1
|
Hoser J, Weglinska G, Samsel A, Maliszewska-Olejniczak K, Bednarczyk P, Zajac M. Modulation of the Respiratory Epithelium Physiology by Flavonoids-Insights from 16HBEσcell Model. Int J Mol Sci 2024; 25:11999. [PMID: 39596066 PMCID: PMC11594214 DOI: 10.3390/ijms252211999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Extensive evidence indicates that the compromise of airway epithelial barrier function is closely linked to the development of various diseases, posing a significant concern for global mortality and morbidity. Flavonoids, natural bioactive compounds, renowned for their antioxidant and anti-inflammatory properties, have been used for centuries to prevent and treat numerous ailments. Lately, a growing body of evidence suggests that flavonoids can enhance the integrity of the airway epithelial barrier. The objective of this study was to investigate the impact of selected flavonoids representing different subclasses, such as kaempferol (flavonol), luteolin (flavone), and naringenin (flavanone), on transepithelial electrical resistance (TEER), ionic currents, cells migration, and proliferation of a human bronchial epithelial cell line (16HBE14σ). To investigate the effect of selected flavonoids, MTT assay, trypan blue staining, and wound healing were assessed. Additionally, transepithelial resistance and Ussing chamber measurements were applied to investigate the impact of the flavonoids on the electrical properties of the epithelial barrier. This study showed that kaempferol, luteolin, and naringenin at micromolar concentrations were not cytotoxic to 16HBE14σ cells. Indeed, in MTT tests, a statistically significant change in cell metabolic activity for luteolin and naringenin was observed. However, our experiments showed that naringenin did not affect the proliferation of 16HBE14σ cells, while the effect of kaempferol and luteolin was inhibitory. Moreover, transepithelial electrical resistance measurements have shown that all of the flavonoids used in this study improved the epithelial integrity with the slightest effect of kaempferol and the significant impact of naringenin and luteolin. Finally, our observations suggest that luteolin increases the Cl- transport through cystic fibrosis transmembrane conductance regulator (CFTR) channel. Our findings reveal that flavonoids representing different subclasses exert distinct effects in the employed cellular model despite their similar chemical structures. In summary, our study sheds new light on the diverse effects of selected flavonoids on airway epithelial barrier function, underscoring the importance of further exploration into their potential therapeutic applications in respiratory health.
Collapse
Affiliation(s)
| | | | | | | | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (J.H.); (G.W.); (A.S.); (K.M.-O.); (M.Z.)
| | | |
Collapse
|
2
|
Liu W, Wang L, Yu C, Fan Z, Yang K, Mo X. Drug or Toxic? A Brief Understanding of the Edible Corolla of Rhododendron decorum Franch. by Bai Nationality with Comparative Metabolomics Analysis. Metabolites 2024; 14:484. [PMID: 39330491 PMCID: PMC11434486 DOI: 10.3390/metabo14090484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Rhododendron is a traditional ornamental and medicinal plant in China, renowned for its aesthetic appeal and therapeutic properties. Regarding Rhododendron decorum Franch., mainly distributed in Yunnan Province, its corolla is regarded as an edible food by the Bai ethnic group in Yunnan Province. However, it is still unclear why the Bai people choose to use the Rhododendron species in their seasonal diet. Here, we employed comparative metabolomics analysis to explore the variations in the metabolites and the enriched biosynthesis pathways within the different floral organs of R. decorum Franch. from Heqing and Yulong County. The metabolite analysis showed that 1340 metabolites were identified from the floral organs in the two regions. Comparing the different flower organs of the same region, 85 differential accumulated metabolites (DAMs) were found from the androecium/gynoecium and corolla in the same region, and 66 DAMs were identified from the same organ in different regions. The KEGG pathway and network analysis revealed significant disparities in both the metabolite composition and enriched pathways among the different floral organs or when comparing the same floral organs across diverse regions, with geographical variations exerting even stronger influences. From the perspective of resource utilization, it was observed that the R. decorum Franch. populations in Heqing County exhibited the greater accumulation of secondary metabolites within their flowers, rendering them more advantageous for medicinal purposes, albeit potentially more toxic. This study provides novel insights into the utilization of corollaries for potential de novo pharmacy development.
Collapse
Affiliation(s)
- Weiwei Liu
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Ling Wang
- School of Applied Technology, Lijiang Normal University, Lijiang 674199, China
| | - Chenghua Yu
- School of Applied Technology, Lijiang Normal University, Lijiang 674199, China
| | - Zhongyu Fan
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Kaiye Yang
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Xinchun Mo
- School of Applied Technology, Lijiang Normal University, Lijiang 674199, China
| |
Collapse
|
3
|
Batawi AH. Ginkgo biloba extract mitigates the neurotoxicity of AlCl 3 in alzheimer rat's model: role of apolipoprotein E4 and clusterin genes in stimulating ROS generation and apoptosis. Int J Neurosci 2024; 134:34-44. [PMID: 35634646 DOI: 10.1080/00207454.2022.2082968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Alzheimer's disease (AD) appears as a result of an increase in the accumulation of amyloid beta peptide (Aβ) and a decrease in neurotransmitters (acetylcholine) within the brain cells which may be due to increase in acetylcholinesterase (AchE) activity and change in expression of Apolipoprotein E4 (ApoE4) and Clusterin (Clu) genes. The aim of the present study was using natural products such as Ginkgo biloba (G. biloba) extract that has the potential to reduce Aβ formation and increase AchE inhibition with its ability to save neuronal DNA from damage. METHODS Sixty male aged rats were divided into six experimental groups exposed to AlCl3 to induce AD model and were treated with G. biloba extract. Collected brain tissues were used to assess the apoptosis rate, reactive oxygen species (ROS) generation, AchE inhibitory activity, expression alteration in ApoE4 and Clu genes, DNA fragmentations and gutathione peroxidase (GPx) activity.Results: The results exhibited that rats exposed to AlCl3 increased significantly rate of apoptosis, ROS formation, DNA fragmentation, up-regulation of ApoE4 and Clu genes as well as decrease of AchE inhibitory activity and GPx activity compared with those in control rats. However, treatment of AlCl3-rats with G. biloba extract improved the above neurotoxicity results induced by AlCl3 exposure. CONCLUSIONS It is therefore likely that G. biloba extract's protective properties against AD are due to its ability to activate the response against oxidative stress.
Collapse
Affiliation(s)
- Ashwaq H Batawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Hu Y, Yu C, Cheng L, Zhong C, An J, Zou M, Liu B, Gao X. Flavokawain C inhibits glucose metabolism and tumor angiogenesis in nasopharyngeal carcinoma by targeting the HSP90B1/STAT3/HK2 signaling axis. Cancer Cell Int 2024; 24:158. [PMID: 38711062 DOI: 10.1186/s12935-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.
Collapse
Affiliation(s)
- YuQiang Hu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - LiangJun Cheng
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chang Zhong
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun An
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - MingZhen Zou
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing Liu
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
5
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
6
|
Mutinda ES, Zhang DJ, Muema FW, Mkala EM, Waswa EN, Odago WO, Onyango Ochieng C, Gichua MK, Muchuku JK, Kamande E, Hu GW. The genus Balanophora J. R. Forst. & G. Forst. - Its use in traditional medicine, phytochemistry, and pharmacology: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117276. [PMID: 37866464 DOI: 10.1016/j.jep.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products, particularly medicinal plants, have been utilized in traditional medicine for millennia to treat various diseases. The genus Balanophora (Balanophoraceae) consists of 23 accepted species. These species are the most controversial flowering plants, with highly reduced morphologies and are found parasitizing on the roots of their host. They have been used in traditional medicine as a remedy for stomach pain, detumescence, uterine prolapse, wounds, syphilis, gonorrhea, treating injuries from falls, and other conditions. However, there is no review of this genus on its traditional uses, phytochemistry, and pharmacology. AIM The present narrative review discusses the scientific data supporting the traditional uses of Balanophora species. The available information on its botanical properties, traditional uses, chemical contents, pharmacological activities, and toxicity was summarized to help comprehend current research and offer a foundation for future research. MATERIALS AND METHODS The materials used in combining data on the genus Balanophora comprises online sources such as Web of Science, Google Scholar, Science Direct, and Chinese National Knowledge Infrastructure (CNKI) for Chinese-related materials. World Flora online was used in validating the scientific names of this genus while ChemBio Draw Ultra Version 22.2 software was employed in drawing the phytochemical compounds. RESULTS Nine Balanophora species including B. harlandii, B. japonica, B. polyandra, B. fungosa, B. fungosa subsp. indica, B. laxiflora, B. abbreviata, B. tobiracola, and B. involucrata have been documented as vital sources of traditional medicines in different parts of Asia. A total of 159 secondary metabolites have been isolated and identified from the ten species of this genus comprising tannins, flavonoids, sterols, lignans, chalcones, terpenes, and phenylpropanoids. Among these compounds, tannins, lignans, terpenoids, chalcones and phenolic acids contribute to the pharmacological activities of the species in this genus with several biological activities both in vitro and in vivo such as anti-inflammatory, anti-oxidant, hypoglycemic activity, cytotoxicity, anti-microbial, melanin synthesis etc. CONCLUSION: This review summarizes the available literature on the traditional uses, pharmacological properties, and phytoconstituents of Balanophora species indicating that they contain fascinating chemical compounds with diverse biological activities. The traditional uses of the species in this genus have been confirmed by scientific data such as antimicrobial, hemostatic effect, gastroprotective activity and others. However, many species in this genus are yet unknown in terms of their botanical uses, chemical composition and biological activities. Thus, more research into the scientific connections between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Balanophora species is needed to determine their efficacy and therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dong-Juan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Clintone Onyango Ochieng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Moses Kirega Gichua
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - John Kamau Muchuku
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Elizabeth Kamande
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
7
|
Mushtaq A, Habib F, Manea R, Anwar R, Gohar UF, Zia-Ul-Haq M, Ahmad M, Gavris CM, Chicea L. Biomolecular Screening of Pimpinella anisum L. for Antioxidant and Anticholinesterase Activity in Mice Brain. Molecules 2023; 28:molecules28052217. [PMID: 36903462 PMCID: PMC10005257 DOI: 10.3390/molecules28052217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Hundreds of the plants have been explored and evaluated for antioxidant and anti-amnesic activities, so far. This study was designed to report the biomolecules of Pimpinella anisum L. for the said activities. The aqueous extract of dried P. anisum seeds was fractionated via column chromatography and the fractions so obtained were assessed for the inhibition of acetylcholinesterase (AChE) via in vitro analysis. The fraction which best inhibited AChE was so named as the P. anisum active fraction (P.aAF). The P.aAF was then chemically analyzed via GCMS, which indicated that oxadiazole compounds were present in it. The P.aAF was then administered to albino mice to conduct the in vivo (behavioral and biochemical) studies. The results of the behavioral studies indicated the significant (p < 0.001) increase in inflexion ratio, by the number of hole-pokings through holes and time spent in a dark area by P.aAF treated mice. Biochemical studies demonstrated that the oxadiazole present in P.aAF on one hand presented a noteworthy reduction in MDA and the AChE level and on the other hand promoted the levels of CAT, SOD and GSH in mice brain. The LD50 for P.aAF was calculated as 95 mg/Kg/p.o. The findings thus supported that the antioxidant and anticholinesterase activities of P. anisum are due to its oxadiazole compounds.
Collapse
Affiliation(s)
- Aamir Mushtaq
- Department of Pharmaceutical Sciences, Government College University, Lahore 54000, Pakistan
- Correspondence: or (A.M.); (C.M.G.); (L.C.); Tel.: +92-3336295580 (A.M.)
| | - Fatima Habib
- Gulab Devi Institute of Pharmacy, Gulab Devi Educational Complex, Lahore 54000, Pakistan
| | - Rosana Manea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Rukhsana Anwar
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Muhammad Zia-Ul-Haq
- Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore 54000, Pakistan
| | - Mobasher Ahmad
- Gulab Devi Institute of Pharmacy, Gulab Devi Educational Complex, Lahore 54000, Pakistan
| | - Claudia Mihaela Gavris
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania
- Correspondence: or (A.M.); (C.M.G.); (L.C.); Tel.: +92-3336295580 (A.M.)
| | - Liana Chicea
- Faculty of Medicine, University “Lucian Blaga” Sibiu, 550169 Sibiu, Romania
- Correspondence: or (A.M.); (C.M.G.); (L.C.); Tel.: +92-3336295580 (A.M.)
| |
Collapse
|
8
|
Amini MR, Payandeh N, Sheikhhossein F, Shahinfar H, Pourreza S, Hekmatdoost A. Effect of Tart Cherry Juice Consumption on Body Composition and Anthropometric Measures: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Nutr Res 2023; 12:65-76. [PMID: 36793776 PMCID: PMC9900077 DOI: 10.7762/cnr.2023.12.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
The present systematic review and meta-analysis were accomplished to understand the effects of tart cherry juice consumption on body composition and anthropometric measures. Five databases were searched using relevant keywords from inception to January 2022. All clinical trials investigating the effect of tart cherry juice consumption on body weight (BW), body mass index (BMI), waist circumference (WC), fat mass (FM), fat-free mass (FFM), and percentage body fat (PBF) were included. Out of 441 citations, 6 trials that enrolled 126 subjects were included. Tart cherry juice consumption significantly did not reduce BW (weighted mean difference [WMD], -0.4 kg; 95% confidence interval [CI], -3.25 to 2.46; p = 0.789; GRADE = low), BMI (WMD, -0.07 kg/m2; 95% CI, -0.89 to 0.74; p = 0.857; GRADE = low), FM (WMD, 0.21 kg; 95% CI, -1.83 to 2.25; p = 0.837; GRADE = low), FFM (WMD, -0.12 kg; 95% CI, -2.47 to 2.27; p = 0.919; GRADE = low), WC (WMD, 1.69 cm; 95% CI, -1.88 to 5.27; p = 0.353; GRADE = low), and PBF (WMD, 0.18%; 95% CI, -1.81 to -2.17; p = 0.858; GRADE = low). Overall, these data suggest that tart cherry juice consumption has no significant effect on BW, BMI, FM, FFM, WC, and PBF.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Nastaran Payandeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Hossein Shahinfar
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
9
|
Srivastava S, Dubey AK, Madaan R, Bala R, Gupta Y, Dhiman BS, Kumar S. Emergence of nutrigenomics and dietary components as a complementary therapy in cancer prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89853-89873. [PMID: 36367649 DOI: 10.1007/s11356-022-24045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cancer is an illness characterized by abnormal cell development and the capability to infiltrate or spread to rest of the body. A tumor is the term for this abnormal growth that develops in solid tissues like an organ, muscle, or bone and can spread to other parts of the body through the blood and lymphatic systems. Nutrition is a critical and immortal environmental component in the development of all living organisms encoding the relationship between a person's nutrition and their genes. Nutrients have the ability to modify gene expression and persuade alterations in DNA and protein molecules which is researched scientifically in nutrigenomics. These interactions have a significant impact on the pharmacokinetic properties of bioactive dietary components as well as their site of action/molecular targets. Nutrigenomics encompasses nutrigenetics, epigenetics, and transcriptomics as well as other "omic" disciplines like proteomics and metabolomics to explain the vast disparities in cancer risk among people with roughly similar life style. Clinical trials and researches have evidenced that alternation of dietary habits is potentially one of the key approaches for reducing cancer risk in an individual. In this article, we will target how nutrigenomics and functional food work as preventive therapy in reducing the risk of cancer.
Collapse
Affiliation(s)
| | - Ankit Kumar Dubey
- Institute of Scholars, Bengaluru, 577102, Karnataka, India.
- iGlobal Research and Publishing Foundation, New Delhi, 110059, India.
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yugam Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| |
Collapse
|
10
|
Li YQ, Murakami M, Huang YH, Hung TH, Wang SP, Wu YS, Ambudkar SV, Wu CP. Hydroxygenkwanin Improves the Efficacy of Cytotoxic Drugs in ABCG2-Overexpressing Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms232112763. [PMID: 36361555 PMCID: PMC9658017 DOI: 10.3390/ijms232112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.
Collapse
Affiliation(s)
- Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 40704, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| |
Collapse
|
11
|
Chiu YJ, Lin TH, Chang KH, Lin W, Hsieh-Li HM, Su MT, Chen CM, Sun YC, Lee-Chen GJ. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Aβ-GFP SH-SY5Y cells against Aβ toxicity. Aging (Albany NY) 2022; 14:7568-7586. [PMID: 36170028 PMCID: PMC9550238 DOI: 10.18632/aging.204306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer’s disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aβ toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aβ-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aβ-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood–brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aβ cells, which may shed light on the potential application in therapeutics of AD.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
12
|
Li L, Li H, Shi L, Shi L, Li T. Tin Porphyrin-Based Nanozymes with Unprecedented Superoxide Dismutase-Mimicking Activities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7272-7279. [PMID: 35638128 DOI: 10.1021/acs.langmuir.2c00778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the oxidative stress is related to human aging and many diseases, a diversity of antioxidant biomimetic enzymes to eliminate reactive oxygen species in vivo and maintain the redox balance has attracted intensive attention. Of particular interest are superoxide dismutase (SOD)-mimicking artificial enzymes that bear inherent characteristics of natural counterparts but overcome their deficiencies in thermal and acidic stability. Inspired by the metallized active center of natural SODs, here, we engineered different groups of metalloporphyrins and found that Sn-metallized porphyrins can act as novel SOD mimics, in which Sn-metallized meso-tetra(4-carboxyphenyl) porphine (Sn-TCPP) can more effectively catalyze the disproportionation of superoxide radical anions (•O2-) into hydrogen peroxide and oxygen. Especially, Sn-TCPP-based metal-organic frame nanozyme (Sn-PCN222) displays an unusually high catalytic activity that remarkably exceeds those of commonly used counterparts. Such unprecedented catalytic behaviors are proposed to depend on the Sn(IV)/Sn(II) transition at the center of Sn-TCPP. In addition, the metal-organic framework (MOF) nanozymes also display higher thermal and acidic stability than natural SODs. Interestingly, we find that Sn-complexed methylated tetra-(4-aminophenyl) porphyrin shows an aggregation-induced SOD activity in an acidic environment, whereas conventional SOD mimics do not function well in this case. Given these unique features, our reported Sn-porphyrin-based nanozymes would be potent alternatives for natural SODs to be widely used in clinical treatments of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ling Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huan Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Sioud F, Dhouafi Z, Lahmar A, Elgueder D, Chekir-Ghedira L. A Novel Anticancer Effect of Ephedra alata Decne in Breast Cancer Cells. Nutr Cancer 2022; 74:3403-3412. [PMID: 35545961 DOI: 10.1080/01635581.2022.2072907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a class of diseases characterized by uncontrolled cell growth. One of the main aims of developing new therapies is to use natural resources to induce apoptosis. LC-ms/ms analysis of a methanolic extract of Ephedra alata (E.A.) allowed the identification of 20 secondary metabolites, including flavonoids, phenolic acids, and proanthocyanidins. Antiproliferative effect was assessed by crystal violet assay. Antimigration effect was tested by wound healing assay and apoptosis induction was determined by annexin binding assays, Hoechst staining, ROS production, and activation of apoptotic proteins. The results indicated that exposure of breast cancer cells to E.A. extract significantly reduced cell viability in a dose and time-dependent manner and inhibited the migration of 4T1 cells at a low dose. Moreover, treatment of cells with E.A. extract induced apoptosis, as it was detected by Annexin V/7 AAD, Hoechst staining, ROS production, and the activation of caspases.
Collapse
Affiliation(s)
- Fairouz Sioud
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Zaineb Dhouafi
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Aida Lahmar
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Dorra Elgueder
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
14
|
Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. Pharmaceuticals (Basel) 2022; 15:ph15030385. [PMID: 35337182 PMCID: PMC8952364 DOI: 10.3390/ph15030385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin’s ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.
Collapse
|
15
|
Chiang NN, Lin TH, Teng YS, Sun YC, Chang KH, Lin CY, Hsieh-Li HM, Su MT, Chen CM, Lee-Chen GJ. Flavones 7,8-DHF, Quercetin, and Apigenin Against Tau Toxicity via Activation of TRKB Signaling in ΔK280 Tau RD-DsRed SH-SY5Y Cells. Front Aging Neurosci 2022; 13:758895. [PMID: 34975454 PMCID: PMC8714935 DOI: 10.3389/fnagi.2021.758895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.
Collapse
Affiliation(s)
- Ni-Ni Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Shan Teng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
16
|
Wang C, Xia Y, Qu L, Liu Y, Liu X, Xu K. Cardamonin inhibits osteogenic differentiation of human valve interstitial cells and ameliorates aortic valve calcification via interfering in the NF-κB/NLRP3 inflammasome pathway. Food Funct 2021; 12:11808-11818. [PMID: 34766179 DOI: 10.1039/d1fo00813g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cardamonin (CDM) is a natural chalcone with strong anti-inflammatory properties. Inflammation-induced osteogenic changes in valve interstitial cells (VICs) play crucial roles in the development of calcific aortic valve disease (CAVD), a degenerative disease characterized by degeneration, thickening, fibrosis, and calcification of the heart valve tissues. To investigate the anti-osteogenic differentiation role of CDM in human valve interstitial cells (hVICs), which consequently reverses the calcification of the aortic valve, human VICs were exposed to osteogenic induction medium (OM) with CDM for further cell viability, osteogenic gene and protein expression analyses, and anti-calcification testing. mRNA sequencing was utilized to analyze the differentially expressed genes (DEGs) and related signaling pathways as potential molecular targets involved in CDM's anti-calcification activity. Human aortic valve leaflet ex vivo calcific cultures were used to investigate the CDM inhibition of osteogenic differentiation of hVICs at the tissue level. ApoE-/- mice fed with a high-fat (HF) diet were used to evaluate the effect of CDM on aortic valve calcification. No significant CDM cytotoxicity was seen in the hVICs at 10 μM. The addition of CDM to OM prevented calcified nodule accumulation, and a decrease in the gene/protein expression levels of BMP2, RUNX2, SPP1, TNF-α, and COL1A2 was observed. Venn diagram analysis of the DEGs identified 666 common DEGs and highlighted the NOD-like receptor signaling pathway (ko04621) as an anti-calcification target of CDM. CDM also repressed the activation of p-AKT, p-ERK1/2, and p-IκBα, and prevented the OM-induced nuclear transcription of NF-κB p65. In the in vitro and ex vivo calcific conditional culture experiments, CDM exhibited anti-inflammatory and anti-calcification effects by suppressing the activation of the NLRP3 inflammasome and downregulating IL-1β expression. In vivo, CDM ameliorated aortic valve calcification by interfering with NLRP3 expression. Our study demonstrated that CDM inhibited the phenotypical calcific transformation of hVICs by mediating the inactivation of the NF-κB/NLRP3 inflammasome. Therefore, it is considered to be a promising natural compound for use in preventing the progression of heart valve calcification disease.
Collapse
Affiliation(s)
- Chunli Wang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yi Xia
- Hubei University of Chinese Medicine, Huangjiahu Hospital, Wuhan 430065, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yanju Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
17
|
Risk assessment of the inhibition of hydroxygenkwanin on human and rat cytochrome P450 by cocktail method. Toxicol In Vitro 2021; 79:105281. [PMID: 34843882 DOI: 10.1016/j.tiv.2021.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Hydroxygenkwanin (HGK), a natural flavonoid extracted from the buds of Daphne genkwa Sieb.et Zucc. (Thymelaeaceae), possesses a wide range of pharmacological activities, including anti-inflammatory, antibacterial and anticancer. However, the inhibitory effect of HGK on cytochrome P450 (CYP) remains unclear. This study investigated the potential inhibitory effects of HGK on CYP1A2, 2B1/6, 2C9/11, 2D1/6, 2E1 and 3A2/4 enzymes in human and rat liver microsomes (HLMs and RLMs) by the cocktail approach. HGK exhibited no time-dependent inhibition of CYP activities in HLMs and RLMs. Enzyme inhibition kinetics indicated that HGK was not only a competitive inhibitor of human CYP1A2 and 2C9, but also competitively inhibited rat CYP1A2 and 2C11 activities, with Ki value at 0.84 ± 0.03, 8.09 ± 0.44, 2.68 ± 0.32 and 8.35 ± 0.31 μM, respectively. Further studies showed that the inhibitory effect of HGK on CYP enzymes was weaker than that of diosmetin, which may be related to the substitution of hydroxyl and methoxy in the A and B rings of the flavone skeleton. Therefore, the low Ki values of HGK for CYP1A2 and 2C may lead to potential drug-drug interactions and toxicity.
Collapse
|
18
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
19
|
Zhang F, Ma Z, Qiao Y, Wang Z, Chen W, Zheng S, Yu C, Song L, Lou H, Wu J. Transcriptome sequencing and metabolomics analyses provide insights into the flavonoid biosynthesis in Torreya grandis kernels. Food Chem 2021; 374:131558. [PMID: 34794838 DOI: 10.1016/j.foodchem.2021.131558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
The kernel of Torreya grandis (T. grandis) is a rare nut with a variety of bioactive compounds. Flavonoids are a very important class of bioactive compounds with high antioxidant activity in T. grandis kernels. However, the flavonoid compositions which mainly contribute to antioxidant capacity and the molecular basis of flavonoid biosynthesis in T. grandis remain unclear. Here, transcriptome sequencing and metabolomics analysis for kernels were performed. In total, 124 flavonoids were identified. Among them, 9 flavonoids were highly correlated with antioxidant activity. Furthermore, unigenes encoding CHS, DFR and ANS showed significant correlation with the 9 flavonoids. Transient overexpression of TgDFR1 in tobacco leaves resulted in increased antioxidant activity. Moreover, several transcription factors from MYB, bHLH and bZIP families were identified by co-expression assay, suggesting that they may regulate flavonoid biosynthesis. Our findings provide a molecular basis and new insights into the flavonoid biosynthesis in T. grandis kernels.
Collapse
Affiliation(s)
- Feicui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
20
|
Bafna PS, Patil PH, Maru SK, Mutha RE. Cissus quadrangularis L: A comprehensive multidisciplinary review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114355. [PMID: 34181958 DOI: 10.1016/j.jep.2021.114355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cissus quadrangularis L. is a perennial herb of the Vitaceae family and is utilized comprehensively as a medicinal herb in most tropical regions by various names. This herb is documented to possess a wide-ranging ethnomedicinal uses in malaria, fever, epilepsy, gout, piles, skin diseases, colic, etc. AIM OF THE REVIEW: A organized summary of the botany, traditional uses, phytochemistry, pharmacology, toxicology, available marketed formulations and filed patents were presented to explore the future therapeutic potential and scientific potential of this herb. MATERIALS AND METHODS For a review of the literature, various databases were searched, including PubMed, EMBASE, and Scopus etc. From, total 408 records of this herb, we have screened 155 articles consist of desired information and available as full text. Present manuscript is structured from comprehensive information on this herb from screened 155 records. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Phytochemical assessment as a whole indicated the presence of flavonoids, triterpenoids, alkaloids, saponins, iridoids, stilbenes, vitamins, steroids, and glycosides. A toxicity study revealed that its LD50 value is above 3000 mg/kg in animals indicating its safety. A variety of pharmacological studies of aerial parts of this herb by different extracts have demonstrated analgesic, anti-inflammatory, anticonvulsant, antimicrobial, anticancer, anti-osteoporotic activity and other bone-related disorders to justify its name as Hadjod. Still, the herb has been utilized in clinical practice and several patents were filed in India and US for its antiosteoporotic property. CONCLUSION The studies on Cissus quadrangularis Linn. are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components needs to be further elucidated. These findings suggest the need for further research on this herb for the management of several other chronic ailments.
Collapse
Affiliation(s)
- Piyush S Bafna
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Payal H Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Saurabh K Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Rakesh E Mutha
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India.
| |
Collapse
|
21
|
Bcl-2 Modulation in p53 Signaling Pathway by Flavonoids: A Potential Strategy towards the Treatment of Cancer. Int J Mol Sci 2021; 22:ijms222111315. [PMID: 34768743 PMCID: PMC8582810 DOI: 10.3390/ijms222111315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major cause of death, affecting human life in both developed and developing countries. Numerous antitumor agents exist but their toxicity and low efficacy limits their utility. Furthermore, the complex pathophysiological mechanisms of cancer, serious side effects and poor prognosis restrict the administration of available cancer therapies. Thus, developing novel therapeutic agents are required towards a simultaneous targeting of major dysregulated signaling mediators in cancer etiology, while possessing lower side effects. In this line, the plant kingdom is introduced as a rich source of active phytochemicals. The secondary metabolites produced by plants could potentially regulate several dysregulated pathways in cancer. Among the secondary metabolites, flavonoids are hopeful phytochemicals with established biological activities and minimal side effects. Flavonoids inhibit B-cell lymphoma 2 (Bcl-2) via the p53 signaling pathway, which is a significant apoptotic target in many cancer types, hence suppressing a major dysregulated pathway in cancer. To date, there have been no studies reported which extensively highlight the role of flavonoids and especially the different classes of flavonoids in the modulation of Bcl-2 in the P53 signaling pathway. Herein, we discuss the modulation of Bcl-2 in the p53 signaling pathway by different classes of flavonoids and highlight different mechanisms through which this modulation can occur. This study will provide a rationale for the use of flavonoids against different cancers paving a new mechanistic-based approach to cancer therapy.
Collapse
|
22
|
Chen CC, Chen CY, Cheng SF, Shieh TM, Leu YL, Chuang WY, Liu KT, Ueng SH, Shih YH, Chou LF, Wang TH. Hydroxygenkwanin Increases the Sensitivity of Liver Cancer Cells to Chemotherapy by Inhibiting DNA Damage Response in Mouse Xenograft Models. Int J Mol Sci 2021; 22:ijms22189766. [PMID: 34575923 PMCID: PMC8471855 DOI: 10.3390/ijms22189766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Kuang-Ting Liu
- Department of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| |
Collapse
|
23
|
da Silva MACN, Costa JH, Pacheco-Fill T, Ruiz ALTG, Vidal FCB, Borges KRA, Guimarães SJA, de Azevedo-Santos APS, Buglio KE, Foglio MA, Barbosa MDCL, Nascimento MDDSB, de Carvalho JE. Açai ( Euterpe oleracea Mart.) Seed Extract Induces ROS Production and Cell Death in MCF-7 Breast Cancer Cell Line. Molecules 2021; 26:molecules26123546. [PMID: 34200718 PMCID: PMC8230419 DOI: 10.3390/molecules26123546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Euterpe oleracea Mart. (açai) is a native palm from the Amazon region. There are various chemical constituents of açai with bioactive properties. This study aimed to evaluate the chemical composition and cytotoxic effects of açai seed extract on breast cancer cell line (MCF-7). Global Natural Products Social Molecular Networking (GNPS) was applied to identify chemical compounds present in açai seed extract. LC-MS/MS and molecular networking were employed to detect the phenolic compounds of açai. The antioxidant activity of açai seed extract was measured by DPPH assay. MCF-7 breast cancer cell line viability was evaluated by MTT assay. Cell death was evaluated by flow cytometry and time-lapse microscopy. Autophagy was evaluated by orange acridin immunofluorescence assay. Reactive oxygen species (ROS) production was evaluated by DAF assay. From the molecular networking, fifteen compounds were identified, mainly phenolic compounds. The açai seed extract showed cytotoxic effects against MCF-7, induced morphologic changes in the cell line by autophagy and increased the ROS production pathway. The present study suggests that açai seed extract has a high cytotoxic capacity and may induce autophagy by increasing ROS production in breast cancer. Apart from its antioxidant activity, flavonoids with high radical scavenging activity present in açai also generated NO (nitric oxide), contributing to its cytotoxic effect and autophagy induction.
Collapse
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Post-Graduate Program in Internal Medicine, Faculty of Medical Science, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz. CEP, Campinas 13083-887, SP, Brazil;
| | - Jonas Henrique Costa
- Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, Campinas 13083-970, SP, Brazil; (J.H.C.); (T.P.-F.)
| | - Taícia Pacheco-Fill
- Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, Campinas 13083-970, SP, Brazil; (J.H.C.); (T.P.-F.)
| | - Ana Lúcia Tasca Gois Ruiz
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
| | - Flávia Castello Branco Vidal
- Post-Graduate Program in Adult Heath, Department of Patology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (F.C.B.V.); (K.R.A.B.)
| | - Kátia Regina Assunção Borges
- Post-Graduate Program in Adult Heath, Department of Patology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (F.C.B.V.); (K.R.A.B.)
| | - Sulayne Janaina Araújo Guimarães
- Post-Graduate Program in Health Sicencies, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (S.J.A.G.); (A.P.S.d.A.-S.)
| | - Ana Paula Silva de Azevedo-Santos
- Post-Graduate Program in Health Sicencies, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (S.J.A.G.); (A.P.S.d.A.-S.)
| | - Kaio Eduardo Buglio
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
| | - Mary Ann Foglio
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
| | - Maria do Carmo Lacerda Barbosa
- Post-Graduate Program in Family Health, Department of Medicine I, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Maria do Desterro Soares Brandão Nascimento
- Post-Graduate Program in Adult Heath, Department of Patology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (F.C.B.V.); (K.R.A.B.)
- Correspondence: (M.d.D.S.B.N.); (J.E.d.C.)
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
- Correspondence: (M.d.D.S.B.N.); (J.E.d.C.)
| |
Collapse
|
24
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
25
|
Ao H, Li Y, Li H, Wang Y, Han M, Guo Y, Shi R, Yue F, Wang X. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Deliv 2021; 27:816-824. [PMID: 32489130 PMCID: PMC8216440 DOI: 10.1080/10717544.2020.1770372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hydroxy genkwanin (HGK), a flavonoid compound from natural resources, showed good inhibition against the growth of breast tumor cells. However, the poor solubility restricted the further study and the in vivo drug delivery of HGK. We prepared HGK nanosuspensions by antisolvent precipitation method and investigated their characterization, stability, hemolysis probability, release behavior in vitro, antitumor activity in vitro and in vivo, and preliminary safety through acute toxicity experiments. The resultant HGK nanosuspensions (HGK-NSps) showed an average diameter of (261.1 ± 4.8 nm), a narrow particle size distribution (PDI of 0.12 ± 0.01), spherical morphology, high drug-loading content (39.9 ± 2.3%, w/w), and good stability in various physiological media. HGK-NSps was safe for intravenous injection at low concentration and HGK was slowly released from the obtained nanosuspensions. HGK-NSps showed stronger cytotoxicity than free HGK against many tumor cells in vitro. Especially against MCF-7 cells, the IC50 value was decreased to 1.0 μg/mL, 5-fold lower than the HGK solution. In the in vivo antitumor activity study HGK-NSps (40 mg/kg) displayed a similar therapeutic effect to that of the paclitaxel injection (8 mg/kg). The preliminary acute toxicity test showed that even at the highest dose of 360 mg/kg (iv), HGK-NSps had 100% of mice survival and all the mice were in a good state, suggesting a maximum tolerated dose more than 360 mg/kg. The effective antitumor effect and good tolerance showed HGK-NSps were likely to become a safe and effective antitumor drug for the treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | - Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | - Feng Yue
- Guangdong Jiabo Pharmaceutical Co., Ltd., Guangdong, People's Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
26
|
Systematic screening and characterization of cardamonin metabolites using UHPLC-Q-Exactive Orbitrap MS after oral administration to rats. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Hamama WS, Sofan MA, EL-Hawary II, Zoorob HH. Narrative in the chemistry of (aryl/hetaryl)thiopyran-4-one. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1846200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wafaa S. Hamama
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdouh A. Sofan
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Ibrahim I. EL-Hawary
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Hanafi H. Zoorob
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Ofosu FK, Daliri EBM, Elahi F, Chelliah R, Lee BH, Oh DH. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.525810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Hassan MAM, Gad AM, Menze ET, Badary OA, El-Naga RN. Protective effects of morin against depressive-like behavior prompted by chronic unpredictable mild stress in rats: Possible role of inflammasome-related pathways. Biochem Pharmacol 2020; 180:114140. [PMID: 32652141 DOI: 10.1016/j.bcp.2020.114140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023]
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Osama A Badary
- Department of Clinical Pharmacy, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Kuo PC, Li YC, Yang ML, Tzen JTC. A feasible UHPLC-MS/MS method for concurrent quantification of 10 bioactive principles in Aquilaria leaf tea by the multiple reaction monitoring analytical mode. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:583-593. [PMID: 31990133 DOI: 10.1002/pca.2923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Recently, the fresh leaves of Aquilaria trees have been processed as food products such as agarwood tea due to its beneficial medicinal properties. However, there have not been any reported analytical methods to quantify the bioactive principles in the processed products. OBJECTIVE A rapid and sensitive ultrahigh-performance liquid chromatography (UHPLC) coupled with electrospray ionisation (ESI) tandem mass spectrometry (MS/MS) method was developed and validated for the simultaneous determination of 10 bioactive components in Aquilaria leaf tea. METHODS The UHPLC-MS/MS was used for quantification operated in multiple reaction monitoring (MRM) mode. The optimised chromatographic parameters were conducted on a Shim-pack XR-ODS II column and mobile phases consisted of acetonitrile and 0.1% formic acid in water. RESULTS All the samples were analysed within 20 min. The established method showed excellent linearity (R2 > 0.9988), good repeatability with all the relative standard deviation values lower than 3.27%, and satisfactory recovery (79.72-119.22%). The matrix effect factors ranged from 87.65 to 97.27% in the examination. The developed method was applied to the determination of 10 bioactive principles (1-10) in six different Aquilaria leaf tea samples. Among the analytes, mangiferin (1) and iriflophenone 2-O-α-l-rhamnopyranoside (2) were the most abundant compounds in the extracts of Aquilaria leaf tea, and it indicated that these biotech products may possess laxative effects. CONCLUSION This proposed method appeared to be a useful tool for the quality control of commercial products of Aquilaria leaf tea and thus provided an analytical reference for herbal drinks.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue-Chiun Li
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Mei-Lin Yang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
31
|
Wang Y, Gao H, Xie J, Li X, Huang Z. Effects of some flavonoids on the mycotoxin citrinin reduction by Monascus aurantiacus Li AS3.4384 during liquid-state fermentation. AMB Express 2020; 10:26. [PMID: 32016571 PMCID: PMC6997324 DOI: 10.1186/s13568-020-0962-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023] Open
Abstract
Monascus can produce many beneficial metabolites; however, it can simultaneously also produce citrinin, which seriously limits its application. Therefore, reducing the production of citrinin is of great interest. Herein, Monascus aurantiacus Li AS3.4384 (MAL) was used to optimize the liquid-state fermentation process and investigate the effects of genistein and other flavonoids on citrinin, pigments, and biomass of MAL. Results showed that citrinin decreased by 80%, pigments and biomass increased by approximately 20% in 12 days with addition of 20.0 g/L rice powder as a carbon source and 2.0 g/L genistein during shaking liquid-state fermentation. Further, genistein, daidzein, luteolin, apigenin, quercetin, baicalein, kaempferol myricetin, and genistin exerted different effects on citrinin production by MAL, with genistein causing the highest reduction in citrinin production during liquid-state fermentation, possibly due to the presence of C5-OH, C4′-OH, and C7-OH. Therefore, genistein can be added to the fermentation process of Monascus to reduce citrinin.
Collapse
|
32
|
Chou LF, Chen CY, Yang WH, Chen CC, Chang JL, Leu YL, Liou MJ, Wang TH. Suppression of Hepatocellular Carcinoma Progression through FOXM1 and EMT Inhibition via Hydroxygenkwanin-Induced miR-320a Expression. Biomolecules 2019; 10:biom10010020. [PMID: 31877715 PMCID: PMC7022487 DOI: 10.3390/biom10010020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Daphne genkwa, a Chinese medicinal herb, is used frequently in Southeast Asian countries to treat diseases; the flavonoid hydroxygenkwanin (HGK) is extracted from its flower buds. The bioactivity of HGK, particularly as an anti-liver cancer agent, has not been explored. In this study, human hepatocellular carcinoma (HCC) cell lines and an animal xenograft model were employed to investigate both the activity of HGK against liver cancer and its cellular signaling mechanisms. HCC cells treated with HGK were subjected to cell function assays. Whole transcriptome sequencing was used to identify genes whose expression was influenced by HGK, and the flavonoid’s cancer suppression mechanisms were further investigated through gain- and loss-of-function assays. Finally, in vitro findings were tested in a mouse xenograft model. The data showed that HGK induced the expression of the microRNA miR-320a, which in turn inhibited the expression of the transcription factor ‘forkhead box protein M1’ (FOXM1) and downstream FOXM1-regulated proteins related to epithelial–mesenchymal transition, thereby leading to the suppression of liver cancer cell growth and invasion. Significant inhibition of tumor growth was also observed in HGK-treated mice. Hence, the present study demonstrated the activity of HGK against liver cancer and validated its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
| | - Wan-Hua Yang
- Department of Pathology and Laboratory Medicine Taipei Veterans General Hospital, Hsinchu Branch, Hsin-chu 31064, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsin-chu 30015, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan;
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Tao-Yuan 32551, Taiwan;
- Biomedical Engineering Department, Ming Chuan University, Tao-Yuan 33348, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan;
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Tao-Yuan 33303, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Miaw-Jene Liou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 5412)
| |
Collapse
|
33
|
Palko-Łabuz A, Kostrzewa-Susłow E, Janeczko T, Środa-Pomianek K, Poła A, Uryga A, Michalak K. Cyclization of flavokawain B reduces its activity against human colon cancer cells. Hum Exp Toxicol 2019; 39:262-275. [PMID: 31640425 DOI: 10.1177/0960327119882986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chalcones are naturally occurring compounds exhibiting biological activity through multiple mechanisms. Flavokawain B is one of chalcones found in kava plant. In our studies, we focused on the anticancer activity of flavokawain B in colorectal cancer cells LoVo and its resistant to doxorubicin subline-LoVo/Dx. Strong cytotoxic activity of flavokawain B and its ability to inhibit the proliferation in both cell lines was detected. These effects accompanied with induction cell cycle arrest in G2/M phase and the presence of SubG1 fraction. Flavokawain B at low concentration led to increase of caspase-3 activity. The chalcone-induced apoptosis was also confirmed by DNA fragmentation. In our work, the conversion of flavokawain B to corresponding flavanone-5,7-dimetoxyflavanone-was shown to be more extensive in cancer than in non-cancer cells. We found that the cyclization of the chalcone was related to the significant decrease in the cytotoxicity. Cell proliferation and cell cycle progression were not impaired significantly in the studied cancer cells incubated with 5,7-dimethoxyflavanone. We did not observe apoptosis in the cells incubated with flavanone. The results from biological studies agreed with the theoretical activity that emerges from structural parameters.
Collapse
Affiliation(s)
- A Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - E Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - K Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - A Poła
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - A Uryga
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - K Michalak
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
34
|
Niu Q, Gao Y, Liu P. Optimization of microwave-assisted extraction, antioxidant capacity, and characterization of total flavonoids from the leaves of Alpinia oxyphylla Miq. Prep Biochem Biotechnol 2019; 50:82-90. [PMID: 31545661 DOI: 10.1080/10826068.2019.1663535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To optimize the extraction of total flavonoids (TFL) from the leaves of Alpinia oxyphylla Miq. using microwave-assisted method, a orthogonal test was used. The optimal extraction conditions for TFL were determined as follows: ethanol concentration of 50%, solid-liquid ratio of 1:20, temperature of 70 °C, and cycle index of 3. Under these conditions, the extraction yield of TFL was 28.24%. The scavenging rate of TFL against a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzoth- iazoline-6-sulphonica cid) (ABTS), and superoxide anion radical (O2-·) was screened. The results showed that the bioactivity of extracts appeared to be TFL dose-dependent, while it also presented stronger ferric reducing antioxidant power (FRAP). The contents of chrysin and tectochrysin in TFL were quantitatively analyzed by HPLC.
Collapse
Affiliation(s)
- Qing Niu
- Department of Chemical Engineering and Technology, Hainan University, Hainan, PR China
| | - Yumei Gao
- Department of Chemical Engineering and Technology, Hainan University, Hainan, PR China
| | - Pinghuai Liu
- Department of Chemical Engineering and Technology, Hainan University, Hainan, PR China
| |
Collapse
|
35
|
Wang Q, Luo J, Liu H, Brennan CS, Liu J, Zou X. Protective effects of the flavonoid fraction obtained from pomelo fruitlets through ultrasonic-associated microwave extraction against AAPH-induced erythrocyte hemolysis. RSC Adv 2019; 9:16007-16017. [PMID: 35521418 PMCID: PMC9064334 DOI: 10.1039/c9ra02523e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 01/20/2023] Open
Abstract
Pomelo fruitlet is a side-product of pomelo, and this study aimed to extract the antioxidative flavonoid compounds from pomelo fruitlets with high efficiency through ultrasonic-associated microwave methods. Scanning electron microscopy analysis indicated that the spatial structure of the pomelo fruitlet powder was changed; microwaves and ultrasonic waves facilitated the formation of globular and curved surfaces, respectively. Ultrasonic-microwave synergistic pretreatment resulted in significantly higher yield. Each type of flavonoid compound was characterized using PR-LCMS analysis, and naringin with high nutritive value was detected in all groups. After purifying the flavone fractions with AB-8 macroporous resin, naringin, 2''-O-acetyl-3'-O-methylrutin, and 5,7,8,3'-tetrahydroxy-3,4'-dimethoxy were identified, which could act as free radical scavengers to protect erythrocytes from AAPH-induced hemolysis. This study strongly improved the effects of ultrasonic-microwave synergetic methods on the high utilization of pomelo fruitlets, especially in terms of flavonoid extraction and bioavailability.
Collapse
Affiliation(s)
- Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Jieying Luo
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Charles Stephen Brennan
- Department of Food, Wine and Molecular Biosciences, University of Lincoln Christchurch New Zealand
| | - Jianliang Liu
- Modern Agriculture Research Center, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Xiaoyu Zou
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing China
| |
Collapse
|
36
|
Lyu X, Lee J, Chen WN. Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4397-4417. [PMID: 30844263 DOI: 10.1021/acs.jafc.8b07141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Terpenoids and polyphenols are high-valued plant secondary metabolites. Their high antimicrobial activities demonstrate their huge potential as natural preservatives in the food industry. With the rapid development of metabolic engineering, it has become possible to realize large-scale production of non-native terpenoids and polyphenols by using the generally recognized as safe (GRAS) strain, Saccharomyces cerevisiae, as a cell factory. This review will summarize the major terpenoid and polyphenol compounds with high antimicrobial properties, describe their native metabolic pathways as well as antimicrobial mechanisms, and highlight current progress on their heterologous biosynthesis in S. cerevisiae. Current challenges and perspectives for the sustainable production of terpenoid and polyphenol as natural food preservatives via S. cerevisiae will also be discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
37
|
Coumarins and other components of Daphne oleoides Schreb. subsp. oleoides from Majella National Park. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Fang Y, Xia M, Liang F, Cao W, Pan S, Xu X. Establishment and Use of Human Mouth Epidermal Carcinoma (KB) Cells Overexpressing P-Glycoprotein To Characterize Structure Requirements for Flavonoids Transported by the Efflux Transporter. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2350-2360. [PMID: 30688455 DOI: 10.1021/acs.jafc.9b00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was aimed to determine the mechanism for flavonoid poor absorption related to P-glycoprotein (P-gp). The cellular uptake (CU) of 40 flavonoids was investigated in P-gp overexpressing KB/multidrug-resistant (MDR) cells. A total of 9 flavonoids, including 5,7,3',4'-tetramethoxyflavone, with a significant ( p < 0.05) CUKBE (2.90 ± 0.146 μmol/g) higher than CUKBP (1.57 ± 0.129 μmol/g) were identified as P-gp substrates. Besides, 8 substrates, including tangeretin, showed a significant ( p < 0.05) CUKB (9.72 ± 1.09 μmol/g) higher than its CUKBP (7.36 ± 0.692 μmol/g). A total of 7 of 17 flavonoid substrates stimulated the P-gp efflux of rhodamine 123, and most substrates increased P-gp expression in KB/MDR cells. Docking analyses showed a good correlation ( R = 0.764; p < 0.01) between efflux fold and S_scoring of flavonoids to the P-gp model, indicating consistency between in silico and in vitro results. A structure-affinity relationship exhibited that 3-OH, 5-OH, 3'-OCH3, and 4'-OCH3 are crucial for flavonoids binding to P-gp. These results provide valuable information for finding a solution to improve the absorption of flavonoids.
Collapse
Affiliation(s)
- Yajing Fang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Mengmeng Xia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| |
Collapse
|
39
|
Wang X, Yang M, Xie W, Fan X, Wu J. Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide. Chem Commun (Camb) 2019; 55:6010-6013. [DOI: 10.1039/c9cc03004b] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A sulfonylation reaction of 4-substituted Hantzsch esters, DABCO·(SO2)2, and electron-deficient alkenes at room temperature in the presence of photoredox catalysis under visible light irradiation is described.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Min Yang
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development
- Ganzhou 341000
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Xiaona Fan
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development
- Ganzhou 341000
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
40
|
Li R, Zhou X, Liu D, Feng W. Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase. Free Radic Biol Med 2018; 129:138-145. [PMID: 30227270 DOI: 10.1016/j.freeradbiomed.2018.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/09/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Dismutation of superoxide by superoxide dismutase (SOD) generates hydrogen peroxide, which may be reduced to hydroxyl radical. The generated H2O2 during the catalysis can have an oxidative damage to SOD. Hydrogen peroxide decomposition by catalase (CAT) can help circumvent the problem. Mn-superoxide dismutase (herein referred to as SOD) and CAT are dimeric and tetrameric proteins, respectively. Herein, through intein-mediated in vivo subunit splicing, the C-terminus of the CAT subunit (CATS) has been specifically ligated to the N-terminus of the SOD subunit (SODS) with a peptide bond. Thus, the splicing product SOD&CAT combines the superoxide anion (•O2-) scavenging ability and the ability of decomposing H2O2. The in vivo subunit splicing has little effect on the secondary structures of the enzymes as confirmed by circular dichroism (CD) spectra. Fluorescence spectra showed that the splicing product SOD&CAT has a higher stability than SOD. In the splicing product SOD&CAT, the SOD subunits are in close proximity to the CAT subunits, facilitating immediate transfer of H2O2 between the enzymes and enabling efficient decomposition of H2O2. SOD&CAT exhibited a superoxide anion (•O2-) scavenging ability 244% higher than that of SOD and 46% higher than that of the mixed enzymes SOD+CAT.
Collapse
Affiliation(s)
- Rong Li
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqi Zhou
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Liu
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
41
|
Chiu YJ, Lee CM, Lin TH, Lin HY, Lee SY, Mesri M, Chang KH, Lin JY, Lee-Chen GJ, Chen CM. Chinese Herbal Medicine Glycyrrhiza inflataReduces Aβ Aggregation and Exerts Neuroprotection through Anti-Oxidation and Anti-Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-25. [PMID: 30284464 DOI: 10.1142/s0192415x18500799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amyloid [Formula: see text] (A[Formula: see text]) plays a major role in the pathogenesis of Alzheimer's disease (AD). The accumulation of misfolded A[Formula: see text] causes oxidative and inflammatory damage leading to apoptotic cell death. Chinese herbal medicine (CHM) has been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. This study examined the neuroprotection effects of CHM extract Glycyrrhiza inflata (G. inflata) and its active constituents, licochalcone A and liquiritigenin in AD. We examined A[Formula: see text] aggregation inhibition, anti-oxidation and neuroprotection in Tet-On A[Formula: see text]-GFP 293/SH-SY5Y cells and anti-inflammatory potential in lipopolysaccharide (LPS)-stimulated RAW 264.7 and LPS and interferon (IFN)-[Formula: see text] (LPS/IFN-[Formula: see text])-activated BV-2 cells. In addition, we applied conditioned media (CM) of BV-2 cells primed with LPS/IFN-[Formula: see text] to A[Formula: see text]-GFP SH-SY5Y cells to uncover the neuroprotective mechanisms. Our results showed that G. inflata extract and its two constituents displayed potentials of A[Formula: see text] aggregation inhibition and radical-scavenging in biochemical assays, A[Formula: see text] misfolding inhibition and reactive oxygen species (ROS) reduction in A[Formula: see text]-GFP 293 cells, as well as neurite outgrowth promotion, acetylcholinesterase inhibition and SOD2 up-regulation in A[Formula: see text]-GFP SH-SY5Y cells. Meanwhile, both G. inflata extract and its constituents suppressed NO, TNF-[Formula: see text], IL-1[Formula: see text], PGE2 and/or Iba1 productions in inflammation-stimulated RAW 264.7 or BV-2 cells. G. inflata extract and its constituents further protected A[Formula: see text]-GFP SH-SY5Y cells from BV-2 CM-induced cell death by ameliorating reduced BCL2 and attenuating increased IGFBP2, cleaved CASP3, BAD and BAX. Collectively, G. inflata extract, licochalcone A and liquiritigenin display neuroprotection through exerting anti-oxidative and anti-inflammatory activities to suppress neuronal apoptosis.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chi-Mei Lee
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsuan-Yuan Lin
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shin-Ying Lee
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Mina Mesri
- † Aintree University of Liverpool Hospital, Liverpool, UK
| | - Kuo-Hsuan Chang
- ‡ Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Jung-Yaw Lin
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- ‡ Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
42
|
Olonode ET, Aderibigbe AO, Adeoluwa OA, Ajayi AM. Protective Effects of Morin Hydrate on Acute Stress-Induced Behavioral and Biochemical Alterations in Mice. Basic Clin Neurosci 2018; 9:195-208. [PMID: 30034650 PMCID: PMC6037426 DOI: 10.29252/nirp.bcn.9.3.195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/31/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION As stress affects the brain both physiologically and chemically, researchers try to find novel anti-stress compounds with beneficial therapeutic effects. In this regard, the effect of stress and its modulation by Morin hydrate was studied using different acute models in mice. METHODS The models employed were anoxic tolerance, swimming endurance, and acute restraint test. Morin hydrate or the vehicle was administered 30 minutes prior to each stress exposure while in the acute restraint test; the animals were pretreated for 7 days with Morin hydrate, vehicle, imipramine, or diazepam before stress exposure. The measured parameters were the onset of convulsion and immobility time in the anoxic tolerance and swimming endurance test, respectively, while in the acute restraint test, the animals were assessed for stress-induced anxiety using the elevated plus maze and depression using the forced swim test. Thereafter blood was withdrawn from the retro-orbital plexus and plasma separated, the brain was also isolated, homogenized, centrifuged, and the supernatant was obtained for biochemical estimation. RESULTS Morin hydrate (5, 10, 20 mg/kg) produced a significant reduction in immobility time in the swimming endurance test, while significantly increased the anoxic stress tolerance time. Acute restraint stress caused a significant decrease in reduced glutathione levels (which was reversed by Morin hydrate) and increased the level of malondialdehyde, a thiobarbituric acid reactive substance which is an index of oxidative stress and nitrite. These effects were attenuated by Morin hydrate. Also, pretreatment with Morin hydrate attenuates acute restraint stress-associated anxiety and depression, reversed the hyperglycemia evoked by the stressful exposure and normalized serum cholesterol levels. CONCLUSION These findings suggest that Morin hydrate exhibits anti-stress effects and may be useful in the relief of stress.
Collapse
Affiliation(s)
- Elizabeth Toyin Olonode
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olusegun Adebayo Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
43
|
Fang Y, Liang F, Liu K, Qaiser S, Pan S, Xu X. Structure characteristics for intestinal uptake of flavonoids in Caco-2 cells. Food Res Int 2018; 105:353-360. [DOI: 10.1016/j.foodres.2017.11.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
|
44
|
Rossette MC, Moraes DC, Sacramento EK, Romano-Silva MA, Carvalho JL, Gomes DA, Caldas H, Friedman E, Bastos-Rodrigues L, De Marco L. The In Vitro and In Vivo Antiangiogenic Effects of Flavokawain B. Phytother Res 2017; 31:1607-1613. [PMID: 28816367 DOI: 10.1002/ptr.5891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Angiogenesis is implicated in the development of a variety of pathological processes, most commonly cancer. It is essential for tumor growth and metastasis, making it an important cancer therapeutic target. Naturally occurring substances have led to the discovery of anticancer agents. Flavokawain B (FKB), a chalcone isolated from the root extracts of kava-kava plant, inhibits proliferation and causes apoptosis in vitro and in vivo of various cancer cell lines. The antimetastatic potential of FKB has also been suggested. In our study, we confirm the antiangiogenic action of FKB in vitro and, for the first time, demonstrate its strong antiangiogenic activity in vivo, using a zebrafish model. Our data show that FKB inhibits human brain endothelial cell (HUVEC) migration and tube formation even at very low and non-toxic concentrations. Moreover, FKB blocks angiogenesis process in zebrafish, with a dramatic reduction of subintestinal vein formation in a dose-dependent manner. Flavokawain B at the concentration of 2.5 μg/mL did not exhibit any toxic effects in zebrafish larvae and caused a markedly or complete obliteration of subintestinal vein formation. Our findings along with previously published data confirm that FKB may form the basis for creating an additional tool in the treatment of cancer and other neovascularization-related diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mariana C Rossette
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora C Moraes
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika K Sacramento
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana L Carvalho
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson A Gomes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hanna Caldas
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luciana Bastos-Rodrigues
- Department of Basic Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
45
|
Li W, Hao J, Zhang L, Cheng Z, Deng X, Shu G. Astragalin Reduces Hexokinase 2 through Increasing miR-125b to Inhibit the Proliferation of Hepatocellular Carcinoma Cells in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5961-5972. [PMID: 28654261 DOI: 10.1021/acs.jafc.7b02120] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Astragalin (ASG) can be found in a variety of food components. ASG exhibits cytotoxic effects on several different types of malignant cells. However, its effects on hepatocellular carcinoma (HCC) cells and the underlying molecular mechanisms have remained to be fully elucidated. Here, we revealed that ASG remarkably suppressed the proliferation of HCC cells. In HCC cells, ASG inhibited glucose glycolysis and promoted oxidative phosphorylation, resulting in a surge of reactive oxygen species (ROS). Mechanistically, ASG suppressed the expression of hexokinase 2 (HK2). This event was indispensible for ASG-mediated metabolic reprogramming, ROS accumulation, and subsequent growth arrest. Our further investigations unveiled that ASG repressed HK2 expression via increasing miR-125b. In vivo experiments showed that gavage of ASG decreased the proliferation of Huh-7 HCC xenografts in nude mice and inhibited the growth of transplanted H22 HCC cells in Kunming mice. Declined HCC tumor growth in vivo was associated with boosted miR-125b and reduced expression of HK2 in tumor tissues. Collectively, our results demonstrated that ASG is able to suppress the proliferation of HCC cells both in vitro and in vivo. Inhibition of HK2 through upregulating miR-125b and subsequent metabolic reprogramming is implicated in the antiproliferative effects of ASG on HCC cells.
Collapse
Affiliation(s)
- Wei Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan, China 430074
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan, China 430074
| | - Ji Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan, China 430074
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan, China 430074
| | - Lang Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan, China 430074
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan, China 430074
| | - Zhuo Cheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan, China 430074
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan, China 430074
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan, China 430074
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan, China 430074
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan, China 430074
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan, China 430074
| |
Collapse
|
46
|
Wang J, Geng S, Wang B, Shao Q, Fang Y, Wei Y. Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract. J Chromatogr A 2017; 1508:42-52. [DOI: 10.1016/j.chroma.2017.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022]
|
47
|
Tsimogiannis D, Bimpilas A, Oreopoulou V. DPPH radical scavenging and mixture effects of plant o
-diphenols and essential oil constituents. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.2016003473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dimitrios Tsimogiannis
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering; National Technical University of Athens; Athens Greece
| | - Andreas Bimpilas
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering; National Technical University of Athens; Athens Greece
| | - Vassiliki Oreopoulou
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering; National Technical University of Athens; Athens Greece
| |
Collapse
|
48
|
Thieury C, Lebouvier N, Le Guével R, Barguil Y, Herbette G, Antheaume C, Hnawia E, Asakawa Y, Nour M, Guillaudeux T. Mechanisms of action and structure-activity relationships of cytotoxic flavokawain derivatives. Bioorg Med Chem 2017; 25:1817-1829. [PMID: 28214231 DOI: 10.1016/j.bmc.2017.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/21/2023]
Abstract
22 Flavokawain derivatives (FKd) were obtained by one step syntheses in order to conduct a SAR study to understand the structural requirements for optimum and selective cytotoxicity. FKd and natural flavokawains A and B found into kava, a South Pacific traditional beverage, were evaluated against nine cancer and one healthy cell lines. The targeted cell cycle phases as well as the effects on the induction of apoptosis and cell cycle protein levels were investigated. Therapeutic improvements (more activity and selectivity) were achieved with FKd compared to natural flavokawains and notably with the 2',3,4',6'-tetramethoxychalcone (FKd 19). FKd induced a G1/S arrest on p53 wild-type cells and an M arrest on p53 mutant-type, via the up-regulation of p21 and cyclin B1 proteins, followed by apoptosis. Moreover, FKd exhibited a 24h-effect on Akt/mTor normal cells versus a 48h-effect on Akt/mTor up-regulated cells. The SAR study resulted in the conclusion that trimethoxy A-ring allowed the best compromise between cytotoxicity and selectivity, as well as the substitution of the meta position on the B-ring and the use of halogens substituents.
Collapse
Affiliation(s)
- Charlotte Thieury
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia.
| | - Nicolas Lebouvier
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Rémy Le Guével
- UMS 3480 CNRS/US INSERM 018 BIOSIT Plateforme ImPACcell, Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | - Yann Barguil
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia; Laboratoire de Biochimie et d'Hémostase, Hôpital Gaston Bourret, 7 avenue Paul Doumer, 98800 Nouméa, New Caledonia
| | - Gaëtan Herbette
- Spectropole, FR1739 - Faculté de Saint-Jérôme, Université d'Aix-Marseille, 52 Avenue Escadrille Normandie Niemen, 13013 Marseille, France
| | - Cyril Antheaume
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Edouard Hnawia
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihamahoji-180 Yamashirocho, Tokushima 770-8514, Japan
| | - Mohammed Nour
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Thierry Guillaudeux
- UMS 3480 CNRS/US INSERM 018 BIOSIT Plateforme ImPACcell, Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043 Rennes Cedex, France; UMR INSERM U917 "Microenvironnement et cancer", Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043 Rennes Cedex, France; INSERM 440 Université de Rennes 1 "Oncogenesis Stress Signaling", Centre Eugène Marquis, 35043 Rennes Cedex, France
| |
Collapse
|
49
|
Chamaejasmine induces apoptosis in HeLa cells through the PI3K/Akt signaling pathway. Anticancer Drugs 2017; 28:40-50. [DOI: 10.1097/cad.0000000000000424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Misharina TA. Antiradical properties of essential oils and extracts from coriander, cardamom, white, red, and black peppers. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|