1
|
Tang Z, Lan W, Wen K, Li W, Wang T, Zhou D, Su H. Spontaneous assembly of a class of small molecule prodrugs directed by SN38. J Mater Chem B 2024; 12:9921-9929. [PMID: 39252501 DOI: 10.1039/d4tb01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Small molecule self-assembling prodrugs (SAPDs) are an emerging class of amphiphilic monomers that can aggregate into supramolecular nanostructures with high drug loading identical to that of the individual prodrug. Despite great progress in creating nanodrugs via nanoprecipitation, the direct self-assembly of small molecule SAPDs in aqueous solution remains challenging, as the proper hydrophilic-hydrophobic balance and intermolecular interactions have to be rationally considered. We report a class of small molecule SAPDs by conjugating the anticancer drug SN38 as the structure-directing component with various hydrophilic auxiliaries (i.e., oligo ethylene glycol (OEG) of different lengths, amino, and carboxyl groups) via a self-immolative disulfanyl-ethyl carbonate linker. Driven by π-π interactions between SN38 units, these SAPDs spontaneously assembled into well-defined fibrous nanostructures. Variations in hydrophilic domains can robustly regulate the hydrophobicity of SAPDs, as well as the morphologies and surface features of supramolecular filaments, subsequently influencing cellular internalization behaviors. Furthermore, our study also reveals that the parent drug can be efficiently and controllably released in the presence of glutathione (GSH), exhibiting high in vitro toxicity against colorectal cancer cells. In this work, we present a delicate platform to design small molecule SAPDs that can spontaneously self-assemble into supramolecular filamentous assemblies directed by aromatic interaction of the parent drugs, providing a new strategy to optimize supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Zhenhai Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenning Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaiying Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Tao Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Fu S, Zheng A, Wang L, Chen J, Zhao B, Zhang X, McKenzie VAA, Yang Z, Leblanc RM, Prabhakar R, Zhang F. Tuneable redox-responsive albumin-hitchhiking drug delivery to tumours for cancer treatment. J Mater Chem B 2024; 12:6563-6569. [PMID: 38899918 DOI: 10.1039/d4tb00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This paper outlines a novel drug delivery system for highly cytotoxic mertansine (DM1) by conjugating to an albumin-binding Evans blue (EB) moiety through a tuneable responsive disulfide linker, providing valuable insights for the development of effective drug delivery systems toward cancer therapy.
Collapse
Affiliation(s)
- Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Ajay Zheng
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Bowen Zhao
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Zixin Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Guo J, Chang A, Xu B. Autocleaving Bonds for Better Drugs. ChemMedChem 2024; 19:e202400130. [PMID: 38553420 PMCID: PMC11219257 DOI: 10.1002/cmdc.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Indexed: 04/30/2024]
Abstract
While bond formation has historically been the mainstay of medicinal chemistry, the phenomenon of bond cleavage has received less focus. However, the success of numerous oral medications demonstrates the importance of controlled cleavage in prodrugs to achieve desired therapeutic outcomes. Nevertheless, effective strategies to control this cleavage remain limited. This concept article introduces a novel approach: employing peptides as conjugates to drugs to modulate the hydrolysis of these conjugates and enhance drug efficacy. The article begins by briefly outlining common prodrug strategies, followed by a few representative examples of how peptides can be leveraged to control the autohydrolysis of peptide-conjugated prodrugs for bacterial and cancer cell inhibition. Finally, it provides a brief outlook on the future potential of this promising new research direction in molecular medicine.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Annabelle Chang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
4
|
Tang Z, Zhang J, Li W, Wen K, Gu Z, Zhou D, Su H. Supramolecular assembly of isomeric SN-38 prodrugs regulated by conjugation sites. J Mater Chem B 2024; 12:6146-6154. [PMID: 38842181 DOI: 10.1039/d4tb00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Supramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38. Self-assembling prodrug (SAPD) isomers 10-OEG-SN38 and 20-OEG-SN38 can self-assemble into giant nanotubes and filamentous assemblies, respectively, via aromatic associations that dominate self-assembly. Our study reveales the influence of modification sites on the assembly behavior and ability of the SN38 SAPDs, as well as drug release and subsequent in vitro and in vivo antitumor effects. The SAPD modified at position 20 exhibits stronger π-π interactions among SN38 units, leading to more compact packing and enhanced assembly capability, whereas OEG at position 10 poses steric hindrance for aromatic associations. Importantly, owing to its higher chemical and supramolecular stability, 20-OEG-SN38 outperforms 10-OEG-SN38 and irinotecan, a clinically used prodrug of SN38, in a CT26 tumor model, demonstrating enhanced tumor growth inhibition and prolonged animal survival. This study presents a new strategy of using interactions among drug molecules as dominating features to create supramolecular assemblies. It also brings some insights into creating effective supramolecular drug assemblies via the engineering of self-assembling building blocks, which could contribute to the optimization of design principles for supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Zhenhai Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaiying Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Ding Y, Zhang S, Li W, Chen X, Li J, Zhang X, Zhang Z, Hu Y, Yang Z, Hu ZW, Shen X. Enzyme-Instructed Photoactivatable Supramolecular Antigens on Cancer Cell Membranes for Precision-Controlled T-Cell-Based Cancer Immunotherapy. NANO LETTERS 2024. [PMID: 38838340 DOI: 10.1021/acs.nanolett.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Cancer immunotherapies based on cytotoxic CD8+ T lymphocytes (CTLs) are highly promising for cancer treatment. The specific interaction between T-cell receptors and peptide-MHC-I complexes (pMHC-I) on cancer cell membranes critically determines their therapeutic outcomes. However, the lack of appropriate endogenous antigens for MHC-I presentation disables tumor recognition by CTLs. By devising three antigen-loaded self-assembling peptides of pY-K(Ag)-ERGD, pY-K(Ag)-E, and Y-K(Ag)-ERGD to noncovalently generate light-activatable supramolecular antigens at tumor sites in different manners, we report pY-K(Ag)-ERGD as a promising candidate to endow tumor cells with pMHC-I targets on demand. Specifically, pY-K(Ag)-ERGD first generates low-antigenic supramolecular antigens on cancer cell membranes, and a successive light pulse allows antigen payloads to efficiently release from the supramolecular scaffold, directly producing antigenic pMHC-I. Intravenous administration of pY-K(Ag)-ERGD enables light-controlled tumor inhibition when combined with adoptively transferred antigen-specific CTLs. Our strategy is feasible for broadening tumor antigen repertoires for T-cell immunotherapies and advancing precision-controlled T-cell immunotherapies.
Collapse
Affiliation(s)
- Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shengyi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Wei Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiaodong Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Jun Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuanbo Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Zhang Q, Tan W, Liu Z, Zhang Y, Wei WS, Fraden S, Xu B. Unnatural Peptide Assemblies Rapidly Deplete Cholesterol and Potently Inhibit Cancer Cells. J Am Chem Soc 2024; 146:12901-12906. [PMID: 38701349 PMCID: PMC11223060 DOI: 10.1021/jacs.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Cholesterol-rich membranes play a pivotal role in cancer initiation and progression, necessitating innovative approaches to target these membranes for cancer inhibition. Here we report the first case of unnatural peptide (1) assemblies capable of depleting cholesterol and inhibiting cancer cells. Peptide 1 self-assembles into micelles and is rapidly taken up by cancer cells, especially when combined with an acute cholesterol-depleting agent (MβCD). Click chemistry has confirmed that 1 depletes cell membrane cholesterol. It localizes in membrane-rich organelles, including the endoplasmic reticulum, Golgi apparatus, and lysosomes. Furthermore, 1 potently inhibits malignant cancer cells, working synergistically with cholesterol-lowering agents. Control experiments have confirmed that C-terminal capping and unnatural amino acid residues (i.e., BiP) are essential for both cholesterol depletion and potent cancer cell inhibition. This work highlights unnatural peptide assemblies as a promising platform for targeting the cell membrane in controlling cell fates.
Collapse
Affiliation(s)
- Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Yichi Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Wei-Shao Wei
- Martin A. Fisher School of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Seth Fraden
- Martin A. Fisher School of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
7
|
Liu L, Yu H, Wang L, Zhou D, Duan X, Zhang X, Yin J, Luan S, Shi H. Heparin-network-mediated long-lasting coatings on intravascular catheters for adaptive antithrombosis and antibacterial infection. Nat Commun 2024; 15:107. [PMID: 38167880 PMCID: PMC10761715 DOI: 10.1038/s41467-023-44478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria-associated infections and thrombosis, particularly catheter-related bloodstream infections and catheter-related thrombosis, are life-threatening complications. Herein, we utilize a concise assembly of heparin sodium with organosilicon quaternary ammonium surfactant to fabricate a multifunctional coating complex. In contrast to conventional one-time coatings, the complex attaches to medical devices with arbitrary shapes and compositions through a facile dipping process and further forms robust coatings to treat catheter-related bloodstream infections and thrombosis simultaneously. Through their robustness and adaptively dissociation, coatings not only exhibit good stability under extreme conditions but also significantly reduce thrombus adhesion by 60%, and shows broad-spectrum antibacterial activity ( > 97%) in vitro and in vivo. Furthermore, an ex vivo rabbit model verifies that the coated catheter has the potential to prevent catheter-related bacteremia during implantation. This substrate-independent and portable long-lasting multifunctional coating can be employed to meet the increasing clinical demands for combating catheter-related bloodstream infections and thrombosis.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
8
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Wang H, Monroe M, Wang F, Sun M, Flexner C, Cui H. Constructing Antiretroviral Supramolecular Polymers as Long-Acting Injectables through Rational Design of Drug Amphiphiles with Alternating Antiretroviral-Based and Hydrophobic Residues. J Am Chem Soc 2023; 145:21293-21302. [PMID: 37747991 PMCID: PMC11044016 DOI: 10.1021/jacs.3c05645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
One of the main challenges in the development of long-acting injectables for HIV treatment is the limited duration of drug release, which results in the need for frequent dosing and reduced patient adherence. In this context, we leverage the intrinsic reversible features of supramolecular polymers and their unique ability to form a three-dimensional network under physiological conditions to design a class of self-assembling drug amphiphiles (DAs) based upon lamivudine, a water-soluble antiretroviral (ARV) agent and nucleoside reverse transcriptase inhibitor. The designed ARV DAs contain three pairs of alternating hydrophobic valine (V) and hydrophilic lamivudine-modified lysine (K3TC) residues with a varying number of glutamic acids (E) placed on the C-terminus. Upon dissolution in deionized water, all three ARV DAs were found to spontaneously associate into supramolecular filaments of several micrometers in length, with varying levels of lateral stacking. Addition of 1× PBS triggered immediate gelation of the two ARV DAs with 2 or 3 E residues, and upon dilution in an in vitro setting, the dissociation from the supramolecular state to the monomeric state enabled a long-acting linear release of the ARV DAs. In vivo studies further confirmed their injectability, rapid in situ hydrogel formation, enhanced local retention, and long-acting therapeutic release over a month. Importantly, our pharmacokinetic studies suggest that the injected ARV supramolecular polymeric hydrogel was able to maintain a plasma concentration of lamivudine above its IC50 value for more than 40 days in mice and showed minimal systemic immunogenicity. We believe that these results shed important light on the rational design of long-acting injectables using the drug-based molecular assembly strategy, and the reported ARV supramolecular hydrogels hold great promise for improving HIV treatment outcomes.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Charles Flexner
- Division of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
10
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Wang F, Huang Q, Su H, Sun M, Wang Z, Chen Z, Zheng M, Chakroun R, Monroe M, Chen D, Wang Z, Gorelick N, Serra R, Wang H, Guan Y, Suk J, Tyler B, Brem H, Hanes J, Cui H. Self-assembling paclitaxel-mediated stimulation of tumor-associated macrophages for postoperative treatment of glioblastoma. Proc Natl Acad Sci U S A 2023; 120:e2204621120. [PMID: 37098055 PMCID: PMC10161130 DOI: 10.1073/pnas.2204621120] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD21205
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Zeyu Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
| | - Ziqi Chen
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Mengzhen Zheng
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Maya K. Monroe
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Daiqing Chen
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Zongyuan Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Noah Gorelick
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Riccardo Serra
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD21205
- Department of Neurological Surgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Jung Soo Suk
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Neurological Surgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Betty Tyler
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Henry Brem
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Justin Hanes
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
12
|
Shi QQ, Zhou X, Xu J, Wang N, Zhang JL, Hu XL, Liu SY. Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
Lu S, Hao D, Xiang X, Pei Q, Xie Z. Carboxylated paclitaxel prodrug nanofibers for enhanced chemotherapy. J Control Release 2023; 355:528-537. [PMID: 36787820 DOI: 10.1016/j.jconrel.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The facile availability of nanoformulations with enhanced antitumor performance remains a big challenge. Herein, we synthesize paclitaxel prodrugs with amphiphilic structures and robust assembling ability. Carboxylated paclitaxel prodrugs (PSCB) containing disulfide bonds prefer to form exquisite nanofibers, while phenylcarbinol end capped paclitaxel prodrugs (PSP) assemble into spherical nanoparticles. The transformation of morphology from nanofibers to nanorods can be realized via tuning the content of paclitaxel. Hydrophilic domains of PSCB nanofibers accelerate the cleavage of disulfide bond for rapid drug release in tumor cells, thus exhibiting the enhanced cytotoxicity and antitumor activity. This study provides a crucial insight into the functional design of hydrophobic drugs to improve chemotherapy.
Collapse
Affiliation(s)
- Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
14
|
Yao Y, Gao L, Cai C, Lin J, Lin S. Supramolecular Polymerization of Polymeric Nanorods Mediated by Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202216872. [PMID: 36604302 DOI: 10.1002/anie.202216872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Introducing a second component is an effective way to manipulate polymerization behavior. However, this phenomenon has rarely been observed in colloidal systems, such as polymeric nanoparticles. Here, we report the supramolecular polymerization of polymeric nanorods mediated by block copolymers. Experimental observations and simulation results illustrate that block copolymers surround the polymeric nanorods and mainly concentrate around the two ends, leaving the hydrophobic side regions exposed. These polymeric nanorods connect in a side-by-side manner through hydrophobic interactions to form bundles. As polymerization progresses, the block copolymers gradually deposit onto the bundles and finally assemble into helical nanopatterns on the outermost surface, which terminates the polymerization. It is anticipated that this work could offer inspiration for a general strategy of controllable supramolecular polymerization.
Collapse
Affiliation(s)
- Yike Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
15
|
Dzhuzha AY, Tarasenko II, Atanase LI, Lavrentieva A, Korzhikova-Vlakh EG. Amphiphilic Polypeptides Obtained by the Post-Polymerization Modification of Poly(Glutamic Acid) and Their Evaluation as Delivery Systems for Hydrophobic Drugs. Int J Mol Sci 2023; 24:ijms24021049. [PMID: 36674566 PMCID: PMC9864831 DOI: 10.3390/ijms24021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Synthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B). Moreover, the developed nanoparticles were suitable for loading hydrophobic cargo. In particular, paclitaxel nanoformulations had a size of 170-330 nm and demonstrated a high cytostatic efficacy against human lung adenocarcinoma (A549). In general, the obtained nanoparticles were comparable in terms of their characteristics and properties to those based on amphiphilic (glyco)polypeptides obtained by copolymerization methods.
Collapse
Affiliation(s)
- Apollinariia Yu. Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | | | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University, 30167 Hannover, Germany
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
16
|
Wang Y, Su H, Wang Y, Cui H. Discovery of Y-Shaped Supramolecular Polymers in a Self-Assembling Peptide Amphiphile System. ACS Macro Lett 2022; 11:1355-1361. [PMID: 36413439 DOI: 10.1021/acsmacrolett.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supramolecular polymers (SPs) formed by self-assembly of peptide-based molecular units assume a variety of interesting one-dimensional (1D) morphologies. While the morphological complexity and phase behavior of self-assembling peptide conjugates bear some resemblance to those of low-molecular-weight and macromolecular surfactants, Y-junctions, or three-way connected constructs, a topological defect observed in traditional surfactants has not been identified, likely due to the intolerance of defective packing by the strong, associative interactions afforded by the peptide segments. Here we report our discovery of branched SPs with Y-junctions and occasionally enlarged spherical end-caps formed by micellization of a ferrocene-based peptide amphiphile in water. Our results suggest that the incorporation of two ferrocenes into the amphiphile design is key to ensure the formation of branched SPs. We hypothesize that the complex interplay of internal interactions limits the effective propagation of hydrogen bonding within the assemblies and, consequently, creates fragmented β-sheets that are more tolerant for supramolecular branching. Given the redox sensitivity of the ferrocene units, sequential addition of reductants and oxidants to the solution led the assemblies to reversibly transform between branched SPs and spherical aggregates.
Collapse
Affiliation(s)
| | | | | | - Honggang Cui
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
17
|
Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022; 43:510-521. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/23/2023]
Abstract
Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Center of Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Zhang Q, Tan W, Xu B. Enzymatic Noncovalent Synthesis for Targeting Subcellular Organelles. Chempluschem 2022; 87:e202200060. [PMID: 35420712 PMCID: PMC9508291 DOI: 10.1002/cplu.202200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Enzymatic noncovalent synthesis (ENS) exploits enzymatic reactions to produce spatially organized higher-order supramolecular assemblies that modulate cellular processes. While ENS is a general mechanism to create higher-order assemblies of proteins for diverse cellular functions, the exploration of ENS of other bioactive molecules, such as peptides or small organic molecules, is rather limited. Since ENS generates non-diffusive supramolecular assemblies locally, it provides a unique approach to targeting subcellular organelles. In this Review, we highlight the recent progress of the application of ENS of peptide assemblies for targeting subcellular organelles. After a brief introduction of the concept of ENS, we introduce the case of generating artificial filaments by ENS in cell cytosol, then discuss the use of ENS for targeting endoplasmic reticulum, mitochondria, Golgi apparatus, and lysosomes, and finally we describe the targeting of nucleus by ENS. We hope to illustrate the promise of ENS, as a localized molecular process in an open system, for understanding diseases, controlling cell behaviors, and developing new therapeutics.
Collapse
Affiliation(s)
- Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
19
|
Chang R, Zou Q, Zhao L, Liu Y, Xing R, Yan X. Amino-Acid-Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200139. [PMID: 35178775 DOI: 10.1002/adma.202200139] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Photothermal nanomedicine based on self-assembly of biological components, with excellent biosafety and customized performance, is vital significance for precision cancer therapy. However, the programmable design of photothermal nanomedicine remains extremely challenging due to the vulnerability and variability of noncovalent interactions governing supramolecular self-assembly. Herein, it is reported that amino acid encoding is a facile and potent means to design and construct supramolecular photothermal nanodrugs with controlled therapeutic activities. It is found that the amount and type of amino acid dominates the assembled nanostructures, structural stability, energy-conversion pathway, and therapeutic mechanism of the resulting nanodrugs. Two optimized nanodrugs are endowed with robust structural integrity against disassembly along with high photothermal conversion efficiency, efficient cellular internalization, and enhanced tumor accumulation, which result in more efficient tumor ablation. This work demonstrates that design based on amino acid encoding offers an unprecedented opportunity for the construction of remarkable photoactive nanomedicines toward cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
20
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
21
|
Misra R, Netti F, Koren G, Dan Y, Chakraborty P, Cohen SR, Shimon LJW, Beck R, Adler-Abramovich L. An atomistic view of rigid crystalline supramolecular polymers derived from short amphiphilic, α,β hybrid peptide. Polym Chem 2022. [DOI: 10.1039/d2py01072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spontaneous self-association of an amphiphilic α, β-hybrid peptide into supramolecular fibers and atomic details of the fibrillar assembly are reported.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel
- Dept. of Med. Chem, NIPER Mohali, S.A.S. Nagar, 160062, Mohali, India
| | - Francesca Netti
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel
| | - Gil Koren
- Raymond & Beverly Sackler School of Physics & Astronomy and The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel
| | - Priyadarshi Chakraborty
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel
| | - Sidney R. Cohen
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roy Beck
- Raymond & Beverly Sackler School of Physics & Astronomy and The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel
| |
Collapse
|
22
|
Yang T, Benson K, Fu H, Xue T, Song Z, Duan H, Xia H, Kalluri A, He J, Cheng J, Kumar CV, Lin Y. Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution. Biomacromolecules 2021; 23:196-209. [PMID: 34964619 DOI: 10.1021/acs.biomac.1c01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cells, actin and tubulin polymerization is regulated by nucleation factors, which promote the nucleation and subsequent growth of protein filaments in a controlled manner. Mimicking this natural mechanism to control the supramolecular polymerization of macromolecular monomers by artificially created nucleation factors remains a largely unmet challenge. Biological nucleation factors act as molecular scaffolds to boost the local concentrations of protein monomers and facilitate the required conformational changes to accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic poly(l-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters (NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g., shortening the assembly time by more than 10 times) when compared to the uncatalyzed reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a variety of standard characterization methods. Nucleation followed a Michaelis-Menten-like scheme for the cationic silica NPCs, while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of charge-charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel materials via biomimetic supramolecular polymerizations.
Collapse
Affiliation(s)
- Tianjian Yang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kyle Benson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hongwei Xia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ankarao Kalluri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jianjun Cheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
23
|
Pan S, Li T, Tan Y, Xu H. Selenium-containing nanoparticles synergistically enhance Pemetrexed&NK cell-based chemoimmunotherapy. Biomaterials 2021; 280:121321. [PMID: 34922271 DOI: 10.1016/j.biomaterials.2021.121321] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022]
Abstract
NK cell-based immunotherapy and pemetrexed (Pem)-based chemotherapy have broad application prospects in cancer treatment. However, the over-expressed NK cell inhibitory receptor on the surface of cancer cells and the low cell internalization efficiency of Pem greatly limit their clinical application. Herein, we construct a series of selenium-containing nanoparticles to synergistically enhance Pem-based chemotherapy and NK cell-based immunotherapy. The nanoparticles could deliver Pem to tumor sites and strengthen the chemotherapy efficiency of Pem by seleninic acid, which is produced by the oxidation of β-seleno ester. Moreover, seleninic acid can block the expression of inhibitory receptors against NK cells, thereby activating the immunocompetence of NK cells. The in vitro and in vivo experiments reveal the potential chemo-enhancing and immune-activating mechanism of seleninic acid, emphasizing the promising prospects of this strategy in effective chemoimmunotherapy.
Collapse
Affiliation(s)
- Shuojiong Pan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Yizheng Tan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Su H, Wang F, Wang H, Zhang W, Anderson CF, Cui H. Propagation-Instigated Self-Limiting Polymerization of Multiarmed Amphiphiles into Finite Supramolecular Polymers. J Am Chem Soc 2021; 143:18446-18453. [PMID: 34711048 DOI: 10.1021/jacs.1c06495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A fundamental goal in the noncovalent synthesis of ordered supramolecular polymers (SPs) is to achieve precise control over their size and size distribution; however, the reversible nature of noncovalent interactions often results in formation of living SPs with high dispersity in length. We report here on the self-limiting supramolecular polymerization (SPZ) of a series of multiarmed amphiphiles with propagation-attenuated reactivities that can automatically terminate the polymerization process, enabling effective control in both lengths and polydispersity. Through incorporating multiarmed oligoethylene-glycol (OEG) onto a quadratic aromatic segment, the lengths of the resultant SPs can be tuned from ∼1 μm to 130 and 50 nm with a polydispersity index of ∼1.2 for the last two SPs. We believe that the level of chain frustration of the multiarmed OEG segments, determined by both the number of arms and the degree of polymerization, poses physical and entropic constrains for supramolecular propagation to exceed a threshold length.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Weijie Zhang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
25
|
Zheng X, Pan D, Chen X, Wu L, Chen M, Wang W, Zhang H, Gong Q, Gu Z, Luo K. Self-Stabilized Supramolecular Assemblies Constructed from PEGylated Dendritic Peptide Conjugate for Augmenting Tumor Retention and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102741. [PMID: 34623034 PMCID: PMC8596125 DOI: 10.1002/advs.202102741] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Indexed: 02/05/2023]
Abstract
Supramolecular self-assemblies of dendritic peptides with well-organized nanostructures have great potential as multifunctional biomaterials, yet the complex self-assembly mechanism hampers their wide exploration. Herein, a self-stabilized supramolecular assembly (SSA) constructed from a PEGylated dendritic peptide conjugate (PEG-dendritic peptide-pyropheophorbide a, PDPP), for augmenting tumor retention and therapy, is reported. The supramolecular self-assembly process of PDPP is concentration-dependent with multiple morphologies. By tailoring the concentration of PDPP, the supramolecular self-assembly is driven by noncovalent interactions to form a variety of SSAs (unimolecular micelles, oligomeric aggregates, and multi-aggregates) with different sizes from nanometer to micrometer. SSAs at 100 nm with a spherical shape possess extremely high stability to prolong blood circulation about 4.8-fold higher than pyropheophorbide a (Ppa), and enhance tumor retention about eight-fold higher than Ppa on day 5 after injection, which leads to greatly boosting the in vivo photodynamic therapeutic efficiency. RNA-seq demonstrates that these effects of SSAs are related to the inhibition of MET-PI3K-Akt pathway. Overall, the supramolecular self-assembly mechanism for the synthetic PEGylated dendritic peptide conjugate sheds new light on the development of supramolecular assemblies for tumor therapy.
Collapse
Affiliation(s)
- Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
| | - Xiaoting Chen
- Animal Experimental Center of West China HospitalCore Facility of West China HospitalSichuan UniversityChengdu610041China
| | - Lei Wu
- Animal Experimental Center of West China HospitalCore Facility of West China HospitalSichuan UniversityChengdu610041China
| | - Miao Chen
- West China School of MedicineWest China College of StomatologySichuan UniversityChengdu610041China
| | - Wenjia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceResearch Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceResearch Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
26
|
Kim S, Jana B, Go EM, Lee JE, Jin S, An EK, Hwang J, Sim Y, Son S, Kim D, Kim C, Jin JO, Kwak SK, Ryu JH. Intramitochondrial Disulfide Polymerization Controls Cancer Cell Fate. ACS NANO 2021; 15:14492-14508. [PMID: 34478266 DOI: 10.1021/acsnano.1c04015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in supramolecular chemistry research have led to the development of artificial chemical systems that can form self-assembled structures that imitate proteins involved in the regulation of cellular function. However, intracellular polymerization systems that operate inside living cells have been seldom reported. In this study, we developed an intramitochondrial polymerization-induced self-assembly system for regulating the cellular fate of cancer cells. It showed that polymeric disulfide formation inside cells occurred due to the high reactive oxygen species (ROS) concentration of cancer mitochondria. This polymerization barely occurs elsewhere in the cell owing to the reductive intracellular environment. The polymerization of the thiol-containing monomers further increases the ROS level inside the mitochondria, thereby autocatalyzing the polymerization process and creating fibrous polymeric structures. This process induces dysfunction of the mitochondria, which in turn activates cell necroptosis. Thus, this in situ polymerization system shows great potential for cancer treatment, including that of drug-resistant cancers.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Eun Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sehee Son
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaekyu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
27
|
Zhou J, Penna M, Lin Z, Han Y, Lafleur RPM, Qu Y, Richardson JJ, Yarovsky I, Jokerst JV, Caruso F. Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
- Department of NanoEngineering University of California San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Matthew Penna
- School of Engineering RMIT University Melbourne Victoria 3001 Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - René P. M. Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Irene Yarovsky
- School of Engineering RMIT University Melbourne Victoria 3001 Australia
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Radiology University of California San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
28
|
Zhou J, Penna M, Lin Z, Han Y, Lafleur RPM, Qu Y, Richardson JJ, Yarovsky I, Jokerst JV, Caruso F. Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angew Chem Int Ed Engl 2021; 60:20225-20230. [PMID: 34258845 PMCID: PMC8405577 DOI: 10.1002/anie.202106316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Indexed: 12/17/2022]
Abstract
Interfacial modular assembly has emerged as an adaptable strategy for engineering the surface properties of substrates in biomedicine, photonics, and catalysis. Herein, we report a versatile and robust coating (pBDT-TA), self-assembled from tannic acid (TA) and a self-polymerizing aromatic dithiol (i.e., benzene-1,4-dithiol, BDT), that can be engineered on diverse substrates with a precisely tuned thickness (5-40 nm) by varying the concentration of BDT used. The pBDT-TA coating is stabilized by covalent (disulfide) bonds and supramolecular (π-π) interactions, endowing the coating with high stability in various harsh aqueous environments across ionic strength, pH, temperature (e.g., 100 mM NaCl, HCl (pH 1) or NaOH (pH 13), and water at 100 °C), as well as surfactant solution (e.g., 100 mM Triton X-100) and biological buffer (e.g., Dulbecco's phosphate-buffered saline), as validated by experiments and simulations. Moreover, the reported pBDT-TA coating enables secondary reactions on the coating for engineering hybrid adlayers (e.g., ZIF-8 shells) via phenolic-mediated adhesion, and the facile integration of aromatic fluorescent dyes (e.g., rhodamine B) via π interactions without requiring elaborate synthetic processes.
Collapse
Affiliation(s)
- Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Matthew Penna
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - René P M Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
29
|
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co-assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021; 60:21033-21039. [PMID: 34278702 DOI: 10.1002/anie.202108658] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/10/2022]
Abstract
We report that the self-assembly of drug amphiphiles, Evans blue conjugated camptothecin prodrug (EB-CPT), can be modulated by another anticancer drug paclitaxel (PTX), resulting in ultrahigh quality of nanovesicles (NVs) with uniform shape and diameters of around 80 nm with the EB-CPT:PTX weight ratio of 1:1, 1:2, and 1:3, denoted as ECX NVs. Significantly, the co-assembly of EB-CPT and PTX without adding other excipients has nearly 100 % drug loading efficiency (DLE) and ultrahigh drug loading content (DLC) of PTX alone of up to 72.3±1.7 wt % which, to our best knowledge, is among the highest level reported in literature. Moreover, the ECX NVs with the EB-CPT:PTX weight ratio of 1:2 showed remarkable combination index of 0.59 at a level of 50 % efficacy against HCT116 cells in vitro and greatly improved tumor inhibition effect in vivo compared with two clinically approved CPT- and PTX-based anticancer nanomedicines (Onivyde and Abraxane) individually and their combinations.
Collapse
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Guocan Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Miami, FL, 33146, USA
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
30
|
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co‐assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Guocan Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Fuwu Zhang
- Department of Chemistry University of Miami Miami FL 33146 USA
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
31
|
Zhou Y, Qiu P, Yao D, Song Y, Zhu Y, Pan H, Wu J, Zhang J. A crosslinked colloidal network of peptide/nucleic base amphiphiles for targeted cancer cell encapsulation. Chem Sci 2021; 12:10063-10069. [PMID: 34349970 PMCID: PMC8317620 DOI: 10.1039/d1sc02995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
The use of peptide amphiphiles (PAs) is becoming increasingly popular, not only because of their unique self-assembly properties but also due to the versatility of designs, allowing biological responsiveness, biocompatibility, and easy synthesis, which could potentially contribute to new drug design and disease treatment concepts. Oligonucleotides, another major functional bio-macromolecule class, have been introduced recently as new functional building blocks into PAs, further enriching the tools available for the fabrication of bio-functional PAs. Taking advantage of this, in the present work, two nucleic base-linked (adenine, A and thymine, T) RGD-rich peptide amphiphiles (NPAs) containing the fluorophores naphthalimide and rhodamine (Nph-A and Rh-T) were designed and synthesized. The two NPAs exhibit distinctive assembly behaviours with spherical (Rh-T) and fibrous (Nph-A) morphologies, and mixing Nph-A with Rh-T leads to a densely crosslinked colloidal network (Nph-A/Rh-T) via mutually promoted supramolecular polymerization via nucleation-growth assembly. Because of the RGD-rich sequences in the crosslinked network, further research on in situ targeted cancer cell (MDA-MB-231) encapsulation via RGD-integrin recognition was performed, and the modulation of cell behaviours (e.g., cell viability and migration) was demonstrated using both confocal laser scanning microscopy (CLSM) imaging and a scratch wound healing assay.
Collapse
Affiliation(s)
- Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Qiu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine 1665 Kongjiang Road Shanghai 200092 China
| | - Yanyan Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuedong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Haiting Pan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junchen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
32
|
Yang B, Zhou J, Wang F, Hu XW, Shi Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for Vascular Endothelial Growth Factor Receptor 2 inhibition. Bioorg Chem 2021; 114:105134. [PMID: 34246970 DOI: 10.1016/j.bioorg.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
In this work, to check the effect of the transposition of the rings in typical patterns, a series of pyrazoline derivatives 3a-3t bearing the characteristic 3,4,5-trimethoxy phenyl and thiophene moieties were synthesized and evaluated as tubulin polymerization inhibitors. Basically, as the concise output of our design, a majority of the synthesized compounds showed potency in inhibiting the tubulin polymerization. The top hit, 3q, exhibited potent anti-proliferation activity on cancer cell lines. It was comparable on tubulin-polymerization inhibition with the positive control Colchicine but lower toxic. The VEGFR2 inhibitory potency was introduced occasionally. The flow cytometry assay confirmed the apoptotic procedure and the confocal imaging revealed the tubulin-microtubule dynamics pattern. The anti-cancer mechanism of 3q was similar to Colchicine but not exactly the same on forming multi-polar spindles. The docking simulation visualized the possible binding patterns of 3q into tubulin and VEGFR2, respectively. The results inferred that further investigations on the transposition of the rings might lead to the improvement of tubulin polymerization inhibitory activity and the steadily introduction of the VEGFR2 inhibition.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Fa Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
33
|
Wu J, Ding W, Han G, You W, Gao W, Shen H, Tang J, Tang Q, Wang X. Nuclear delivery of dual anti-cancer drugs by molecular self-assembly. Biomater Sci 2021; 9:116-123. [PMID: 33325919 DOI: 10.1039/d0bm00971g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicines generally suffer from poor accumulation in tumor cells, low anti-tumor efficacy, and drug resistance. In order to address these problems, we introduced a novel nanomedicine based on dual anti-cancer drugs, which showed good cell nuclear accumulation properties. The novel nanomedicine consisted of three components: (1) dual anti-cancer drugs, 10-hydroxycamptothecin (HCPT) and chlorambucil (CRB), whose targets are located in the cell nucleus, (2) a nuclear localizing dodecapeptide, PMI peptide (TSFAEYWNLLSP), which could activate p53 by binding with MDM2 and MDMX located in the cell nucleus, and (3) an efficient self-assembling tripeptide FFY. Our nanomedicine exhibited enhanced cellular uptake and nuclear accumulation properties, thus achieving an excellent anti-cancer capacity both in vitro and in vivo. Our study will provide an inspiration for the development of novel multifunctional nanomaterials for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jindao Wu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, Department of Breast Surgery, Department of Oncology, Department of Geriatric Digestion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Zhang M, Wang C, Yang C, Wu H, Xu H, Liang G. Using Fluorescence On/Off to Trace Tandem Nanofiber Assembly/Disassembly in Living Cells. Anal Chem 2021; 93:5665-5669. [PMID: 33789038 DOI: 10.1021/acs.analchem.1c00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To track an intact biological process inside cells, continuous showing of the assembly/disassembly process is needed and fluorescence is advantageous in characterizing these processes. However, using fluorescence "on/off" to observe a sequential assembly/disassembly process in living cells has not been reported. Herein, we rationally designed a probe PEA-NBD-Yp and employed its fluorescence "on/off" to trace tandem assembly/disassembly of nanofibers in living HeLa cells. In vitro experiments validated that PEA-NBD-Yp could be efficiently dephosphorylated by ALP to yield PEA-NBD-Y, which self-assembled into nanofibers with the NBD fluorescence "on". Also, the PEA-NBD-Y nanofiber was disassembled by GSH, accompanied by fluorescence "off". Living cell imaging (together with ALP-inhibition or GSH-blocking) experiments sequentially showed the self-assembling nanofibers on the cell outer membrane with fluorescence "on" (On1), translocated inside cells (On2), and disassembled by GSH with fluorescence "off" (Off2). We anticipate that our strategy of one probe conferring temporal "on/off" fluorescence signals might provide people with a new tool to deeply understand a biological event in living cells in the near future.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chen Yang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Haisi Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.,State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| |
Collapse
|
36
|
Wang Z, Wang J, Sun Z, Xiang W, Shen C, Rui N, Ding M, Yuan Y, Cui H, Liu CJ. Electron-induced rapid crosslinking in supramolecular metal-peptide assembly and chemically responsive disaggregation for catalytic application. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Xia H, Fu H, Ren Y, Bordett R, Zhang Y, Fu Y, Lin Y. Regulating the Supramolecular Polymerization of Fibrous Crystalline Structures in Aqueous Solution. Macromol Rapid Commun 2021; 42:e2000677. [PMID: 33522026 DOI: 10.1002/marc.202000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Indexed: 11/07/2022]
Abstract
Inspired by protein polymerizations, much progress has been made in making "polymer-like" supramolecular structures from small synthetic subunits through non-covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in-situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.
Collapse
Affiliation(s)
- Hongwei Xia
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Yuan Ren
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Rosalie Bordett
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Youjun Fu
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Yao Lin
- Department of Chemistry, Polymer Program at the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
38
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
39
|
Su H, Cui Y, Wang F, Zhang W, Zhang C, Wang R, Cui H. Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomater Sci 2021; 9:463-470. [DOI: 10.1039/d0bm00827c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct linkage of two camptothecin moieties to a metal chelator creates a self-assembling prodrug capable of associating in aqueous solution into theranostic supramolecular polymers.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Yonggang Cui
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Weijie Zhang
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Chunli Zhang
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Rongfu Wang
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
40
|
Receptor tyrosine kinases-instructed release of its inhibitor from hydrogel to delay ovarian aging. Biomaterials 2020; 269:120536. [PMID: 33248720 DOI: 10.1016/j.biomaterials.2020.120536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Premature ovarian failure (POF) is the most frequently occurred disease in ovary. Direct inhibition of mammalian target of rapamycin (mTOR) activity can treat woman POF but brings adverse effects to women. Herein, by rational design of a hydrogelator Nap-Phe-Phe-Asp-Arg-Leu-Tyr-OH (Y) and co-assembling Y with an inhibitor of receptor tyrosine kinase (RTK, an upstream kinase of mTOR), Ala-Glu-Ala-Ala-Leu-Tyr-Lys-Asn-Leu-Leu-His-Ser-OH (Inh), to form hydrogel Gel Y + Inh, we develop a "smart" strategy of RTK-responsive disassembly of the hydrogel to release Inh. Release of Inh moderately inhibits the activity of mTOR and therefore delays ovarian aging. Oocyte and zygote experiments show that Gel Y + Inh improves both meiotic maturation of the oocytes and early embryonic development of the zygotes. In vivo animal experiments indicate that Gel Y + Inh effectively delays ovarian aging in aged mice by down regulation of mTOR activity, stimulation of ovaries to secrete estrogen and progesterone, and development of more antral follicles for reproduction. We expect that our new hydrogel Gel Y + Inh could be applied to treat woman POF, as well as delay ovarian aging, in clinic in the near future.
Collapse
|
41
|
Li Y, Lock LL, Mills J, Ou BS, Morrow M, Stern D, Wang H, Anderson CF, Xu X, Ghose S, Li ZJ, Cui H. Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. NANO LETTERS 2020; 20:6957-6965. [PMID: 32852220 DOI: 10.1021/acs.nanolett.0c01297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The separation and purification of therapeutic proteins from their biological resources pose a great limitation for industrial manufacturing of biologics in an efficient and cost-effective manner. We report here a supramolecular polymeric system that can undergo multiple reversible processes for efficient capture, precipitation, and recovery of monoclonal antibodies (mAbs). These supramolecular polymers, namely immunofibers (IFs), are formed by coassembly of a mAb-binding peptide amphiphile with a rationally designed filler molecule of varying stoichiometric ratios. Under the optimized conditions, IFs can specifically capture mAbs with a precipitation yield greater than 99%, leading to an overall mAb recovery yield of 94%. We also demonstrated the feasibility of capturing and recovering two mAbs from clarified cell culture harvest. These results showcase the promising potential of peptide-based supramolecular polymers as reversible affinity precipitants for mAb purification.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Ben S Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
42
|
Cooper CB, Kang J, Yin Y, Yu Z, Wu HC, Nikzad S, Ochiai Y, Yan H, Cai W, Bao Z. Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers. J Am Chem Soc 2020; 142:16814-16824. [DOI: 10.1021/jacs.0c07651] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher B. Cooper
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jiheong Kang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yikai Yin
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhiao Yu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hung-Chin Wu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuto Ochiai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Wei Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
43
|
Wang F, Su H, Lin R, Chakroun RW, Monroe MK, Wang Z, Porter M, Cui H. Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS NANO 2020; 14:10083-10094. [PMID: 32806082 DOI: 10.1021/acsnano.0c03286] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Local chemotherapy is a clinically proven strategy in treating malignant brain tumors. Its benefits, however, are largely limited by the rapid release and clearance of therapeutic agents and the inability to penetrate through tumor tissues. We report here on a supramolecular tubustecan (TT) hydrogel as both a therapeutic and drug carrier that enables long-term, sustained drug release and improved tumor tissue penetration. Covalent linkage of a tissue penetrating cyclic peptide to two camptothecin drug units creates a TT prodrug amphiphile that can associate into tubular supramolecular polymers and subsequently form a well-defined sphere-shaped hydrogel after injection into tumor tissues. The hollow nature of the resultant tubular assemblies allows for encapsulation of doxorubicin or curcumin for combination therapy. Our in vitro and in vivo studies reveal that these dual drug-bearing supramolecular hydrogels enhance tumor retention and penetration, serving as a local therapeutic depot for potent tumor regression, inhibition of tumor metastasis and recurrence, and mitigation of the off-target side effects.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rami W Chakroun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maya K Monroe
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zongyuan Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
44
|
Xu T, Liang C, Zheng D, Yan X, Chen Y, Chen Y, Li X, Shi Y, Wang L, Yang Z. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. NANOSCALE 2020; 12:15275-15282. [PMID: 32644059 DOI: 10.1039/d0nr00143k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nuclear delivery of anticancer drugs, particularly dual complementary anticancer drugs, can significantly improve chemotherapy efficacy. However, successful examples are rare. We reported a novel dual anticancer drug-based nanomedicine with nuclear accumulation properties. The nanomedicine was formed by chelation between a drug peptide amphiphile Rh-GFFYERGD (Rh represents Rhein, 1,8-dihydroxy-3-carboxy anthraquinonea) and cisplatinum (Pt). A single molecule of the drug peptide amphiphile could chelate up to 8 equiv. of cisplatinum in the resulting nanofibers. The nanofibers with a 1 : 4 ratio of Rh-GFFYERGD to cisplatinum demonstrated remarkable cellular uptake, and more significantly, superior nuclear accumulation properties. Additionally, the nanofibers could also bind to the DNA molecule more efficiently than those formed by the drug peptide amphiphile. Thus the nanofibers exhibited excellent anticancer properties both in vitro and in vivo. We envision a significant therapeutic potential of the dual anticancer drug-based nanomedicine with cisplatinum in cancer.
Collapse
Affiliation(s)
- Tengyan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fuentes E, Gerth M, Berrocal JA, Matera C, Gorostiza P, Voets IK, Pujals S, Albertazzi L. An Azobenzene-Based Single-Component Supramolecular Polymer Responsive to Multiple Stimuli in Water. J Am Chem Soc 2020; 142:10069-10078. [PMID: 32395995 PMCID: PMC7497294 DOI: 10.1021/jacs.0c02067] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
One
of the most appealing features of supramolecular assemblies
is their ability to respond to external stimuli due to their noncovalent
nature. This provides the opportunity to gain control over their size,
morphology, and chemical properties and is key toward some of their
applications. However, the design of supramolecular systems able to
respond to multiple stimuli in a controlled fashion is still challenging.
Here we report the synthesis and characterization of a novel discotic
molecule, which self-assembles in water into a single-component supramolecular
polymer that responds to multiple independent stimuli. The building
block of such an assembly is a C3-symmetric
monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated
to a series of natural and non-natural functional amino acids. This
design allows the use of rapid and efficient solid-phase synthesis
methods and the modular implementation of different functionalities.
The discotic monomer incorporates a hydrophobic azobenzene moiety,
an octaethylene glycol chain, and a C-terminal lysine. Each of these
blocks was chosen for two reasons: to drive the self-assembly in water
by a combination of H-bonding and hydrophobicity and to impart specific
responsiveness. With a combination of microscopy and spectroscopy
techniques, we demonstrate self-assembly in water and responsiveness
to temperature, light, pH, and ionic strength. This work shows the
potential to integrate independent mechanisms for controlling self-assembly
in a single-component supramolecular polymer by the rational monomer
design and paves the way toward the use of multiresponsive systems
in water.
Collapse
Affiliation(s)
- Edgar Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
| | - Marieke Gerth
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - José Augusto Berrocal
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Network Biomedical Research Centre in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Network Biomedical Research Centre in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08011, Spain
| | - Ilja K Voets
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona 08011, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
46
|
Ren P, Li J, Zhao L, Wang A, Wang M, Li J, Jian H, Li X, Yan X, Bai S. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21433-21440. [PMID: 32319760 DOI: 10.1021/acsami.0c03038] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dipeptide self-assembled hydrogels have potential biomedical applications because of their great biocompatibility, bioactivity, and tunable physicochemical properties, which can be modulated in the molecular level by design of amino acid sequences. Herein, a series of dipeptides (Fmoc-FL, -YL, -LL, and -YA) are designed to form shear-thinning hydrogels with self-healing and tunable mechanical properties by adjusting the synergetic effect of hydrophobic interactions (π-π stacking and hydrophobic effect) and hydrogen bonds of peptides through substitution of amino acid residues. The enhancement of hydrophobic interactions is a primary factor to promote mechanical rigidity of hydrogels, and strong hydrogen-bonding interactions between molecules contribute to the instantaneous self-healing property, which is supported by experimental studies (FTIR, CD, SEM, AFM, and rheology) and molecular dynamics simulations. The injectable dipeptide hydrogels were certified as an ideal endoscopic submucosal dissection filler to make operation convenient and secure in mice and living mini-pig's experiments with a longer duration time, higher stiffness, and lower inflammatory response than commercial clinical fillers.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Meiyue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoou Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Su H, Wang F, Ran W, Zhang W, Dai W, Wang H, Anderson CF, Wang Z, Zheng C, Zhang P, Li Y, Cui H. The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers. Proc Natl Acad Sci U S A 2020; 117:4518-4526. [PMID: 32071209 PMCID: PMC7060728 DOI: 10.1073/pnas.1913655117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The inception and development of supramolecular chemistry have provided a vast library of supramolecular structures and materials for improved practice of medicine. In the context of therapeutic delivery, while supramolecular nanostructures offer a wide variety of morphologies as drug carriers for optimized targeting and controlled release, concerns are often raised as to how their morphological stability and structural integrity impact their in vivo performance. After intravenous (i.v.) administration, the intrinsic reversible and dynamic feature of supramolecular assemblies may lead them to dissociate upon plasma dilution to a concentration below their critical micellization concentration (CMC). As such, CMC represents an important characteristic for supramolecular biomaterials design, but its pharmaceutical role remains elusive. Here, we report the design of a series of self-assembling prodrugs (SAPDs) that spontaneously associate in aqueous solution into supramolecular polymers (SPs) with varying CMCs. Two hydrophobic camptothecin (CPT) molecules were conjugated onto oligoethylene-glycol (OEG)-decorated segments with various OEG repeat numbers (2, 4, 6, 8). Our studies show that the lower the CMC, the lower the maximum tolerated dose (MTD) in rodents. When administrated at the same dosage of 10 mg/kg (CPT equivalent), SAPD 1, the one with the lowest CMC, shows the best efficacy in tumor suppression. These observations can be explained by the circulation and dissociation of SAPD SPs and the difference in molecular and supramolecular distribution between excretion and organ uptake. We believe these findings offer important insight into the role of supramolecular stability in determining their therapeutic index and in vivo efficacy.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Wei Ran
- State Key Laboratory of Drug Research and Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weijie Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wenbing Dai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Zongyuan Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218;
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
48
|
Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J Control Release 2020; 319:311-321. [DOI: 10.1016/j.jconrel.2020.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
|
49
|
Self-assembling mertansine prodrug improves tolerability and efficacy of chemotherapy against metastatic triple-negative breast cancer. J Control Release 2020; 318:234-245. [DOI: 10.1016/j.jconrel.2019.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
|
50
|
Li X, Wang Y, Wang S, Liang C, Pu G, Chen Y, Wang L, Xu H, Shi Y, Yang Z. A strong CD8 + T cell-stimulating supramolecular hydrogel. NANOSCALE 2020; 12:2111-2117. [PMID: 31913398 DOI: 10.1039/c9nr08916k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of molecules with immune stimulatory properties is crucial for cancer immunotherapy. In this work, we combined two peptide-based molecules, tuftsin (TKPR) and Nap-GDFDFDY, to develop a novel self-assembling molecule Nap-GDFDFDYTKPR (Comp.3), which has strong CD8+ T cell stimulatory properties. Comp.3 could self-assemble into nanofibers and hydrogels, which significantly improved the stability of tuftsin against enzyme digestion. The nanofibers of Comp.3 enhanced the phagocytic activity of macrophages, promoted the maturation of DCs, and stimulated the expression of cytokines. In addition, it demonstrated an excellent anti-tumor efficacy in vivo by eliciting a strong CD8+ T immune response. Taken together, our observations revealed a powerful immune stimulating nanomaterial that is a promising compound for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|