1
|
Fu D, Ma Y, Wu S, Wang Q, Zhao R, Pan L, Luo J. Pyro-phototronic Effect Enhanced Self-Powered Photoresponse in Lead-Free Hybrid Perovskite. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60616-60624. [PMID: 39453825 DOI: 10.1021/acsami.4c15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Pyro-phototronic effect (PPE) can significantly boost the performance of hybrid perovskite (HPs) photodetectors due to the effective modulation of photogenerated charge carrier separations, transportation, and extraction. However, there are few reports on the application of PPE in lead-free HPs. Herein, a polar lead-free HP (1,3-BMACH)BiBr5 [1,3-BMACH = 1,3-bis(aminomethyl)cyclohexane] is synthesized and realized broadband self-powered photoresponse from X-rays to near-infrared (NIR) through the PPE. Particularly, this light-induced PPE in lead-free HPs breaks the limitation of the optical band gap, making them suitable for broadband self-powered photodetection. Under 405 nm illumination, compared with a purely photovoltaic system, Iphoto+pyro is boosted by 3100%, and R and D* are both enhanced by 260% after coupled PPE. It is particularly interesting that an obvious X-ray-induced PPE phenomenon is also observed, which endows (1,3-BMACH)BiBr5 with a high sensitivity of 154 μC Gy-1 cm-2 and a low detection limit of 307 nGy s-1 under the self-powered mode. The implementation of light-induced PPE from X-rays to NIR in lead-free HPs provides a new approach for constructing environmentally friendly, broadband, and self-powered optoelectronic devices in the future.
Collapse
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yanli Ma
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Shufang Wu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Qi Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Ruifang Zhao
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Lin Pan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
2
|
Han L, Wang Q, Lu Y, Tao S, Zhu W, Feng X, Liang S, Bai H, Chen C, Wang K, Yang Z, Fan X, Song C, Pan F. Lead-Free Hybrid Perovskite: An Efficient Room-Temperature Spin Generator via Large Interfacial Rashba Effect. ACS NANO 2024; 18:30616-30625. [PMID: 39431976 DOI: 10.1021/acsnano.4c09413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) shows great potential for developing flexible and wearable spintronic devices by serving as spin sources via the bulk Rashba effect (BRE). However, the practical application of BRE in 2D HOIP faces huge challenges, particularly due to the toxicity of lead, which is crucial for achieving large spin-orbit coupling, and the restrictions in 2D HOIP candidates to meet specific symmetry-breaking requirements. To overcome these obstacles, we designed a strategy to exploit the interfacial Rashba effect (IRE) of lead-free 2D HOIP (C6H5CH2CH2NH3)2CuCl4 (PEA-CuCl), manifesting as an efficient spin generator at room temperature. IRE of PEA-CuCl originates from the large orbital hybridization at the interface between PEA-CuCl and adjacent ferromagnetic layers. Spin-torque ferromagnetic resonance measurements further quantify a large Rashba effective field of 14.04 Oe per 1011 A m-2, surpassing those of lead-based HOIP and traditional all-inorganic heterojunctions with noble metals. Our lead-free 2D HOIP PEA-CuCl, which harnesses large IRE for spin generation, is efficient, nontoxic, and economic, offering huge promise for future flexible and wearable spintronic devices.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Lu
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710025, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sheng Tao
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Wenxuan Zhu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Feng
- The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Shixuan Liang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Fan
- The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Chen Z, Zhang G, Wen J, Liu Z, Chen S, Hou J, Fang Y. Switchable Photovoltaic Effect and Robust Nonlinear Optical Response in a High-Temperature Molecular Ferroelectric [C 8N 2H 22][PbI 4]. Inorg Chem 2024; 63:21275-21282. [PMID: 39427258 DOI: 10.1021/acs.inorgchem.4c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Hybrid organic-inorganic molecular ferroelectrics (HOIMFs) have garnered significant attention for their potential applications in nonvolatile memory and spintronic devices. However, few efforts have been devoted to the photoelectric properties of lead halide molecular ferroelectrics, despite the fact that robust ferroelectricity and flexibility are desirable for thin-film photoelectric devices. Herein, we present a novel lead halide molecular ferroelectric [C8N2H22][PbI4] (1) synthesized hydrothermally. A polar monoclinic structure of 1 was solved by single-crystal X-ray diffraction and second-harmonic generation (SHG) tests. A direct band gap of 2.36 eV was confirmed by UV-vis spectrum and theoretical calculation. Hysteresis measurements demonstrated inherent room-temperature (RT) ferroelectricity in 1 with a spontaneous polarization (Ps) of 3.2 μC/cm2. The 1-based photoelectric device shows a notable photovoltaic (PV) effect with Voc ∼ 0.27 V, Jsc ∼ 38 nA/cm2 under AM 1.5 G illumination, and a rapid response time of ∼1.5 ms. A considerable enhancement in PV performance has been achieved by adjusting the ferroelectric polarization, resulting in a maximum Voc ∼ 0.75 V, Jsc ∼ 2.28 μA/cm2. Notably, 1 exhibits a rather large SHG signal, which is approximately 2.61-fold higher than that of KH2PO4 (KDP) upon a 1064 nm laser radiation. This study offers a bright avenue for lead halide molecular ferroelectrics as promising optoelectronic devices and SHG materials.
Collapse
Affiliation(s)
- Zhibo Chen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Ganghua Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jinrong Wen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Zhanqiang Liu
- Department of Materials Chemistry, Huzhou University, 759 East Erhuan Road, Huzhou 313000, P. R. China
| | - Shu Chen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
4
|
Wang W, Liu CD, Sha TT, Fan CC, Jin ML, You YM, Zhang W. A Melt-Processable Metal Halide Perovskite Ferroelectric. Inorg Chem 2024; 63:20911-20920. [PMID: 39417587 DOI: 10.1021/acs.inorgchem.4c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Molecular ferroelectrics have increasingly garnered significant attention in both fundamental scientific research and technological applications due to their ease of processing, lightweight nature, and mechanical flexibility. Among these, metal halide perovskite ferroelectrics (MHP FEs), a subset of molecule-based ferroelectrics, exhibit diverse functionalities owing to their distinctive structures, thus emerging as a focal point of molecular ferroelectrics research. However, thin films, the predominant application form for MHP FEs, primarily rely on spin-coating, which presents considerable limitations. The development of melt-processable MHP FEs has been sparse, largely due to the challenge of integrating ferroelectricity with meltability. In this context, we propose a rational strategy for the successful synthesis of a melt-processable MHP FE, (MBPA)2PbBr4 (MBPA = N-methyl bromopropylammonium), featuring a notably low congruent melting temperature and excellent molten stability. The reversibility of solid and liquid states was demonstrated by X-ray diffraction and Raman and IR spectrum. Scanning electron microscopy examinations show a better quality of the melt-processed thin films compared to spin-coated ones. This study marks the successful implementation of integrating ferroelectricity and melt-processability into melt-processable MHP FEs, paving the way for a novel approach in processing MHP FEs and facilitating their future applications.
Collapse
Affiliation(s)
- Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Zhang G, Chen Z, Wen J, Hou J, Chen S, Fang Y, Ren Y. Bulk Photovoltaic Effect in High-Temperature Lead-Halide Molecular Ferroelectric [C 4N 2H 14][PbI 4]. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53873-53880. [PMID: 39324336 DOI: 10.1021/acsami.4c11534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hybrid organic-inorganic molecular ferroelectrics (HOIMFs) have garnered significant attention owing to their potential applications in optoelectronic and spintronic devices. However, HOIMFs with high Curie temperature (Tc), narrow bandgap (Eg), excellent stability, and high breakdown voltage are still very rare. Herein, we present a novel lead-halide molecular ferroelectric, (1,4-butanediammonium)PbI4 (1), synthesized hydrothermally. 1 exhibits a ferroelectric-to-paraelectric phase transition with a high Curie temperature of 485 K, a room temperature ferroelectric hysteresis loop with a robust saturation polarization of 3.9 μC/cm2 and strong coercivity of 33 kV/cm, and a typical semiconductor behavior with a direct bandgap of 2.28 eV. Switchable photovoltaic effect was observed in 1-based device with a fast response time of ∼2 ms and high breakdown electric field of 80 kV/cm. Dramatically enhanced photovoltaic performance has been achieved by manipulating the ferroelectric polarization, resulting in a maximum photovoltage of Voc ∼ 0.84 V and a photocurrent of Jsc ∼ 33.31 nA/cm2 under standard AM 1.5 G illumination. This study offers a bright avenue for advancing high-Tc lead-halide molecular ferroelectrics with promising potentials in photodetectors, data storage, and logical switching devices.
Collapse
Affiliation(s)
- Ganghua Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Zhibo Chen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jinrong Wen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Shu Chen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
6
|
Yu Y, Zhang S, Wu H, Hu Z, Wang J, Wu Y, Yu H. Ae 3[TO 3][SnOQ 3] (Ae = Sr, Ba; T = Si, Ge; Q = S, Se) and Ba 3[CO 3][MQ 4] (M = Ge, Sn; Q = S, Se): Design and Syntheses of a Series of Heteroanionic Antiperovskite-Type Oxychalcogenides. J Am Chem Soc 2024; 146:26081-26094. [PMID: 39283331 DOI: 10.1021/jacs.4c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The heteroanionic materials (HAMs) have attracted more and more attention because they can better balance the functional properties of materials. However, their rational structural design is still a great challenge. Here, by using the antiperovskite Ba3S[GeS4] as a template and calculating the tolerance factor (t) as a reference, eight heteroanionic oxychalcogenides with balanced properties were finally synthesized by a partially group-substitution method. Among them, Ba3[CO3][MQ4] (M = Ge, Sn; Q = S, Se) are centrosymmetric (CS) crystals and realize optimization of band gaps and birefringence. For Ae3[TO3][SnOQ3] (Ae = Sr, Ba; T = Si, Ge; Q = S, Se), thanks to the novel [TO4SnQ3] polyanionic groups for the regulation to the antiperovskite structures and the contributions to the nonlinear optical (NLO) properties, they achieve the structural transition from CS to noncentrosymmetry and accomplish an excellent balance among the critical performance parameters as the potential candidates for the infrared NLO materials, including phase-matchable behavior, wide band gaps (Eg = 3.26-3.95 eV), high laser damage threshold (LDT = 3.2-4.4 × AgGaS2), suitable birefringence (Δn = 0.065-0.098@2090 nm) and sufficiently strong second-harmonic generation responses (about 0.6-0.9 × AgGaS2). Moreover, benefiting from crystallization in the polar space groups, they exhibit ferroelectricity and piezoelectricity at room temperature. As far as we know, this is the first reported fully inorganic antiperovskite ferroelectric. These demonstrate that our strategy is desirable and can provide some unique insights into the development of HAMs or antiperovskite materials with specific functions or structures.
Collapse
Affiliation(s)
- Yuanding Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
7
|
Zhang Y, Abdi-Jalebi M, Larson BW, Zhang F. What Matters for the Charge Transport of 2D Perovskites? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404517. [PMID: 38779825 DOI: 10.1002/adma.202404517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Compared to 3D perovskites, 2D perovskites exhibit excellent stability, structural diversity, and tunable bandgaps, making them highly promising for applications in solar cells, light-emitting diodes, and photodetectors. However, the trade-off for worse charge transport is a critical issue that needs to be addressed. This comprehensive review first discusses the structure of 3D and 2D metal halide perovskites, then summarizes the significant factors influencing charge transport in detail and provides a brief overview of the testing methods. Subsequently, various strategies to improve the charge transport are presented, including tuning A'-site organic spacer cations, A-site cations, B-site metal cations, and X-site halide ions. Finally, an outlook on the future development of improving the 2D perovskites' charge transport is discussed.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mojtaba Abdi-Jalebi
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
8
|
Park JY, Mihalyi-Koch W, Triggs CT, Roy CR, Sanders KM, Wright JC, Jin S. A Lead-Free Ferroelectric 2D Dion-Jacobson Tin Iodide Perovskite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314292. [PMID: 38684071 DOI: 10.1002/adma.202314292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Indexed: 05/02/2024]
Abstract
2D hybrid organic-inorganic halide perovskites emerge as a new class of 2D semiconductors with the potential to combine excellent optoelectronic properties with symmetry-enabled properties such as ferroelectricity. Although many lead-based ferroelectric 2D halide perovskites are reported, there is yet to be a conclusive report of ferroelectricity in tin-based 2D perovskites. Here, the structures and properties of a new series of 2D Dion-Jacobson (DJ) Sn perovskites: (4AMP)SnI4, (4AMP)(MA)Sn2I7, and (4AMP)(FA)Sn2I7 (4AMP = 4-(aminomethyl)piperidinium, MA = methylammonium, and FA = formamidinium), are reported. Structural characterization reveals that (4AMP)SnI4 is polar with in-plane spontaneous polarization whereas (4AMP)(MA)Sn2I7 and (4AMP)(FA)Sn2I7 are centrosymmetric. Further, (4AMP)SnI4 displays second harmonic generation (SHG) and polarization-electric field hysteresis measurements confirm it is ferroelectric with a spontaneous polarization of 10.0 µC cm-2 at room temperature. (4AMP)SnI4 transitions into a centrosymmetric structure above 367 K. As the first direct experimental observation of the spontaneous ferroelectric polarization of a Sn-based 2D hybrid perovskite, this work opens up environmentally friendly 2D tin halide perovskites for ferroelectricity and other physical property studies.
Collapse
Affiliation(s)
- Jae Yong Park
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher T Triggs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kyana M Sanders
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Qiao WC, Qiao H, Wang XL, Xu H, Xu F, Sun Z, Gao H, Yao YF. Ferroelectricity and Thermochromism in a 2D Dion-Jacobson Organic-Inorganic Hybrid Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310529. [PMID: 38148294 DOI: 10.1002/smll.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Indexed: 12/28/2023]
Abstract
2D organic-inorganic hybrid perovskites (OIHPs) have become one of the hottest research topics due to their excellent environmental stability and unique optoelectronic properties. Recently, the ferroelectricity and thermochromism of 2D OIHPs have attracted increasing interests. Integrating ferroelectricity and thermochromism into perovskites can significantly promote the development of multichannel intelligent devices. Here, a novel 2D Dion-Jacobson OIHP of the formula (3AMP)PbI4 (where 3AMP is 3-(aminomethyl)pyridinium) is reported, which has a remarkable spontaneous polarization value (Ps) of 15.6 µC cm-2 and interesting thermochromism. As far it is known, such a large Ps value is the highest for 2D OIHPs recorded so far. These findings will inspire further exploration and application of multifunctional perovskites.
Collapse
Affiliation(s)
- Wen-Cheng Qiao
- Oujiang Laboratory, Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Hongwei Qiao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fanchen Xu
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hongchang Gao
- Oujiang Laboratory, Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Ye-Feng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
10
|
Guo J, Zhang J, Di Y, Gan Z. Research Progress on Rashba Effect in Two-Dimensional Organic-Inorganic Hybrid Lead Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:683. [PMID: 38668177 PMCID: PMC11054462 DOI: 10.3390/nano14080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The Rashba effect appears in the semiconductors with an inversion-asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic-inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites.
Collapse
Affiliation(s)
- Junhong Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China;
| | - Jinlei Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Zhang ZX, Wang H, Ni HF, Wang N, Wang CF, Huang PZ, Jia QQ, Teri G, Fu DW, Zhang Y, An Z, Zhang Y. Organic-Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission. Angew Chem Int Ed Engl 2024; 63:e202319650. [PMID: 38275283 DOI: 10.1002/anie.202319650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - He Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
12
|
Zhang X, Einhaus L, Huijser A, ten Elshof JE. Manipulation of Crystal Orientation and Phase Distribution of Quasi-2D Perovskite through Synergistic Effect of Additive Doping and Spacer Engineering. Inorg Chem 2024; 63:5246-5259. [PMID: 38429861 PMCID: PMC10951954 DOI: 10.1021/acs.inorgchem.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The diammonium precursor 1,4-phenylenedimethanammonium (PDMA) was used as a large organic spacer for the preparation of Dion-Jacobson-type quasi-2D perovskites (PDMA)(MA)n-1PbnI3n+1 (MA = methylammonium). Films with composition ⟨n⟩ = 5 comprised randomly orientated grains and multiple microstructural domains with locally differing n values. However, by mixing the Dion-Jacobson-type spacer PDMA and the Ruddlesden-Popper-type spacer propylammonium (PA), the crystal orientation in both the vertical and the horizonal directions became regulated. High crystallinity owing to well-matched interlayer distances was observed. Combining this spacer-engineering approach with the addition of methylammonium chloride (MACl) led to full vertical alignment of the crystal orientation. Moreover, the microstructural domains at the substrate interface changed from low-n (n = 1, 2, 3) to high-n (n = 4, 5), which may be beneficial for hole extraction at the interface between perovskite and hole transport layer due to a more finely tuned band alignment. Our work sheds light on manipulating the crystallization behavior of quasi-2D perovskite and further paves the way for highly stable and efficient perovskite devices.
Collapse
Affiliation(s)
- Xiao Zhang
- Inorganic
Materials Science Group, MESA+ Research Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Lisanne Einhaus
- PhotoCatalytic
Synthesis Group, MESA+ Research Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Annemarie Huijser
- PhotoCatalytic
Synthesis Group, MESA+ Research Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | | |
Collapse
|
13
|
Wang N, Ding N, Xu ZJ, Luo W, Li HK, Shi C, Ye HY, Dong S, Miao LP. Large Enhancement of Polarization in a Layered Hybrid Perovskite Ferroelectric Semiconductor via Molecular Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306502. [PMID: 37919858 DOI: 10.1002/smll.202306502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Switchable spontaneous polarization is the vital property of ferroelectrics, which leads to other key physical properties such as piezoelectricity, pyroelectricity, and nonlinear optical effects, etc. Recently, organic-inorganic hybrid perovskites with 2D layered structure have become an emerging branch of ferroelectric materials. However, most of the 2D hybrid ferroelectrics own relatively low polarizations (<15 µC cm-2 ). Here, a strategy to enhance the polarization of these hybrid perovskites by using ortho-, meta-, para-halogen substitution is developed. Based on (benzylammonium)2 PbCl4 (BZACL), the para-chlorine substituted (4-chlorobenzylammonium)2 PbCl4 (4-CBZACL) ferroelectric semiconductor shows a large spontaneous polarization (23.3 µC cm-2 ), which is 79% larger than the polarization of BZACL. This large enhancement of polarization is successfully explained via ab initio calculations. The study provides a convenient and efficient strategy to promote the ferroelectric property in the hybrid perovskite family.
Collapse
Affiliation(s)
- Na Wang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Ning Ding
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Ze-Jiang Xu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Wang Luo
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Hua-Kai Li
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
14
|
Fan CC, Liu CD, Liang BD, Wang W, Jin ML, Chai CY, Jing CQ, Ju TY, Han XB, Zhang W. Tuning ferroelectric phase transition temperature by enantiomer fraction. Nat Commun 2024; 15:1464. [PMID: 38368439 PMCID: PMC10874439 DOI: 10.1038/s41467-024-45986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Tuning phase transition temperature is one of the central issues in phase transition materials. Herein, we report a case study of using enantiomer fraction engineering as a promising strategy to tune the Curie temperature (TC) and related properties of ferroelectrics. A series of metal-halide perovskite ferroelectrics (S-3AMP)x(R-3AMP)1-xPbBr4 was synthesized where 3AMP is the 3-(aminomethyl)piperidine divalent cation and enantiomer fraction x varies between 0 and 1 (0 and 1 = enantiomers; 0.5 = racemate). With the change of the enantiomer fraction, the TC, second-harmonic generation intensity, degree of circular polarization of photoluminescence, and photoluminescence intensity of the materials have been tuned. Particularly, when x = 0.70 - 1, a continuously linear tuning of the TC is achieved, showing a tunable temperature range of about 73 K. This strategy provides an effective means and insights for regulating the phase transition temperature and chiroptical properties of functional materials.
Collapse
Affiliation(s)
- Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Chang-Qing Jing
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Tong-Yu Ju
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
| |
Collapse
|
15
|
Cui S, Wu H, Dong X, Hu Z, Wang J, Wu Y, Poeppelmeier KR, Yu H. Chiral and Polar Duality Design of Heteroanionic Compounds: Sr 18 Ge 9 O 5 S 31 Based on [Sr 3 OGeS 3 ] 2+ and [Sr 3 SGeS 3 ] 2+ Groups. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306825. [PMID: 38064125 PMCID: PMC10870052 DOI: 10.1002/advs.202306825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Indexed: 02/17/2024]
Abstract
Chirality and polarity are the two most important and representative symmetry-dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror-related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest-level challenge. Herein, a new symmetry-breaking strategy that employs heteroanionic groups to construct hourglass-like [Sr3 OGeS3 ]2+ and [Sr3 SGeS3 ]2+ groups to design and synthesize a new oxychalcogenide Sr18 Ge9 O5 S31 with chiral-polar duality is proposed. The presence of two enantiomers of Sr18 Ge9 O5 S31 is confirmed by the single-crystal X-ray diffraction. Its optical activity and ferroelectricity are also studied by solid-state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18 Ge9 O5 S31 possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid-infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry-breaking and are able to provide some inspiration for exploring the chiral-polar duality materials.
Collapse
Affiliation(s)
- Shaoxin Cui
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Xinkang Dong
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | | | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional Crystal, College of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| |
Collapse
|
16
|
Mandal A, Khuntia SK, Mondal D, Mahadevan P, Bhattacharyya S. Spin Texture Sensitive Photodetection by Dion-Jacobson Tin Halide Perovskites. J Am Chem Soc 2023. [PMID: 37906676 DOI: 10.1021/jacs.3c10195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The organic spacer molecule is known to regulate the optoelectronic properties of two-dimensional (2D) perovskites. We show that the spacer layer thickness determines the nature of optical transitions, direct or indirect, by controlling the structural properties of the inorganic layer. The spin-orbit interactions lead to different electron spin orientations for the states associated with the conduction band minimum (CBM) and the valence band maximum (VBM). This leads to a direct as well as an indirect component of the transitions, despite them being direct in momentum space. The shorter chains have a larger direct component, leading to a better optoelectronic performance. The mixed halide Sn2+ Dion-Jacobson (DJ) perovskite with the shortest 4-C diammonium spacer outshines the photodetection parameters of those having longer (6-C and 8-C) spacers and the corresponding Ruddlesden-Popper (RP) phases. The DJ system with a 4-C spacer and equimolar Br/I embodies an unprecedentedly high responsivity of 78.1 A W-1 under 3 V potential bias at 485 nm wavelength, among the DJ perovskites. Without any potential bias, this phase manifests the self-powered photodetection parameters of 0.085 A W-1 and 9.9 × 1010 jones. The unusual role of electron spin texture in these high-performance photodetectors of the lead-free DJ perovskites provides an avenue to exploit the information coded in spins for semiconductor devices without any ferromagnetic supplement or magnetic field.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sanuja Kumar Khuntia
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
17
|
Higashimura C, Yumoto G, Yamada T, Nakamura T, Harata F, Hirori H, Wakamiya A, Kanemitsu Y. Spontaneous Polarization Induced Optical Responses in a Two-Dimensional Ferroelectric Halide Perovskite. J Phys Chem Lett 2023; 14:8360-8366. [PMID: 37703207 DOI: 10.1021/acs.jpclett.3c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Two-dimensional (2D) halide perovskites exhibit unique structural and optical properties because large organic molecular cations distort the perovskite structure and the excitons confined in the 2D layers are stable. Here, we report the temperature dependences of the absorption spectra, second harmonic generation (SHG) intensity, and lattice constants of 2D perovskite (BA)2(EA)2Pb3I10 single crystals, where BA is n-butylammonium and EA is ethylammonium. We found that the Urbach tail of the absorption spectrum significantly changes at around 200 K and that the change is correlated with the SHG intensity and the in-plane lattice distortion. We concluded that a random distribution of spontaneous polarizations in the ferroelectric phase modifies the linewidth of the band-edge exciton transition and is the cause of the anomalous temperature dependence of the steepness parameter of the Urbach tail.
Collapse
Affiliation(s)
- Chika Higashimura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Go Yumoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takumi Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fuyuki Harata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
18
|
Gan JQ, Xu ZK, Gan T, Qin Y, Wang ZX. Large Phase-Transition Temperature Enhancement Achieved in a Layered Lead Iodide Hybrid Crystal by H/F Substitution. Inorg Chem 2023; 62:14469-14476. [PMID: 37603465 DOI: 10.1021/acs.inorgchem.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Organic-inorganic hybrid metal halides with structural flexibility and solution processability have been widely investigated for different application scenarios. However, the effective construction of phase-transition materials with a high phase-transition temperature (Ttr) for potential practical applications remains a great challenge, and reports on the regulation of Ttr with significant enhancement have been rare. In this manuscript, we have realized a large Ttr increase of 148 K in a layered hybrid lead iodide crystal (4-FTMBA)4Pb3I10 (4-FTMBA = 4-fluoro-N,N,N-trimethylbenzenaminium) by the H/F substitution strategy. Compared to the parent (TMBA)4Pb3I10 (TMBA = N,N,N-trimethylbenzenaminium), H/F substitution preserves the structural framework and crystal symmetry in (4-FTMBA)4Pb3I10. The introduction of heavier fluorine will significantly increase the motion barrier for the order-disorder transition, resulting in the remarkably improved Ttr. Temperature-dependent crystal structures, Raman spectra, and dielectric analyses well support the phase-transition behavior. In addition, evident thermochromism with a tunable direct band gap in (4-FTMBA)4Pb3I10 has been observed using UV-vis spectra. To the best of our knowledge, the achieved Ttr enhancement of 148 K by H/F substitution is the highest among the organic-inorganic hybrid lead halide phase-transition materials. This finding would greatly inspire the rational design of functional materials with high performance.
Collapse
Affiliation(s)
- Jia-Qi Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan Qin
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
19
|
Xu ZJ, Wang N, Luo W, Li HK, Feng Y, Shi C, Ye HY, Miao LP. Crystal Sponge Behavior in a Two-Dimensional Rare-Earth Hybrid Coordinate Polymer. Inorg Chem 2023; 62:13937-13942. [PMID: 37582397 DOI: 10.1021/acs.inorgchem.3c01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Stimuli-responsive multifunctional materials (SRMMs) have attracted tremendous attention due to their dynamic responses to external stimuli. However, it remains challenging to simultaneously achieve solvent-induced single-crystal to single-crystal (SCSC) transformation and structural phase transition after desolvation. Here, we report a two-dimensional (2D) rare-earth organic-inorganic hybrid coordinate polymer [(CH3)3NCH2Cl]2[Eu·H2O]2[CH2(SO3)2]4·2H2O (1) that exhibits a reversible SCSC transformation by changing to 2 ([(CH3)3NCH2Cl][Eu·H2O][CH2(SO3)2]2). Impressively, the SCSC transformation process couples with large changes in quantum efficiency dropped from 33.68% of 1 to 20.07% that of 2. Furthermore, polymer 2 shows an isomorphic structural phase transition associated with switching dielectric. Notably, the distance of the 2D layers shows reversible change during the two successive transition processes displaying a crystal sponge behavior. This work reveals the potential of rare-earth 2D hybrid coordination polymers in the design of multifunctional responsive materials and opens a new prospect to explore the construction of novel SRMMs.
Collapse
Affiliation(s)
- Ze-Jiang Xu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Na Wang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Wang Luo
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hua-Kai Li
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Feng
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
20
|
Peng H, Liu Q, Lu YZ, Yang SJ, Qi JC, Chen XG, Liao WQ. A chiral two-dimensional perovskite-like lead-free bismuth(III) iodide hybrid with high phase transition temperature. Chem Commun (Camb) 2023; 59:10295-10298. [PMID: 37540031 DOI: 10.1039/d3cc02798h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bismuth(III) iodide perovskites have attracted great attention as lead-free hybrid semiconductors, but they mainly show zero- and one-dimensional structures. Herein, we report the first two-dimensional chiral perovskite-like bismuth(III) iodide hybrid [(S)-3-aminopyrrolidinium I]2Bi2/3I4 (1) with a high phase transition temperature of 408.8 K, higher than most of the reported chiral lead-free hybrid semiconductors.
Collapse
Affiliation(s)
- Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Qin Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Yan-Zi Lu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Shu-Jing Yang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| |
Collapse
|
21
|
Fan CC, Liu CD, Liang BD, Jin ML, Ju TY, Chai CY, Han XB, Zhang W. A Two-Dimensional Hybrid Lead Bromide Ferroelectric Semiconductor with an Out-of-Plane Polarization. Inorg Chem 2023; 62:12634-12638. [PMID: 37534962 DOI: 10.1021/acs.inorgchem.3c02057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) material with out-of-plane ferroelectricity is the key to the miniaturization of vertical-sandwich-type ferroelectric optoelectronic devices. However, 2D OIHP ferroelectrics with out-of-plane polarization are still scarce, and effective design strategies are lacking. Herein, we report a novel 2D Dion-Jacobson perovskite ferroelectric semiconductor synthesized by a rigid-to-flexible cationic tailoring strategy, achieving an out-of-plane polarization of 1.7 μC/cm2 and high photoresponse. Integrating out-of-plane ferroelectricity with excellent photoelectric properties affords a promising platform to investigate ferroelectricity-related effects in vertical optoelectronic devices.
Collapse
Affiliation(s)
- Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tong-Yu Ju
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
22
|
He W, Yang Y, Li C, Wong WPD, Cimpoesu F, Toader AM, Wu Z, Wu X, Lin Z, Xu QH, Leng K, Stroppa A, Loh KP. Near-90° Switch in the Polar Axis of Dion-Jacobson Perovskites by Halide Substitution. J Am Chem Soc 2023. [PMID: 37315326 DOI: 10.1021/jacs.3c03921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.
Collapse
Affiliation(s)
- Weixin He
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Yali Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanzhao Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Fanica Cimpoesu
- Institute of Physical Chemistry of Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Ana Maria Toader
- Institute of Physical Chemistry of Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Zhenyue Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zexin Lin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kai Leng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Alessandro Stroppa
- Consiglio Nazionale delle Ricerche, Institute for Superconducting and Innovative Materials and Devices (CNR-SPIN), c/o Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67100 Coppito, L'Aquila, Italy
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
23
|
Guan M, Xie Y, Zhang Y, Gu Z, Qiu L, He Z, Ye B, Suwardi A, Dai Z, Li G, Hu G. Moisture-Tailored 2D Dion-Jacobson Perovskites for Reconfigurable Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210611. [PMID: 37058138 DOI: 10.1002/adma.202210611] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Indexed: 06/02/2023]
Abstract
Humidity- and moisture-induced degradation has been a longstanding problem in perovskite materials, affecting their long-term stability during applications. Counterintuitively, the moisture is leveraged to tailor the reversible hydrochromic behaviors of a new series of 2D Dion-Jacobson (DJ) perovskites for reconfigurable optoelectronics. In particular, the hydrogen bonds between organic cations and water molecules can be dynamically modulated via moisture removal/exposure. Remarkably, such modulation confines the movement of the organic cations close to the original position, preventing their escape from crystal lattices. Furthermore, this mechanism is elucidated by theoretical analysis using first-principles calculations and confirmed with the experimental characterizations. The reversible fluorescent transition 2D DJ perovskites show excellent cyclical properties, presenting untapped opportunities for reconfigurable optoelectronic applications. As a proof-of-concept demonstration, an anti-counterfeiting display is shown based on patterned reversible 2D DJ perovskites. The results represent a new avenue of reconfigurable optoelectronic application with 2D DJ perovskites for humidity detection, anti-counterfeiting, sensing, and other emerging photoelectric intelligent technologies.
Collapse
Affiliation(s)
- Mengyu Guan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yunlong Xie
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Yang Zhang
- School of Materials Science and Engineering, Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zixin Gu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhuojie He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Bingkun Ye
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhigao Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518063, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
24
|
Liu M, Pauporté T. Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:134. [PMID: 37221320 PMCID: PMC10205963 DOI: 10.1007/s40820-023-01110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Because of their better chemical stability and fascinating anisotropic characteristics, Dion-Jacobson (DJ)-layered halide perovskites, which owe crystallographic two-dimensional structures, have fascinated growing attention for solar devices. DJ-layered halide perovskites have special structural and photoelectronic features that allow the van der Waals gap to be eliminated or reduced. DJ-layered halide perovskites have improved photophysical characteristics, resulting in improved photovoltaic performance. Nevertheless, owing to the nature of the solution procedure and the fast crystal development of DJ perovskite thin layers, the precursor compositions and processing circumstances can cause a variety of defects to occur. The application of additives can impact DJ perovskite crystallization and film generation, trap passivation in the bulk and/or at the surface, interface structure, and energetic tuning. This study discusses recent developments in additive engineering for DJ multilayer halide perovskite film production. Several additive-assisted bulk and interface optimization methodologies are summarized. Lastly, an overview of research developments in additive engineering in the production of DJ-layered halide perovskite solar cells is offered.
Collapse
Affiliation(s)
- Min Liu
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| | - Thierry Pauporté
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| |
Collapse
|
25
|
Han B, Wang Y, Liu C, Sun K, Yang M, Xie L, Yang S, Meng Y, Lin S, Xu P, Li J, Qiu Q, Ge Z. Rational Design of Ferroelectric 2D Perovskite for Improving the Efficiency of Flexible Perovskite Solar Cells Over 23 . Angew Chem Int Ed Engl 2023; 62:e202217526. [PMID: 36581737 DOI: 10.1002/anie.202217526] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Despite the great progress of flexible perovskite solar cells (f-PSCs), it still faces several challenges during the homogeneous fabrication of high-quality perovskite thin films, and overcoming the insufficient exciton dissociation. To the ends, we rationally design the ferroelectric two-dimensional (2D) perovskite based on pyridine heterocyclic ring as the organic interlayer. We uncover that incorporation of the ferroelectric 2D material into 3D perovskite induces an increased built-in electric field (BEF), which enhances the exciton dissociation efficiency in the device. Moreover, the 2D seeds could assist the 3D crystallization by forming more homogeneous and highly-oriented perovskite crystals. As a result, an impressive power conversion efficiency (PCE) over 23 % has been achieved by the f-PSCs with outstanding ambient stability. Moreover, the piezo/ferroelectric 2D perovskite intrigues a decreased hole transport barriers at the ITO/perovskite interface under tensile stress, which opens new possibilities for developing highly-efficient f-PSCs.
Collapse
Affiliation(s)
- Bin Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Yaohua Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Mengjin Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuncheng Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuyuan Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Peng Xu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jun Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
26
|
Fan CC, Han XB, Liang BD, Shi C, Miao LP, Chai CY, Liu CD, Ye Q, Zhang W. Chiral Rashba Ferroelectrics for Circularly Polarized Light Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204119. [PMID: 36127874 DOI: 10.1002/adma.202204119] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Direct detection of circularly polarized light (CPL) is a challenging task due to limited materials and ambiguous structure-property relationships that lead to low distinguishability of the light helicities. Perovskite ferroelectric semiconductors incorporating chirality provide new opportunities in dealing with this issue. Herein, a pair of 2D chiral perovskite ferroelectrics is reported, which have enhanced CPL detection performance due to interplays among lattice, photon, charge, spin, and orbit. The chirality-transfer-induced chiral&polar ferroelectric phase enhances the asymmetric nature of the photoactive sublattice and achieves a switchable self-powered detection via the bulk photovoltaic effect. The single-crystal-based device exhibits a CPL-sensitive detection performance under 430 nm with an asymmetric factor of 0.20 for left- and right-CPL differentiation, about two times that of the pure chiral counterparts. The enhanced CPL detection performance is ascribed to the Rashba-Dresselhaus effect that originates from the bulk inversion asymmetry and strong spin-orbit coupling, shown with a large Rashba coefficient, which is demonstrated by density functional theory calculation and circularly polarized light excited photoluminescence measurement. These results provide new perspectives on chiral Rashba ferroelectric semiconductors for direct CPL detection and ferroelectrics-based chiroptics and spintronics.
Collapse
Affiliation(s)
- Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Qiong Ye
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| |
Collapse
|
27
|
Enantiomeric hybrid high-temperature multiaxial ferroelectrics with a narrow bandgap and high piezoelectricity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Han S, Ma Y, Hua L, Tang L, Wang B, Sun Z, Luo J. Soft Multiaxial Molecular Ferroelectric Thin Films with Self-Powered Broadband Photodetection. J Am Chem Soc 2022; 144:20315-20322. [DOI: 10.1021/jacs.2c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Lina Hua
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Liwei Tang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Beibei Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Fu J, Xu Q, Abdelwahab I, Cai R, Febriansyah B, Yin T, Loh KP, Mathews N, Sun H, Sum TC. Strain propagation in layered two-dimensional halide perovskites. SCIENCE ADVANCES 2022; 8:eabq1971. [PMID: 36112683 PMCID: PMC9481117 DOI: 10.1126/sciadv.abq1971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Impulsive light excitation presents a powerful tool for investigating the interdependent structural and electronic responses in layered two-dimensional (2D) halide perovskites. However, detailed understanding of the nonlinear lattice dynamics in these soft hybrid materials remains limited. Here, we explicate the intrinsic strain propagation mechanisms in 2D perovskite single crystals using transient reflection spectroscopy. Ultrafast photoexcitation leads to the generation of strain pulses via thermoelastic (TE) stress and deformation potential (DP) interaction whence their detection proceed via Brillouin scattering. Using a two-temperature model together with strain wave propagation, we discern the TE and DP contributions in strain generation. Hot carrier cooling plays a dominant role in effecting the weak modulation amplitude. Out-of-plane lattice stiffness is reduced by the weak van der Waals bond between organic layers, resulting in a slow strain propagation velocity. Our findings inject fresh insights into the basic strain properties of layered perovskites critical for manipulating their functional properties for new applications.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Qiang Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Benny Febriansyah
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tingting Yin
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Handong Sun
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Corresponding author.
| |
Collapse
|
30
|
The chemistry and physics of organic—inorganic hybrid perovskite quantum wells. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Zhang X, Wang P, Wu Q, Xu L, Chen M, Kang Y, Sun C, Wei G, Qiao Z, Lin Z. Dion-Jacobson phase lead-free halide (PDA)MX4 (M=Sn/Ge; X=I/Br/Cl) perovskites: A first-principles theory. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
32
|
Wang C, Wang S, Xiao Z, Wong-Ng W, Zhou W, Liu W. Electric field and strain engineering tuning Rashba spin splitting in quasi-one-dimensional organic-inorganic hybrid perovskites (MV)AI 3Cl 2 (MV = methylviologen, A = Bi, Sb). Phys Chem Chem Phys 2022; 24:18401-18407. [PMID: 35880800 DOI: 10.1039/d2cp02059a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We systematically study the Rashba spin texture of lead-free quasi-one-dimensional organic-inorganic hybrid perovskites (OIHP), (MV)AI3Cl2 (MV = methylviologen, A = Bi, Sb) with first-principles calculations. The kx-ky plane Rashba spin splitting was found to depend on the composition of Bi (Sb) and I atoms at band edges. Importantly, increasing ferroelectric polarization and the stretch along the z-direction can effectively enhance the amplitude of the Rashba spin splitting. This work provides an avenue for electric field and strain-controlled spin splitting and highlights the potential of quasi-one-dimensional OIHP for further applications in spin field effect transistors and photovoltaic cells.
Collapse
Affiliation(s)
- Chao Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China.
| | - Shouyu Wang
- College of Physics and Material Science, Tianjin Normal University, Tianjin 300074, China.
| | - Zhifeng Xiao
- College of Physics and Material Science, Tianjin Normal University, Tianjin 300074, China.
| | - Winnie Wong-Ng
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wei Zhou
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China.
| | - Weifang Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
33
|
Li YK, Ying TT, Zhang H, Tan YH, Tang YZ, Wang FX, Wan MY. Unusual symmetry breaking in high-temperature enantiomeric ferroelectrics with large spontaneous polarization. Dalton Trans 2022; 51:6860-6867. [PMID: 35438712 DOI: 10.1039/d2dt00592a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organic-inorganic hybrid perovskites have gained extensive research interest due to their combination of chirality and the excellent optical, electrical and spin properties of perovskite materials, especially in two-dimensional hybrid perovskites. Herein, we report two-dimensional organic-inorganic perovskite enantiomeric ferroelectric [(R)-β-MPA]2CdCl4 (1) and [(S)-β-MPA]2CdCl4 (2) (MPA+ =methylphenethylammonium). Their mirror relationships are verified by both circular dichroism (CD) and crystal structures. At the same time, the two exhibit very similar ferroelectricity and related properties, including high Curie temperature (343 K), large spontaneous polarization (4.65 μC cm-2), and low coercive force field (13 kV cm-1). Unusually, at room temperature the crystal phase is monoclinic with the space group C2 and above the phase transition temperature it is triclinic with the space group P1, which means that the symmetry decreases with the increase of temperature. In addition, it exhibits a flexible switchable SHG response, while [(R)-β-MPA]2CdCl4 and [(S)-β-MPA]2CdCl4 have wide band gaps of 4.21 and 4.26 eV, respectively, mainly contributed by inorganic CdCl6 octahedra. This discovery opens a new way for the construction of two-dimensional enantiomeric molecular ferroelectrics.
Collapse
Affiliation(s)
- Yu-Kong Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Ting-Ting Ying
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Hao Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| |
Collapse
|
34
|
Zhang CC, Yuan S, Lou YH, Okada H, Wang ZK. Physical Fields Manipulation for High-Performance Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107556. [PMID: 35043565 DOI: 10.1002/smll.202107556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
With the efforts of researchers from all over the world, metal halide perovskite solar cells (PSCs) have been booming rapidly in recent years. Generally, perovskite films are sensitive to surrounding conditions and will be changed under the action of physical fields, resulting in lattice distortion, degradation, ion migration, and so on. In this review, the progress of physical fields manipulation in PSCs, including the electric field, magnetic field, light field, stress field, and thermal field are reviewed. On this basis, the influences of these fields on PSCs are summarized and prospected. Finally, challenges and prospective research directions on how to make better use of external-fields while minimizing the unnecessary and disruptive impacts on commercial PSCs with high-efficiency and steady output are proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yan-Hui Lou
- School of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Hiroyuki Okada
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
35
|
Szklarz P, Jakubas R, Medycki W, Gągor A, Cichos J, Karbowiak M, Bator G. (C 3N 2H 5) 3Sb 2I 9 and (C 3N 2H 5) 3Bi 2I 9: ferroelastic lead-free hybrid perovskite-like materials as potential semiconducting absorbers. Dalton Trans 2022; 51:1850-1860. [PMID: 35018903 DOI: 10.1039/d1dt03455c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesised and characterised novel organic-inorganic hybrid crystals: (C3N2H5)3Sb2I9 and (C3N2H5)3Bi2I9 (PSI and PBI). The thermal DSC and TG analyses indicate four structural phase transitions (PTs) at 366.2/366.8, 274.6/275.4, 233.3/233.3 and 142.8/143.1 K (on cooling/heating) for PSI and two reversible PTs at 365.2/370.8 and 252.6/257.9 K for PBI. Both analogues crystallize at room temperature in the orthorhombic Cmcm structure, which transforms, in the case of PBI, to monoclinic P21/n at low temperature. According to the X-ray diffraction results, the anionic component is discrete and built of face-sharing bioctahedra, [M2I9]3-, in both compounds, whereas cations exhibit distinct dynamical disorder over high temperature phases. Dielectric spectroscopy and 1H NMR spectroscopy have been used to characterise the dynamical state of the C3N2H5+ cations. The ferroelastic domain structure has been characterised by observations under a polarized optical microscope. Both compounds are semiconductors with narrow bandgaps of 1.97 eV (PBI) and 2.10 eV (PSI).
Collapse
Affiliation(s)
- Przemysław Szklarz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Wojciech Medycki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Anna Gągor
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Science, P.O. Box 1410, 50-950 Wrocław, Poland
| | - Jakub Cichos
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Mirosław Karbowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Grażyna Bator
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
36
|
Shao Y, Gao W, Yan H, Li R, Abdelwahab I, Chi X, Rogée L, Zhuang L, Fu W, Lau SP, Yu SF, Cai Y, Loh KP, Leng K. Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat Commun 2022; 13:138. [PMID: 35013412 PMCID: PMC8748742 DOI: 10.1038/s41467-021-27747-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/09/2021] [Indexed: 01/31/2023] Open
Abstract
Molecularly soft organic-inorganic hybrid perovskites are susceptible to dynamic instabilities of the lattice called octahedral tilt, which directly impacts their carrier transport and exciton-phonon coupling. Although the structural phase transitions associated with octahedral tilt has been extensively studied in 3D hybrid halide perovskites, its impact in hybrid 2D perovskites is not well understood. Here, we used scanning tunneling microscopy (STM) to directly visualize surface octahedral tilt in freshly exfoliated 2D Ruddlesden-Popper perovskites (RPPs) across the homologous series, whereby the steric hindrance imposed by long organic cations is unlocked by exfoliation. The experimentally determined octahedral tilts from n = 1 to n = 4 RPPs from STM images are found to agree very well with out-of-plane surface octahedral tilts predicted by density functional theory calculations. The surface-enhanced octahedral tilt is correlated to excitonic redshift observed in photoluminescence (PL), and it enhances inversion asymmetry normal to the direction of quantum well and promotes Rashba spin splitting for n > 1.
Collapse
Affiliation(s)
- Yan Shao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Wei Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hejin Yan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiao Chi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Lukas Rogée
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lyuchao Zhuang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wei Fu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siu Fung Yu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yongqing Cai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Kai Leng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
37
|
Li N, Yang Y, Shi Z, Lan Z, Arramel A, Zhang P, Ong WJ, Jiang J, Lu J. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. iScience 2022; 25:103753. [PMID: 35128355 PMCID: PMC8803620 DOI: 10.1016/j.isci.2022.103753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Unique performance of the hybrid organic-inorganic halide perovskites (HOIPs) has attracted great attention because of their continuous exploration and breakthrough in a multitude of energy-related applications. However, the instability and lead-induced toxicity that arise in bulk perovskites are the two major challenges that impede their future commercialization process. To find a solution, a series of two-dimensional HOIPs (2D HOIPs) are investigated to prolong the device lifetime with highly efficient photoelectric conversion and energy storage. Herein, the recent advances of 2D HOIPs and their structural derivatives for the energy realms are summarized and discussed. The basic understanding of crystal structures, physicochemical properties, and growth mechanisms is presented. In addition, the current challenges and future directions to provide a roadmap for the development of next generation 2D HOIPs are prospected
Collapse
Affiliation(s)
- Neng Li
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Corresponding author
| | - Yufei Yang
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhigao Lan
- Institute of New Materials & College of Physics and Telecommunications, Huanggang Normal University, Huangzhou 438000, China
- Corresponding author
| | - Arramel Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang Selangor Darul Ehsan 43900, Malaysia
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering & School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China
- Corresponding author
| | - Jianfeng Lu
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
38
|
Abstract
Ferroic phase transition molecular crystals (FPTMCs), i.e., ferroelectrics and ferroelastics, are an important family of functional molecular materials, having merits of easy synthesis, structural tunability and flexibility, and biocompatibility. Both...
Collapse
|
39
|
Stereochemical expression of ns2 electron pairs in metal halide perovskites. Nat Rev Chem 2021; 5:838-852. [PMID: 37117392 DOI: 10.1038/s41570-021-00335-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Metal halide perovskites (MHPs) are characterized as strongly anharmonic and dynamic lattices. While there is a consensus on the solvation-like polarization effect in these materials, whether static polarization, that is, ferroelectricity, exists or not in 3D MHPs remains controversial. In this Review, we resolve this controversy by analysing the stereochemical expression (SE) of the ns2 electron pair (NSEP) on group IV metal cations. The SE-NSEP is key to lattice instability, which governs the breaking of inversion symmetry and induces ferroelectricity. The SE-NSEP is diminishingly small in commonly studied 3D lead iodide or bromide perovskites, indicating an absence of ferroelectricity. In contrast, 2D MHPs promote the SE-NSEP and produce unambiguous ferroelectricity or antiferroelectricity. Irrespective of ferroelectricity, the dynamic manifestation of the SE-NSEP provides the missing link to understanding polar fluctuations and efficient dielectric screening in MHPs, thus, contributing to the long carrier lifetimes and diffusion lengths.
Collapse
|
40
|
Ying T, Li Y, Song N, Tan Y, Tang Y, Zhuang J, Zhang H, Wang L. Semi-conductive, Switchable Dielectric and Photoluminescent Properties of Two High-Temperature Phase Transition Hybrids. Chem Asian J 2021; 16:3664-3668. [PMID: 34519418 DOI: 10.1002/asia.202100837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Indexed: 11/07/2022]
Abstract
Bistable switches (electrical switching between "ON" and "OFF" bistable states) have gradually developed into an ideal category of highly intelligent materials, due to their significant applications in optical technology, signal processors, data storage and other switchable media applications in the field of electrical devices. Here, we successfully designed and synthesized [(FC6 H4 C2 H4 NH3 )2 MCl4 ]n (FC6 H4 C2 H4 NH3 + )=deprotonated 4-fluoro- phenethylamine; M=Cd (1), Mn (2)), which realized the coupling of thermo-dielectric switching characteristics, semi-conductor characteristics and photo-luminescent properties. DSC (differential scanning calorimetry) and dielectric measurements show that 1 is a sensitive dielectric bistable switch between the high dielectric (ON) and low dielectric (OFF) states. The temperature-variable single crystal structure shows that the both 1 and 2 undergo a high-temperature reversible phase transition around 383 K/380 K, which is caused by the order-disordered transformation of organic cations and the slight distortion of the inorganic framework. In particular, 1 shows outstanding switchable dielectric behavior and semiconducting properties. Further, 1 and 2 emit strong green and yellow luminescence at 527 and 595 nm, respectively.
Collapse
Affiliation(s)
- Tingting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Yukong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Ning Song
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Yuhui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Yunzhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Jiachang Zhuang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Lijuan Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| |
Collapse
|
41
|
Huang XQ, Yu H, Xu ZK, Gan T, Wang ZX. Tuning Dielectric Transitions in Two-Dimensional Organic-Inorganic Hybrid Lead Halide Perovskites. Inorg Chem 2021; 60:16871-16877. [PMID: 34689557 DOI: 10.1021/acs.inorgchem.1c02897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic-inorganic hybrid metal halide perovskites possessing unique two-dimensional (2D)-layered structures have been demonstrated with excellent molecular tunability and stability, especially the promising semiconductor properties for solar cell applications. In this work, three 2D lead halide organic-inorganic hybrid perovskites (IAA)2PbX4 (IAA = isoamylammonium cation and X = Cl, Br, and I) were synthesized by employing a solution processing method and demonstrate distinct tuning solid-state phase transitions coupled with dielectric responses, as well as light absorption properties. Among the title perovskites, the phase transition temperature decreases gradually, and their band gap also indicates a narrowing trend. The results are mainly derived from slight changes in the crystal structure by halogen regulation. These findings might provide an effective crystal engineering strategy for exploring high-performance functional perovskite materials.
Collapse
Affiliation(s)
- Xue-Qin Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
42
|
|
43
|
McNulty JA, Lightfoot P. Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCRJ 2021; 8:485-513. [PMID: 34258000 PMCID: PMC8256700 DOI: 10.1107/s2052252521005418] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
We present a comprehensive review of the structural chemistry of hybrid lead halides of stoichiometry APbX 4, A 2PbX4 or A A'PbX 4, where A and A' are organic ammonium cations and X = Cl, Br or I. These compounds may be considered as layered perovskites, containing isolated, infinite layers of corner-sharing PbX 4 octahedra separated by the organic species. First, over 250 crystal structures were extracted from the CCDC and classified in terms of unit-cell metrics and crystal symmetry. Symmetry mode analysis was then used to identify the nature of key structural distortions of the [PbX 4]∞ layers. Two generic types of distortion are prevalent in this family: tilting of the octahedral units and shifts of the inorganic layers relative to each other. Although the octahedral tilting modes are well known in the crystallography of purely inorganic perovskites, the additional layer-shift modes are shown to enormously enrich the structural options available in layered hybrid perovskites. Some examples and trends are discussed in more detail in order to show how the nature of the interlayer organic species can influence the overall structural architecture; although the main aim of the paper is to encourage workers in the field to make use of the systematic crystallographic methods used here to further understand and rationalize their own compounds, and perhaps to be able to design-in particular structural features in future work.
Collapse
Affiliation(s)
- Jason A. McNulty
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Philip Lightfoot
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
44
|
Manipulation of hot carrier cooling dynamics in two-dimensional Dion-Jacobson hybrid perovskites via Rashba band splitting. Nat Commun 2021; 12:3995. [PMID: 34183646 PMCID: PMC8239041 DOI: 10.1038/s41467-021-24258-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Hot-carrier cooling processes of perovskite materials are typically described by a single parabolic band model that includes the effects of carrier-phonon scattering, hot phonon bottleneck, and Auger heating. However, little is known (if anything) about the cooling processes in which the spin-degenerate parabolic band splits into two spin-polarized bands, i.e., the Rashba band splitting effect. Here, we investigated the hot-carrier cooling processes for two slightly different compositions of two-dimensional Dion–Jacobson hybrid perovskites, namely, (3AMP)PbI4 and (4AMP)PbI4 (3AMP = 3-(aminomethyl)piperidinium; 4AMP = 4-(aminomethyl)piperidinium), using a combination of ultrafast transient absorption spectroscopy and first-principles calculations. In (4AMP)PbI4, upon Rashba band splitting, the spin-dependent scattering of hot electrons is responsible for accelerating hot-carrier cooling at longer delays. Importantly, the hot-carrier cooling of (4AMP)PbI4 can be extended by manipulating the spin state of the hot carriers. Our findings suggest a new approach for prolonging hot-carrier cooling in hybrid perovskites, which is conducive to further improving the performance of hot-carrier-based optoelectronic and spintronic devices. Hybrid perovskite is a promising class of material for optoelectronic applications due to the slow hot-carrier cooling, yet the process is not well-understood in material with Rashba band splitting. Here, the authors reveal spin-flipping and spin-dependent scattering of hot electrons are responsible for accelerating the cooling at longer delays.
Collapse
|
45
|
Zhou B, Liang L, Ma J, Li J, Li W, Liu Z, Li H, Chen R, Li D. Thermally Assisted Rashba Splitting and Circular Photogalvanic Effect in Aqueously Synthesized 2D Dion-Jacobson Perovskite Crystals. NANO LETTERS 2021; 21:4584-4591. [PMID: 34037402 DOI: 10.1021/acs.nanolett.1c00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, a two-dimensional Dion-Jacobson (DJ) perovskite (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) is emerging with remarkable Rashba effect and ferroelectricity. However, the origin of the giant Rashba splitting remains elusive and the current synthetic strategy via slow cooling is time- and power-consuming, hindering its future applications. Here, we report on an economical aqueous method to obtain (AMP)PbI4 crystals and clarify the origin of the giant Rashba effect by temperature- and polarization-dependent photoluminescence (PL) spectroscopy. The strong temperature-dependent PL helicity indicates the thermally assisted structural distortion as the main origin of the Rashba effect, suggesting that valley polarization still preserves at high temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect near the indirect bandgap. Our study not only optimizes the synthetic strategies of this DJ perovskite but also sheds light on its potential applications in room/high-temperature spintronics and valleytronics.
Collapse
Affiliation(s)
- Boxuan Zhou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lihan Liang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junze Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wancai Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zeyi Liu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haolin Li
- Department of Electrical and Electronic Engineering Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
46
|
Gan Z, Cheng Y, Chen W, Loh KP, Jia B, Wen X. Photophysics of 2D Organic-Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001843. [PMID: 33747717 PMCID: PMC7967069 DOI: 10.1002/advs.202001843] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/01/2020] [Indexed: 05/17/2023]
Abstract
2D organic-inorganic hybrid Ruddlesden-Popper perovskites (RPPs) have recently attracted increasing attention due to their excellent environmental stability, high degree of electronic tunability, and natural multiquantum-well structures. Although there is a rapid development of photoelectronic applications in solar cells, photodetectors, light emitting diodes (LEDs), and lasers based on 2D RPPs, the state-of-the-art performance is far inferior to that of the existing devices because of the limited understanding on fundamental physics, especially special photophysics in carrier dynamics, excitonic fine structures, excitonic quasiparticles, and spin-related effect. Thus, there is still plenty of room to improve the performances of photoelectronic devices based on 2D RPPs by enhancing knowledge on fundamental photophysics. This review highlights the special photophysics of 2D RPPs that is fundamentally different from the conventional 3D congeners. It also provides the most recent progress, debates, challenges, prospects, and in-depth understanding of photophysics in 2D perovskites, which is significant for not only boosting performance of solar cells, LEDs, photodetectors, but also future development of applications in lasers, spintronics, quantum information, and integrated photonic chips.
Collapse
Affiliation(s)
- Zhixing Gan
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Weijian Chen
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
- Australian Centre for Advanced PhotovoltaicsSchool of Photovoltaic and Renewable Energy EngineeringUNSW SydneyKensingtonNSW2052Australia
| | - Kian Ping Loh
- Department of Chemistryand Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingapore117543Singapore
| | - Baohua Jia
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
| | - Xiaoming Wen
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
| |
Collapse
|
47
|
Bharti PC, Jha PK, Jha PA, Singh P. Hysteresis in centrosymmetric CuPbI 3perovskite halide: apolar dielectric or orientable dielectric? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:155703. [PMID: 33682684 DOI: 10.1088/1361-648x/abdb67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).
Collapse
Affiliation(s)
- Prem C Bharti
- Department of Physics, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi-221005 India
| | - Pardeep K Jha
- Department of Physics, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi-221005 India
| | - Priyanka A Jha
- Department of Physics, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi-221005 India
| | - Prabhakar Singh
- Department of Physics, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi-221005 India
| |
Collapse
|
48
|
Liu Y, Han S, Wang J, Ma Y, Guo W, Huang XY, Luo JH, Hong M, Sun Z. Spacer Cation Alloying of a Homoconformational Carboxylate trans Isomer to Boost in-Plane Ferroelectricity in a 2D Hybrid Perovskite. J Am Chem Soc 2021; 143:2130-2137. [DOI: 10.1021/jacs.0c12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Jiaqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Yu Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Wuqian Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Jun-Hua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| |
Collapse
|
49
|
Liu YH, Peng H, Liao WQ. A lead-free bismuth iodide organic-inorganic ferroelectric semiconductor. Chem Commun (Camb) 2021; 57:647-650. [PMID: 33346305 DOI: 10.1039/d0cc07443h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Organic-inorganic metal halide ferroelectric semiconductors are mainly lead halide ones, suffering from the presence of toxic lead. Herein, we report a lead-free bismuth iodide ferroelectric semiconductor [1,4-butanediammonium]BiI5, showing a high Curie temperature of 365 K and a small band gap of 1.95 eV, smaller than those of most lead halide counterparts.
Collapse
Affiliation(s)
- Yu-Hua Liu
- College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Hang Peng
- College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Wei-Qiang Liao
- College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China.
| |
Collapse
|
50
|
Han S, Li M, Liu Y, Guo W, Hong MC, Sun Z, Luo J. Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection. Nat Commun 2021; 12:284. [PMID: 33436587 PMCID: PMC7804191 DOI: 10.1038/s41467-020-20530-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
In terms of strong light-polarization coupling, ferroelectric materials with bulk photovoltaic effects afford a promising avenue for optoelectronic devices. However, due to severe polarization deterioration caused by leakage current of photoexcited carriers, most of ferroelectrics are merely capable of absorbing 8-20% of visible-light spectra. Ferroelectrics with the narrow bandgap (<2.0 eV) are still scarce, hindering their practical applications. Here, we present a lead-iodide hybrid biaxial ferroelectric, (isopentylammonium)2(ethylammonium)2Pb3I10, which shows large spontaneous polarization (~5.2 μC/cm2) and a narrow direct bandgap (~1.80 eV). Particularly, the symmetry breaking of 4/mmmFmm2 species results in its biaxial attributes, which has four equivalent polar directions. Accordingly, exceptional in-plane photovoltaic effects are exploited along the crystallographic [001] and [010] axes directions inside the crystallographic bc-plane. The coupling between ferroelectricity and photovoltaic effects endows great possibility toward self-driven photodetection. This study sheds light on future optoelectronic device applications.
Collapse
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100039, PR China
| | - Maofan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100039, PR China
| | - Wuqian Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100039, PR China
| | - Mao-Chun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China. .,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China. .,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, PR China.
| |
Collapse
|