1
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Bahrami A, Farasat A, Zolghadr L, Sabaghi Y, PourFarzad F, Gheibi N. The anticancer impacts of free and liposomal caffeic acid phenethyl ester (CAPE) on melanoma cell line (A375). Cell Biochem Funct 2024; 42:e3900. [PMID: 38111127 DOI: 10.1002/cbf.3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.
Collapse
Affiliation(s)
- Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Leila Zolghadr
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Yalda Sabaghi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
3
|
Wu Q, Li J, Hao S, Guo Y, Li Z, Liu Z, Xuan H. Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism. Biomed Pharmacother 2023; 168:115766. [PMID: 37864895 DOI: 10.1016/j.biopha.2023.115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is one of the main active ingredients of propolis with good antitumor activities. However, the potential effects of CAPE on the glycolysis and lipid metabolism of tumor cells are unclear. Here, the anti-tumor effects of CAPE on MDA-MB-231 cells in an inflammatory microenvironment stimulated with lipopolysaccharide (LPS) were studied by estimating the inflammatory mediators and the key factors of glycolysis and lipid metabolism. The CAPE treatment obviously inhibited proliferation, migration, invasion, and angiogenesis, and the mitochondrial membrane potential was decreased in the LPS-stimulated MDA-MB-231 cells. Compared with the LPS group, pro-inflammatory mediators, including toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), NF-kappa-B inhibitor alpha (IκBα), interleukin (IL)-1β, and IL-6, as well as interleukin-1 receptor-associated kinase 4 (IRAK4), declined after the CAPE treatment. Additionally, CAPE significantly down-regulated the levels of glucose transporter 1 (GLUT1), glucose transporter 3 (GLUT3), and the key enzymes of glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA). Moreover, CAPE treatment decreased the levels of key lipid metabolism proteins, including acetyl coenzyme A carboxylase (ACC), fatty acid synthase (FASN), and free fatty acid (FFA)-transported-related protein CD36. After adding the glycolysis inhibitor 2-deoxy-D-glucose (2-DG), the inhibitory effects of CAPE on cell viability and migration were not significant when compared with the LPS group. In summary, the antitumor activity of CAPE in vitro was mainly via the modulation of the inflammatory mediators and the inhibition of key proteins and enzymes in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Qian Wu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Junya Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Yuyang Guo
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Zongze Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Zhengxin Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
4
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
5
|
Pandey P, Khan F, Upadhyay TK, Giri PP. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review. Chem Biol Drug Des 2023; 102:201-216. [PMID: 36929632 DOI: 10.1111/cbdd.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Nowadays, there is a lot of public and scientific interest in using phytochemicals to treat human ailments. Existing cancer medicines still run across obstacles, despite significant advancements in the field. For instance, chemotherapy may result in severe adverse effects, increased drug resistance, and treatment failure. Natural substances that are phytochemically derived provide innovative approaches as potent therapeutic molecules for the treatment of cancer. Bioactive natural compounds may enhance chemotherapy for cancer by increasing the sensitivity of cancer cells to medicines. Propolis has been found to interfere with the viability of cancer cells, among other phytochemicals. Of all the components that make up propolis, caffeic acid phenethyl ester (CAPE) (a flavonoid) has been the subject of the most research. It demonstrates a broad spectrum of therapeutic uses, including antitumor, antimicrobial, antiviral, anti-inflammatory, immunomodulatory, hepatoprotective, neuroprotective, and cardioprotective effects. Studies conducted in vitro and in vivo have demonstrated that CAPE specifically targets genes involved in cell death, cell cycle regulation, angiogenesis, and metastasis. By altering specific signaling cascades, such as the NF-κB signaling pathway, CAPE can limit the proliferation of human cancer cells. This review highlights the research findings demonstrating the anticancer potential of CAPE with a focus on multitargeted molecular and biological implications in various cancer models.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Pavan Prakash Giri
- Department of Chemistry, Noida Institute of Engineering & Technology, Greater Noida, India
| |
Collapse
|
6
|
Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023; 16:ph16030450. [PMID: 36986549 PMCID: PMC10059947 DOI: 10.3390/ph16030450] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.
Collapse
|
7
|
Eser N, Cicek M, Yoldas A, Demir M, Deresoy FA. Caffeic acid phenethyl ester ameliorates imidacloprid-induced acute toxicity in the rat cerebral cortex. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103980. [PMID: 36191819 DOI: 10.1016/j.etap.2022.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the role of caffeic acid phenethyl ester (CAPE), a compound found in propolis, on imidacloprid (IMI), a nicotinic acetylcholine receptor agonist that causes cerebral toxicity. 60 adult rats were randomly divided into five groups: control, IMI (100 mg/kg), and IMI+CAPE (1, 5, 10 mg/kg). Cerebral cortex tissue was examined histopathologically, biochemically, spectrophotometrically and immunohistochemically. The results showed that IMI caused toxicity in the cerebral cortex. However, CAPE (5 and 10 mg/kg) attenuated the deteriorated histopathological score and normalized the apoptotic markers (Bax and Caspase-3). Additionally, CAPE dose-dependently normalized the levels of TNF-α, dopamin, GFAP and NGF, and at the highest dose (10 mg/kg) also normalized the balance of oxidative parameters (MDA, SOD, CAT, and GSH). In conclusion, the antioxidant, anti-inflammatory, and anti-apoptotic effects of CAPE may be a promising treatment for acute IMI-induced cerebral cortex toxicity.
Collapse
Affiliation(s)
- Nadire Eser
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Atila Yoldas
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Demir
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Faik Alev Deresoy
- Department of Pathology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
8
|
Bang HJ, Yoon E, Kim SW, Ahn MR. Antiangiogenic and apoptotic effects of benzyl caffeate on human umbilical vein endothelial cells (HUVECs) and chick embryo chorioallantoic membrane (CAM): In vitro and in vivo models. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Bae IA, Ha JW, Choi JY, Boo YC. Antioxidant Effects of Korean Propolis in HaCaT Keratinocytes Exposed to Particulate Matter 10. Antioxidants (Basel) 2022; 11:antiox11040781. [PMID: 35453466 PMCID: PMC9032284 DOI: 10.3390/antiox11040781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Air pollution causes oxidative stress that leads to inflammatory diseases and premature aging of the skin. The purpose of this study was to examine the antioxidant effect of Korean propolis on oxidative stress in human epidermal HaCaT keratinocytes exposed to particulate matter with a diameter of less than 10 μm (PM10). The total ethanol extract of propolis was solvent-fractionated with water and methylene chloride to divide into a hydrophilic fraction and a lipophilic fraction. The lipophilic fraction of propolis was slightly more cytotoxic, and the hydrophilic fraction was much less cytotoxic than the total extract. The hydrophilic fraction did not affect the viability of cells exposed to PM10, but the total propolis extract and the lipophilic fraction aggravated the toxicity of PM10. The total extract and hydrophilic fraction inhibited PM10-induced ROS production and lipid peroxidation in a concentration-dependent manner, whereas the lipophilic fraction did not show such effects. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis showed that the hydrophilic fraction contained phenylpropanoids, such as caffeic acid, p-coumaric acid, and ferulic acid, whereas the lipophilic faction contained caffeic acid phenethyl ester (CAPE). The former three compounds inhibited PM10-induced ROS production, lipid peroxidation, and/or glutathione oxidation, and ferulic acid was the most effective among them, but CAPE exhibited cytotoxicity and aggravated the toxicity of PM10. This study suggests that Korean propolis, when properly purified, has the potential to be used as a cosmetic material that helps to alleviate the skin toxicity of air pollutants.
Collapse
Affiliation(s)
- In Ah Bae
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
10
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
11
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. Effects of different ester chains on the antioxidant activity of caffeic acid. Bioorg Chem 2020; 105:104341. [DOI: 10.1016/j.bioorg.2020.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
|
12
|
Diamantis DA, Oblukova M, Chatziathanasiadou MV, Gemenetzi A, Papaemmanouil C, Gerogianni PS, Syed N, Crook T, Galaris D, Deligiannakis Y, Sokolova R, Tzakos AG. Bioinspired tailoring of fluorogenic thiol responsive antioxidant precursors to protect cells against H 2O 2-induced DNA damage. Free Radic Biol Med 2020; 160:540-551. [PMID: 32871232 DOI: 10.1016/j.freeradbiomed.2020.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
Abstract
Natural antioxidants, like phenolic acids, possess a unique chemical space that can protect cellular components from oxidative stress. However, their polar carboxylic acid chemotype reduces full intracellular antioxidant potential due to limited diffusion through biological membranes. Here, we have designed and developed a new generation of hydrophobic turn-on fluorescent antioxidant precursors that upon penetration of the cell membrane, reveal a more polar and more potent antioxidant core and simultaneously become fluorescent allowing their intracellular tracking. Their activation is stimulated by polarity alteration by sensing intracellular signals and specifically biothiols. In our design, the carboxylic group of phenolic acids that originally restricts cell entrance is derivatized and conjugated through Copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) to a coumarin derivative that its fluorescence properties are quenched with a biothiol activatable element. This more hydrophobic precursor readily penetrates cell membrane and once inside the cell the antioxidant core is revealed upon sensing glutathione, its fluorescence is restored in a turn-on manner and the generation of a more polar character traps the molecule inside the cell. This turn-on fluorescent antioxidant precursor that can be applied to phenolic acids, was developed for rosmarinic acid and the conjugate was named as RCG. The selectivity and responsiveness of RCG towards the most abundant biothiols was monitored through a variety of biophysical techniques including UV-Vis, fluorescence and NMR spectroscopy. The electrochemical behavior and free radical scavenging capacity of the precursor RCG and the active compound (RC) was evaluated and compared with the parent compound (rosmarinic acid) through cyclic voltammetry and EPR spectroscopy, respectively. The stability of the newly synthesized bioactive conjugate RC was found significantly higher than the parent rosmarinic acid when exposed to oxygen. Cell uptake experiments were conducted and revealed the internalization of RCG. The degree of intracellular DNA protection offered by RCG and its active drug (RC) on exposure to H2O2 was also evaluated in Jurkat cells.
Collapse
Affiliation(s)
- Dimitrios A Diamantis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Michaela Oblukova
- Charles University, 1st Faculty of Medicine, Kateřinská 1660/32, 12108, Prague 2, Czech Republic; J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223, Prague, Czech Republic
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Aikaterini Gemenetzi
- Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Paraskevi S Gerogianni
- Laboratory of Biological Chemistry, University of Ioannina, School of Health Sciences, Faculty of Medicine, 451 10, Ioannina, Greece
| | - Nelofer Syed
- John Fulcher Neuro Oncology Laboratory, Department of Brain Sciences, Hammersmith Hospital, Imperial College, London
| | - Timothy Crook
- Department of Oncology, St. Luke's Cancer Institute, Royal Surrey County Hospital, Guildford, UK
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, University of Ioannina, School of Health Sciences, Faculty of Medicine, 451 10, Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110, Ioannina, Greece
| | - Romana Sokolova
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223, Prague, Czech Republic.
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, 45110, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
13
|
Shao B, Mao L, Shao J, Huang CH, Qin L, Huang R, Sheng ZG, Cao D, Zhang ZQ, Lin L, Zhang CZ, Zhu BZ. Mechanism of synergistic DNA damage induced by caffeic acid phenethyl ester (CAPE) and Cu(II): Competitive binding between CAPE and DNA with Cu(II)/Cu(I). Free Radic Biol Med 2020; 159:107-118. [PMID: 32755670 DOI: 10.1016/j.freeradbiomed.2020.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is an active polyphenol of propolis from honeybee hives, and exhibits antioxidant and interesting pharmacological activities. However, in this study, we found that in the presence of Cu(II), CAPE exhibited pro-oxidative rather than antioxidant effect: synergistic DNA damage was induced by the combination of CAPE and Cu(II) together as measured by strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, which is dependent on the molar ratio of CAPE:Cu(II). Production of Cu(I) and H2O2 from the redox reaction between CAPE and Cu(II), and subsequent OH formation was found to be responsible for the synergistic DNA damage. DNA sequencing investigations provided more direct evidence that CAPE/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Interestingly, we found there are competitive binding between CAPE and DNA with Cu(II)/Cu(I), which changed the redox activity of Cu(II)/Cu(I), via complementary applications of different analytical methods. The observed DNA damage was mainly attributed to the formation of DNA-Cu(II)/Cu(I) complexes, which is still redox active and initiated the redox reaction near the binding site between copper and DNA. Based on these data, we proposed that the synergistic DNA damage induced by CAPE/Cu(II) might be due to the competitive binding between CAPE and DNA with Cu, and site-specific production of OH near the binding site of copper with DNA. Our findings may have broad biological implications for future research on the pro-oxidative effects of phenolic compounds in the presence of transition metals.
Collapse
Affiliation(s)
- Bo Shao
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Chun-Zhi Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing, PR China.
| |
Collapse
|
14
|
Synthesis of Caffeic Acid Sulphonamide Derivatives and Preliminary Exploration of Their Biological Applications. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
16
|
Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes. Molecules 2020; 25:molecules25153514. [PMID: 32752091 PMCID: PMC7435968 DOI: 10.3390/molecules25153514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer has the worst prognosis among all gynecological cancers. Therefore, it seems reasonable to seek new drugs that may improve the effectiveness of treatment or mitigate the adverse effects of chemotherapy. Caffeic acid phenethyl ester (CAPE) has many beneficial biological properties. The aim of the study was to assess the anticancer properties of CAPE against serum ovarian carcinoma cells. The morphology of the cells was evaluated in H-E staining and in transmission electron microscopy. The cytotoxic and proapoptotic activity of CAPE was investigated by using the XTT-NR-SRB assay, qRT-PCR analysis of BAX/BCL2 expression, and by cytometric evaluation. CAPE causes constriction in OV7 cells, numerous granulomas were observed in the cytoplasm, the cell nuclei were pyknotic. Autophagosomal vacuoles could suggest the occurrence of aponecrosis. CAPE significantly decreased the lysosomal activity and the total synthesis of cellular proteins. CAPE exhibited, dose and time dependent, cytotoxic activity against OV7 serum ovarian cancer cells. In OV7 cells CAPE induced apoptosis via dysregulation of BAX/BCL2 balance, while activated proapoptotic BAX gene expression level was 10 times higher than BCL2.
Collapse
|
17
|
El-Harairy A, Shaheen M, Li J, Wu Y, Li M, Gu Y. Synthesis of α-indolylacrylates as potential anticancer agents using a Brønsted acid ionic liquid catalyst and the butyl acetate solvent. RSC Adv 2020; 10:13507-13516. [PMID: 35493022 PMCID: PMC9051412 DOI: 10.1039/d0ra00990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/15/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, new α-indolylacrylate derivatives were synthesized by the reaction of 2-substituted indoles with various pyruvates using a Brønsted acid ionic liquid catalyst in butyl acetate solvent. This is the first report on the application of pyruvate compounds for the synthesis of indolylacrylates. The acrylate derivatives could be obtained in good to excellent yields. A preliminary biological evaluation revealed their promising anticancer activity (IC50 = 9.73 μM for the compound 4l) and indicated that both the indole core and the acrylate moieties are promising for the development of novel anticancer drugs. The Lipinski's rule and Veber's parameters were assessed for the newly synthesized derivatives. 4lNew α-indolylacrylate derivatives were synthesized by reaction of 2-substituted indoles with various pyruvates using a Brønsted acid ionic liquid catalyst in butyl acetate solvent. This is the first application of pyruvate compounds for the synthesis of indolylacrylates.![]()
Collapse
Affiliation(s)
- Ahmed El-Harairy
- Environmental, Energy and Green Chemistry Laboratory, Faculty of Agriculture, Damietta University 34511 Damietta Egypt .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 430074 Wuhan China
| | - Mennatallah Shaheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University 34511 New Damietta Damietta Egypt
| | - Jun Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 430074 Wuhan China
| | - Yuzhou Wu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 430074 Wuhan China
| | - Minghao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 430074 Wuhan China
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 430074 Wuhan China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Lanzhou 730000 China
| |
Collapse
|
18
|
Shao B, Wang M, Chen A, Zhang C, Lin L, Zhang Z, Chen A. Protective effect of caffeic acid phenethyl ester against imidacloprid-induced hepatotoxicity by attenuating oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:122-129. [PMID: 32284117 DOI: 10.1016/j.pestbp.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid (IMI) is a widely used neonicotinoid pesticide in the world, its environmental and human health risk has particularly attracted the attention of researchers. Caffeic acid phenethyl ester (CAPE), an active polyphenol of propolis, has many pharmacological activities including free radical scavenger, anti-inflammatory, and anti-oxidant. In this study, protective effect of CAPE against IMI induced liver injury in mice was performed. Administration of 1 and 2.5 mg/kg CAPE markedly prevented serum AST and ALT increase in 5 mg/kg IMI-induced mice. CAPE significantly downregulated liver NO generation and lipid peroxidation, and upregulated glutathione, catalase, superoxide dismutase and glutathione peroxidase in a dose-dependent manner in liver of IMI-induced mice. Endoplasmic reticulum stress represented by the swelling of endoplasmic reticulum was observed by transmission electron microscope in IMI group. Pretreatment of 2.5 mg/kg CAPE significantly attenuated the endoplasmic reticulum stress induced by IMI in liver. Western blot analysis illustrated that pretreatment of CAPE downregulated the upregulation of TNF-α and IFN-γ induced by IMI in liver of mice. Moreover, the increase of positive apoptotic hepatocytes further suggested apoptosis might be involved in IMI-induced hepatotoxicity. Pretreatment of 1 and 2.5 mg/kg CAPE significantly decreased positive apoptotic hepatocytes, suggested that CAPE prevented apoptosis in liver of IMI-induced mice. In conclusion, CAPE prevented liver injury in IMI-induced mice via attenuation of oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. Our findings may have broad biological and environmental implications for future research on the therapeutic strategy to prevent liver injury induced by pesticides.
Collapse
Affiliation(s)
- Bo Shao
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Meixia Wang
- Department of pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272067, PR China
| | - Anran Chen
- Department of Mental Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Chunzhi Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Li Lin
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Zhaoqiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Anlan Chen
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| |
Collapse
|
19
|
Karapetsas A, Voulgaridou GP, Konialis M, Tsochantaridis I, Kynigopoulos S, Lambropoulou M, Stavropoulou MI, Stathopoulou K, Aligiannis N, Bozidis P, Goussia A, Gardikis K, Panayiotidis MI, Pappa A. Propolis Extracts Inhibit UV-Induced Photodamage in Human Experimental In Vitro Skin Models. Antioxidants (Basel) 2019; 8:antiox8050125. [PMID: 31075866 PMCID: PMC6562595 DOI: 10.3390/antiox8050125] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to assess the antioxidant, photoprotective, and antiaging effects of Greek propolis. Propolis was subjected to n-heptane or methanol extraction. Total phenolic/flavonoid content and antioxidant potential were determined in the extracts. Promising extracts were evaluated for their cytoprotective properties using human immortalized keratinocyte (HaCaT) or reconstituted human skin tissue following exposure to UVB. Assessment of cytotoxicity, DNA damage, oxidative status, and gene/protein expression levels of various matrix metalloproteinases (MMPs) were performed. The propolis methanolic fractions exhibited higher total phenolic and flavonoid contents and significant in vitro antioxidant activity. Incubation of HaCaT cells with certain methanolic extracts significantly decreased the formation of DNA strand breaks following exposure to UVB and attenuated UVB-induced decrease in cell viability. The extracts had no remarkable effect on the total antioxidant status, but significantly lowered total protein carbonyl content used as a marker for protein oxidation in HaCaT cells. MMP-1, -3, -7, and -9, monitored as endpoints of antiaging efficacy, were significantly reduced by propolis following UVB exposure in a model of reconstituted skin tissue. In conclusion, propolis protects against the oxidative and photodamaging effects of UVB and could be further explored as a promising agent for developing natural antiaging strategies.
Collapse
Affiliation(s)
- Athanasios Karapetsas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | | | - Manolis Konialis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Spyridon Kynigopoulos
- Laboratory of Histology & Embryology, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Maria Lambropoulou
- Laboratory of Histology & Embryology, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Maria-Ioanna Stavropoulou
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Konstantina Stathopoulou
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nektarios Aligiannis
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Petros Bozidis
- Department of Pathology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | - Anna Goussia
- Department of Pathology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | | | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| |
Collapse
|
20
|
Fırat F, Özgül M, Türköz Uluer E, Inan S. Effects of caffeic acid phenethyl ester (CAPE) on angiogenesis, apoptosis and oxidatıve stress ın various cancer cell lines. Biotech Histochem 2019; 94:491-497. [PMID: 30991851 DOI: 10.1080/10520295.2019.1589574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cancer is a common cause of death worldwide. Approximately 80% of cancer patients use complementary or alternative medicines for treatment. Caffeic acid phenethyl ester (CAPE), the main active component of propolis, exhibits cytotoxic, antiproliferative and anti-cancer effects. Despite its anticancer effects CAPE exhibits no known harmful effects toward normal cells. We investigated the effects of CAPE on angiogenesis, apoptosis and oxidative stress using MDA MB-231, N2a and COLO 320 cell lines and CAPE treatments at 24 and 48 h. A two dimensional cell culture system was used and the findings were evaluated by an indirect immunohistochemical method and H-scores were calculated. CAPE was effective for all three cancer cell lines. After 24 and 48 h, we found a significant decrease in live cells and increased stress in the cells based on e-NOS and i-NOS levels.
Collapse
Affiliation(s)
- F Fırat
- Department of Histology-Embryology, Manisa Celal Bayar University , Uncubozkoy , Manisa , Turkey
| | - M Özgül
- Department of Histology-Embryology, Manisa Celal Bayar University , Uncubozkoy , Manisa , Turkey
| | - E Türköz Uluer
- Department of Histology-Embryology, Manisa Celal Bayar University , Uncubozkoy , Manisa , Turkey
| | - S Inan
- Department of Histology-Embryology, University of Economics , Izmir , Turkey
| |
Collapse
|
21
|
Guan Y, Chen H, Zhong Q. Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Abstract
The present study evaluates the antibacterial effects of a set of 16 synthesized caffeic acid ester derivatives against strains of Staphylococcus aureus and Escherichia coli, as well as discusses their structure-activity relationship (SAR). The antibacterial assays were performed using microdilution techniques in 96-well microplates to determine minimal inhibitory concentration (MIC). The results revealed that five of the compounds present strong to optimum antibacterial effect. Of the sixteen ester derivatives evaluated, the products with alkyl side chains, as propyl caffeate (3), butyl caffeate (6), and pentyl caffeate (7), presented the best antibacterial activity with MIC values of around 0.20 μM against Escherichia coli and only butyl caffeate (6) showing the same MIC against Staphylococcus aureus. For products with aryl substituents, the best MIC results against the tested strain of Escherichia coli were 0.23 µM for (di-(4-chlorobenzyl)) caffeate (13) and 0.29 µM for diphenylmethyl caffeate (10) and all were less active against the Staphylococcus aureus strain. Preliminary quantitative structure-activity relationship (QSAR) analyses confirmed that certain structural characteristics, such as a median linear carbon chain and the presence of electron withdrawal substituents at the para position of the aromatic ring, help potentiate antibacterial activity.
Collapse
|
23
|
Iqbal J, Abbasi BA, Ahmad R, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Afzal Shah S, Alam MM, Bashir S, Badshah H, Munir A. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed Pharmacother 2019; 109:1381-1393. [DOI: 10.1016/j.biopha.2018.10.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
|
24
|
Gerogianni PS, Chatziathanasiadou MV, Diamantis DA, Tzakos AG, Galaris D. Lipophilic ester and amide derivatives of rosmarinic acid protect cells against H 2O 2-induced DNA damage and apoptosis: The potential role of intracellular accumulation and labile iron chelation. Redox Biol 2018; 15:548-556. [PMID: 29413966 PMCID: PMC5975196 DOI: 10.1016/j.redox.2018.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Phenolic acids represent abundant components contained in human diet. However, the negative charge in their carboxylic group limits their capacity to diffuse through biological membranes, thus hindering their access to cell interior. In order to promote the diffusion of rosmarinic acid through biological membranes, we synthesized several lipophilic ester- and amide-derivatives of this compound and evaluated their capacity to prevent H2O2-induced DNA damage and apoptosis in cultured human cells. Esterification of the carboxylic moiety with lipophilic groups strongly enhanced the capacity of rosmarinic acid to protect cells. On the other hand, the amide-derivatives were somewhat less effective but exerted less cytotoxicity at high concentrations. Cell uptake experiments, using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), illustrated different levels of intracellular accumulation among the ester- and amide-derivatives, with the first being more effectively accumulated, probably due to their extensive hydrolysis inside the cells. In conclusion, these results highlight the hitherto unrecognized fundamental importance of derivatization of diet-derived phenolic acids to unveil their biological potential.
Collapse
Affiliation(s)
- Paraskevi S Gerogianni
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- Laboratory of Organic Chemistry and Biochemistry, School of Natural Sciences, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios A Diamantis
- Laboratory of Organic Chemistry and Biochemistry, School of Natural Sciences, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- Laboratory of Organic Chemistry and Biochemistry, School of Natural Sciences, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
25
|
Phytochemicals in Skin Cancer Prevention and Treatment: An Updated Review. Int J Mol Sci 2018; 19:ijms19040941. [PMID: 29565284 PMCID: PMC5979545 DOI: 10.3390/ijms19040941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/16/2023] Open
Abstract
Skin is the largest human organ, our protection against various environmental assaults and noxious agents. Accumulation of these stress events may lead to the formation of skin cancers, including both melanoma and non-melanoma skin cancers. Although modern targeted therapies have ameliorated the management of cutaneous malignancies, a safer, more affordable, and more effective strategy for chemoprevention and treatment is clearly needed for the improvement of skin cancer care. Phytochemicals are biologically active compounds derived from plants and herbal products. These agents appear to be beneficial in the battle against cancer as they exert anti-carcinogenic effects and are widely available, highly tolerated, and cost-effective. Evidence has indicated that the anti-carcinogenic properties of phytochemicals are due to their anti-oxidative, anti-inflammatory, anti-proliferative, and anti-angiogenic effects. In this review, we discuss the preventive potential, therapeutic effects, bioavailability, and structure–activity relationship of these selected phytochemicals for the management of skin cancers. The knowledge compiled here will provide clues for future investigations on novel oncostatic phytochemicals and additional anti-skin cancer mechanisms.
Collapse
|
26
|
Khan RU, Naz S, Abudabos AM. Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27755-27766. [PMID: 29101693 DOI: 10.1007/s11356-017-0567-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Honey is a bee-derived supersaturated solution composed of complex contents mainly glucose, fructose, amino acids, vitamins, and minerals. Composition of honey may vary due to the difference in nectar, season, geography, and storage condition. Honey has been used since times immemorial in folk medicine and has recently been rediscovered as an excellent therapeutic agent. In the past, honey was used for a variety of ailments without knowing the scientific background and active ingredients of honey. Today, honey has been scientifically proven for its antioxidant, regulation of glycemic response, antitumor, antimicrobial, anti-inflammatory, and cardiovascular potentiating agent. It can be used as a wound dressing and healing substance. Honey is different in color, flavor, sensory perception, and medical response. Apart from highlighting the nutritional facts of honey, we collected the finding of the published literature to know the mechanism of action of honey in different diseases. This review covers the composition, physiochemical characteristics, and some medical uses.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Shabana Naz
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Yu HJ, Shin JA, Yang IH, Won DH, Ahn CH, Kwon HJ, Lee JS, Cho NP, Kim EC, Yoon HJ, Lee JI, Hong SD, Cho SD. Apoptosis induced by caffeic acid phenethyl ester in human oral cancer cell lines: Involvement of Puma and Bax activation. Arch Oral Biol 2017; 84:94-99. [DOI: 10.1016/j.archoralbio.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
|
28
|
Yucel B, Sonmez M. Repression of oxidative phosphorylation sensitizes leukemia cell lines to cytarabine. Hematology 2017; 23:330-336. [DOI: 10.1080/10245332.2017.1402454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Burcu Yucel
- Medical Faculty, Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Sonmez
- Medical Faculty, Department of Internal Medicine, Division of Hematology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
29
|
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Jastrzębska-Stojko Ż, Stojko R, Wojtyczka RD, Stojko J. Migration Rate Inhibition of Breast Cancer Cells Treated by Caffeic Acid and Caffeic Acid Phenethyl Ester: An In Vitro Comparison Study. Nutrients 2017; 9:nu9101144. [PMID: 29048370 PMCID: PMC5691760 DOI: 10.3390/nu9101144] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
One of the deadliest cancers among women is a breast cancer. Research has shown that two natural substances occurring in propolis, caffeic acid (CA) and caffeic acid phenethyl ester (CAPE), have significant anticancer effects. The purpose of our in vitro study was to compare cytotoxic activity and migration rate inhibition using CA and CAPE (doses of 50 and 100 µm) against triple-negative, MDA-MB-231 breast adenocarcinoma line cells, drawn from Caucasian women. Viability was measured by XTT-NR-SRB assay (Tetrazolium hydroxide-Neutral Red-Sulforhodamine B) for 24 h and 48 h periods. Cell migration for wound healing assay was taken for 0 h, 8 h, 16 h, and 24 h periods. CAPE displayed more than two times higher cytotoxicity against MDA-MB-231 cells. IC50 values for the XTT assay were as follows: CA for 24 h and 48 h were 150.94 µM and 108.42 µM, respectively, while CAPE was 68.82 µM for 24 h and 55.79 µM for 48 h. For the NR assay: CA was 135.85 µM at 24 h and 103.23 µM at 48 h, while CAPE was 64.04 µM at 24 h and 53.25 µM at 48 h. For the SRB assay: CA at 24 h was 139.80 µM and at 48 h 103.98 µM, while CAPE was 66.86 µM at 24 h and 47.73 µM at 48 h. Both agents suspended the migration rate; however, CAPE displayed better activity. Notably, for the 100 µM CAPE dose, motility of the tested breast carcinoma cells was halted.
Collapse
Affiliation(s)
- Agata Kabała-Dzik
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Anna Rzepecka-Stojko
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Robert Kubina
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Żaneta Jastrzębska-Stojko
- Department of Anesthesiology and Intensive Care, Prof. K. Gibiński University Clinical Center, Medical University of Silesia in Katowice, Ceglana 35, 40-514 Katowice, Poland.
| | - Rafał Stojko
- Department of Women Health, School of Health Sciences, Medical University of Silesia in Katowice, Medyków 12, 40-752 Katowice, Poland.
| | - Robert Dariusz Wojtyczka
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
30
|
Salehi M, Motallebnejad M, Moghadamnia AA, Seyemajidi M, Khanghah SN, Ebrahimpour A, Molania T. An Intervention Airing the Effect of Iranian Propolis on Epithelial Dysplasia of the Tongue: A Preliminary Study. J Clin Diagn Res 2017; 11:ZC67-ZC70. [PMID: 28893047 DOI: 10.7860/jcdr/2017/24887.10249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/09/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Since oral cancer is one of the causes of mortality, the use of materials or methods that can reduce cancer or prevent its progression has particular importance. AIM Aim of the study was to evaluate the antitumor effects of Iranian propolis on dysplastic changes of oral mucosa in rats. MATERIALS AND METHODS This study was performed on 28 Wistar male rats (aged 7-11 weeks, 160±20 g). They were divided into four groups of seven rats. The Group 1 received: 0.5% 7,12-Dimethylbenz[a]anthracene (DMBA), the Group 2: 0.5% DMBA and 100 mg/kg propolis, the Group 3: 0.5% DMBA and 200 mg/kg propolis, and the Group 4: 0.5% DMBA and 400 mg/kg propolis. DMBA in all groups was administered topically (brush) and propolis was injected intraperitoneally. DMBA was brushed twice on the lingual dorsum three times a week for 20 weeks. Propolis injection just every other day and in the days after DMBA was administered for 20 weeks. Rats were sacrificed, and histological examinations were performed on tongue specimen. RESULTS Propolis can reduce the degree of dysplasia in doses 100 mg/kg, 200 mg/kg, and 400 mg/kg compared to control (Group 1) (p=0.017, p=0.02, and p=0.002, respectively). CONCLUSION The results of this study showed propolis can dose-dependently prevent DMBA-induced dysplasia of the oral mucosa in animal model.
Collapse
Affiliation(s)
- Maedeh Salehi
- Assistant Professor, Department of Oral and Maxillofacial Medicine, Dental School, Mazandaran University, Sari, Iran
| | - Mina Motallebnejad
- Professor, Department of Oral and Maxillofacial, Dental Material Research Center, Dental School, Babol, Iran
| | - Ali Akbar Moghadamnia
- Professor, Department of Pharmacology, Medical School, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Seyemajidi
- Associate Professor, Department of Pathology, Dental School, Babol University of Medical Sciences, Babol, Iran
| | - Simin Noori Khanghah
- Assistant Professor, Department of Oral and Maxillofacial Medicine, Dental School, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Ebrahimpour
- Student, Department of Dentistry, School of Dentistry, Student Research Committee, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Tahereh Molania
- Assistant Professor, Department of Oral and Maxillofacial Medicine, Dental School, Mazandaran University, Sari, Iran
| |
Collapse
|
31
|
Isolation and Characterization of Isofraxidin 7- O-(6'- O- p-Coumaroyl)- β-glucopyranoside from Artemisia capillaris Thunberg: A Novel, Nontoxic Hyperpigmentation Agent That Is Effective In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28626485 PMCID: PMC5463131 DOI: 10.1155/2017/1401279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abnormalities in skin pigmentation can produce disorders such as albinism or melasma. There is a research need to discover novel compounds that safely and effectively regulate pigmentation. To identify novel modulators of pigmentation, we attempted to purify compounds from a bioactive fraction of the Korean medicinal plant Artemisia capillaris Thunberg. The novel compound isofraxidin 7-O-(6′-O-p-coumaroyl)-β-glucopyranoside (compound 1) was isolated and its pigmentation activity was characterized in mammalian melanocytes. Compound 1 stimulated melanin accumulation and increased tyrosinase activity, which regulates melanin synthesis. Moreover, compound 1 increased the expression of tyrosinase and the key melanogenesis regulator microphthalmia-associated transcription factor (MITF) in melanocytes. Compared to the parent compound, isofraxidin, compound 1 produced greater effects on these pigmentation parameters. To validate compound 1 as a novel hyperpigmentation agent in vivo, we utilized the zebrafish vertebrate model. Zebrafish treated with compound 1 showed higher melanogenesis and increased tyrosinase activity. Compound 1 treated embryos had no developmental defects and displayed normal cardiac function, indicating that this compound enhanced pigmentation without producing toxicity. In summary, our results describe the characterization of novel natural product compound 1 and its bioactivity as a pigmentation enhancer, demonstrating its potential as a therapeutic to treat hypopigmentation disorders.
Collapse
|
32
|
Torki S, Soltani A, Shirzad H, Esmaeil N, Ghatrehsamani M. Synergistic antitumor effect of NVP-BEZ235 and CAPE on MDA-MB-231 breast cancer cells. Biomed Pharmacother 2017; 92:39-45. [PMID: 28528184 DOI: 10.1016/j.biopha.2017.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most lethal and aggressive kind of breast cancer. Studies with TNBC cells suggest that tumor environmental cytokines such as Transforming Growth Factor β1 (TGF-β1) have important roles in tumors fate. In the present study, we aimed to investigate, the effect of phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway dual inhibitor, NVP-BEZ235 and Caffeic acid phenyl ester (CAPE) on TNBC cell line (MDA-MB-231), stimulated with TGF-β1 for 14days in vitro. We found that TGF-β1 as a local tumor environmental cytokine plays important role in the progression and invasiveness of TNBC cells. NVP-BEZ235 inhibited the enhanced cell viability and CXCR4 expression induced by TGF-β1. In addition, the combined treatment of TNBC cell lines with CAPE and NVP-BEZ235 synergistically inhibited cell growth and reduced CXCR4 expression. Also, treatment of MDA-MB-231 cells with CAPE and NVP-BEZ235 led to decreasing the expression levels of p-FOXO3a in a time-dependent manner. Overall, these results suggest that tumor metastasis and progression in TNBC cells can be effectively reduced through the concurrent use of NVP-BEZ235 and CAPE. This could be of particular interest in assessing the effects of this therapy in the reduction of tumor metastasis and progression in other tumor types.
Collapse
Affiliation(s)
- Samira Torki
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
33
|
Wu S, Zhang K, Qin H, Niu M, Zhao W, Ye M, Zou H, Yang Y. Caffeic acid phenethyl ester (CAPE) revisited: Covalent modulation of XPO1/CRM1 activities and implication for its mechanism of action. Chem Biol Drug Des 2017; 89:655-662. [PMID: 27863053 DOI: 10.1111/cbdd.12905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/21/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is the bioactive constituent of propolis from honeybee hives and is well known for its anti-inflammatory, anticarcinogenic, antioxidant, and immunomodulatory properties. Herein, we revisited the cellular mechanism underlying the diverse biological effects of CAPE. We demonstrated that XPO1/CRM1, a major nuclear export receptor, is a cellular target of CAPE. Through nuclear export functional assay, we observed a clear shift of XPO1 cargo proteins from a cytoplasmic localization to nucleus when treated with CAPE. In particular, we showed that CAPE could specifically target the non-catalytic and conserved Cys528 of XPO1 through the means of mass spectrometric analysis. In addition, we demonstrated that the mutation of Cys528 residue in XPO1 could rescue the nuclear export defects caused by CAPE. Furthermore, we performed position-restraint molecular dynamics simulation to show that the Michael acceptor moiety of CAPE is the warhead to enable covalent binding with Cys528 residue of XPO1. The covalent modulation of nuclear export by CAPE may explain its diverse biological effects. Our findings may have general implications for further investigation of CAPE and its structural analogs.
Collapse
Affiliation(s)
- Sijin Wu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Keren Zhang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Hongqiang Qin
- Dalian Institute of Chemical Physics, National Chromatographic R&A Center, Chinese Academy of Sciences, Dalian, China
| | - Mingshan Niu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Weijie Zhao
- School of Pharmacology, Dalian University of Technology, Dalian, China
| | - Mingliang Ye
- Dalian Institute of Chemical Physics, National Chromatographic R&A Center, Chinese Academy of Sciences, Dalian, China
| | - Hanfa Zou
- Dalian Institute of Chemical Physics, National Chromatographic R&A Center, Chinese Academy of Sciences, Dalian, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|
34
|
Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria. Molecules 2017; 22:molecules22010072. [PMID: 28045451 PMCID: PMC6155643 DOI: 10.3390/molecules22010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
It is widely believed that lipases in ionic liquids (ILs) possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO) as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE) production from methyl caffeate (MC) and 2-phenylethanol (PE) catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf2N] (1:1, v/v); the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and Km decreased 1.08-fold. The EC50 of CAPE against R. solanacearum was 0.17–0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria.
Collapse
|
35
|
Chen YJ, Chen CC, Huang HL. Induction of apoptosis by Armillaria mellea constituent armillarikin in human hepatocellular carcinoma. Onco Targets Ther 2016; 9:4773-83. [PMID: 27536140 PMCID: PMC4975141 DOI: 10.2147/ott.s103940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Armillaria mellea is a honey mushroom often used in the traditional Chinese medicine “Tianma”. Currently, this medicinal mushroom is also used as a dietary supplement in numerous Western and Eastern countries. Armillarikin was isolated from A. mellea, and we previously discovered that it induced cytotoxicity in human leukemia cells. In this study, we further investigated the cytotoxicity of armillarikin against liver and intrahepatic bile duct cancer cells. Armillarikin was cytotoxic against human hepatocellular carcinoma Huh7, HA22T, and HepG2 cells based on the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alamarBlue® assays. Armillarikin treatment also induced the collapse of the mitochondrial transmembrane potential of these cells. Furthermore, armillarikin-induced apoptotic cell death was demonstrated by sub-G1 chromosomal DNA formation by using flow cytometry. In addition, the apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-fmk. Immunoblotting also revealed the armillarikin-induced activation of procaspase-3, -8, and -9 and upregulation of the apoptosis- and cell cycle arrest-related phospho-histones 2 and 3, respectively. Moreover, reactive oxygen species scavengers also inhibited the armillarikin-induced apoptosis in human hepatocellular carcinoma, suggesting that reactive oxygen species formation played an important role in the armillarikin-induced apoptosis of human hepatocellular carcinoma. In conclusion, our study indicates the potential of armillarikin as an effective agent for hepatoma or leukemia therapies.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Medical Research; Department of Radiation Oncology, Mackay Memorial Hospital; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University; Institute of Pharmacology, Taipei Medical University, Taipei
| | | | - Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| |
Collapse
|
36
|
Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7823541. [PMID: 27528883 PMCID: PMC4977398 DOI: 10.1155/2016/7823541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/05/2016] [Accepted: 06/23/2016] [Indexed: 01/30/2023]
Abstract
There is a continual need to develop novel and effective melanogenesis inhibitors for the prevention of hyperpigmentation disorders. The plant Artemisia capillaris Thunberg (Oriental Wormwood) was screened for antipigmentation activity using murine cultured cells (B16-F10 malignant melanocytes). Activity-based fractionation using HPLC and NMR analyses identified the compound 4,5-O-dicaffeoylquinic acid as an active component in this plant. 4,5-O-Dicaffeoylquinic acid significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner in the melanocytes. In addition, 4,5-O-dicaffeoylquinic acid treatment reduced the expression of tyrosinase-related protein-1. Significantly, we could validate the antipigmentation activity of this compound in vivo, using a zebrafish model. Moreover, 4,5-O-dicaffeoylquinic acid did not show toxicity in this animal model. Our discovery of 4,5-O-dicaffeoylquinic acid as an inhibitor of pigmentation that is active in vivo shows that this compound can be developed as an active component for formulations to treat pigmentation disorders.
Collapse
|
37
|
Li H, Wu F, Tan J, Wang K, Zhang C, Zheng H, Hu F. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components. J Pharm Biomed Anal 2016; 122:21-8. [DOI: 10.1016/j.jpba.2016.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
38
|
Erdemli HK, Akyol S, Armutcu F, Gulec MA, Canbal M, Akyol O. Melatonin and caffeic acid phenethyl ester in the regulation of mitochondrial function and apoptosis: The basis for future medical approaches. Life Sci 2016; 148:305-12. [DOI: 10.1016/j.lfs.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
39
|
Amini-Sarteshnizi N, Teimori H, Beshkar P, Amini-Sarteshnizi R, Nikoukar M. Study of CAPE Effect on Apoptosis Induction in AGS Human Gastric Cancer Cell Line. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-22534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Lead compound bearing caffeic scaffold induces EGFR suppression in solid tumor cancer cells. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
41
|
CAPE Analogs Induce Growth Arrest and Apoptosis in Breast Cancer Cells. Molecules 2015; 20:12576-89. [PMID: 26184141 PMCID: PMC6332101 DOI: 10.3390/molecules200712576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023] Open
Abstract
Breast cancer is the second leading cause of death amongst women worldwide. As a result, many have turned their attention to new alternative approaches to treat this disease. Caffeic acid phenylethyl ester (CAPE), a well-known active compound from bee propolis, has been previously identified as a strong antioxidant, anti-inflammatory, antiviral and anticancer molecule. In fact, CAPE is well documented as inducing cell death by inhibiting NFκB and by inducing pro-apoptotic pathways (i.e., p53). With the objective of developing stronger anticancer compounds, we studied 18 recently described CAPE derivatives for their ability to induce apoptosis in breast cancer cell lines. Five of the said compounds, including CAPE, were selected and subsequently characterised for their anticancer mechanism of action. We validated that CAPE is a potent inducer of caspase-dependent apoptosis. Interestingly, some newly synthesized CAPE derivatives also showed greater cell death activity than the lead CAPE structure. Similarly to CAPE, analog compounds elicited p53 activation. Interestingly, one compound in particular, analog 10, induced apoptosis in a p53-mutated cell line. These results suggest that our new CAPE analog compounds may display the capacity to induce breast cancer apoptosis in a p53-dependent and/or independent manner. These CAPE analogs could thus provide new therapeutic approaches for patients with varying genotypic signatures (such as p53 mutations) in a more specific and targeted fashion.
Collapse
|
42
|
Caffeic Acid phenethyl ester and ethanol extract of propolis induce the complementary cytotoxic effect on triple-negative breast cancer cell lines. Molecules 2015; 20:9242-62. [PMID: 26007182 PMCID: PMC6272161 DOI: 10.3390/molecules20059242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy of breast cancer could be improved by bioactive natural substances, which may potentially sensitize the carcinoma cells’ susceptibility to drugs. Numerous phytochemicals, including propolis, have been reported to interfere with the viability of carcinoma cells. We evaluated the in vitro cytotoxic activity of ethanol extract of propolis (EEP) and its derivative caffeic acid phenethyl ester (CAPE) towards two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T, by implementation of the MTT and lactate dehydrogenase (LDH) assays. The morphological changes of breast carcinoma cells were observed following exposure to EEP and CAPE. The IC50 of EEP was 48.35 µg∙mL−1 for MDA-MB-23 cells and 33.68 µg∙mL−1 for Hs578T cells, whereas the CAPE IC50 was 14.08 µM and 8.01 µM for the MDA-MB-231 and Hs578T cell line, respectively. Here, we report that propolis and CAPE inhibited the growth of the MDA-MB-231 and Hs578T lines in a dose-dependent and exposure time-dependent manner. EEP showed less cytotoxic activity against both types of TNBC cells. EEP and, particularly, CAPE may markedly affect the viability of breast cancer cells, suggesting the potential role of bioactive compounds in chemoprevention/chemotherapy by potentiating the action of standard anti-cancer drugs.
Collapse
|
43
|
Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 2015; 16:10748-66. [PMID: 25984601 PMCID: PMC4463674 DOI: 10.3390/ijms160510748] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers, which affect 650,000 people and cause 350,000 deaths per year, is the sixth leading cancer by cancer incidence and eighth by cancer-related death worldwide. Oral cancer is the most common type of head and neck cancer. More than 90% of oral cancers are oral and oropharyngeal squamous cell carcinoma (OSCC). The overall five-year survival rate of OSCC patients is approximately 63%, which is due to the low response rate to current therapeutic drugs. In this review we discuss the possibility of using caffeic acid phenethyl ester (CAPE) as an alternative treatment for oral cancer. CAPE is a strong antioxidant extracted from honeybee hive propolis. Recent studies indicate that CAPE treatment can effectively suppress the proliferation, survival, and metastasis of oral cancer cells. CAPE treatment inhibits Akt signaling, cell cycle regulatory proteins, NF-κB function, as well as activity of matrix metalloproteinase (MMPs), epidermal growth factor receptor (EGFR), and Cyclooxygenase-2 (COX-2). Therefore, CAPE treatment induces cell cycle arrest and apoptosis in oral cancer cells. According to the evidence that aberrations in the EGFR/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling, NF-κB function, COX-2 activity, and MMPs activity are frequently found in oral cancers, and that the phosphorylation of Akt, EGFR, and COX-2 correlates to oral cancer patient survival and clinical progression, we believe that CAPE treatment will be useful for treatment of advanced oral cancer patients.
Collapse
|
44
|
Fang S, Chen L, Yu M, Cheng B, Lin Y, Morris-Natschke SL, Lee KH, Gu Q, Xu J. Synthesis, antitumor activity, and mechanism of action of 6-acrylic phenethyl ester-2-pyranone derivatives. Org Biomol Chem 2015; 13:4714-26. [PMID: 25800703 PMCID: PMC4390547 DOI: 10.1039/c5ob00007f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. In particular, compound showed potent cytotoxic activity (IC50 = 0.50-3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADMET properties were also calculated in silico, and compound showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound is a promising compound as an antitumor agent.
Collapse
Affiliation(s)
- Sai Fang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:206439. [PMID: 26106433 PMCID: PMC4461776 DOI: 10.1155/2015/206439] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/13/2023]
Abstract
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Collapse
|
46
|
Zhang P, Tang Y, Li NG, Zhu Y, Duan JA. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 2014; 19:16458-76. [PMID: 25314606 PMCID: PMC6271019 DOI: 10.3390/molecules191016458] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 01/10/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE), as one of the main active ingredients of the natural product propolis, shows the unique biological activities such as anti-tumor, anti-oxidation, anti-inflammatory, immune regulation, and so on. These have attracted the attention of many researchers to explore the compound with potent biological activities. This review aims to summarize its bioactivities, synthetic methods and derivatives, which will be helpful for further study and development of CAPE and its derivatives.
Collapse
Affiliation(s)
- Pengxuan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian-Guang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
47
|
Kim AD, Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, Hyun CL, Boo SJ, Lee NH, Na SY, Hyun JW. Dictyopteris undulata extract induces apoptosis in human colon cancer cells. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0200-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
49
|
Yang CB, Pei WJ, Zhao J, Cheng YY, Zheng XH, Rong JH. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. Acta Pharmacol Sin 2014; 35:113-23. [PMID: 24335836 DOI: 10.1038/aps.2013.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/29/2013] [Indexed: 12/13/2022]
Abstract
AIM The purpose of the present study was to investigate the anticancer activity of bornyl caffeate in the human breast cancer cell line MCF-7. METHODS The cell viability was determined using the MTT assay, and apoptosis was initially defined by monitoring the morphology of the cell nuclei and staining an early apoptotic biomarker with Annexin V-FITC. The mitochondrial membrane potential was visualized by JC-1 under fluorescence microscopy, whereas intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. RESULTS Bornyl caffeate induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. Consistently, bornyl caffeate increased Bax and decreased Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and the activation of the mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). Antioxidants attenuated the activation of MAP kinase p38 but barely affected the activation of JNK. Importantly, the cytotoxicity of bornyl caffeate was partially attenuated by scavenging ROS and inhibited by MAP kinases and caspases. CONCLUSION The present study demonstrated that bornyl caffeate induced apoptosis in the cancer cell line MCF-7 via activating the ROS- and JNK-mediated pathways. Thus, bornyl caffeate may be a potential anticancer lead compound.
Collapse
|
50
|
Chen YJ, Wu SY, Chen CC, Tsao YL, Hsu NC, Chou YC, Huang HL. Armillaria mellea component armillarikin induces apoptosis in human leukemia cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|