradation under aerobic conditions. We designed benzo-annulated aza[n]helicenes, which benefit from both the suppressed elevation of highest occupied molecular orbital (HOMO) energies and high solubility due to hydrogen bonding with solvent molecules to overcome these challenges. This strategy enabled the synthesis of six new aza[n]helicenes ([n]AHs) of different lengths (n = 9-19) from acyclic precursors via one-pot intramolecular oxidative fusion reactions. The structures of all of the synthesized aza[n]helicenes were determined by X-ray diffraction (XRD) analysis, and their electrochemical potentials were measured by cyclic voltammetry. Among the synthesized aza[n]helicenes, [17]AH and [19]AH are the first heterohelicenes with a triple-layered helix. The noncovalent interaction (NCI) plots confirm the existence of an effective π-π interaction between the layers. The absorption and fluorescence spectra red-shifted as the helical lengths increased, without any distinct saturation points. The optical resolutions of N-butylated [9]AH, [11]AH, [13]AH, and [15]AH were accomplished, and their circular dichroism (CD) and circularly polarized luminescence (CPL) were measured. Thus, the structural, (chir)optical, and electrochemical properties of the aza[n]helicenes were comprehensively analyzed.
Collapse
Affiliation(s)
- Yusuke Matsuo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Nakazono R, Hu W, Hirose T, Amaya T. Synthesis and Characterization of a Cyclic Trimer of a Chiral Spirosilabifluorene. Chemistry 2024:e202401343. [PMID: 38676431 DOI: 10.1002/chem.202401343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
A chiral shape-persistent macrocyclic compound (Si-[3]), designed by the C/Si substitution in the spiro-atom of spirobifluorene in the cyclic trimer (C-[3]), has been successfully synthesized in this study. The C/Si substitution made the spiro-conjugation and energy levels of HOMO and LUMO decrease. Due to the silicon substitution, the macrocyclic compound Si-[3] was able to be degraded by fluoride ions, but its reaction rate was slower than that of the unsubstituted spirosilabifluorene, showing the chemical stability of Si-[3]. Furthermore, the chiroptical properties of Si-[3] with D3-symmetric macrocyclic structure were investigated, and (P,P,P)-Si-[3] showed a high emission quantum yield (Φf=80 %) and moderate dissymmetry factor of circularly polarized luminescence (CPL) (glum,exp=-1.2×10-3). According to the time-dependent density-functional theory (TD-DFT) calculations using polarizable continuum model (PCM), the bright CPL from Si-[3] was explained by a planarization of one bisilafluorenyl moiety at the excited state, which is responsible for the almost fully-allowed radiative transition with a short emission lifetime of τf=1.89 ns.
Collapse
Affiliation(s)
- Rina Nakazono
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Weizhe Hu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| |
Collapse
|
8
|
Huo GF, Xu WT, Han Y, Zhu J, Hou X, Fan W, Ni Y, Wu S, Yang HB, Wu J. Expanded Azahelicenes with Large Dissymmetry Factors. Angew Chem Int Ed Engl 2024; 63:e202403149. [PMID: 38421194 DOI: 10.1002/anie.202403149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Expanded azahelicenes, as heteroanalogues of helically chiral helicenes, hold significant potential for chiroptical materials. Nevertheless, their investigation and research have remained largely unexplored. Herein, we present the facile synthesis of a series of expanded azahelicenes NHn (n=1-5) consisting of 11, 19, 27, 35, and 43 fused rings, mainly by Suzuki coupling followed by Bi(OTf)3-mediated cyclization of vinyl ethers. The structures of NH2, NH3 and NH4 were confirmed through X-ray crystallography analysis, and their (P)- and (M)- enantiomers were also isolated with chiral high performance liquid chromatography. The enantiomers exhibit large absorption (abs) and luminescence (lum) dissymmetry factors, with |gabs|max=0.044; |glum|max=0.003 for NH2, |gabs|max=0.048; |glum|=0.014 for NH3, and |gabs|max=0.043; |glum|max=0.021 for NH4, which are superior to their respective all-carbon analogues.
Collapse
Affiliation(s)
- Gui-Fei Huo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jun Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
9
|
Hu J, Xiang Q, Tian X, Ye L, Wang Y, Ni Y, Chen X, Liu Y, Chen G, Sun Z. S-Shaped Helical Singlet Diradicaloid and Its Transformation to Circumchrysene via a Two-Stage Cyclization. J Am Chem Soc 2024; 146:10321-10330. [PMID: 38567901 DOI: 10.1021/jacs.3c11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polycyclic hydrocarbons with diradical and polyradical characters usually display unique reactivities in ring-cyclization reactions. However, such reactions are rarely used to construct π-extended polycyclic aromatic hydrocarbons. Here, we describe the synthesis of an S-shaped doubly helical singlet diradicaloid compound and its facile transformation into an unprecedented circumchrysene via a two-stage ring cyclization, which includes: (1) an eletrocylization from diradicaloid precursor and (2) a Scholl reaction. The reaction mechanism was investigated through in situ spectroscopic studies, assisted by theoretical calculations. This reaction sequence yields an optically resolved π-extended [5]helicene derivative with a fluorescence quantum yield up to 85% and a circularly polarized luminescence brightness up to 6.05 M-1 cm-1 in the far-red to near-infrared regions. This sequence also yielded a highly delocalized circumchrysene molecule, exhibiting large electron delocalization, moderate fluorescence quantum yield, and multistage redox properties.
Collapse
Affiliation(s)
- Jinlian Hu
- Haihe Laboratory of Sustainable Chemical Transformations, Department of Chemistry, Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Qin Xiang
- Haihe Laboratory of Sustainable Chemical Transformations, Department of Chemistry, Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xiaoqi Tian
- Haihe Laboratory of Sustainable Chemical Transformations, Department of Chemistry, Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lei Ye
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanpei Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yong Ni
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xing Chen
- Haihe Laboratory of Sustainable Chemical Transformations, Department of Chemistry, Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhe Sun
- Haihe Laboratory of Sustainable Chemical Transformations, Department of Chemistry, Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
10
|
Mori T. Significance of Vibronic Coupling that Shapes Circularly Polarized Luminescence of Double Helicenes. Angew Chem Int Ed Engl 2024; 63:e202319702. [PMID: 38317539 DOI: 10.1002/anie.202319702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The circularly polarized luminescence (CPL) spectra of S- and X-shaped double helicenes exhibit distinct vibrational structures and overall shape variations. In this study, we conducted an in-depth investigation into the vibronic effects influencing the CPL spectra of two double helicenes, namely DPC and DNH. Employing state-of-the-art computations utilizing the FC-HT1|VH model at the CAM-B3LYP/def2-TZVP level, we unveiled the paramount impact of Franck-Condon (FC), Herzberg-Teller (HT), and Duschinsky effects on their chiroptical responses. Our research underscores the pivotal role of structural deformations associated with the S1-to-S0 electronic transition in molding CPL spectra and wavelength-dependent dissymmetry (g) factor values, as well as the significance of HT effects in shaping and enhancing CPL responses. This extensive investigation not only advances our comprehension of the vibronic characteristics in configurationally distinct double helicenes but also offers valuable insights for the design of chiral molecules featuring controllable or finely-tunable CPL responses.
Collapse
Affiliation(s)
- Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Uceda RG, Cruz CM, Míguez-Lago S, de Cienfuegos LÁ, Longhi G, Pelta DA, Novoa P, Mota AJ, Cuerva JM, Miguel D. Can Magnetic Dipole Transition Moment Be Engineered? Angew Chem Int Ed Engl 2024; 63:e202316696. [PMID: 38051776 DOI: 10.1002/anie.202316696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The development of chiral compounds with enhanced chiroptical properties is an important challenge to improve device applications. To that end, an optimization of the electric and magnetic dipole transition moments of the molecule is necessary. Nevertheless, the relationship between chemical structure and such quantum mechanical properties is not always clear. That is the case of magnetic dipole transition moment (m) for which no general trends for its optimization have been suggested. In this work we propose a general rationalization for improving the magnitude of m in different families of chiral compounds. Performing a clustering analysis of hundreds of transitions, we have been able to identify a single group in which |m| value is maximized along the helix axis. More interestingly, we have found an accurate linear relationship (up to R2 =0.994) between the maximum value of this parameter and the area of the inner cavity of the helix, thus resembling classical behavior of solenoids. This research provides a tool for the rationalized synthesis of compounds with improved chiroptical responses.
Collapse
Affiliation(s)
- Rafael G Uceda
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Carlos M Cruz
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Sandra Míguez-Lago
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - David A Pelta
- Departamento de Ciencias de la Computación e Inteligencia Artificial, UGR C/Periodista Daniel Saucedo Aranda S/N, 18071, Granada, Spain
| | - Pavel Novoa
- Departamento de Ciencias de la Computación e Inteligencia Artificial, UGR C/Periodista Daniel Saucedo Aranda S/N, 18071, Granada, Spain
| | - Antonio J Mota
- Departamento de Química Inorgánica, UEQ, UGR, Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Delia Miguel
- Departamento de Fisicoquímica, UEQ, UGR, Facultad de Farmacia Avda. Profesor Clavera S/N, 18071, Granada, Spain
| |
Collapse
|
12
|
Wu YY, Wu YL, Lin CL, Chen HC, Chuang YY, Chen CH, Chou CM. Butterfly-Shaped Dibenz[ a, j]anthracenes: Synthesis and Photophysical Properties. Org Lett 2023; 25:7763-7768. [PMID: 37622587 PMCID: PMC10630963 DOI: 10.1021/acs.orglett.3c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/26/2023]
Abstract
A strategy for the synthesis of dibenz[a,j]anthracenes (DBAs) from cyclohexa-2,5-diene-1-carboxylic acids is presented. Our approach involves sequential C-H olefination, cycloaddition, and decarboxylative aromatization. In the key step for DBA skeleton construction, the bis-C-H olefination products, 1,3-dienes, are utilized as substrates for [4 + 2] cycloaddition with benzyne. This concise synthetic route allows for regioselective ring formation and functional group introduction. The structural features and photophysical properties of the resulting DBA molecules are discussed.
Collapse
Affiliation(s)
- Yan-Ying Wu
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yi-Lin Wu
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Cheng-Lan Lin
- Department
of Chemical and Materials Engineering, Tamkang
University, New Taipei City 251301, Taiwan
| | - Hung-Cheng Chen
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yao-Yuan Chuang
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Chih-Ming Chou
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
13
|
Porsev VV, Evarestov RA. Current State of Computational Modeling of Nanohelicenes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2295. [PMID: 37630880 PMCID: PMC10458037 DOI: 10.3390/nano13162295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
This review considers the works that focus on various aspects of the theoretical description of nanohelicenes (other equivalent names are graphene spirals, graphene helicoid, helical graphene nanoribbon, or helical graphene)-a promising class of one-dimensional nanostructures. The intrinsic helical topology and continuous π-system lead to the manifestation of unique optical, electronic, and magnetic properties that are also highly dependent on axial and torsion strains. In this paper, it was shown that the properties of nanohelicenes are mainly associated with the peripheral modification of the nanohelicene ribbon. We have proposed a nomenclature that enables the classification of all nanohelicenes as modifications of some prototype classes.
Collapse
Affiliation(s)
- Vitaly V. Porsev
- Quantum Chemistry Department, Saint-Petersburg State University, St Petersburg 199034, Russia
| | - Robert A. Evarestov
- Quantum Chemistry Department, Saint-Petersburg State University, St Petersburg 199034, Russia
| |
Collapse
|
14
|
Sahoo SS, Panda PK. Bis(naphthobipyrrolyl)methene-derived hexapyrrolic BODIPY as a single-molecule helicate with near-infrared emission. Chem Commun (Camb) 2023. [PMID: 37465935 DOI: 10.1039/d3cc02336b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Helically twisted bis(naphthobipyrrolyl)methene-derived open-chain hexapyrroles have been synthesized as HCl salts and the corresponding BODIPY. Their solid-state structures elucidated by single-crystal X-ray diffraction analysis clearly showed the presence of intramolecular hydrogen bonds, which were concluded to play a pivotal role in stabilizing the twisted conformation. Both molecules were observed to be NIR active, with the BODIPY moiety emission extending beyond 800 nm.
Collapse
Affiliation(s)
| | - Pradeepta K Panda
- School of Chemistry University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
15
|
Suzuki K, Fukuda H, Toda H, Imai Y, Nojima Y, Hasegawa M, Tsurumaki E, Toyota S. Substituent effects on helical structures and chiroptical properties of fused anthracenes with bulky phenyl groups. Tetrahedron 2023. [DOI: 10.1016/j.tet.2022.133243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Kiel GR, Bergman HM, Samkian AE, Schuster NJ, Handford RC, Rothenberger AJ, Gomez-Bombarelli R, Nuckolls C, Tilley TD. Expanded [23]-Helicene with Exceptional Chiroptical Properties via an Iterative Ring-Fusion Strategy. J Am Chem Soc 2022; 144:23421-23427. [PMID: 36525313 DOI: 10.1021/jacs.2c09555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expanded helicenes are an emerging class of helical nanocarbons composed of alternating linear and angularly fused rings, which give rise to an internal cavity and a large diameter. The latter is expected to impart exceptional chiroptical properties, but low enantiomerization free energy barriers (ΔG‡e) have largely precluded experimental interrogation of this prediction. Here, we report the syntheses of expanded helicenes containing 15, 19, and 23 rings on the inner helical circuit, using two iterations of an Ir-catalyzed, site-selective [2 + 2 + 2] reaction. This series of compounds displays a linear relationship between the number of rings and ΔG‡e. The expanded [23]-helicene, which is 7 rings longer than any known single carbohelicene and among the longest known all-carbon ladder oligomers, exhibits a ΔG‡e that is high enough (29.2 ± 0.1 kcal/mol at 100 °C in o-DCB) to halt enantiomerization at ambient temperature. This enabled the isolation of enantiopure samples displaying circular dichroism dissymmetry factors of ±0.056 at 428 nm, which are ≥1.7× larger than values for previously reported classical and expanded helicenes. Computational investigations suggest that this improved performance is the result of both the increased diameter and length of the [23]-helicene, providing guiding design principles for high dissymmetry molecular materials.
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Adrian E Samkian
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nathaniel J Schuster
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - August J Rothenberger
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rafael Gomez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Full F, Wölflick Q, Radacki K, Braunschweig H, Nowak‐Król A. Enhanced Optical Properties of Azaborole Helicenes by Lateral and Helical Extension. Chemistry 2022; 28:e202202280. [PMID: 35877557 PMCID: PMC9826013 DOI: 10.1002/chem.202202280] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 01/11/2023]
Abstract
The synthesis and characterization of laterally extended azabora[5]-, -[6]- and -[7]helicenes, assembled from N-heteroaromatic and dibenzo[g,p]chrysene building blocks is described. Formally, the π-conjugated systems of the pristine azaborole helicenes were enlarged with a phenanthrene unit leading to compounds with large Stokes shifts, significantly enhanced luminescence quantum yields (Φ) and dissymmetry factors (glum ). The beneficial effect on optical properties was also observed for helical elongation. The combined contributions of lateral and helical extensions resulted in a compound showing green emission with Φ of 0.31 and |glum | of 2.2×10-3 , highest within the series of π-extended azaborahelicenes and superior to emission intensity and chiroptical response of its non-extended congener. This study shows that helical and lateral extensions of π-conjugated systems are viable strategies to improve features of azaborole helicenes. In addition, single crystal X-ray analysis of configurationally stable [6]- and -[7]helicenes was used to provide insight into their packing arrangements.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany,Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Quentin Wölflick
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany,Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Krzysztof Radacki
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany,Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
18
|
Kaiser RI, Zhao L, Lu W, Ahmed M, Evseev MM, Azyazov VN, Mebel AM, Mohamed RK, Fischer FR, Li X. Gas-phase synthesis of racemic helicenes and their potential role in the enantiomeric enrichment of sugars and amino acids in meteorites. Phys Chem Chem Phys 2022; 24:25077-25087. [PMID: 36056687 DOI: 10.1039/d2cp03084e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular origins of homochirality on Earth is not understood well, particularly how enantiomerically enriched molecules of astrobiological significance like sugars and amino acids might have been synthesized on icy grains in space preceding their delivery to Earth. Polycyclic aromatic hydrocarbons (PAHs) identified in carbonaceous chondrites could have been processed in molecular clouds by circularly polarized light prior to the depletion of enantiomerically enriched helicenes onto carbonaceous grains resulting in chiral islands. However, the fundamental low temperature reaction mechanisms leading to racemic helicenes are still unknown. Here, by exploiting synchrotron based molecular beam photoionization mass spectrometry combined with electronic structure calculations, we provide compelling testimony on barrierless, low temperature pathways leading to racemates of [5] and [6]helicene. Astrochemical modeling advocates that gas-phase reactions in molecular clouds lead to racemates of helicenes suggesting a pathway for future astronomical observation and providing a fundamental understanding for the origin of homochirality on early Earth.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.
| | - Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Rana K Mohamed
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Felix R Fischer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Xiaohu Li
- Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China.,Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China.
| |
Collapse
|
19
|
Chen F, Melle-Franco M, Mateo-Alonso A. Planar and Helical Dinaphthophenazines. J Org Chem 2022; 87:7635-7642. [PMID: 35616330 PMCID: PMC9207929 DOI: 10.1021/acs.joc.2c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis of a series of planar and helical dinaphthophenazines by cyclocondensation reactions between the newly developed 9,10-bis((triisopropylsilyl)ethynyl)anthracene-1,2-dione and different diamines. Their optoelectronic and electrochemical properties are studied by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Fengkun Chen
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
20
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
21
|
Chen Y, Zhou R, Liu X, Yang C, Wang T, Shi F, Zhang L. π-Expanded triple [5]helicenes bearing dibenzocoronene monoimide subunits. Chem Commun (Camb) 2022; 58:4671-4674. [PMID: 35319555 DOI: 10.1039/d2cc00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel π-expanded triple [5]helicenes containing three dibenzocoronene monoimide subunits have been synthesized and characterized. The helicenes exhibit low-energy conformational interconversions, as supported by NMR spectra. The single-crystal X-ray analysis reveals a C1 conformation in the solid state. Furthermore, the helicenes exhibit ambipolar transport characteristics in thin film transistors.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ruihu Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Cao Yang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Tingting Wang
- AVIC Manufacturing Technology Institute Composite Technology Center, Beijing 101300, P. R. China
| | - Fenghui Shi
- AVIC Manufacturing Technology Institute Composite Technology Center, Beijing 101300, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
22
|
Nakakuki Y, Hirose T, Sotome H, Gao M, Shimizu D, Li R, Hasegawa JY, Miyasaka H, Matsuda K. Doubly linked chiral phenanthrene oligomers for homogeneously π-extended helicenes with large effective conjugation length. Nat Commun 2022; 13:1475. [PMID: 35379795 PMCID: PMC8980098 DOI: 10.1038/s41467-022-29108-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices working on the nanometer scale. Herein, we report the synthesis of per-peri-perbenzo[5]- and [9]helicenes in addition to previously reported π-extended [7]helicene. The homogeneously π-extended helicenes can be regarded as helically fused oligo-phenanthrenes. The HOMO−LUMO gap decreased significantly from 2.14 to 1.15 eV with increasing helical length, suggesting the large effective conjugation length (ECL) of the π-extended helical framework. The large ECL of π-extended helicenes is attributed to the large orbital interactions between the phenanthrene subunits at the 9- and 10-positions, which form a polyene-like electronic structure. Based on the experimental results and DFT calculations, the ultrafast decay dynamics on the sub-picosecond timescale were attributed to the low-lying conical intersection. Helically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices but the design of nanocarbons with an absorption edge in the low energy region is challenging. Here, the authors report the synthesis of a helically fused oligophenanthrenes and demonstrate an increased effective conjugation length leading to an absorption edge in the NIR region.
Collapse
|
23
|
Kinoshita T, Fujise K, Tsurumaki E, Toyota S, Fukuhara G. A pressure-induced ratiometric signalling chemosensor: a case of helical anthracenes. Chem Commun (Camb) 2022; 58:3290-3293. [PMID: 35175268 DOI: 10.1039/d2cc00428c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the helical anthracenes, [4]HA, in which two fused anthracene ends are spatially arranged top and bottom, exhibits a ratiometric fluorescence response due to the hydrostatic pressure-dependent intramolecular [4+4] photocyclodimerization. This ratiometric signalling comes from the formation of an intramolecular stacked species and its subsequent photoreaction upon hydrostatic pressurization. The ratiometric indexes as a function of hydrostatic pressure may enable us to quantify an unknown pressure in solutions.
Collapse
Affiliation(s)
- Tomokazu Kinoshita
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Kei Fujise
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Eiji Tsurumaki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Shinji Toyota
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
24
|
Mahato B, Panda AN. Effects of Heterocyclic Ring Fusion and Chain Elongation on Chiroptical Properties of Polyaza[9]helicene: A Computational Study. J Phys Chem A 2022; 126:1412-1421. [PMID: 35192355 DOI: 10.1021/acs.jpca.2c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present work, the effect of lateral and helical extensions on the physical and chiroptical properties of azahelicenes is reported. Starting with the experimentally reported polyaza[9]helicene (9Ha), three derivatives, two with laterally fused electron-withdrawing rings and the third with larger helical length, are designed. For the excited-state properties such as UV-vis and CD spectra, performances of different DFT functionals are evaluated by comparing the energies and characters of the excited states against the ADC(2) results. CPL properties are calculated at DFT level. Among the three designed systems, pyrazine-based 9HaP shows an improved gCPL value compared to that for parent 9Ha. However, quinoxaline-based 9HaQ is found to be the worst CPL emitter with the lowest dissymmetry factor. The helically extended derivative, 11Ha, shows good CPL results, but gCPL remains smaller than that for the parent system. The CPL results are analyzed in terms of electric dipole transition moment (EDTM) and magnetic dipole transition moment (MDTM) vectors, and angles between these two vectors.
Collapse
Affiliation(s)
- Bishwanath Mahato
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
25
|
Karak P, Choudhury J. Conformationally flexible heterohelicenes as stimuli-controlled soft molecular springs. Chem Sci 2022; 13:11163-11173. [PMID: 36320460 PMCID: PMC9517708 DOI: 10.1039/d2sc04006a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Structurally engineered molecules which can behave as stimuli-controlled mechanical nanomachines such as molecular shuttles, rotors, ratchets, and springs are important in several research areas, including molecular robotics, actuation, sensing, cargo transportation, etc. Helicenes, by virtue of their unique screw-type structures, were proposed as functional models for molecular springs; however, experimental realization has remained an elusive and unmet task until now, because of the lack of appropriate helicene molecules consisting of backbone-decorated dynamic architectures. Aiming to explore this unearthed direction, we present herein a novel class of modular flexible heterohelicenes with a stimuli (acid/base and light)-responsive core and peripheral modules. By applying pH (at core-embedded free imidazole sites) and light (at backbone-tethered dithienylethene units) stimuli, we demonstrate that these flexible heterohelicenes exhibit spring-like movement, with the reversible contraction/extension of the helical pitch. The uniquely functionalized structure of these molecules played a critical role in bestowing such capability, as revealed by crystallographic, spectroscopic and computational data. Careful assessment disclosed that the protonation/deprotonation-induced reversible generation and delocalization of positive charge throughout the π-conjugated helical rim switch the operative interactions between the π clouds of the terminal overlapping arene rings of the helicenes between repulsive and attractive, leading to extension/contraction of the helical pitch. On the other hand, in the case of the light stimulus, it was analyzed that the light-induced ring-closure of the photoactive dithienylethene units created a geometric distortion causing the helicenic wings to bend outward from the helicene rim, which resulted in extension of the helical pitch. The photo-assisted (or thermal) reverse ring-opening reaction converted the system to its original conformation, thus enabling the helicene molecule to display spring-like reversible extension/contraction motion. The new insights on the reversible dynamic features of this class of heterohelicenes under the influence of external stress would guide crucial design principles of helicene-based molecular springs for potential applications. Sub-expanded flexible heterohelicenes were configured through a modular synthetic approach to experimentally demonstrate their capability of stimuli-controlled soft molecular spring-like behavior.![]()
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India
| |
Collapse
|
26
|
Symmetry and Combinatorial Concepts for Cyclopolyarenes, Nanotubes and 2D-Sheets: Enumerations, Isomers, Structures Spectra & Properties. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This review article highlights recent developments in symmetry, combinatorics, topology, entropy, chirality, spectroscopy and thermochemistry pertinent to 2D and 1D nanomaterials such as circumscribed-cyclopolyarenes and their heterocyclic analogs, carbon and heteronanotubes and heteronano wires, as well as tessellations of cyclopolyarenes, for example, kekulenes, septulenes and octulenes. We establish that the generalization of Sheehan’s modification of Pólya’s theorem to all irreducible representations of point groups yields robust generating functions for the enumeration of chiral, achiral, position isomers, NMR, multiple quantum NMR and ESR hyperfine patterns. We also show distance, degree and graph entropy based topological measures combined with techniques for distance degree vector sequences, edge and vertex partitions of nanomaterials yield robust and powerful techniques for thermochemistry, bond energies and spectroscopic computations of these species. We have demonstrated the existence of isentropic tessellations of kekulenes which were further studied using combinatorial, topological and spectral techniques. The combinatorial generating functions obtained not only enumerate the chiral and achiral isomers but also aid in the machine construction of various spectroscopic and ESR hyperfine patterns of the nanomaterials that were considered in this review. Combinatorial and topological tools can become an integral part of robust machine learning techniques for rapid computation of the combinatorial library of isomers and their properties of nanomaterials. Future applications to metal organic frameworks and fullerene polymers are pointed out.
Collapse
|
27
|
Oda S, Kawakami B, Yamasaki Y, Matsumoto R, Yoshioka M, Fukushima D, Nakatsuka S, Hatakeyama T. One-Shot Synthesis of Expanded Heterohelicene Exhibiting Narrowband Thermally Activated Delayed Fluorescence. J Am Chem Soc 2021; 144:106-112. [PMID: 34941256 DOI: 10.1021/jacs.1c11659] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An expanded heterohelicene consisting of three BN2-embedded [4]helicene subunits (V-DABNA-Mes) has been synthesized by one-shot triple borylation. The key to success is the excessive use of boron tribromide in an autoclave. Based on the multiple resonance effect of three boron and six nitrogen atoms, V-DABNA-Mes exhibited a narrowband sky-blue thermally activated delayed fluorescence with a full width at half-maximum of 16 nm. The resonating π-extension minimized the singlet-triplet energy gap and enabled rapid reverse intersystem crossing with a rate constant of 4.4 × 105 s-1. The solution-processed organic light-emitting diode device, employed as an emitter, exhibited a narrowband emission at 480 nm with a high external quantum efficiency of 22.9%.
Collapse
Affiliation(s)
- Susumu Oda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Bungo Kawakami
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yuki Yamasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryuji Matsumoto
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294, Japan
| | - Mayu Yoshioka
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294, Japan
| | - Daisuke Fukushima
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
28
|
Krzeszewski M, Ito H, Itami K. Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. J Am Chem Soc 2021; 144:862-871. [PMID: 34910487 DOI: 10.1021/jacs.1c10807] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New forms of molecular nanocarbon particularly looped polyarenes adopting various topologies contribute to the fundamental science and practical applications. Here we report the synthesis of an infinity-shaped polyarene, infinitene (1) (cyclo[c.c.c.c.c.c.e.e.e.e.e.e]dodecakisbenzene), comprising consecutively fused 12-benzene rings forming an enclosed loop with a strain energy of 60.2 kcal·mol-1. Infinitene (1) represents a topoisomer of still-hypothetical [12]circulene, and its scaffold can be formally visualized as the outcome of the "stitching" of two homochiral [6]helicene subunits by both their ends. The synthetic strategy encompasses transformation of a rationally designed dithiacyclophane to cyclophadiene through the Stevens rearrangement and pyrolysis of the corresponding S,S'-bis(oxide) followed by the photocyclization. The structure of 1 is a unique hybrid of helicene and circulene with a molecular formula of C48H24, which can be regarded as an isomer for kekulene, [6,6]carbon nanobelt ([6,6]CNB), and [12]cyclacene. Infinitene (1) is a bench-stable yellow solid with green fluorescence and soluble to common organic solvents. Its figure-eight molecular structure was unambiguously confirmed by X-ray crystallography. The scaffold of 1 is significantly compressed as manifested by a remarkably shortened distance (3.152-3.192 Å) between the centroids of two π-π stacked central benzene rings and the closest C···C distance of 2.920 Å. Fundamental photophysical properties of 1 were thoroughly elucidated by UV-vis absorption and fluorescence spectroscopic studies and density functional theory calculations. Its configurational stability enabled separation of the corresponding enantiomers (P,P) and (M,M) by a chiral HPLC. Circular dichroism (CD) and circularly polarized luminescence (CPL) measurements revealed that 1 has moderate |gCD| and |gCPL| values.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
29
|
Morioka K, Wakamatsu K, Tsurumaki E, Toyota S. Synthesis, Structures, and Properties of Helically Fused Anthraquinones with Unusually Close Carbonyl-Carbonyl Contacts. Chemistry 2021; 28:e202103694. [PMID: 34762325 DOI: 10.1002/chem.202103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/08/2022]
Abstract
Electron-deficient aromatic ketones consisting of three fused anthraquinone units were synthesized by oxidation of the corresponding fused anthracenes. X-ray analysis revealed that these compounds had nonplanar helical structures with unusual contacts, C=O⋅⋅⋅C=O 2.467 Å, between the inner carbonyl groups. The role of n⋅⋅⋅π* interactions in the short contacts was evaluated using a noncovalent interaction plot and natural bond orbital analysis. The dynamic process involving helical inversion was observed by the variable temperature 1 H NMR measurement of a derivative with 2,4,6-trimethylphenyl groups, and the barrier was estimated to be 77 kJ mol-1 . DFT calculations indicated that the helical inversion proceeded via a multistep mechanism. The characteristic spectroscopic and electrochemical data due to the electron-deficient anthraquinone units and the sterically congested carbonyl groups are discussed with the aid of DFT calculations.
Collapse
Affiliation(s)
- Kozue Morioka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
30
|
Abstract
Symmetry forms the foundation of combinatorial theories and algorithms of enumeration such as Möbius inversion, Euler totient functions, and the celebrated Pólya’s theory of enumeration under the symmetric group action. As machine learning and artificial intelligence techniques play increasingly important roles in the machine perception of music to image processing that are central to many disciplines, combinatorics, graph theory, and symmetry act as powerful bridges to the developments of algorithms for such varied applications. In this review, we bring together the confluence of music theory and spectroscopy as two primary disciplines to outline several interconnections of combinatorial and symmetry techniques in the development of algorithms for machine generation of musical patterns of the east and west and a variety of spectroscopic signatures of molecules. Combinatorial techniques in conjunction with group theory can be harnessed to generate the musical scales, intensity patterns in ESR spectra, multiple quantum NMR spectra, nuclear spin statistics of both fermions and bosons, colorings of hyperplanes of hypercubes, enumeration of chiral isomers, and vibrational modes of complex systems including supergiant fullerenes, as exemplified by our work on the golden fullerene C150,000. Combinatorial techniques are shown to yield algorithms for the enumeration and construction of musical chords and scales called ragas in music theory, as we exemplify by the machine construction of ragas and machine perception of musical patterns. We also outline the applications of Hadamard matrices and magic squares in the development of algorithms for the generation of balanced-pitch chords. Machine perception of musical, spectroscopic, and symmetry patterns are considered.
Collapse
|
31
|
Suárez-Pantiga S, Redero P, Aniban X, Simon M, Golz C, Mata RA, Alcarazo M. In-Fjord Substitution in Expanded Helicenes: Effects of the Insert on the Inversion Barrier and Helical Pitch. Chemistry 2021; 27:13358-13366. [PMID: 34288171 PMCID: PMC8519012 DOI: 10.1002/chem.202102585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 01/23/2023]
Abstract
A series of expanded helicenes of different sizes and shapes incorporating phenyl- and biphenyl-substituents at the deepest part of their fjord have been synthesized via sequential Au-catalyzed hydroarylation of appropriately designed diynes, and their racemization barriers have been calculated employing electronic structure methods. These show that the overall profile of the inversions (energies, number of transition states and intermediates, and their relative position) is intensively affected by the interplay of steric and attractive London dispersion interactions. Hence, in-fjord substitution constitutes an additional tool to handle the mechanical properties in helicenes of uncommonly large diameter. The photochemical characterization of the newly prepared helical structures is also reported.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pablo Redero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xaiza Aniban
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
32
|
Shyam Sundar M, Lo R, Dračínský M, Klepetářová B. Synthesis and Stereochemical Behavior of Dioxa[6]helicene Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Shyam Sundar
- The Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovonáměstí 2 16610 Prague Czech Republic
| | - Rabindranath Lo
- The Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovonáměstí 2 16610 Prague Czech Republic
| | - Martin Dračínský
- The Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovonáměstí 2 16610 Prague Czech Republic
| | - Blanka Klepetářová
- The Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovonáměstí 2 16610 Prague Czech Republic
| |
Collapse
|
33
|
Takaishi K, Matsumoto T, Kawataka M, Ema T. Circularly Polarized Luminescence Liquids Based on Siloxybinaphthyls: Best Binaphthyl Dihedral Angle in the Excited State. Angew Chem Int Ed Engl 2021; 60:9968-9972. [PMID: 33617100 DOI: 10.1002/anie.202101226] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/18/2022]
Abstract
A series of axially chiral 1,1'-binaphthyls with trialkylsiloxy (OSiR3 ) groups were synthesized. Among them, 1 a-c possessing OSiR3 groups at the 7,7'-positions and methyl groups at the 2,2'-positions were liquids at room temperature, and the neat liquids showed circularly polarized luminescence (CPL) (R=Bu; Φfl,liquid =0.21, |glum,liquid |=1.6×10-3 ). The |glum,liquid | value is the highest of pure liquids. These compounds remained liquid over a broad range of temperatures, down to -50 °C. Time-dependent DFT calculations indicated that in the excited state, the binaphthyls adopt a transoid conformation with a small angle between the electric and magnetic transition dipole moments (θμ,m =77°), which is a key factor in their CPL activity. The best binaphthyl dihedral angle in the excited state is approximately 110°.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tomoki Matsumoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Miyu Kawataka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
34
|
Zhou XQ, Carbo-Bague I, Siegler MA, Hilgendorf J, Basu U, Ott I, Liu R, Zhang L, Ramu V, IJzerman AP, Bonnet S. Rollover Cyclometalation vs Nitrogen Coordination in Tetrapyridyl Anticancer Gold(III) Complexes: Effect on Protein Interaction and Toxicity. JACS AU 2021; 1:380-395. [PMID: 34056633 PMCID: PMC8154207 DOI: 10.1021/jacsau.0c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 05/05/2023]
Abstract
In this work, a pair of gold(III) complexes derived from the analogous tetrapyridyl ligands H2biqbpy1 and H2biqbpy2 was prepared: the rollover, bis-cyclometalated [Au(biqbpy1)Cl ([1]Cl) and its isomer [Au(biqbpy2)Cl ([2]Cl). In [1]+, two pyridyl rings coordinate to the metal via a Au-C bond (C∧N∧N∧C coordination) and the two noncoordinated amine bridges of the ligand remain protonated, while in [2]+ all four pyridyl rings of the ligand coordinate to the metal via a Au-N bond (N∧N∧N∧N coordination), but both amine bridges are deprotonated. As a result, both complexes are monocationic, which allowed comparison of the sole effect of cyclometalation on the chemistry, protein interaction, and anticancer properties of the gold(III) compounds. Due to their identical monocationic charge and similar molecular shape, both complexes [1]Cl and [2]Cl displaced reference radioligand [3H]dofetilide equally well from cell membranes expressing the Kv11.1 (hERG) potassium channel, and more so than the tetrapyridyl ligands H2biqbpy1 and H2biqbpy2. By contrast, cyclometalation rendered [1]Cl coordinatively stable in the presence of biological thiols, while [2]Cl was reduced by a millimolar concentration of glutathione into metastable Au(I) species releasing the free ligand H2biqbpy2 and TrxR-inhibiting Au+ ions. The redox stability of [1]Cl dramatically decreased its thioredoxin reductase (TrxR) inhibition properties, compared to [2]Cl. On the other hand, unlike [2]Cl, [1]Cl aggregated into nanoparticles in FCS-containing medium, which resulted in much more efficient gold cellular uptake. [1]Cl had much more selective anticancer properties than [2]Cl and cisplatin, as it was almost 10 times more cytotoxic to human cancer cells (A549, A431, A375, and MCF7) than to noncancerous cells (MRC5). Mechanistic studies highlight the strikingly different mode of action of the two compounds: while for [1]Cl high gold cellular uptake, nuclear DNA damage, and interaction with hERG may contribute to cell killing, for [2]Cl extracellular reduction released TrxR-inhibiting Au+ ions that were taken up in minute amounts in the cytosol, and a toxic tetrapyridyl ligand also capable of binding to hERG. These results demonstrate that bis-cyclometalation is an appealing method to improve the redox stability of Au(III) compounds and to develop gold-based cytotoxic compounds that do not rely on TrxR inhibition to kill cancer cells.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Imma Carbo-Bague
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jonathan Hilgendorf
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Uttara Basu
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Rongfang Liu
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Liyan Zhang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Vadde Ramu
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
35
|
Takaishi K, Matsumoto T, Kawataka M, Ema T. Circularly Polarized Luminescence Liquids Based on Siloxybinaphthyls: Best Binaphthyl Dihedral Angle in the Excited State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Tomoki Matsumoto
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Miyu Kawataka
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
36
|
Samkian AE, Kiel GR, Jones CG, Bergman HM, Oktawiec J, Nelson HM, Tilley TD. Elucidation of Diverse Solid-State Packing in a Family of Electron-Deficient Expanded Helicenes via Microcrystal Electron Diffraction (MicroED)*. Angew Chem Int Ed Engl 2021; 60:2493-2499. [PMID: 33090649 DOI: 10.1002/anie.202012213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 02/02/2023]
Abstract
Solid-state packing plays a defining role in the properties of a molecular organic material, but it is difficult to elucidate in the absence of single crystals that are suitable for X-ray diffraction. Herein, we demonstrate the coupling of divergent synthesis with microcrystal electron diffraction (MicroED) for rapid assessment of solid-state packing motifs, using a class of chiral nanocarbons-expanded helicenes-as a proof of concept. Two highly selective oxidative dearomatizations of a readily accessible helicene provided a divergent route to four electron-deficient analogues containing quinone or quinoxaline units. Crystallization efforts consistently yielded microcrystals that were unsuitable for single-crystal X-ray diffraction, but ideal for MicroED. This technique facilitated the elucidation of solid-state structures of all five compounds with <1.1 Å resolution. The otherwise-inaccessible data revealed a range of notable packing behaviors, including four different space groups, homochirality in a crystal for a helicene with an extremely low enantiomerization barrier, and nanometer scale cavities.
Collapse
Affiliation(s)
- Adrian E Samkian
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Gavin R Kiel
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher G Jones
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Julia Oktawiec
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Yanagi T, Tanaka T, Yorimitsu H. Asymmetric systematic synthesis, structures, and (chir)optical properties of a series of dihetero[8]helicenes. Chem Sci 2021; 12:2784-2793. [PMID: 34164042 PMCID: PMC8179410 DOI: 10.1039/d1sc00044f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
A series of dihetero[8]helicenes have been systematically synthesized in enantiomerically enriched forms by utilizing the characteristic transformations of the organosulfur functionality. The synthetic route begins with assembling a ternaphthyl common synthetic intermediate from 2-naphthol and bissulfinylnaphthalene through an extended Pummerer reaction followed by facile multi-gram-scale resolution. The subsequent cyclization reactions into dioxa- and dithia[8]helicenes take place with excellent axial-to-helical chirality conversion. Dithia[8]helicene is further transformed into the nitrogen and the carbon analogs by replacing the two endocyclic sulfur atoms via SNAr-based skeletal reconstruction. The efficient systematic synthesis has enabled comprehensive evaluation of physical properties, which has clarified the effect of the endocyclic atoms on their structures and (chir)optical properties as well as the unexpected conformational stability of the common helical framework.
Collapse
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| |
Collapse
|
38
|
Fujise K, Tsurumaki E, Wakamatsu K, Toyota S. Construction of Helical Structures with Multiple Fused Anthracenes: Structures and Properties of Long Expanded Helicenes. Chemistry 2021; 27:4548-4552. [PMID: 33205503 DOI: 10.1002/chem.202004720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Polycyclic aromatic compounds consisting of four or five fused anthracene units were synthesized by PtCl2 -catalyzed cycloisomerization as novel long expanded helicenes. These compounds have helical structures with significant stacking of the terminal anthracene moieties at 0.33 nm interlayer distance. In the UV-vis and fluorescence spectra, the absorption and emission bands were red-shifted as the number of fused anthracene units was increased. The characteristic broad and long-lived emission bands of the long analogues are explained by the excimer-like stabilization of the excited state. These photophysical data as well as their cyclic voltammetric data are discussed on the basis of the π-conjugation and interlayer π⋅⋅⋅π interactions in the molecular structures and the molecular orbitals. The barrier and mechanism of helical inversion are also reported.
Collapse
Affiliation(s)
- Kei Fujise
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
39
|
Kubo H, Hirose T, Nakashima T, Kawai T, Hasegawa JY, Matsuda K. Tuning Transition Electric and Magnetic Dipole Moments: [7]Helicenes Showing Intense Circularly Polarized Luminescence. J Phys Chem Lett 2021; 12:686-695. [PMID: 33399471 DOI: 10.1021/acs.jpclett.0c03174] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helicenes are promising candidates for chiral optoelectronic materials because of their helically twisted π-conjugated system. However, the emission intensity of unsubstituted helicenes is very weak (Φf < 0.05) due to a small oscillator strength for the S1 → S0 transition. In this work, we investigated the substitution position of the [7]helicene framework so that the S1 → S0 transition has a large transition magnetic dipole moment (TMDM) and is partially symmetry-allowed. A [7]helicene derivative thus designed showed a large fluorescence emission rate (kf = 0.02 ns-1) and a large TMDM for the S1 → S0 transition (|m| = 2.37 × 10-20 erg·Gauss-1), which are more than 10 times greater than those of unsubstituted [7]helicene (kf = 0.001 ns-1, |m| = 0.045 × 10-20 erg·Gauss-1). As a result, we achieved the [7]helicene derivative whose dissymmetry factor of CPL and fluorescence quantum yield were both high (|gCPL| = 1.3 × 10-2, Φf = 0.17) in the solution phase.
Collapse
Affiliation(s)
- Hiromu Kubo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Nakashima
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
40
|
Xiao X, Pedersen SK, Aranda D, Yang J, Wiscons RA, Pittelkow M, Steigerwald ML, Santoro F, Schuster NJ, Nuckolls C. Chirality Amplified: Long, Discrete Helicene Nanoribbons. J Am Chem Soc 2020; 143:983-991. [DOI: 10.1021/jacs.0c11260] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Xiao
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Stephan K. Pedersen
- Department of Chemistry, Columbia University, New York 10027, United States
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Daniel Aranda
- Departamente de Quimica Fisica, Universidad de Malaga, Bulevar Louis Pasteur 31, Malaga 29010, Spain
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Jingjing Yang
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Ren A. Wiscons
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | | | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York 10027, United States
| |
Collapse
|
41
|
Ravat P. Carbo[n]helicenes Restricted to Enantiomerize: An Insight into the Design Process of Configurationally Stable Functional Chiral PAHs. Chemistry 2020; 27:3957-3967. [PMID: 33034405 PMCID: PMC7986117 DOI: 10.1002/chem.202004488] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/27/2022]
Abstract
The most important stereodynamic feature of carbo[n]helicenes is the interconversion of their enantiomers. The Gibbs activation energy (ΔG≠(T)) of this process, which determines the rate of enantiomerization, dictates the configurational stability of [n]helicenes. High values of ΔG≠(T) are required for applications of functional chiral molecules incorporating [n]helicenes or helicene substructures. This minireview provides an overview of the mechanism, recent developments, and factors affecting the enantiomerization of [n]helicenes, which will accelerate the design process of configurationally stable functional chiral molecules based on helicene substructures. Additionally, this minireview addresses the misconception and irregularities in the recent literature on how the terms “racemization” and “enantiomerization” are used as well as how the activation parameters are calculated for [n]helicenes and related compounds.
Collapse
Affiliation(s)
- Prince Ravat
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
42
|
Redero P, Hartung T, Zhang J, Nicholls LDM, Zichen G, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of 1-Aryl Benzo[5]helicenes Using BINOL-Derived Cationic Phosphonites as Ancillary Ligands. Angew Chem Int Ed Engl 2020; 59:23527-23531. [PMID: 32896999 PMCID: PMC7756570 DOI: 10.1002/anie.202010021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Indexed: 11/21/2022]
Abstract
The synthesis of unprecedented BINOL-derived cationic phosphonites is described. Through the use of these phosphanes as ancillary ligands in AuI catalysis, a highly regio- and enantioselective assembly of appropriately designed alkynes into 1-(aryl)benzo[5]carbohelicenes is achieved. The modular synthesis of these ligands and the enhanced reactivity that they impart to AuI -centers after coordination have been found to be the key features that allow an optimization of the reaction conditions until the desired benzo[5]helicenes are obtained with high yield and enantioselectivity.
Collapse
Affiliation(s)
- Pablo Redero
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Thierry Hartung
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Jianwei Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Leo D. M. Nicholls
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Guo Zichen
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Martin Simon
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Christopher Golz
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| |
Collapse
|
43
|
Shimajiri T, Suzuki T, Ishigaki Y. Flexible C−C Bonds: Reversible Expansion, Contraction, Formation, and Scission of Extremely Elongated Single Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Shimajiri
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
44
|
Samkian AE, Kiel GR, Jones CG, Bergman HM, Oktawiec J, Nelson HM, Tilley TD. Elucidation of Diverse Solid‐State Packing in a Family of Electron‐Deficient Expanded Helicenes via Microcrystal Electron Diffraction (MicroED)**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Adrian E. Samkian
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Gavin R. Kiel
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Christopher G. Jones
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Harrison M. Bergman
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Julia Oktawiec
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Hosea M. Nelson
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - T. Don Tilley
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
45
|
Hiroto S. Helical Pitch Dependent Optical Properties of π-Extended Aza[5]helicene Radical Cations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
46
|
Liu SH, Hou H, Deng ZY, Wang XR, Tang C, Ju YY, Feng LB, Tan YZ. Three-dimensional conjugated macrocycle with large polyaromatic blocks constructed by post-π-extension. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Redero P, Hartung T, Zhang J, Nicholls LDM, Zichen G, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of 1‐Aryl Benzo[5]helicenes Using BINOL‐Derived Cationic Phosphonites as Ancillary Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo Redero
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Thierry Hartung
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Jianwei Zhang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Leo D. M. Nicholls
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Guo Zichen
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| |
Collapse
|
48
|
Maeda C, Nomoto S, Takaishi K, Ema T. Aggregation-Induced Circularly Polarized Luminescence from Boron Complexes with a Carbazolyl Schiff Base. Chemistry 2020; 26:13016-13021. [PMID: 32297393 DOI: 10.1002/chem.202001463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
A variety of carbazolyl-appended Schiff bases were readily synthesized from 1-formylcarbazoles and aniline derivatives. Boron complexation of the resulting ligands allowed for facile preparation of new carbazole-based BODIPY analogues showing solid-state fluorescence. Furthermore, some dyes were converted into chiral compounds through the Et2 AlCl-mediated incorporation of a binaphthyl unit. The chiral dyes showed aggregation-induced fluorescence and circularly polarized luminescence (CPL) with the ΦF and glum of up to 0.22 and -3.5×10-3 , respectively, in the solid state. The solid-state fluorescence and CPL were well characterized by the crystal packing analyses and DFT calculations.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Shuichi Nomoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
49
|
Shimajiri T, Suzuki T, Ishigaki Y. Flexible C-C Bonds: Reversible Expansion, Contraction, Formation, and Scission of Extremely Elongated Single Bonds. Angew Chem Int Ed Engl 2020; 59:22252-22257. [PMID: 32830906 DOI: 10.1002/anie.202010615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/03/2023]
Abstract
Since carbon-carbon (C-C) covalent bonds are rigid and robust, the bond length is, in general, nearly constant and depends only on the bond order and hybrid orbitals. We report herein direct visualization of the reversible expansion and contraction of a C(sp3 )-C(sp3 ) single bond by light and heat. This flexibility of a C-C bond was demonstrated by X-ray analysis and Raman spectroscopy of hexaphenylethane (HPE)-type hydrocarbons with two spiro-dibenzocycloheptatriene units, the intramolecular [2+2] photocyclization of which and thermal cleavage of the resulting cyclobutane ring both occur in a single-crystalline phase. The force constant of the contracted C-C bond is 1.6 times greater than that of the expanded bond. Since formation of the cyclobutane ring and contraction of the C-C bond lower the HOMO level by approximately 1 eV, the oxidative properties of these HPEs with a flexible C-C bond can be deactivated/activated by light/heat.
Collapse
Affiliation(s)
- Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
50
|
Fujise K, Tsurumaki E, Fukuhara G, Hara N, Imai Y, Toyota S. Multiple Fused Anthracenes as Helical Polycyclic Aromatic Hydrocarbon Motif for Chiroptical Performance Enhancement. Chem Asian J 2020; 15:2456-2461. [DOI: 10.1002/asia.202000394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Kei Fujise
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| | - Eiji Tsurumaki
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| | - Gaku Fukuhara
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Nobuyuki Hara
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi Osaka Osaka 577-8502 Japan
| | - Shinji Toyota
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|