1
|
Keiser PT, Zhang W, Ricca M, Wacquiez A, Grimins A, Cencic R, Patten JJ, Shah P, Padilha E, Connor JH, Pelletier J, Lyons SM, Saeed M, Brown LE, Porco JA, Davey RA. Amidino-rocaglates (ADRs), a class of synthetic rocaglates, are potent inhibitors of SARS-CoV-2 replication through inhibition of viral protein synthesis. Antiviral Res 2024; 230:105976. [PMID: 39117283 PMCID: PMC11434215 DOI: 10.1016/j.antiviral.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.
Collapse
Affiliation(s)
- Patrick T Keiser
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Wenhan Zhang
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Michael Ricca
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Alan Wacquiez
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Autumn Grimins
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Regina Cencic
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Pranav Shah
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - Elias Padilha
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - John H Connor
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Jerry Pelletier
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lauren E Brown
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA.
| |
Collapse
|
2
|
Thirman HL, Hayes MJ, Brown LE, Porco JA, Irish JM. Single Cell Profiling Distinguishes Leukemia-Selective Chemotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591362. [PMID: 38826485 PMCID: PMC11142275 DOI: 10.1101/2024.05.01.591362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A central challenge in chemical biology is to distinguish molecular families in which small structural changes trigger large changes in cell biology. Such families might be ideal scaffolds for developing cell-selective chemical effectors - for example, molecules that activate DNA damage responses in malignant cells while sparing healthy cells. Across closely related structural variants, subtle structural changes have the potential to result in contrasting bioactivity patterns across different cell types. Here, we tested a 600-compound Diversity Set of screening molecules from the Boston University Center for Molecular Discovery (BU-CMD) in a novel phospho-flow assay that tracked fundamental cell biological processes, including DNA damage response, apoptosis, M-phase cell cycle, and protein synthesis in MV411 leukemia cells. Among the chemotypes screened, synthetic congeners of the rocaglate family were especially bioactive. In follow-up studies, 37 rocaglates were selected and deeply characterized using 12 million additional cellular measurements across MV411 leukemia cells and healthy peripheral blood mononuclear cells. Of the selected rocaglates, 92% displayed significant bioactivity in human cells, and 65% selectively induced DNA damage responses in leukemia and not healthy human blood cells. Furthermore, the signaling and cell-type selectivity were connected to structural features of rocaglate subfamilies. In particular, three rocaglates from the rocaglate pyrimidinone (RP) structural subclass were the only molecules that activated exceptional DNA damage responses in leukemia cells without activating a detectable DNA damage response in healthy cells. These results indicate that the RP subset should be extensively characterized for anticancer therapeutic potential as it relates to the DNA damage response. This single cell profiling approach advances a chemical biology platform to dissect how systematic variations in chemical structure can profoundly and differentially impact basic functions of healthy and diseased cells.
Collapse
Affiliation(s)
- Hannah L. Thirman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Madeline J. Hayes
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Lengqvist J, Chernobrovkin A, Garcia-Gutierrez SB, Cencic R, Patel K, Huang S, Brown LE, Emili A, Porco JA. Proteomic Discovery of RNA-Protein Molecular Clamps Using a Thermal Shift Assay with ATP and RNA (TSAR). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590252. [PMID: 38659867 PMCID: PMC11042367 DOI: 10.1101/2024.04.19.590252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe the Thermal Shift Assay with ATP and RNA (TSAR) as a template for proteome-wide discovery of substrate-dependent ligand binding. Using proteomic thermal shift assays, we show that simple biochemical additives can facilitate detection of target engagement in native cell lysates. We apply our approach to rocaglates, a family of molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) family of RNA helicases. To identify unexpected interactions, we optimized a target class-specific thermal denaturation window and evaluated ATP analog and RNA probe dependencies for key rocaglate-DDX interactions. We report novel DDX targets of the rocaglate clamping spectrum, confirm that DDX3X is a common target of several widely studied analogs, and provide structural insights into divergent DDX3X affinities between synthetic rocaglates. We independently validate novel targets of high-profile rocaglates, including the clinical candidate Zotatifin (eFT226), using limited proteolysis-mass spectrometry and fluorescence polarization experiments. Taken together, our study provides a model for screening uncompetitive inhibitors using a systematic chemical-proteomics approach to uncover actionable DDX targets, clearing a path towards characterization of novel molecular clamps and associated RNA helicase targets.
Collapse
Affiliation(s)
- Stanley I. Goldstein
- BU Target Discovery Laboratory (BU-TDL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, MA, USA
| | - Alice C. Fan
- BU Target Discovery Laboratory (BU-TDL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Sai K. Naineni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | | | | | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - John A. Porco
- BU Target Discovery Laboratory (BU-TDL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Victoria C, Schulz G, Klöhn M, Weber S, Holicki CM, Brüggemann Y, Becker M, Gerold G, Eiden M, Groschup MH, Steinmann E, Kirschning A. Halogenated Rocaglate Derivatives: Pan-antiviral Agents against Hepatitis E Virus and Emerging Viruses. J Med Chem 2024; 67:289-321. [PMID: 38127656 PMCID: PMC10788925 DOI: 10.1021/acs.jmedchem.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions 4', 6 and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.
Collapse
Affiliation(s)
- Catherine Victoria
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Göran Schulz
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Mara Klöhn
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Saskia Weber
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Cora M. Holicki
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Yannick Brüggemann
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Miriam Becker
- Institute
for Biochemistry and Research Center for Emerging Infections and Zoonoses
(RIZ), University of Veterinary Medicine
Hannover, Bünteweg
2, 30559 Hannover, Germany
| | - Gisa Gerold
- Institute
for Biochemistry and Research Center for Emerging Infections and Zoonoses
(RIZ), University of Veterinary Medicine
Hannover, Bünteweg
2, 30559 Hannover, Germany
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, 901 87 Umeå, Sweden
- Department
of Clinical Microbiology, Virology, Umeå
University, 901 87 Umeå, Sweden
| | - Martin Eiden
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin H. Groschup
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Eike Steinmann
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Andreas Kirschning
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| |
Collapse
|
5
|
Zhang J, He Z. Lewis Base-Catalyzed Intramolecular Vinylogous Aldol Reaction and Chemoselective Syntheses of 3-Hydroxy-2,3-Disubstituted Dihydrobenzofurans and Indolines. J Org Chem 2023; 88:13102-13114. [PMID: 37672638 DOI: 10.1021/acs.joc.3c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A Lewis base-catalyzed intramolecular vinylogous aldol reaction of o-(allyloxy)phenyl ketoesters or o-(allylamino)phenyl ketoesters has been developed. This reaction provides ready access to 3-hydroxy-2,3-disubstituted dihydrobenzofurans and indolines in high yields with excellent chemoselectivity and diastereoselectivity. An acid-promoted dehydration of such products further extends the utility of the reaction to the synthesis of 2-alkenyl benzofurans and indoles.
Collapse
Affiliation(s)
- Jiayong Zhang
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhengjie He
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
6
|
Naineni SK, Cencic R, Robert F, Brown LE, Haque M, Scott-Talib J, Sénéchal P, Schmeing TM, Porco JA, Pelletier J. Exploring the targeting spectrum of rocaglates among eIF4A homologs. RNA (NEW YORK, N.Y.) 2023; 29:826-835. [PMID: 36882295 PMCID: PMC10187672 DOI: 10.1261/rna.079318.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Inhibition of eukaryotic translation initiation through unscheduled RNA clamping of the DEAD-box (DDX) RNA helicases eIF4A1 and eIF4A2 has been documented for pateamine A (PatA) and rocaglates-two structurally different classes of compounds that share overlapping binding sites on eIF4A. Clamping of eIF4A to RNA causes steric blocks that interfere with ribosome binding and scanning, rationalizing the potency of these molecules since not all eIF4A molecules need to be engaged to elicit a biological effect. In addition to targeting translation, PatA and analogs have also been shown to target the eIF4A homolog, eIF4A3-a helicase necessary for exon junction complex (EJC) formation. EJCs are deposited on mRNAs upstream of exon-exon junctions and, when present downstream from premature termination codons (PTCs), participate in nonsense-mediated decay (NMD), a quality control mechanism aimed at preventing the production of dominant-negative or gain-of-function polypeptides from faulty mRNA transcripts. We find that rocaglates can also interact with eIF4A3 to induce RNA clamping. Rocaglates also inhibit EJC-dependent NMD in mammalian cells, but this does not appear to be due to induced eIF4A3-RNA clamping, but rather a secondary consequence of translation inhibition incurred by clamping eIF4A1 and eIF4A2 to mRNA.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Massachusetts 02215, USA
| | - Minza Haque
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | | | - Patrick Sénéchal
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Quebec, H3G 0B1 Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Massachusetts 02215, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Quebec, H3G 0B1 Canada
- McGill Research Center on Complex Traits, McGill University, Quebec, H3G 0B1 Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Quebec, H3A 1A3 Canada
- Department of Oncology, McGill University, Quebec, H4A 3T2 Canada
| |
Collapse
|
7
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
8
|
Shaashua L, Ben-Shmuel A, Pevsner-Fischer M, Friedman G, Levi-Galibov O, Nandakumar S, Barki D, Nevo R, Brown LE, Zhang W, Stein Y, Lior C, Kim HS, Bojmar L, Jarnagin WR, Lecomte N, Mayer S, Stok R, Bishara H, Hamodi R, Levy-Lahad E, Golan T, Porco JA, Iacobuzio-Donahue CA, Schultz N, Tuveson DA, Lyden D, Kelsen D, Scherz-Shouval R. BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nat Commun 2022; 13:6513. [PMID: 36316305 PMCID: PMC9622893 DOI: 10.1038/s41467-022-34081-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.
Collapse
Affiliation(s)
- Lee Shaashua
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Ben-Shmuel
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meirav Pevsner-Fischer
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Gil Friedman
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oshrat Levi-Galibov
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Subhiksha Nandakumar
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Debra Barki
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lauren E. Brown
- grid.189504.10000 0004 1936 7558Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA USA
| | - Wenhan Zhang
- grid.189504.10000 0004 1936 7558Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA USA
| | - Yaniv Stein
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Chen Lior
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Han Sang Kim
- grid.5386.8000000041936877XChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA ,grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Linda Bojmar
- grid.5386.8000000041936877XChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA ,grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - William R. Jarnagin
- grid.51462.340000 0001 2171 9952Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Nicolas Lecomte
- grid.51462.340000 0001 2171 9952David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Shimrit Mayer
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Roni Stok
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hend Bishara
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Rawand Hamodi
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ephrat Levy-Lahad
- grid.415593.f0000 0004 0470 7791The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talia Golan
- grid.12136.370000 0004 1937 0546Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - John A. Porco
- grid.189504.10000 0004 1936 7558Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA USA
| | - Christine A. Iacobuzio-Donahue
- grid.51462.340000 0001 2171 9952David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Nikolaus Schultz
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - David A. Tuveson
- grid.225279.90000 0004 0387 3667Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY USA
| | - David Lyden
- grid.5386.8000000041936877XChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA
| | - David Kelsen
- grid.5386.8000000041936877XGastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY USA
| | - Ruth Scherz-Shouval
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Praditya DF, Klöhn M, Brüggemann Y, Brown LE, Porco JA, Zhang W, Kinast V, Kirschning A, Vondran FWR, Todt D, Steinmann E. Identification of structurally re-engineered rocaglates as inhibitors against hepatitis E virus replication. Antiviral Res 2022; 204:105359. [PMID: 35728703 PMCID: PMC9731315 DOI: 10.1016/j.antiviral.2022.105359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Hepatitis E virus (HEV) infections are a leading cause of acute viral hepatitis in humans and pose a considerable threat to public health. Current standard of care treatment is limited to the off-label use of nucleoside-analog ribavirin (RBV) and PEGylated interferon-α, both of which are associated with significant side effects and provide limited efficacy. In the past few years, a promising natural product compound class of eukaryotic initiation factor 4A (eIF4A) inhibitors (translation initiation inhibitors), called rocaglates, were identified as antiviral agents against RNA virus infections. In the present study, we evaluated a total of 205 synthetic rocaglate derivatives from the BU-CMD compound library for their antiviral properties against HEV. At least eleven compounds showed inhibitory activities against the HEV genotype 3 (HEV-3) subgenomic replicon below 30 nM (EC50 value) as determined by Gaussia luciferase assay. Three amidino-rocaglates (ADRs) (CMLD012073, CMLD012118, and CMLD012612) possessed antiviral activity against HEV with EC50 values between 1 and 9 nM. In addition, these three selected compounds inhibited subgenomic replicons of different genotypes (HEV-1 [Sar55], wild boar HEV-3 [83-2] and human HEV-3 [p6]) in a dose-dependent manner and at low nanomolar concentrations. Furthermore, tested ADRs tend to be better tolerated in primary hepatocytes than hepatoma cancer cell lines and combination treatment of CMLD012118 with RBV and interferon-α (IFN-α) showed that CMLD012118 acts additive to RBV and IFN-α treatment. In conclusion, our results indicate that ADRs, especially CMLD012073, CMLD012118, and CMLD012612 may prove to be potential therapeutic candidates for the treatment of HEV infections and may contribute to the discovery of pan-genotypic inhibitors in the future.
Collapse
Affiliation(s)
- Dimas F Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; Research Center for Vaccine and Drugs, The National Research and Innovation Agency, Cibinong, Indonesia.
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.
| | - Lauren E Brown
- Department of Chemistry, Boston University, Boston, MA, 02215, USA; Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.
| | - John A Porco
- Department of Chemistry, Boston University, Boston, MA, 02215, USA; Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.
| | - Wenhan Zhang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA; Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.
| | - Volker Kinast
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743, Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
10
|
Kittakoop P, Darshana D, Sangsuwan R, Mahidol C. Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Agarwal G, Chang LS, Soejarto DD, Kinghorn AD. Update on Phytochemical and Biological Studies on Rocaglate Derivatives from Aglaia Species. PLANTA MEDICA 2021; 87:937-948. [PMID: 33784769 PMCID: PMC8481333 DOI: 10.1055/a-1401-9562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
With about 120 species, Aglaia is one of the largest genera of the plant family Meliaceae (the mahogany plants). It is native to the tropical rainforests of the Indo-Australian region, ranging from India and Sri Lanka eastward to Polynesia and Micronesia. Various Aglaia species have been investigated since the 1960s for their phytochemical constituents and biological properties, with the cyclopenta[b]benzofurans (rocaglates or flavaglines) being of particular interest. Phytochemists, medicinal chemists, and biologists have conducted extensive research in establishing these secondary metabolites as potential lead compounds with antineoplastic and antiviral effects, among others. The varied biological properties of rocaglates can be attributed to their unusual structures and their ability to act as inhibitors of the eukaryotic translation initiation factor 4A (eIF4A), affecting protein translation. The present review provides an update on the recently reported phytochemical constituents of Aglaia species, focusing on rocaglate derivatives. Furthermore, laboratory work performed on investigating the biological activities of these chemical constituents is also covered.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
- Science and Education, Field Museum, Chicago, Illinois, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
12
|
Kamlar M, Henriksson E, Císařová I, Malo M, Sundén H. Synthesis of cis-Oriented Vicinal Diphenylethylenes through a Lewis Acid-Promoted Annulation of Oxotriphenylhexanoates. J Org Chem 2021; 86:8660-8671. [PMID: 34138578 PMCID: PMC8279482 DOI: 10.1021/acs.joc.1c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study explores the synthesis of cyclic cis-vicinal phenyl ethylenes from oxotriphenylhexanoates. The reaction is a BBr3-promoted cyclization of 1,6-ketoesters (1) to five-membered diketo compounds (2). The synthesis is interesting as it constitutes one of the few examples of modular stereoselective synthesis of structures with a cis-oriented vicinal diphenylethylene. The core structure of 2 can be smoothly derivatized, which makes it a promising synthetic building block for further stereoselective synthetic applications.
Collapse
Affiliation(s)
- Martin Kamlar
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Elin Henriksson
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Marcus Malo
- University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.,University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
13
|
Levi-Galibov O, Lavon H, Wassermann-Dozorets R, Pevsner-Fischer M, Mayer S, Wershof E, Stein Y, Brown LE, Zhang W, Friedman G, Nevo R, Golani O, Katz LH, Yaeger R, Laish I, Porco JA, Sahai E, Shouval DS, Kelsen D, Scherz-Shouval R. Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat Commun 2020; 11:6245. [PMID: 33288768 PMCID: PMC7721883 DOI: 10.1038/s41467-020-20054-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.
Collapse
Affiliation(s)
- Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Wenhan Zhang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior H Katz
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Gastroenterology and Hepatology, Hadassah Medical Center, Jerusalem, Israel
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ido Laish
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | | | - Dror S Shouval
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - David Kelsen
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Wang D, Tabti R, Elderwish S, Djehal A, Chouha N, Pinot F, Yu P, Nebigil CG, Désaubry L. SFPH proteins as therapeutic targets for a myriad of diseases. Bioorg Med Chem Lett 2020; 30:127600. [PMID: 33035678 PMCID: PMC7536521 DOI: 10.1016/j.bmcl.2020.127600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain is present in an evolutionarily conserved family of proteins that regulate a myriad of signaling pathways in archaea, bacteria and eukaryotes. The most studied SPFH proteins, prohibitins, have already been targeted by different families of small molecules to induce anticancer, cardioprotective, anti-inflammatory, antiviral, and antiosteoporotic activities. Ligands of other SPFH proteins have also been identified and shown to act as anesthetics, anti-allodynia, anticancer, and anti-inflammatory agents. These findings indicate that modulators of human or bacterial SPFH proteins can be developed to treat a wide variety of human disorders.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France
| | - Sabria Elderwish
- INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France
| | - Amel Djehal
- Superior National School Biotechnology Taoufik Khaznadar, Constantine, Algeria
| | - Nora Chouha
- University of Batna 2, Faculty of Biology, Batna, Algeria
| | - Franck Pinot
- University of Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Canan G Nebigil
- INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
15
|
Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L. Flavaglines as natural products targeting eIF4A and prohibitins: From traditional Chinese medicine to antiviral activity against coronaviruses. Eur J Med Chem 2020; 203:112653. [PMID: 32693294 PMCID: PMC7362831 DOI: 10.1016/j.ejmech.2020.112653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Canan G Nebigil
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
| | - Nadia Benkirane-Jessel
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg, 8 Rue de Ste Elisabeth, 67000, Strasbourg, France
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Laurent Désaubry
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
| |
Collapse
|
16
|
Abstract
The defining feature of the Nazarov cyclization is a 4π-conrotatory electrocyclization, resulting in the stereospecific formation of functionalized cyclopentanones. The reaction provides access to structural motifs that are found in many natural products and drug targets. Harnessing the full potential of the Nazarov cyclization broadens its utility by enabling the development of new methodologies and synthetic strategies. To achieve these goals through efficient cyclization design, it is helpful to think of the reaction as a two-stage process. The first stage involves a 4π-electrocyclization leading to the formation of an allylic cation, and the second stage corresponds to the fate of this cationic intermediate. With a complete understanding of the discrete events that characterize the overall process, one can optimize reactivity and control the selectivity of the different Stage 2 pathways.In this Account, we describe the development of methods that render the Nazarov cyclization catalytic and chemoselective, focusing specifically on advances made in our lab between 2002 and 2015. The initial discovery made in our lab involved reactions of electronically asymmetric ("polarized") substrates, which cyclize efficiently in the catalytic regime using mild Lewis acidic reagents. These cyclizations also exhibit selective eliminative behavior, increasing their synthetic utility. Research directed toward catalytic asymmetric Nazarov cyclization led to the serendipitous discovery of a 4π-cyclization coupled to a well-behaved Wagner-Meerwein rearrangement, representing an underexplored Stage 2 process. With careful choice of promoter and loading, it is possible to access either the rearrangement or the elimination pathway. Additional experimental and computational studies provided an effective model for anticipating the migratory behavior of substiutents in the rearrangements. Problem-solving efforts prompted investigation of alternative methods for generating pentadienyl cation intermediates, including oxidation of allenol ethers and addition of nucleophiles to dienyl diketones. These Nazarov cyclization variants afford cyclopentenone products with vicinal stereogenic centers and a different arrangement of substituents around the ring. A nucleophilic addition/cyclization/elimination sequence can be executed enantioselectively using catalytic amounts of a nonracemic chiral tertiary amine.In summary, the discovery and development of several new variations on the Nazarov electrocyclization are described, along with synthetic applications. This work illustrates how strongly substitution patterns can impact the efficiency of the 4π-electrocyclization (Stage 1), allowing for mild Lewis acid catalysis. Over the course of these studies, we have also identified new ways to access the critical pentadienyl cation intermediates and demonstrated strategies that exploit and control the different cationic pathways available post-electrocyclization (Stage 2 processes). These advances in Nazarov chemistry were subsequently employed in the synthesis of natural product targets such as (±)-merrilactone A, (±)-rocaglamide, and (±)-enokipodin B.
Collapse
Affiliation(s)
- Alison J. Frontier
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Jackson J. Hernandez
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
Hussain M, Liu J. Practical synthesis of 4H-pyrido[1, 2-a]pyrimidin-4-ones using ethylene glycol as a promoting solvent. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Wang D, Tabti R, Elderwish S, Abou-Hamdan H, Djehal A, Yu P, Yurugi H, Rajalingam K, Nebigil CG, Désaubry L. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell Mol Life Sci 2020; 77:3525-3546. [PMID: 32062751 PMCID: PMC11104971 DOI: 10.1007/s00018-020-03475-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Sabria Elderwish
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Hussein Abou-Hamdan
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Amel Djehal
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Canan G Nebigil
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France.
| |
Collapse
|
19
|
Li Z, Feng TT, Zhou Y, Tian YP, Zhou W, Liu XL. [1,5]-Proton transfer as a key strategy: Rapid access to natural product-inspired library of 3-pyrazolyl isoflavones. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Maisto SK, Leersnyder AP, Pudner GL, Scheerer JR. Synthesis of Pyrrolopyrazinones by Construction of the Pyrrole Ring onto an Intact Diketopiperazine. J Org Chem 2020; 85:9264-9271. [PMID: 32602717 PMCID: PMC7464856 DOI: 10.1021/acs.joc.0c01263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reveals an alternative sequence for the synthesis of compounds that contain the pyrrolodiketopiperazine structural motif. Starting with a diketopiperazine precursor, a mild aldol condensation precedes pyrrole annulation and bicyclic ring fusion. The derived intermediate aldol condensation products, which bear either a protected carbonyl or a functionalized alkyne, can be cyclized to the pyrrolodiketopiperazine by protic or gold Lewis acid catalysis.
Collapse
Affiliation(s)
- Susanna K Maisto
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Angela P Leersnyder
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Gwyneth L Pudner
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R Scheerer
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
21
|
Shen D, Zhang W, Li Z, Shi S, Xu Y. Nickel/NHC‐Catalyzed Enantioselective Cyclization of Pyridones and Pyrimidones with Tethered Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901582] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Di Shen
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education)Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Wu‐Bin Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Zhiyang Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education)Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| |
Collapse
|
22
|
Rana A, Mahajan B, Ghosh S, Srihari P, Singh AK. Integrated multi-step continuous flow synthesis of daclatasvir without intermediate purification and solvent exchange. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00323a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid transmission of viral diseases can cause massive economic damage and loss of life.
Collapse
Affiliation(s)
- Abhilash Rana
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Bhushan Mahajan
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Subhash Ghosh
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Pabbaraja Srihari
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ajay K. Singh
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
23
|
Ni C, Gao J, Fang X. Cu(i)-Catalyzed asymmetric intramolecular addition of aryl pinacolboronic esters to unactivated ketones: enantioselective synthesis of 2,3-dihydrobenzofuran-3-ol derivatives. Chem Commun (Camb) 2020; 56:2654-2657. [DOI: 10.1039/c9cc09653a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An (S,S)-QuinoxP*-supported Cu(i) catalyst has been disclosed for highly enantioselective intramolecular addition of aryl pinacolboronic esters to unactivated ketones under mild reaction conditions.
Collapse
Affiliation(s)
- Chunjie Ni
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jihui Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
24
|
Zhang W, Chu J, Cyr AM, Yueh H, Brown LE, Wang TT, Pelletier J, Porco JA. Intercepted Retro-Nazarov Reaction: Syntheses of Amidino-Rocaglate Derivatives and Their Biological Evaluation as eIF4A Inhibitors. J Am Chem Soc 2019; 141:12891-12900. [PMID: 31310112 PMCID: PMC6693944 DOI: 10.1021/jacs.9b06446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rocaglates are a family of natural products isolated from the genus Aglaia which possess a highly substituted cyclopenta[b]benzofuran skeleton and inhibit cap-dependent protein synthesis. Rocaglates are attractive compounds due to their potential for inhibiting tumor cell maintenance in vivo by specifically targeting eukaryotic initiation factor 4A (eIF4A) and interfering with recruitment of ribosomes to mRNA. In this paper, we describe an intercepted retro-Nazarov reaction utilizing intramolecular tosyl migration to generate a reactive oxyallyl cation on the rocaglate skeleton. Trapping of the oxyallyl cation with a diverse range of nucleophiles has been used to generate over 50 novel amidino-rocaglate (ADR) and amino-rocaglate derivatives. Subsequently, these derivatives were evaluated for their ability to inhibit cap-dependent protein synthesis where they were found to outperform previous lead compounds including the rocaglate hydroxamate CR-1-31-B.
Collapse
Affiliation(s)
- Wenhan Zhang
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
| | - Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - Andrew M. Cyr
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
| | - Han Yueh
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
| | - Tony T. Wang
- Laboratory of Vector-borne Viral Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, H3G 1Y6
- Department of Oncology, McGill University, Montreal, Quebec, Canada, H3G 1Y6
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
| |
Collapse
|
25
|
Wen S, Boyce JH, Kandappa SK, Sivaguru J, Porco JA. Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (-)-Nemorosone and (-)-6- epi-Garcimultiflorone A. J Am Chem Soc 2019; 141:11315-11321. [PMID: 31264859 DOI: 10.1021/jacs.9b05600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regiodivergent photocyclization of dearomatized acylphloroglucinol substrates has been developed to produce type A polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives using an excited-state intramolecular proton transfer (ESIPT) process. Using this strategy, we achieved the enantioselective total syntheses of the type A PPAPs (-)-nemorosone and (-)-6-epi-garcimultiflorone A. Diverse photocyclization substrates have been investigated leading to divergent photocyclization processes as a function of tether length. Photophysical studies were performed, and photocyclization mechanisms were proposed based on investigation of various substrates as well as deuterium-labeling experiments.
Collapse
Affiliation(s)
- Saishuai Wen
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Jonathan H Boyce
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Sunil K Kandappa
- Center for Photochemical Sciences and the Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403-0001 , United States
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and the Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403-0001 , United States
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|