1
|
Sharma R, Banerjee S, Sharma R. Role of Mandukparni (Centella asiatica Linn Urban) in neurological disorders: Evidence from ethnopharmacology and clinical studies to network enrichment analysis. Neurochem Int 2024; 180:105865. [PMID: 39307460 DOI: 10.1016/j.neuint.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Centella asiatica Linn Urban (C. asiatica), aka Mandukparni, is one of the flagship herbs used in traditional medicines to effectively manage neurological problems. Although this plant has a wealth of comprehensive preclinical pharmacological profiles, further clinical research and execution of its molecular mode of action are still required. We searched electronic databases (Google Scholar, SciFinder, MEDLINE, Scopus, EMBASE, Science Direct, and PubMed) using relevant key words to retrieve information pertaining to C. asiatica till June 2023 and performed network pharmacology to understand the mechanism related to their neurobiological roles. This study extensively analyses its pharmacological properties, nutritional profile, ethnomedical uses, safety, and mechanistic role in treating neurological and neurodegenerative disorders. Additionally, a network pharmacology study was performed which suggests that its phytomolecules are involved in different neuroactive ligand-receptor pathways, glial cell differentiation, gliogenesis, and astrocyte differentiation. Hopefully, this report will lead to a paradigm shift in medical practice, research, and the creation of phytopharmaceuticals derived from C. asiatica that target the central nervous system.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Subhadip Banerjee
- Medicinal Plant Innovation Centre, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Cun Z, Zhang JY, Hong J, Yang J, Gao LL, Hao B, Chen JW. Integrated metabolome and transcriptome analysis reveals the regulatory mechanism of low nitrogen-driven biosynthesis of saponins and flavonoids in Panax notoginseng. Gene 2024; 901:148163. [PMID: 38224922 DOI: 10.1016/j.gene.2024.148163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Nitrogen (N) is an important macronutrient involved in the biosynthesis of primary and secondary metabolites in plants. However, the metabolic regulatory mechanism of low-N-induced triterpenoid saponin and flavonoid accumulation in rhizomatous medicinal Panax notoginseng (Burk.) F. H. Chen remains unclear. METHODS To explore the potential regulatory mechanism and metabolic basis controlling the response of P. notoginseng to N deficiency, the transcriptome and metabolome were analysed in the roots. RESULTS The N content was significantly reduced in roots of N0-treated P. notoginseng (0 kg·N·667 m-2). The C/N ratio was enhanced in the N-deficient P. notoginseng. N deficiency promotes the accumulation of amino acids (L-proline, L-leucine, L-isoleucine, L-norleucine, L-arginine, and L-citrulline) and sugar (arabinose, xylose, glucose, fructose, and mannose), thus providing precursor metabolites for the biosynthesis of flavonoids and triterpenoid saponins. Downregulation of key structural genes (PAL, PAL3, ACC1, CHS2, PPO, CHI3, F3H, DFR, and FGT), in particular with the key genes of F3H, involved in the flavonoid biosynthesis pathway possibly induced the decrease in flavonoid content with increased N supply. Notoginsenoside R1, ginsenoside Re, Rg1, Rd, F1, R1 + Rg1 + Rb1 and total triterpenoid saponins were enhanced in the N0 groups than in the N15 (15 kg·N·667 m-2) plants. Higher phosphoenolpyruvate (an intermediate of glycolyticwith pathway metabolism) and serine (an intermediate of photorespiration) levels induced by N deficiency possibly promote saponin biosynthesis through mevalonic acid (MVA) and methylerythritol (MEP) pathways. Genes (MVD2, HMGS, HMGR1, HMGR2, DXR, and HMGR1) encoding the primary enzymes HMGS, HMGR, DXR, and MVD in the MVA and MEP pathways were significantly upregulated in the N0-treated P. notoginseng. The saponin biosynthesis genes DDS, DDS, CYP716A52, CYP716A47, UGT74AE2, and FPS were upregulated in the N-deficient plants. Upregulation of genes involved in saponin biosynthesis promotes the accumulation of triterpenoid saponins in the N0-grown P. notoginseng. CONCLUSIONS N deficiency enhances primary metabolisms, such as amino acids and sugar accumulation, laying the foundation for the synthesis of flavonoids and triterpenoid saponins in P. notoginseng. F3H, DDS, FPS, HMGR, HMGS and UGT74AE2 can be considered as candidates for functional characterisation of the N-regulated accumulation of triterpenoid saponins and flavonoids in future.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jie Hong
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Li-Lin Gao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Bing Hao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
Mazumdar P, Jalaluddin NSM, Nair I, Tian Tian T, Rejab NAB, Harikrishna JA. A review of Hydrocotyle bonariensis, a promising functional food and source of health-related phytochemicals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2503-2516. [PMID: 37599849 PMCID: PMC10439074 DOI: 10.1007/s13197-022-05516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 08/22/2023]
Abstract
Hydrocotyle bonariensis is an edible herb, that is also used for traditional medical purposes. It is high in antioxidants, phenols, and flavonoids. However, there is limited information on the nutritional composition and the mechanisms by which nutritional and functional constituents of H. bonariensis affect human metabolism. With an aim to identify gaps in evidence to support the mainstream use of H. bonariensis for health and as a functional food, this review summarises current knowledge of the taxonomy, habitat characteristics, nutritional value and health-related benefits of H. bonariensis and its extracts. Ethno-medical practices for the plant are supported by pharmacological studies, yet animal model studies, clinical trials and food safety assessments are needed to support the promotion of H. bonariensis and its derivatives as superfoods and for use in the modern pharmaceutical industry.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Indiran Nair
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Tian Tian
- Green World Genetics Sdn. Bhd, 52200 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Binti Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Tiwari D, Kewlani P, Gaira KS, Bhatt ID, Sundriyal RC, Pande V. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model. Sci Rep 2023; 13:10888. [PMID: 37407604 DOI: 10.1038/s41598-023-37495-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
The present study uses a systematic approach to explore the phytochemical composition of medicinal plants from Uttarakhand, Western Himalaya. The phytochemical composition of medicinal plants was analyzed based on (i) the presence of different chemical groups and (ii) bioactive compounds. The Generalized Additive Model (GAM) analysis was used to predict the occurrence of chemical groups and active compounds across different eco-climatic zones and the elevation in Uttarakhand. A total of 789 medicinal plants represented by 144 taxonomic families were screened to explore the phytochemical diversity of the medicinal plants of Uttarakhand. These medicinal plant species are signified in different life forms such as herbs (58.86%), shrubs (18.24%), trees (17.48%), ferns (2.38%), and climbers (2.13%). The probability of occurrence of the chemical groups found in tropical, sub-tropical, and warm temperate eco-climatic zones, whereas active compounds have a high Probability towards alpine, sub-alpine, and cool temperate zones. The GAM predicted that the occurrence of species with active compounds was declining significantly (p < 0.01), while total active compounds increased across elevation (1000 m). While the occurrence of species with the chemical group increased, total chemical groups were indicated to decline with increasing elevation from 1000 m (p < 0.000). The current study is overwhelmed to predict the distribution of phytochemicals in different eco-climatic zones and elevations using secondary information, which offers to discover bioactive compounds of the species occurring in the different eco-climatic habitats of the region and setting the priority of conservation concerns. However, the study encourages the various commercial sectors, such as pharmaceutical, nutraceutical, chemical, food, and cosmetics, to utilize unexplored species. In addition, the study suggests that prioritizing eco-climatic zones and elevation based on phytochemical diversity should be a factor of concern in the Himalayan region, especially under the climate change scenario.
Collapse
Affiliation(s)
- Deepti Tiwari
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Pushpa Kewlani
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Kailash S Gaira
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok, Sikkim, India
| | - Indra D Bhatt
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India.
| | - R C Sundriyal
- Department of Forestry and Natural Resources, HNB Garhwal University, Srinagar, Garhwal, 249169, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
5
|
Hu Q, Xie N, Liao K, Huang J, Yang Q, Zhou Y, Liu Y, Deng K. An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair. Int J Biol Macromol 2022; 219:96-108. [PMID: 35902020 DOI: 10.1016/j.ijbiomac.2022.07.161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
Uterine scar was one of the long-term complications cesarean section. In this study, an thermo-responsive injectable hydrogel loaded with human umbilical cord mesenchymal stem cells (UCMSCs) and asiaticoside microspheres (AMs) was used for uterine scar repair, which was prepared by optimizing the mixed ratio of aldehyde-functionalized Pluronic F127 (F127-CHO) and adipic dihydrazide-modified hyaluronic acid (AHA). The asiaticoside was loaded in Poly (DL-lactide-co-gycolide) (PLGA) by emulsion- diffusion-evaporation method. The hydrogel had appropriate pore size, good mechanical property, and slow release ability of asiaticoside. In vitro cell experiments demonstrated that F127-CHO/AHA/AMs could effectively promote stem cell adhesion and proliferation, promote angiogenesis, and provide a suitable microenvironment for cell survival. The F127-CHO/AHA/AMs/UCMSCs hydrogel was further used to repair uterine scar in female SD rats. The results showed that the prepared hydrogel could promote the proliferation of rat endometrial cells, promote the regeneration of glands, reduce the degree of endometrial fibrosis and restore the morphology of uterine cavity. The hydrogel could upregulate expression of Ki67 and IGF-1, downregulate TGF-β1 expression and promote M1-M2 transition of macrophages. This study confirmed that the prepared hydrogel could be used as an effective transplantation strategy, which could be expected to achieve clinical transformation of uterine scar repair.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Ning Xie
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Kedan Liao
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Jinfa Huang
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Qian Yang
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Yuan Zhou
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Yixuan Liu
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China.
| |
Collapse
|
6
|
de Carvalho LSA, de Souza VC, Rodrigues VC, Ribeiro AC, Nascimento JWL, Capriles PVSZ, Pinto PDF, de Moraes J, da Silva Filho AA. Identification of Asiaticoside from Centella erecta (Apiaceae) as Potential Apyrase Inhibitor by UF-UHPLC-MS and Its In Vivo Antischistosomal Activity. Pharmaceutics 2022; 14:pharmaceutics14051071. [PMID: 35631657 PMCID: PMC9143675 DOI: 10.3390/pharmaceutics14051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Schistosomiasis, caused by parasites of the genus Schistosoma, is a neglected disease with high global prevalence, affecting more than 240 million people in several countries. Praziquantel (PZQ) is the only drug currently available for the treatment. S. mansoni NTPDases (known as SmNTPDases, ATP diphosphohydrolases or ecto-apyrases) are potential drug targets for the discovery of new antischistosomal drugs. In this study, we screen NTPDases inhibitors from Centella erecta (Apiaceae) using an ultrafiltration combined UHPLC-QTOF-MS method and potato apyrase, identifying asiaticoside as one of the apyrase-binding compounds. After isolation of asiaticoside from C. erecta extract, we assessed its in vivo antischistosomal activities against Schistosoma mansoni worms and its in vitro enzymatic apyrase inhibition. Also, molecular docking analysis of asiaticoside against potato apyrase, S. mansoni NTPDases 1 and 2 were performed. Asiaticoside showed a significant in vitro apyrase inhibition and molecular docking studies corroborate with its possible actions in potato apyrase and S. mansoni NTPDases. In mice harboring a patent S. mansoni infection, a single oral dose of asiaticoside (400 mg/kg. p.o.) showed significantly in vivo antischistosomal efficacy, markedly decreasing the total worm load and egg burden, giving support for further exploration of apyrase inhibitors as antischistosomal agents.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
| | - Vinícius Carius de Souza
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (V.C.d.S.); (P.V.S.Z.C.)
| | - Vinícius C. Rodrigues
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (V.C.R.); (J.d.M.)
| | - Aline Correa Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Jorge Willian Leandro Nascimento
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Priscila V. S. Z. Capriles
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (V.C.d.S.); (P.V.S.Z.C.)
| | - Priscila de F. Pinto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (V.C.R.); (J.d.M.)
| | - Ademar Alves da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
- Correspondence: ; Tel.: +55-32-21023893; Fax: +55-32-21023801
| |
Collapse
|
7
|
Metabolite Profiling and Classification of Highbush Blueberry Leaves under Different Shade Treatments. Metabolites 2022; 12:metabo12010079. [PMID: 35050200 PMCID: PMC8778333 DOI: 10.3390/metabo12010079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Blueberry belongs to the genus Vaccinium L. in the Ericaceae and is an economically important shrub that produces small berries that are rich in nutrients. There were differences in the appearance of blueberry leaves under different shade treatments. To explore the differences in metabolites in blueberry leaves under different shading treatments, nontargeted liquid chromatography-mass spectrometry (LC-MS) metabonomic analysis was performed. Different shade intensities resulted in significant differences in the contents of metabolites. A total of 6879 known metabolites were detected, including 750 significantly differentially expressed metabolites, including mainly lipids and lipid-like molecules and phenylpropanoid and polyketide superclass members. Based on a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the flavone and flavonol biosynthesis pathways were the most significantly enriched. The results of this study provide a reference and scientific basis for the establishment of a high-quality and high-yield shaded blueberry cultivation system.
Collapse
|
8
|
Nipun TS, Khatib A, Ibrahim Z, Ahmed QU, Redzwan IE, Primaharinastiti R, Saiman MZ, Fairuza R, Widyaningsih TD, AlAjmi MF, Khalifa SAM, El-Seedi HR. GC-MS- and NMR-Based Metabolomics and Molecular Docking Reveal the Potential Alpha-Glucosidase Inhibitors from Psychotria malayana Jack Leaves. Pharmaceuticals (Basel) 2021; 14:978. [PMID: 34681203 PMCID: PMC8541227 DOI: 10.3390/ph14100978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Psychotria malayana Jack leaf, known in Indonesia as "daun salung", is traditionally used for the treatment of diabetes and other diseases. Despite its potential, the phytochemical study related to its anti-diabetic activity is still lacking. Thus, this study aimed to identify putative inhibitors of α-glucosidase, a prominent enzyme contributing to diabetes type 2 in P. malayana leaf extract using gas chromatography-mass spectrometry (GC-MS)- and nuclear magnetic resonance (NMR)-based metabolomics, and to investigate the molecular interaction between those inhibitors and the enzyme through in silico approach. Twenty samples were extracted with different solvent ratios of methanol-water (0, 25, 50, 75, and 100% v/v). All extracts were tested on the alpha-glucosidase inhibition (AGI) assay and analyzed using GC-MS and NMR. Multivariate data analysis through a partial least square (PLS) and orthogonal partial square (OPLS) models were developed in order to correlate the metabolite profile and the bioactivity leading to the annotation of the putative bioactive compounds in the plant extracts. A total of ten putative bioactive compounds were identified and some of them reported in this plant for the first time, namely 1,3,5-benzenetriol (1); palmitic acid (2); cholesta-7,9(11)-diene-3-ol (3); 1-monopalmitin (4); β-tocopherol (5); α-tocopherol (6); 24-epicampesterol (7); stigmast-5-ene (8); 4-hydroxyphenylpyruvic acid (10); and glutamine (11). For the evaluation of the potential binding modes between the inhibitors and protein, the in silico study via molecular docking was performed where the crystal structure of Saccharomyces cerevisiae isomaltase (PDB code: 3A4A) was used. Ten amino acid residues, namely ASP352, HIE351, GLN182, ARG442, ASH215, SER311, ARG213, GLH277, GLN279, and PRO312 established hydrogen bond in the docked complex, as well as hydrophobic interaction of other amino acid residues with the putative compounds. The α-glucosidase inhibitors showed moderate to high binding affinities (-5.5 to -9.4 kcal/mol) towards the active site of the enzymatic protein, where compounds 3, 5, and 8 showed higher binding affinity compared to both quercetin and control ligand.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Irna Elina Redzwan
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | | | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Raudah Fairuza
- Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia; (R.F.); (T.D.W.)
| | - Tri Dewanti Widyaningsih
- Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia; (R.F.); (T.D.W.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Wong PL, Ramli NS, Tan CP, Azlan A, Abas F. Metabolomic analysis reveals the valuable bioactive compounds of Ardisia elliptica. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:685-697. [PMID: 33295100 DOI: 10.1002/pca.3015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Ardisia elliptica Thunb. (Primulaceae) is a medicinal herb that is traditionally used for the treatment of fever, diarrhoea, measles and herpes. However, there is limited information regarding the correlation of its phytoconstituents with the bioactivity. Optimisation of solvent extraction is vital for maximising retention of bioactive molecules. OBJECTIVE This study investigated the metabolite variations in A. elliptica leaves and the correlation with antioxidant activities. METHODOLOGY Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radicals scavenging assays were performed on A. elliptica leaves extracted with four different ethanol ratios (0%, 50%, 70% and absolute ethanol). The correlation of metabolites with antioxidant activities was evaluated using a nuclear magnetic resonance (NMR)-based metabolomics approach. RESULTS The results showed that the 50% and 70% ethanolic extracts retained the highest TPC, and the 70% ethanolic extract was the most active, exhibiting half maximal inhibitory concentration (IC50 ) values of 10.18 ± 0.83 and 43.05 ± 1.69 μg/mL, respectively, in both radical scavenging assays. A total of 46 metabolites were tentatively identified, including flavonoids, benzoquinones, triterpenes and phenolic derivatives. The 50% and 70% ethanolic extracts showed similarities in metabolites content and were well discriminated from water and absolute ethanol extracts in a principal component analysis (PCA) model. Moreover, 31 metabolites were found to contribute significantly to the differentiation and antioxidant activity. CONCLUSION This study provides information on bioactive compounds in A. elliptica leaves, which is promising as a functional ingredient for food production or for the development of phytomedicinal products.
Collapse
Affiliation(s)
- Pei Lou Wong
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Kim YM, Abas F, Park YS, Park YK, Ham KS, Kang SG, Lubinska-Szczygeł M, Ezra A, Gorinstein S. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon. Molecules 2021; 26:molecules26154405. [PMID: 34361562 PMCID: PMC8347458 DOI: 10.3390/molecules26154405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), α-β-globulin (α-β G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, α-β G and Fgn will be predictors of coronary artery disease (CAD).
Collapse
Affiliation(s)
- Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangsan-gu, Gwangju 62396, Korea;
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yong-Seo Park
- Department of Horticultural Science, Mokpo National University, Muan 534-729, Jeonnam, Korea;
| | - Yang-Kyun Park
- Department of Food Engineering, Mokpo National University, Muan 534-729, Jeonnam, Korea; (Y.-K.P.); (K.-S.H.); (S.-G.K.)
| | - Kyung-Sik Ham
- Department of Food Engineering, Mokpo National University, Muan 534-729, Jeonnam, Korea; (Y.-K.P.); (K.-S.H.); (S.-G.K.)
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muan 534-729, Jeonnam, Korea; (Y.-K.P.); (K.-S.H.); (S.-G.K.)
| | - Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Aviva Ezra
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Shela Gorinstein
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence:
| |
Collapse
|
11
|
Wong JH, Barron AM, Abdullah JM. Mitoprotective Effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and Neuroprotective Opportunities in Neurodegenerative Disease. Front Pharmacol 2021; 12:687935. [PMID: 34267660 PMCID: PMC8275827 DOI: 10.3389/fphar.2021.687935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products remain a crucial source of drug discovery for accessible and affordable solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive benefits mechanistically linked to mitoprotective and antioxidant properties of the plant. Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the growing body of evidence that the mitoprotective and antioxidative effects of CA may potentially be harnessed for the treatment of brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain & Behaviour Cluster and Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
12
|
Zolkeflee NKZ, Isamail NA, Maulidiani M, Abdul Hamid NA, Ramli NS, Azlan A, Abas F. Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR-based metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:69-83. [PMID: 31953888 DOI: 10.1002/pca.2917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/03/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Muntingia calabura from the Muntingiaceae family has been documented for several medicinal uses. The combinations of drying treatment and extracting solvents for a plant species need to be determined and optimised to ensure that the extracts contain adequate amounts of the bioactive metabolites. OBJECTIVE Evaluate the metabolite variations and antioxidant activity among M. calabura leaves subjected to different drying methods and extracted with different ethanol ratios using proton nuclear magnetic resonance (1 H-NMR)-based metabolomics. Methodology The antioxidant activity of M. calabura leaves dried with three different drying methods and extracted with three different ethanol ratios was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assays. The metabolites variation among the extracts and correlation with antioxidant activity were analysed by 1 H-NMR-based metabolomics. RESULTS Muntingia calabura leaves extracted with 50% and 100% ethanol from air-drying and freeze-drying methods had the highest total phenolic content and the lowest IC50 value for the DPPH scavenging activity. Meanwhile, oven-dried leaves extracted with 100% ethanol had the lowest IC50 value for the NO scavenging activity. A total of 43 metabolites, including sugars, organic acids, amino acids, phytosterols, phenolics and terpene glycoside were tentatively identified. A noticeable discrimination was observed in the different ethanol ratios by the principal component analysis. The partial least-squares analysis suggested that 32 compounds out of 43 compounds identified were the contributors to the bioactivities. CONCLUSION The results established set the preliminary steps towards developing this plant into a high value product for phytomedicinal preparations.
Collapse
Affiliation(s)
| | - Nor Amira Isamail
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Schoool of Fundamental Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nur Ashikin Abdul Hamid
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Wongshaya P, Chayjarung P, Tothong C, Pilaisangsuree V, Somboon T, Kongbangkerd A, Limmongkon A. Effect of light and mechanical stress in combination with chemical elicitors on the production of stilbene compounds and defensive responses in peanut hairy root culture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:93-104. [PMID: 33096514 DOI: 10.1016/j.plaphy.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Plants encounter diverse stressors simultaneously with changing environmental factors. The combined effect of different types of stresses can have a wide range of effects on plants. The present study demonstrated that various stress factors such as the combination of chemical elicitors, namely paraquat (PQ), methyl jasmonate (MeJA) and methyl-β-cyclodextrin (CD), light exposure versus darkness, and mechanical shearing stress affected the defence response in peanut hairy root culture. The antioxidant activities were dramatically increased at all time points after hairy roots were subjected to elicitation with PQ + MeJA + CD under root cutting in both light and dark conditions. The stilbene compounds were highly increased in the culture medium after elicitor treatment of uncut hairy roots under dark conditions. In contrast to the high stilbene contents detected in culture medium under dark conditions, the transcription of the stilbene biosynthesis genes PAL, RS and RS3 was enhanced by the effect of light in uncut hairy root tissues. The antioxidant enzyme genes APX, GPX and CuZn-SOD of uncut and cut hairy roots were more highly expressed in light conditions than in dark conditions. The pathogenesis-related protein (PR)-encoding genes chitinase, PR4A, PR5 and PR10 of uncut hairy roots were highly expressed in response to light conditions compared to dark conditions at all time points. Recent evidence of the production of antioxidant stilbene compounds and defence response genes has implicated plant protective functions through defence responses under different stress challenges. Plant responses might therefore be regulated by the coordination of different signal responses through dynamic pathways.
Collapse
Affiliation(s)
- Pakwuan Wongshaya
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chonnikan Tothong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Vijakhana Pilaisangsuree
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thapakorn Somboon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
14
|
Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, Tan CP, Shaari K, Tham CL, Abas F. 1 H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:46-61. [PMID: 30183131 DOI: 10.1002/pca.2789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/12/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage. OBJECTIVE Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach. METHODOLOGY The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings. RESULTS Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P < 0.05). A total of 56 metabolites were tentatively identified using 1 H-NMR metabolomics. A partial least square (PLS) biplot suggested that sulphur containing glucoside, sulphur containing compounds, phytosterols, triterpenoids, flavones and some organic and amino acids were among the potential NO inhibitors. LC-MS/MS targeted quantification further supported sonicated water extract was among the extract that possessed the most abundant C-glycosyl flavones. CONCLUSION The present study may serve as a preliminary reference for the selection of optimum extract in further C. nutans in vivo anti-inflammatory study.
Collapse
Affiliation(s)
- Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Audrey Siew Foong Kow
- Department Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - May Yen Ang
- Analytical Instrument Division, Shimadzu Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Won Yin Chew
- Analytical Instrument Division, Shimadzu Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur Campus, Cheras, Kuala Lumpur, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018; 23:E762. [PMID: 29584636 PMCID: PMC6017249 DOI: 10.3390/molecules23040762] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/20/2023] Open
Abstract
Plant secondary metabolites (SMs) are not only a useful array of natural products but also an important part of plant defense system against pathogenic attacks and environmental stresses. With remarkable biological activities, plant SMs are increasingly used as medicine ingredients and food additives for therapeutic, aromatic and culinary purposes. Various genetic, ontogenic, morphogenetic and environmental factors can influence the biosynthesis and accumulation of SMs. According to the literature reports, for example, SMs accumulation is strongly dependent on a variety of environmental factors such as light, temperature, soil water, soil fertility and salinity, and for most plants, a change in an individual factor may alter the content of SMs even if other factors remain constant. Here, we review with emphasis how each of single factors to affect the accumulation of plant secondary metabolites, and conduct a comparative analysis of relevant natural products in the stressed and unstressed plants. Expectantly, this documentary review will outline a general picture of environmental factors responsible for fluctuation in plant SMs, provide a practical way to obtain consistent quality and high quantity of bioactive compounds in vegetation, and present some suggestions for future research and development.
Collapse
Affiliation(s)
- Li Yang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Kui-Shan Wen
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Xiao Ruan
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Ying-Xian Zhao
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Feng Wei
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Qiang Wang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
16
|
Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A. Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:161-194. [PMID: 31736679 PMCID: PMC6857646 DOI: 10.1007/s11101-017-9528-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
This review describes in detail the phytochemistry and neurological effects of the medicinal herb Centella asiatica (L.) Urban. C. asiatica is a small perennial plant that grows in moist, tropical and sub-tropical regions throughout the world. Phytochemicals identified from C. asiatica to date include isoprenoids (sesquiterpenes, plant sterols, pentacyclic triterpenoids and saponins) and phenylpropanoid derivatives (eugenol derivatives, caffeoylquinic acids, and flavonoids). Contemporary methods for fingerprinting and characterization of compounds in C. asiatica extracts include liquid chromatography and/or ion mobility spectrometry in conjunction with high-resolution mass spectrometry. Multiple studies in rodent models, and a limited number of human studies support C. asiatica's traditional reputation as a cognitive enhancer, as well as its anxiolytic and anticonvulsant effects. Neuroprotective effects of C.asiatica are seen in several in vitro models, for example against beta amyloid toxicity, and appear to be associated with increased mitochondrial activity, improved antioxidant status, and/or inhibition of the pro-inflammatory enzyme, phospholipase A2. Neurotropic effects of C. asiatica include increased dendritic arborization and synaptogenesis, and may be due to modulations of signal transduction pathways such as ERK1/2 and Akt. Many of these neurotropic and neuroprotective properties of C.asiatica have been associated with the triterpene compounds asiatic acid, asiaticoside and madecassoside. More recently, caffeoylquinic acids are emerging as a second important group of active compounds in C. asiatica, with the potential of enhancing the Nrf2-antioxidant response pathway. The absorption, distribution, metabolism and excretion of the triterpenes, caffeoylquinic acids and flavonoids found in C. asiatica have been studied in humans and animal models, and the compounds or their metabolites found in the brain. This review highlights the remarkable potential for C. asiatica extracts and derivatives to be used in the treatment of neurological conditions, and considers the further research needed to actualize this possibility.
Collapse
Affiliation(s)
- Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Joseph Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC),
Portland Veterans Affairs Medical Center, Portland, OR, USA 97239
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Claudia S. Maier
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
17
|
Alqahtani A, Cho JL, Wong KH, Li KM, Razmovski-Naumovski V, Li GQ. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition. FRONTIERS IN PLANT SCIENCE 2017; 8:1980. [PMID: 29209345 PMCID: PMC5702339 DOI: 10.3389/fpls.2017.01980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR) analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica, then C. erecta, therefore, was genetically and chemically closer to C. asiatica, while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella.
Collapse
Affiliation(s)
- Ali Alqahtani
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | - Jun-Lae Cho
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Ka Ho Wong
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Kong M. Li
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Valentina Razmovski-Naumovski
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Sydney, NSW, Australia
- South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - George Q. Li
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Mediani A, Abas F, Maulidiani M, Khatib A, Tan CP, Ismail IS, Shaari K, Ismail A. Characterization of Metabolite Profile in Phyllanthus niruri and Correlation with Bioactivity Elucidated by Nuclear Magnetic Resonance Based Metabolomics. Molecules 2017; 22:molecules22060902. [PMID: 28556789 PMCID: PMC6152626 DOI: 10.3390/molecules22060902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022] Open
Abstract
Phyllanthus niruri is an important medicinal plant. To standardize the extract and guarantee its maximum benefit, processing methods optimization ought to be amenable and beneficial. Herein, three dried P. niruri samples, air (AD), freeze (FD) and oven (OD), extracted with various ethanol to water ratios (0%, 50%, 70%, 80% and 100%) were evaluated for their metabolite changes using proton nuclear magnetic resonance (1H-NMR)-based metabolomics approach. The amino acids analysis showed that FD P. niruri exhibited higher content of most amino acids compared to the other dried samples. Based on principal component analysis (PCA), the FD P. niruri extracted with 80% ethanol contained higher amounts of hypophyllanthin and phenolic compounds based on the loading plot. The partial least-square (PLS) results showed that the phytochemicals, including hypophyllanthin, catechin, epicatechin, rutin, quercetin and chlorogenic, caffeic, malic and gallic acids were correlated with antioxidant and α-glucosidase inhibitory activities, which were higher in the FD material extracted with 80% ethanol. This report optimized the effect of drying and ethanol ratios and these findings demonstrate that NMR-based metabolomics was an applicable approach. The FD P. niruri extracted with 80% ethanol can be used as afunctional food ingredient for nutraceutical or in medicinal preparation.
Collapse
Affiliation(s)
- Ahmed Mediani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| | - M Maulidiani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chin Ping Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Intan Safinar Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Characterization of metabolites in different kiwifruit varieties by NMR and fluorescence spectroscopy. J Pharm Biomed Anal 2017; 138:80-91. [PMID: 28189049 DOI: 10.1016/j.jpba.2017.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/14/2017] [Accepted: 01/22/2017] [Indexed: 01/04/2023]
Abstract
It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of 1H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry.
Collapse
|
20
|
Yang L, Zheng ZS, Cheng F, Ruan X, Jiang DA, Pan CD, Wang Q. Seasonal Dynamics of Metabolites in Needles of Taxus wallichiana var. mairei. Molecules 2016; 21:E1403. [PMID: 27775631 PMCID: PMC6273852 DOI: 10.3390/molecules21101403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Seasonal variations of the phytochemicals contents in needles of T. wallichiana var. mairei due to the effects of growth meteorological parameters were investigated in this study. The needles of T. wallichiana var. mairei were collected from different months and the contents of taxoids (paclitaxel, 10-deacetylbaccatin III (10-DAB), baccatin III, cephalomannine, 10-deacetyltaxol (10-DAT)), flavones (ginkgetin, amentoflavone, quercetin) and polysaccharides were quantified by ultra performance liquid chromatography (UPLC) and the resonance light scattering (RIL) method. The content of taxoids gave the highest level of 1.77 ± 0.38 mg·g-1 in January, and the lowest value of 0.61 ± 0.08 mg·g-1 in September. Unlike taxoids, the content of flavonoids was the highest in August. The content of polysaccharides reached peak value of 28.52 ± 0.57 mg·g-1 in September, which was two times higher than the lowest content of 9.39 ± 0.17 mg·g-1 in January. The contents of paclitaxel, 10-DAB, 10-DAT and polysaccharides significantly depended on meteorological parameters. The mean of minimum temperature (R = -0.61) and length of daylight (R = -0.60) were significantly correlated to 10-DAB content, while 10-DAT level showed significant correlation with length of daylight (R = -0.70) and relative humidity (R = 0.70). In addition, temperature had significantly negative effect on the content of paclitaxel and a significantly positive effect on that of polysaccharides. This study enriched the knowledge on the accumulation pattern of metabolites and could help us to determine the collecting time of T. wallichiana var. mairei for medicinal use.
Collapse
Affiliation(s)
- Li Yang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zan-Sheng Zheng
- Ningbo Chemgoo Pharmaceutical Technology Innovation Limited, Ningbo 315112, China.
| | - Fang Cheng
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Xiao Ruan
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - De-An Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Cun-De Pan
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Qiang Wang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
21
|
Azerad R. Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia 2016; 114:168-187. [DOI: 10.1016/j.fitote.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
|
22
|
Abu Bakar Sajak A, Abas F, Ismail A, Khatib A. Effect of Different Drying Treatments and Solvent Ratios on Phytochemical Constituents of Ipomoea aquatica and Correlation with α-Glucosidase Inhibitory Activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1141295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Islamic University, Bandar Indera Mahkota, Kuantan, Pahang
| |
Collapse
|
23
|
Abas F, Khatib A, Perumal V, Suppaiah V, Ismail A, Hamid M, Shaari K, Lajis NH. Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:60-69. [PMID: 26775274 DOI: 10.1016/j.jep.2016.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Pegaga' is a traditional Malay remedy for a wide range of complaints. Among the 'pegaga', Centella asiatica has been used as a remedy for diabetes mellitus. Thus, we decided to validate this claim by evaluating the in vivo antidiabetic property of C. asiatica (CA) on T2DM rat model using the holistic (1)H NMR-based metabolomics approach. METHOD In this study, an obese diabetic (mimic of T2DM condition) animal model was developed using Sprague-Dawley rats fed with a high-fat diet and induced into diabetic condition by the treatment of a low dose of streptozotocin (STZ). The effect of C. asiatica extract on the experimental animals was followed based on the changes observed in the urinary and serum metabolites, measured by (1)H NMR of urine and blood samples collected over the test period. RESULTS A long-term treatment of obese diabetic rats with CA extract could reverse the glucose and lipid levels, as well as the tricarboxylic acid cycle and amino acid metabolic disorders, back towards normal states. Biochemical analysis also showed an increase of insulin production in diabetic rats upon treatment of CA extract. CONCLUSION This study has provided evidence that clearly supported the traditional use of CA as a remedy for diabetes. NMR-based metabolomics was successfully applied to show that CA produced both anti-hyperglycemic and anti-hyperlipidemic effects on a rat model. In addition to increasing the insulin secretion, the CA extract also ameliorates the metabolic pathways affected in the induced diabetic rats. This study further revealed the potential usage of CA extract in managing diabetes mellitus and the results of this work may contribute towards the further understanding of the underlying molecular mechanism of this herbal remedy.
Collapse
Affiliation(s)
- F Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - A Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - V Perumal
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - V Suppaiah
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - A Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - M Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - K Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - N H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Al-Moalim BinLaden Chair for Scientific Miracles of Prophetic Medicine, Scientific Chairs Unit, Taibah University, P.O. Box 30001, Madinah al Munawarah 41311, Saudi Arabia.
| |
Collapse
|
24
|
Kumar D. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products. Crit Rev Anal Chem 2015; 46:400-12. [PMID: 26575437 DOI: 10.1080/10408347.2015.1106932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NMR spectroscopy has multidisciplinary applications, including excellent impact in metabolomics. The analytical capacity of NMR spectroscopy provides information for easy qualitative and quantitative assessment of both endogenous and exogenous metabolites present in biological samples. The complexity of a particular metabolite and its contribution in a biological system are critically important for understanding the functional state that governs the organism's phenotypes. This review covers historical aspects of developments in the NMR field, its applications in chemical profiling, metabolomics, and quality control of plants and their derived medicines, foods, and other products. The bottlenecks of NMR in metabolic profiling are also discussed, keeping in view the future scope and further technological interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- a Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| |
Collapse
|
25
|
Alqahtani A, Tongkao-on W, Li KM, Razmovski-Naumovski V, Chan K, Li GQ. Seasonal Variation of Triterpenes and Phenolic Compounds in Australian Centella asiatica (L.) Urb. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:436-443. [PMID: 26219274 DOI: 10.1002/pca.2578] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Specific triterpenes, phenolic acids and flavonoids in Centella asiatica have been found to be bioactive. Harvesting the plant when these putative bioactive compounds are at their highest concentrations would provide consistency in their chemical profile, thus ensuring the quality and efficacy of derived medicinal products. OBJECTIVE The aim of the study was to determine the impact of harvesting time on the contents of major triterpenoid and phenolic compounds in C. asiatica. METHODOLOGY Australian C. asiatica was collected from a designated area in different months. The principal triterpenes (asiaticoside, madecassoside, asiatic acid and madecassic acid), flavonoid compounds (rutin, quercetin and kaempferol) and chlorogenic acid were quantitatively determined by HPLC-DAD analysis. RESULTS Triterpenoid, kaempferol and chlorogenic acid content showed significant variation (p < 0.05) in different collecting months. The total content of the four triterpenes reached its highest levels in January and February (83.15 ± 0.16 mg/g and 78.41 ± 0.16 mg/g, respectively), the summer season of the southern hemisphere, and their lowest values in winter (June) and spring (October) seasons (35.65 ± 0.20 and 35.50 ± 0.55 mg/g, respectively). Similarly, the contents of chlorogenic acid and kaempferol were the highest in December and January (1.62 ± 0.01 and 0.33 ± 0.01 mg/g, respectively), and the lowest in June (0.06 ± 0.01 and 0.09 ± 0.01 mg/g, respectively). CONCLUSION The results indicate that harvesting C. asiatica in summer returns the highest yield of the target triterpenoids, kaempferol and chlorogenic acid.
Collapse
Affiliation(s)
- Ali Alqahtani
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Wannit Tongkao-on
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kong M Li
- Discipline of Pharmacology, Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Valentina Razmovski-Naumovski
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
- National Institute of Complementary Medicine (NICM), University of Western Sydney, Sydney, NSW, 2560, Australia
| | - Kelvin Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
- National Institute of Complementary Medicine (NICM), University of Western Sydney, Sydney, NSW, 2560, Australia
| | - George Q Li
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Abdul-Hamid NA, Abas F, Ismail IS, Shaari K, Lajis NH. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates. J Food Sci 2015; 80:H2603-11. [PMID: 26457883 DOI: 10.1111/1750-3841.13084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/21/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity. PRACTICAL APPLICATION The association between metabolite profiles and nitric oxide (NO) inhibitory activity of the various extracts of Ajwa dates was evaluated by utilizing partial least squares (PLS) model. The validated PLS model can be employed to predict the NO inhibitory activity of new samples of date fruits based on their NMR spectra which was important for assessing fruit quality. The information gained might be used as guidance for quality control, nutritional values and as a basis for the preparation of any food supplements for human health that employs date palm fruit as the raw material.
Collapse
Affiliation(s)
- Nur Ashikin Abdul-Hamid
- Laboratory of Natural Products, Inst. of Bioscience, Univ. Putra Malaysia, 43400, Serdang, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Inst. of Bioscience, Univ. Putra Malaysia, 43400, Serdang, Malaysia.,Dept. of Food Science, Faculty of Food Science and Technology, Univ. Putra Malaysia, 43400, Serdang, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Inst. of Bioscience, Univ. Putra Malaysia, 43400, Serdang, Malaysia.,Dept. of Chemistry, Faculty of Science, Univ. Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Inst. of Bioscience, Univ. Putra Malaysia, 43400, Serdang, Malaysia.,Dept. of Chemistry, Faculty of Science, Univ. Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Inst. of Bioscience, Univ. Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
27
|
Lei W, Song YL, Guo XY, Tu PF, Jiang Y. Habitat differentiation and degradation characterization of Cinnamomi Cortex by 1H NMR spectroscopy coupled with multivariate statistical analysis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Metabolic differentiations of Pueraria lobata and Pueraria thomsonii using 1H NMR spectroscopy and multivariate statistical analysis. J Pharm Biomed Anal 2014; 93:51-8. [DOI: 10.1016/j.jpba.2013.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022]
|
29
|
Maulidiani, Abas F, Khatib A, Shitan M, Shaari K, Lajis NH. Comparison of Partial Least Squares and Artificial Neural Network for the prediction of antioxidant activity in extract of Pegaga (Centella) varieties from 1H Nuclear Magnetic Resonance spectroscopy. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Müller V, Albert A, Barbro Winkler J, Lankes C, Noga G, Hunsche M. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:161-9. [DOI: 10.1016/j.jphotobiol.2013.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/08/2013] [Accepted: 08/19/2013] [Indexed: 01/10/2023]
|