1
|
Feng X, Li W, Wang X, Tang J, Yao S. Effect of magnetization on antibacterial, lipid-lowering and antioxidant activities of isoquinoline alkaloids. Sci Rep 2025; 15:3349. [PMID: 39870866 PMCID: PMC11772870 DOI: 10.1038/s41598-025-88200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H]+[FeCl4]-) had the best antibacterial effect on S. aureus and E. coli with MIC of 200 and 800 µM, respectively; palmatine magnetic derivative ([Pal·H]+[FeCl4]-) showed the strongest lipid-lowering activity with IC50 of 429 mM, and the inhibitory effect and type on lipase was reversible and mixed inhibition of competition and non-competition type; tetrahydroberberine magnetic derivative ([THBer·H]+[FeCl4]-) had the strongest antioxidant activity. This study provides new ideas and references for the further application of magnetization strategy.
Collapse
Affiliation(s)
- Xueting Feng
- College of Pharmacy and Food, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Weijie Li
- College of Chemistry and Life Science, Sichuan University Key Laboratory of Optimization and Application of Functional Molecular Structure, Chengdu Normal University, Chengdu, 611130, China
| | - Xiaoling Wang
- College of Pharmacy and Food, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Jie Tang
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643002, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Chauhan K, Goel F, Singh S. Apigenin protects melanocytes and improve tyrosinase activity in a hydroquinone induced vitiligo mouse model targeting P38 MAP kinase signaling: histopathology and immunohistochemistry analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4859-4869. [PMID: 38157025 DOI: 10.1007/s00210-023-02917-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Apigenin (APG) is a plant-based flavonoid that possesses antioxidants, anti-inflammatory, and modulates P38 MAPK as well as tyrosinase. Hydroquinone (HQ), a phenolic compound was used to induce vitiligo in C57BL/6 mice. The present study was performed to check the therapeutic potential of apigenin in HQ-induced vitiligo via targeting P38 MAPK pathway. In the present study, 41 C57BL/6 mice were divided into six groups containing seven animals per group except normal group. (I) normal group, (II) HQ group, (III) to (IV) APG with (1%, 2.5%, 5%), and (VI) tacrolimus (TAC) group. Topical application of HQ was performed from day 1 to day 20 to, (II), (III) to (IV) APG with (1%, 2.5%, 5%), (VI) tacrolimus (TAC) group, and then APG; tacrolimus (TAC) was applied from day 21 to day 60 after removing the hair. In the case of (I) normal group and (II) HQ group, we smeared them with water for 60 days and HQ for 20 days in their individual group. On day 61 after anesthesia, a part of the target skin was peeled and blood serum was taken to check the level of malondialdehyde, cholinesterase, catalase, tyrosinase, pro-inflammatory cytokines, and expression of P38 MAPK, histology of melanin containing hair follicles and depigmentation evaluation. Applying HQ topically had a noticeable impact on depigmentation, inflammatory indicators, oxidative stress, and lowered tyrosinase activity. Further HQ reduced melanin containing hair follicles and increased expression of P38 MAPK was confirmed by histopathology and immunohistochemistry. Furthermore, application of APG and TAC after day 21 to 60 significantly reduced depigmentation, inflammatory markers, oxidative stress, and increased tyrosinase. Furthermore, APG increased melanin containing hair follicles and decreased expression of non-phosphorylated P38 MAPK, as confirmed by histopathology and immunohistochemistry. Our finding demonstrated that APG significantly prevented HQ-induced vitiligo by acting as an anti-inflammatory, increasing tyrosine, and reducing the expression of non-phosphorylated P38 MAPK.
Collapse
Affiliation(s)
- Kanupriya Chauhan
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Falguni Goel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Montenegro MF, Teruel JA, García-Molina P, Tudela J, Rodríguez-López JN, García-Cánovas F, García-Molina F. Molecular Docking Studies of Ortho-Substituted Phenols to Tyrosinase Helps Discern If a Molecule Can Be an Enzyme Substrate. Int J Mol Sci 2024; 25:6891. [PMID: 39000001 PMCID: PMC11241521 DOI: 10.3390/ijms25136891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Phenolic compounds with a position ortho to the free phenolic hydroxyl group occupied can be tyrosinase substrates. However, ortho-substituted compounds are usually described as inhibitors. The mechanism of action of tyrosinase on monophenols is complex, and if they are ortho-substituted, it is more complicated. It can be shown that many of these molecules can become substrates of the enzyme in the presence of catalytic o-diphenol, MBTH, or in the presence of hydrogen peroxide. Docking studies can help discern whether a molecule can behave as a substrate or inhibitor of the enzyme. Specifically, phenols such as thymol, carvacrol, guaiacol, eugenol, isoeugenol, and ferulic acid are substrates of tyrosinase, and docking simulations to the active center of the enzyme predict this since the distance of the peroxide oxygen from the oxy-tyrosinase form to the ortho position of the phenolic hydroxyl is adequate for the electrophilic attack reaction that gives rise to hydroxylation occurring.
Collapse
Affiliation(s)
- María F. Montenegro
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.F.M.); (P.G.-M.); (J.T.); (J.N.R.-L.)
| | - José A. Teruel
- Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Pablo García-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.F.M.); (P.G.-M.); (J.T.); (J.N.R.-L.)
| | - José Tudela
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.F.M.); (P.G.-M.); (J.T.); (J.N.R.-L.)
| | - José Neptuno Rodríguez-López
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.F.M.); (P.G.-M.); (J.T.); (J.N.R.-L.)
| | - Francisco García-Cánovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.F.M.); (P.G.-M.); (J.T.); (J.N.R.-L.)
| | - Francisco García-Molina
- Department of Anatomía Patológica, Hospital General Universitario Reina Sofía, Av. Intendente Jorge Palacios, 1, 30003 Murcia, Spain;
| |
Collapse
|
4
|
Yoon D, Jung HJ, Lee J, Kim HJ, Park HS, Park YJ, Kang MK, Kim GY, Kang D, Park Y, Chun P, Chung HY, Moon HR. In vitro and in vivo anti-pigmentation effects of 2-mercaptobenzimidazoles as nanomolar tyrosinase inhibitors on mammalian cells and zebrafish embryos: Preparation of pigment-free zebrafish embryos. Eur J Med Chem 2024; 266:116136. [PMID: 38244374 DOI: 10.1016/j.ejmech.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recently, 10 2-mercaptobenzo[d]imidazole (2-MBI) compounds (1-10) were synthesized. Although all 2-MBI compounds are tyrosinase inhibitors that inhibit mushroom tyrosinase at extremely low concentrations (IC50 values: 20-740 nM) and effectively inhibit the browning of apples, to our knowledge, no studies have determined whether 2-MBI compounds inhibit mammalian tyrosinase. Mammalian tyrosinase is different from mushroom tyrosinase in its distribution within the cell and has structural characteristics that are different from mushroom tyrosinase in amino acid sequence and in the presence of a quaternary structure. Thus, the effect of the 10 2-MBI compounds on mammalian tyrosinase activity was investigated in B16F10 cells. Six compounds (1-6) exhibited stronger intracellular tyrosinase inhibition than that of kojic acid and phenylthiourea (PTU), which are known to be the most potent tyrosinase inhibitors; their strong tyrosinase inhibitory activity robustly inhibited intracellular melanin production in B16F10 cells. None of the tested 2-MBI compounds exhibited appreciable cytotoxicity in HaCaT and B16F10 cells. To confirm the anti-melanogenic efficacy of the 2-MBI compounds in vivo, a zebrafish embryo model was used. At concentrations 100 times lower than kojic acid, most 2-MBI compounds demonstrated much stronger depigmentation efficacy than that of kojic acid, and three 2-MBI compounds (2-4) showed depigmentation activity similar to or more potent than that of PTU, resulting in nearly pigment-free zebrafish embryos. These results suggest that 2-MBI compounds may be potential therapeutic agents for hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Varela M, de Castro Levatti EV, Tempone AG, Fernandes JPS. Investigation of Structure-Activity Relationships for Benzoyl and Cinnamoyl Piperazine/Piperidine Amides as Tyrosinase Inhibitors. ACS OMEGA 2023; 8:44265-44275. [PMID: 38027351 PMCID: PMC10666245 DOI: 10.1021/acsomega.3c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Melanin is a substance that plays important roles in several organisms. Its function as an antioxidant and metal-complexing agent makes tyrosinase, the key enzyme that controls melanogenesis, an interesting target for designing inhibitors. In this article, we report a set of piperazine/piperidine amides of benzoic and cinnamic acid derivatives as tyrosinase inhibitors with improved potency and drug-likeness. The most potent compound 5b showed a pIC50 of 4.99 in the monophenolase assay, and only compound 3a showed reasonable potency in the diphenolase assay (pIC50, 4.18). These activities are not correlated to antiradical activity, suggesting that the activity is dependent on competition with the substrates. Molecular docking studies indicated that the benzyl substituent of 5b and other analogues perform important interactions in the enzyme that may explain the higher potency of these compounds. Moreover, the compounds present adequate lipophilicity and skin permeability and no relevant cytotoxicity (CC50 > 200 μM) to mammalian cells.
Collapse
Affiliation(s)
- Marina
T. Varela
- Departament
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
| | - Erica V. de Castro Levatti
- Laboratory
of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - Andre G. Tempone
- Laboratory
of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - João Paulo S. Fernandes
- Departament
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
6
|
Mermer A, Demirci S. Recent advances in triazoles as tyrosinase inhibitors. Eur J Med Chem 2023; 259:115655. [PMID: 37482020 DOI: 10.1016/j.ejmech.2023.115655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, İstanbul, Turkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Turkiye.
| | - Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkiye
| |
Collapse
|
7
|
Whole Cell-mediated Biocatalytic Synthesis of Helicid Cinnamylate and Its Biological Evaluation as a Novel Tyrosinase Inhibitor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Wang X, He X, Wu X, Fan X, Wang F, Lin Q, Guan W, Zhang N. UV-C treatment inhibits browning, inactivates Pseudomonas tolaasii and reduces associated chemical and enzymatic changes of button mushrooms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3259-3265. [PMID: 34796507 DOI: 10.1002/jsfa.11668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Button mushrooms with completely white appearance are popular with consumers. However, button mushrooms are susceptible to infection with Pseudomonas tolaasii, which results in browning. This study evaluates the effects of ultraviolet-C (UV-C) treatment on the inactivation of P. tolaasii in vitro and in vivo and on the physiological and chemical changes of button mushrooms during storage for 21 days at 4 °C. RESULTS UV-C doses of 0.5 to 9.0 kJ m-2 resulted in 3.91-6.26 log CFU mL-1 reduction of P. tolaasii populations in vitro, and UV-C treatment reduced P. tolaasii populations inoculated on mushroom cap surfaces and browning severity. Moreover, P. tolaasii increased polyphenol oxidase (PPO) activity, and decreased phenylalanine ammonia-lyase (PAL) activity, the accumulation of phenolics and contents of brown melanin precursors, including γ-l-glutaminyl-4-hydroxybenzene (GHB), γ-l-glutaminyl-3,4-dihydroxybenzene (GDHB), and tyrosine in button mushrooms. UV-C treatment was found to reduce the negative changes due to P. tolaasii infection. CONCLUSION These results indicated that the application of UV-C treatment inhibited browning, inactivated P. tolaasii and reduced P. tolaasii - associated chemical and enzymatic changes of button mushrooms. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueqing Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechology and Food Sciences, Tianjin University of Commerce, Tianjin, China
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechology and Food Sciences, Tianjin University of Commerce, Tianjin, China
| | - Xinling Wu
- School of Medicine and Health, Guangxi Vocational and Technical Institute of Industry, Nanning, China
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Fengling Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechology and Food Sciences, Tianjin University of Commerce, Tianjin, China
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechology and Food Sciences, Tianjin University of Commerce, Tianjin, China
| | - Na Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| |
Collapse
|
9
|
Vaezi M. Structure and inhibition mechanism of some synthetic compounds and phenolic derivatives as tyrosinase inhibitors: review and new insight. J Biomol Struct Dyn 2022:1-13. [PMID: 35510568 DOI: 10.1080/07391102.2022.2069157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Safety concerns are the primary consideration to identify and detection of enzyme inhibitors. In this regard, safe and potent tyrosinase inhibitors play important role in enhancing nutritional quality, health promotion and also prevent further damages. The present review focuses on the recent and efficient tyrosinase inhibitors discovered from both synthetic sources and synthesized phenolic compounds, including flavonoid, carvacrol, thymol, cinnamic acid and resorcinol derivatives. The inhibitory activity of these compounds was analyzed according to chemical structure, IC50, Ki and their binding energy. Further, inhibition mechanism and the biological effects of some these inhibitors with potential application in food, agricultural, cosmetic and pharmaceutical industries were briefly discussed. Molecular docking procedure was performed on some derivatives and demonstrated favorable binding affinity with amino acid residues of mushroom tyrosinase (PDB ID: 2Y9X). The information offered showed that the substitution pattern of hydroxyl groups at the phenyl ring is an important factor of tyrosinase inhibitory activity. The results confirmed that understanding structural modification of inhibitors is a key role in finding novel and efficacious tyrosinase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Morteza Vaezi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
10
|
Fu W, Wu Z, Zheng R, Yin N, Han F, Zhao Z, Dai M, Han D, Wang W, Niu L. Inhibition mechanism of melanin formation based on antioxidant scavenging of reactive oxygen species. Analyst 2022; 147:2703-2711. [DOI: 10.1039/d2an00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The production of reactive oxygen species (ROS) leads to the generation of oxidative stress, which will result in the excessive production and accumulation of melanin in the body and even the occurrence of some skin diseases.
Collapse
Affiliation(s)
- Wencai Fu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhifang Wu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Rui Zheng
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Na Yin
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Fangjie Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhengzheng Zhao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Mengjiao Dai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Wang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
11
|
Hsiao WW, Kumar KJS, Lee HJ, Tsao NW, Wang SY. Anti-Melanogenic Activity of Calocedrus formosana Wood Essential Oil and Its Chemical Composition Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 11:62. [PMID: 35009066 PMCID: PMC8747218 DOI: 10.3390/plants11010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Calocedrus formosana (Cupressaceae) is one of the five precious woods of Taiwan. In this study, we investigated the anti-melanogenic activity of C. formosana wood essential oil (CFEO) and its bioactive components in vitro. Initially, CFEO exhibited strong mushroom tyrosinase activity in the cell-free mushroom tyrosinase assay system with an IC50 value of 2.72 µg/mL. Next, treatment with CFEO significantly as well as dose-dependently reduced a combination of α-melanocyte-stimulating hormone and forskolin (α-MSH-FSK)-induced melanin synthesis in B16-F10 cells. Indeed, 80 μg/mL CFEO completely inhibited melanin production, which is similar to that of control cells. Further studies revealed that treatment with CFEO significantly inhibited melanogenesis regulatory proteins, including TRP-1, TRP-2, and MITF, whereas tyrosinase was unaffected by either α-MSH-FSK or CFEO. In addition, the composition of the CFEO was characterized. The major components of CFEO were α-terpineol (23.47%), shonanic acid (10.45%), terpinen-4-ol (12.23%), thymol (5.3%), piperitone (3.44%), berbenone (2.81%), thujic acid (1.65%), and chaminic acid (0.13%). Among them, shonanic acid (1), thujic acid (2), and chaminic acid (3) were uncommon constitutes in essential oils, which could be the index compounds of CFEO, and the structure of these compounds were confirmed by spectral analysis. Furthermore, we found that thymol is an active ingredient responsible for CFEO's anti-melanogenic activity. Based on these results, we suggest that CFEO or thymol could be a potential candidate for the development of skin whitening products for cosmetic purposes.
Collapse
Affiliation(s)
- Wen-Wei Hsiao
- Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan;
| | - K. J. Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Hui-Ju Lee
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan; (H.-J.L.); (N.-W.T.)
| | - Nai-Wen Tsao
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan; (H.-J.L.); (N.-W.T.)
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan; (H.-J.L.); (N.-W.T.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11574, Taiwan
| |
Collapse
|
12
|
Kurpejović E, Wendisch VF, Sariyar Akbulut B. Tyrosinase-based production of L-DOPA by Corynebacterium glutamicum. Appl Microbiol Biotechnol 2021; 105:9103-9111. [PMID: 34762142 DOI: 10.1007/s00253-021-11681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
An increase in the number of elderly people suffering from the symptoms of Parkinson's disease is leading to an expansion in the market size of 3,4-dihydroxyphenyl-L-alanine (L-DOPA), which is the most commonly used drug for the treatment of this disease. Need for better quality products through economically feasible and sustainable processes makes biotechnological approaches attractive. The current study is focused on heterologous expression of Ralstonia solanacearum tyrosinase in Corynebacterium glutamicum cells to produce L-DOPA during growth on glucose or glucose/xylose mixtures. Whole-cells pre-grown on glucose were further exploited for biotransformation of L-tyrosine to L-DOPA. To prevent L-DOPA oxidation, not only the most commonly used agent, ascorbic acid, but also for the first time, thymol was evaluated. The highest L-DOPA titer was 0.26 ± 0.02 g/L at the end of growth on a mixture of 1% xylose and 3% glucose in the presence of 200 μM thymol as the oxidation inhibitor. The ability to co-utilize glucose and xylose to reach this titer could make these cells ideal for L-DOPA production using hydrolyzed lignocellulosic biomass. When the pre-grown cells were further used for biotransformation, the highest L-DOPA yield was 0.61 ± 0.02 g/gDCW with 4 mM ascorbic acid. Since L-tyrosine biotransformation is primarily dependent on tyrosinase activity, yield in this route could be improved by optimizing reaction conditions. As the industrial workhorse for amino acid production, these C. glutamicum cells will clearly benefit from strain development efforts and bioprocess optimization towards sustainable and economically feasible L-DOPA production. KEY POINTS: • Fermentative l-DOPA production was achieved in C. glutamicum. • Tyrosinase produced by C. glutamicum cells successfully transformed l-Tyr. • Thymol proved to be a significant oxidation inhibitor for l-DOPA production.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Göztepe Campus, 34722, Kadikoy, Istanbul, Turkey
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Berna Sariyar Akbulut
- Department of Bioengineering, Marmara University, Göztepe Campus, 34722, Kadikoy, Istanbul, Turkey.
| |
Collapse
|
13
|
Sahoo CR, Paidesetty SK, Padhy RN. The recent development of thymol derivative as a promising pharmacological scaffold. Drug Dev Res 2021; 82:1079-1095. [PMID: 34164828 DOI: 10.1002/ddr.21848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023]
Abstract
Thymol (a phenol ring bearing active phytoconstituent) is a privileged scaffold, which is diversified in natural sources. This scaffold acts as an obligatory template for scheming and arriving at designing some newer drug-molecules with potential biological activities. In the pharmacological perspective, the promising active sites of the scaffold are the positions C-1, C-4, and C-6 of thymol that would be accountable for developing potent drug candidates. This review aims to explore the various synthetic routes and the structural-activity relationship of thymol scaffold with suitable active pharmacophore sites.
Collapse
Affiliation(s)
- Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India.,Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
14
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
15
|
Sinan KI, Etienne OK, Stefanucci A, Mollica A, Mahomoodally MF, Jugreet S, Rocchetti G, Lucini L, Aktumsek A, Montesano D, Ak G, Zengin G. Chemodiversity and biological activity of essential oils from three species from the
Euphorbia
genus. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique UFR Biosciences Universite Felix Houphouet‐Boigny Abidjan Côte d'Ivoire
| | - Azzurra Stefanucci
- Department of Pharmacy University 'G. d’Annunzio' of Chieti‐Pescara Chieti Italy
| | - Adriano Mollica
- Department of Pharmacy University 'G. d’Annunzio' of Chieti‐Pescara Chieti Italy
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences Faculty of Medicines and Health Sciences University of MauritiusRéduit Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences Faculty of Medicines and Health Sciences University of MauritiusRéduit Mauritius
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | | | - Domenico Montesano
- Department of Pharmaceutical Sciences Food Science and Nutrition Section University of Perugia Perugia Italy
| | - Gunes Ak
- Department of Biology Science Faculty Selcuk Universtiy Konya Turkey
| | - Gokhan Zengin
- Department of Biology Science Faculty Selcuk Universtiy Konya Turkey
| |
Collapse
|
16
|
Synthesis and characterization of a novel soluble neohesperidin-copper(II) complex using Ion-exchange resin column. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Ashooriha M, Khoshneviszadeh M, Khoshneviszadeh M, Rafiei A, Kardan M, Yazdian-Robati R, Emami S. Kojic acid-natural product conjugates as mushroom tyrosinase inhibitors. Eur J Med Chem 2020; 201:112480. [PMID: 32652434 DOI: 10.1016/j.ejmech.2020.112480] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/30/2022]
Abstract
As part of our effort to develop potential tyrosinase inhibitors, we have conjugated the well-known tyrosinase inhibitor kojic acid (KA) with several phenolic natural products such as umbelliferone, sesamol, thymol, carvacrol, eugenol, isoeugenol, vanillin, isovanillin, and apocynin that some reports have shown their activity on tyrosinase enzyme. The designed compounds were synthesized using click reaction and 1,2,3-triazole formation. All compound showed potent anti-tyrosinase activity significantly higher than KA. The best activities were observed with apocynin and 4-coumarinol analogs (10c and 16c) displaying IC50 values of 0.03 and 0.02 μM, respectively. The potency of 16c was >460-times more than that of KA. Cell-based assays against B16F10 and HFF cells revealed that the representative compounds can efficiently suppress the melanogenesis without significant toxicity on cells.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafiei
- Department of Immunology and Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Department of Immunology and Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
18
|
Kim JH, Jang DH, Lee KW, Kim KD, Shah AB, Zhumanova K, Park KH. Tyrosinase Inhibition and Kinetic Details of Puerol A Having But-2-Enolide Structure from Amorpha fruticosa. Molecules 2020; 25:molecules25102344. [PMID: 32443441 PMCID: PMC7287670 DOI: 10.3390/molecules25102344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023] Open
Abstract
Puerol A (1) from Amorpha fruticosa showed highly potent inhibition against both monophenolase (IC50 = 2.2 μM) and diphenolase (IC50 = 3.8 μM) of tyrosinase. We tried to obtain a full story of enzyme inhibitory behavior for inhibitor 1 because the butenolide skeleton has never been reported as a tyrosinase inhibitor. Puerol A was proved as a reversible, competitive, simple slow-binding inhibitor, according to the respective parameters; k3 = 0.0279 μM−1 min−1 and k4 = 0.003 min−1. A longer lag-phase and a reduced static-state activity of the enzyme explained that puerol A had a tight formation of the complex with Emet. Dose-dependent inhibition was also confirmed by high-performance liquid chromatography (HPLC) analysis using N-acetyl-l-tyrosine as a substrate, which was completely inhibited at 20 μM. A high binding affinity of 1 to tyrosinase was confirmed by fluorescence quenching analysis. Moreover, puerol A decreased melanin content in the B16 melanoma cell dose-dependently with an IC50 of 11.4 μM.
Collapse
Affiliation(s)
- Jeong Ho Kim
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Korea; (J.H.K.); (D.H.J.); (A.B.S.); (K.Z.)
| | - Da Hyun Jang
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Korea; (J.H.K.); (D.H.J.); (A.B.S.); (K.Z.)
| | - Ki Won Lee
- Division of Applied Life Science (BK21 plus), PMBBRC, Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (K.D.K.)
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 plus), PMBBRC, Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (K.D.K.)
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Korea; (J.H.K.); (D.H.J.); (A.B.S.); (K.Z.)
| | - Kamila Zhumanova
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Korea; (J.H.K.); (D.H.J.); (A.B.S.); (K.Z.)
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Korea; (J.H.K.); (D.H.J.); (A.B.S.); (K.Z.)
- Correspondence: ; Tel.: +82-772-1965; Fax: +82-772-1969
| |
Collapse
|
19
|
Murray AF, Satooka H, Shimizu K, Chavasiri W, Kubo I. Polygonum odoratum essential oil inhibits the activity of mushroom derived tyrosinase. Heliyon 2019; 5:e02817. [PMID: 31844734 PMCID: PMC6895583 DOI: 10.1016/j.heliyon.2019.e02817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Plant derived compounds are a source of long term research focus due to their applications in a variety of fields, particularly food preservation. One key way in which phytochemicals are crucial in this area is by disrupting enzyme functionality. In this work, essential oil was extracted by steam distillation from the fresh leaves of Polygonum odoratum (Polygonaceae), commonly known as Vietnamese coriander, and shown to effectively inhibit the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase (EC1.14.18.1). Using GC-MS analysis, twenty five compounds were identified in the essential oil. The most abundant compounds in the essential oil were Alkanals - dodecanal (55.49%), and decanal (11.57%) - followed by anisaldehyde (6.35%); these compounds were individually investigated for inhibitory activity by performing single-compound screening. Each of the top three most abundant compounds inhibited the tyrosinase-catalyzed oxidation of L-DOPA, as identified by UV-VIS spectroscopy and oxygen consumption assays. The inhibitory activity of the major compounds increased when pre-incubated with tyrosinase and without significant additional oxygen consumption, suggesting kcat-type inactivation is not involved. Interactions of the head and tail components of the major alkanals may disrupt the tertiary structure of the enzyme, presenting a potential inhibitory mechanism.
Collapse
Affiliation(s)
- Anne Frances Murray
- Department of Environmental, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Hiroki Satooka
- Department of Environmental, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Warinthorn Chavasiri
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Isao Kubo
- Department of Environmental, Policy and Management, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
|
21
|
Brotzman N, Xu Y, Graybill A, Cocolas A, Ressler A, Seeram NP, Ma H, Henry GE. Synthesis and tyrosinase inhibitory activities of 4-oxobutanoate derivatives of carvacrol and thymol. Bioorg Med Chem Lett 2018; 29:56-58. [PMID: 30446314 DOI: 10.1016/j.bmcl.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
Carvacrol (1) and thymol (2) were converted to their alkyl 4-oxobutanoate derivatives (7-20) in three steps, and evaluated for tyrosinase inhibitory activity. The compounds showed structure-dependent activity, with all alkyl 4-oxobutanoates, except 7 and 20, showing better inhibitory activity than the precursor 4-oxobutanoic acids (5 and 6). In general, thymol derivatives exhibited a higher percent inhibitory activity than carvacrol derivatives at 500 μM. Derivatives containing three-carbon and four-carbon alkyl groups gave the strongest activity (carvacrol derivatives 9-12, IC50 = 128.8-244.1 μM; thymol derivatives 16-19, IC50 = 102.3-191.4 μM).
Collapse
Affiliation(s)
- Nicholas Brotzman
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Yiming Xu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Allison Graybill
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Alexander Cocolas
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Andrew Ressler
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
22
|
Sheng Z, Ge S, Xu X, Zhang Y, Wu P, Zhang K, Xu X, Li C, Zhao D, Tang X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MEDCHEMCOMM 2018; 9:853-861. [PMID: 30108974 PMCID: PMC6071719 DOI: 10.1039/c8md00099a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 01/20/2023]
Abstract
Tyrosinase is a key enzyme in melanin biosynthesis, and is also involved in the enzymatic browning of plant-derived foods. Tyrosinase inhibitors are very important in medicine, cosmetics and agriculture. In order to develop more active and safer tyrosinase inhibitors, an efficient approach is to modify natural product scaffolds. In this work, two series of novel tyrosinase inhibitors were designed and synthesized by the esterification of cinnamic acid derivatives with paeonol or thymol. Their inhibitory effects on mushroom tyrosinase were evaluated. Most of these compounds (IC50: 2.0 to 163.8 μM) are found to be better inhibitors than their parent compounds (IC50: 121.4 to 5925.0 μM). Among them, (E)-2-acetyl-5-methoxyphenyl-3-(4-hydroxyphenyl)acrylate (5a), (E)-2-acetyl-5-methoxyphenyl-3-(4-methoxyphenyl)acrylate (5g) and (E)-2-isopropyl-5-methylphenyl-3-(4-hydroxyphenyl)acrylate (6a) showed strong inhibitory activities; the IC50 values were 2.0 μM, 8.3 μM and 10.6 μM, respectively, compared to the positive control, kojic acid (IC50: 32.2 μM). Analysis of the inhibition mechanism of 5a, 5g and 6a demonstrated that their inhibitory effects on tyrosinase are reversible. The inhibition kinetics, analyzed by Lineweaver-Burk plots, revealed that 5a acts as a non-competitive inhibitor while 5g and 6a are mixed-type inhibitors. Furthermore, docking experiments were carried out to study the interactions between 6a and mushroom tyrosinase.
Collapse
Affiliation(s)
- Zhaojun Sheng
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Siyuan Ge
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| | - Ximing Xu
- Institute of Bioinformatics and Medical Engineering , School of Electrical and Information Engineering , Jiangsu University of Technology , Changzhou 213001 , China
| | - Yan Zhang
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| | - Panpan Wu
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Kun Zhang
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Xuetao Xu
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Chen Li
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| | - Denggao Zhao
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Xiaowen Tang
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| |
Collapse
|
23
|
Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: Structural characterization, inhibitory activity and mechanism. Food Res Int 2017; 100:731-739. [DOI: 10.1016/j.foodres.2017.07.082] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022]
|
24
|
da Silva AP, Silva NDF, Andrade EHA, Gratieri T, Setzer WN, Maia JGS, da Silva JKR. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS One 2017; 12:e0175598. [PMID: 28459864 PMCID: PMC5411033 DOI: 10.1371/journal.pone.0175598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
The essential oils (EOs) of the aerial parts of Lippia origanoides (LiOr), collected in different localities of the Amazon region, were obtained by hydrodistillation and analyzed by GC and CG-MS. Principle component analysis (PCA) based on chemical composition grouped the oils in four chemotypes rich in mono- and sesquiterpenoids. Group I was characterized by 1,8-cineole and α-terpineol (LiOr-1 and LiOr-4) and group II by thymol (LiOr-2). The oil LiOr-3 showed β-caryophyllene, α-phellandrene and β-phellandrene as predominant and LiOr-5 was rich in (E)-nerolidol and β-caryophyllene. All samples were evaluated for antioxidant activity and inhibition of tyrosinase in vitro and in silico. The highest antioxidant activity by the DPPH free radical method was observed in LiOr-2 and LiOr-5 oils (132.1 and 82.7 mg TE∙mL-1, respectively). The tyrosinase inhibition potential was performed using L-tyrosine and L-DOPA as substrates and all samples were more effective in the first step of oxidation. The inhibition by samples LiOr-2 and LiOr-4 were 84.7% and 62.6%, respectively. The samples LiOr-1, LiOr-4 and LiOr-5 displayed an interaction with copper (II) ion with bathochromic shift around 15 nm. In order to elucidate the mechanism of inhibition of the main compounds, a molecular docking study was carried out. All compounds displayed an interaction between an oxygen and Cu or histidine residues with distances less than 4 Å. The best docking energies were observed with thymol and (E)-nerolidol (-79.8 kcal.mol-1), which suggested H-bonding interactions with Met281 and His263 (thymol) and His259, His263 ((E)-nerolidol).
Collapse
Affiliation(s)
- Alessandra P. da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Natália de F. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Tais Gratieri
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, United States of America
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| |
Collapse
|
25
|
Ben Jabeur M, Somai-Jemmali L, Hamada W. Thyme essential oil as an alternative mechanism: biofungicide-causing sensitivity ofMycosphaerella graminicola. J Appl Microbiol 2017; 122:932-939. [DOI: 10.1111/jam.13408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- M. Ben Jabeur
- Laboratory of Genetic and plant amelioration; National Institute of Agronomy; Tunis Tunisia
| | - L. Somai-Jemmali
- Laboratory of Genetic and plant amelioration; National Institute of Agronomy; Tunis Tunisia
| | - W. Hamada
- Laboratory of Genetic and plant amelioration; National Institute of Agronomy; Tunis Tunisia
- Higher School of Agriculture of Kef; Le Kef Tunisia
| |
Collapse
|
26
|
Odonbayar B, Murata T, Batkhuu J, Yasunaga K, Goto R, Sasaki K. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase. JOURNAL OF NATURAL PRODUCTS 2016; 79:3065-3071. [PMID: 28006914 DOI: 10.1021/acs.jnatprod.6b00720] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical investigation of the aerial parts of Atraphaxis frutescens resulted in the isolation of five 7-methoxyflavonols with pyrogallol B-ring moieties (1-5), a fisetinidol glucoside (13), and a benzyl glycoside (18), together with 26 known compounds including flavonoids, phenylpropanoid amides, anthraquinone glycosides, lignans, and a benzyl derivative. The principal chemical structural feature of the isolated compounds was either a pyrogallol or catechol B-ring moiety, and they showed potent 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. To assess the effects of these antioxidants on biological enzymes, their inhibitory effects against an insect phenoloxidase and a mushroom tyrosinase were evaluated. This study indicated that insect phenoloxidase was inhibited by phenylpropanoid amides and that mushroom tyrosinase was inhibited by the characteristic 7-methoxyflavonol 3-O-rhamnopyranosides.
Collapse
Affiliation(s)
- Batsukh Odonbayar
- Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University , 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | - Toshihiro Murata
- Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University , 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia , POB-617, Ulaanbaatar-46A, 14201, Mongolia
| | - Kosho Yasunaga
- Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University , 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | - Rina Goto
- Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University , 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | - Kenroh Sasaki
- Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University , 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
27
|
Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. COSMETICS 2016. [DOI: 10.3390/cosmetics3040036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
28
|
Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. Eur J Nutr 2016; 56:2329-2341. [PMID: 27431894 DOI: 10.1007/s00394-016-1273-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Appearance of brown-like adipocytes within white adipose tissue depots (browning) is associated with improved metabolic phenotypes, and thus a wide variety of dietary agents that contribute to browning of white adipocytes are being studied. The aim of this study was to assess the browning effect of thymol, a dietary monoterpene phenolic compound, in 3T3-L1 white adipocytes. METHODS Thymol-induced fat browning was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR and immunoblot analysis, respectively. Moreover, the molecular mechanism underlying the fat-browning effect of thymol was investigated by determining expression levels of key players responsible for browning in the presence of kinase inhibitors. RESULTS Thymol promoted mitochondrial biogenesis and enhanced expression of a core set of brown fat-specific markers as well as increased protein levels of PPARγ, PPARδ, pAMPK, pACC, HSL, PLIN, CPT1, ACO, PGC-1α, and UCP1, suggesting its possible role in browning of white adipocytes, augmentation of lipolysis, fat oxidation, and thermogenesis, and reduction of lipogenesis. Increased expression of UCP1 and other brown fat-specific markers by thymol was tightly coordinated with activation of β3-AR as well as AMPK, PKA, and p38 MAPK. CONCLUSION Our findings suggest that 3T3-L1 is a potential cell model for screening browning agents. Thymol plays multiple modulatory roles in the form of inducing the brown-like phenotype as well as enhancing lipid metabolism. Thus, thymol may be explored as a potentially promising food additive for prevention of obesity.
Collapse
|
29
|
Fiocco D, Arciuli M, Arena MP, Benvenuti S, Gallone A. Chemical composition and the anti-melanogenic potential of different essential oils. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine; University of Foggia; Foggia Italy
| | - Marcella Arciuli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs; University of Bari; Bari Italy
| | - Mattia Pia Arena
- Department of Clinical and Experimental Medicine; University of Foggia; Foggia Italy
- Department of Agriculture, Food and Environmental Science; University of Foggia; Foggia Italy
| | - Stefania Benvenuti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs; University of Bari; Bari Italy
| |
Collapse
|
30
|
Dai M, Huang T, Chao L, Tan Y, Chen C, Meng W, Xie Q. Tyrosinase-catalyzed polymerization of l-DOPA (versusl-tyrosine and dopamine) to generate melanin-like biomaterials for immobilization of enzymes and amperometric biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra27478h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tyrosinase-catalyzed polymerization of l-DOPA (versusl-tyrosine and dopamine) is recommended as an excellent system to immobilize enzymes for amperometric biosensing of catechol and glucose.
Collapse
Affiliation(s)
- Mengzhen Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Long Chao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Wenhua Meng
- Hunan Normal University Hospital
- Changsha 410081
- China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| |
Collapse
|
31
|
Ceylan R, Zengin G, Uysal S, Ilhan V, Aktumsek A, Kandemir A, Anwar F. GC-MS analysis and in vitro antioxidant and enzyme inhibitory activities of essential oil from aerial parts of endemic Thymus spathulifolius Hausskn. et Velen. J Enzyme Inhib Med Chem 2015; 31:983-90. [PMID: 26327330 DOI: 10.3109/14756366.2015.1077822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the antioxidant and enzyme inhibitory activities and chemical composition of the hydro-distilled essential oil (0.35% yield) from aerial parts of Thymus spathulifolius. Antioxidant capacity of the oil was assessed by different methods including free radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC) and phosphomolybdenum assay. Inhibitory activities were analyzed against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, and tyrosinase. Twenty-one constituents were identified representing 97.2% of the total oil with thymol (50.5%), borneol (16.7%) and carvacrol (7.7%) as the major components. The essential oil exhibited good antioxidant activity with IC50 values of 3.82 and 0.22 mg/mL determined by free radical scavenging DPPH and ABTS, respectively. EC50 values of FRAP and CUPRAC were found to be 0.12 and 0.34 mg/mL, respectively. The results of the present study support the uses of T. spathulifolius essential oil as a source of natural antioxidants and bioactivities for functional foods and phytomedicines.
Collapse
Affiliation(s)
- Ramazan Ceylan
- a Department of Biology, Science Faculty , Selcuk University , Konya , Turkey
| | - Gokhan Zengin
- a Department of Biology, Science Faculty , Selcuk University , Konya , Turkey
| | - Sengul Uysal
- a Department of Biology, Science Faculty , Selcuk University , Konya , Turkey
| | - Veli Ilhan
- b Department of Biology, Science and Arts Faculty , Erzincan University , Erzincan , Turkey
| | | | - Ali Kandemir
- b Department of Biology, Science and Arts Faculty , Erzincan University , Erzincan , Turkey
| | - Farooq Anwar
- c Department of Chemistry , University of Sargodha , Sargodha , Pakistan , and.,d Department of Pharmaceutical Chemistry , College of Pharmacy, Salman bin Abdulaziz University , Al-Kharj , Saudi Arabia
| |
Collapse
|
32
|
Ashraf Z, Rafiq M, Seo SY, Kwon KS, Babar MM, Zaidi NUSS. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur J Med Chem 2015; 98:203-11. [PMID: 26025140 DOI: 10.1016/j.ejmech.2015.05.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
Abstract
The present studies reports the synthesis of hydoxylated thymol analogues (4a-e) and (6a-c) as mushroom tyrosinase inhibitors. The title compounds were obtained in good yield and characterized by FTIR, (1)H NMR, (13)C NMR, Mass spectral data and X-ray crystallography in case of compound (6a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6b) showed tyrosinase inhibitory activity (IC50 15.20 μM) comparable to kojic acid (IC50 16.69 μM) while 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate (4d) exhibited higher antioxidant potential (IC50 11.30 μM) than standard ascorbic acid (IC50 24.20 μM). The docking studies of synthesized thymol analogues was also performed against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC50 values. The predicted binding affinities are in good agreement with the IC50 values as compound (6b) showed highest binding affinity -7.1 kcal/mol. The kinetic mechanism analyzed by Lineweaver-Burk plots exhibited that compound (4d) and (6b) inhibit the enzyme by two different pathways displayed mixed-type inhibition. The inhibition constants Ki calculated from Dixon plots for compounds (4d) and (6b) are 34 μM and 25 μM respectively. It was also found from kinetic analysis that derivative (6b) formed reversible enzyme inhibitor complex. It is propose on the basis of our investigation that title compound (6b) may serve as lead structure for the design of more potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Zaman Ashraf
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea; Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Muhammad Rafiq
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea.
| | - Kang Sung Kwon
- Department of Chemistry, Chungnam National University Daejeon, 305-764, Republic of Korea
| | - Mustafeez Mujtaba Babar
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Kashmir Highway, Islamabad, 44000, Pakistan
| | | |
Collapse
|
33
|
Kim DY, Won KJ, Yoon MS, Yu HJ, Park JH, Kim B, Lee HM. Chrysanthemum boreale flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells. PHARMACEUTICAL BIOLOGY 2015; 53:725-734. [PMID: 25330930 DOI: 10.3109/13880209.2014.941882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Chrysanthemum boreale Makino (Compositae) (CBM) is a traditional medicine that has been used for the prevention or treatment of various disorders; it has various properties including antioxidation, anti-inflammation, and antitumor. OBJECTIVE The present study was designed to explore the in vitro effect of CBM flower floral water (CBMFF) on atherosclerosis-related responses in rat aortic smooth muscle cells (RASMCs). MATERIALS AND METHODS CBMFF was extracted from CBM flower by steam distillation and analyzed using gas chromatography-mass spectrometry. The anti-atherosclerosis activity of CBMFF was tested by estimating platelet-derived growth factor (PDGF)-BB (10 ng/mL)-induced proliferation and migration levels and intracellular kinase pathways in RASMCs at CBMFF concentrations of 0.01-100 μM and analyzing ex vivo aortic ring assay. RESULTS Gas chromatography-mass spectrometry showed that the CBMFF contained a total of seven components. The CBMFF inhibits PDGF-BB-stimulated RASMC migration and proliferation (IC50: 0.010 μg/mL). Treatment of RASMCs with PDGF-BB induced PDGFR-β phosphorylation and increased the phosphorylations of MAPK p38 and ERK1/2. CBMFF addition prevented PDGF-BB-induced phosphorylation of these kinases (IC50: 008 and 0.018 μg/mL, for p38 MAPK and ERK1/2, respectively), as well as PDGFR-β (IC50: 0.046 μg/mL). Treatment with inhibitors of PDGFR, P38 MAPK, and ERK1/2 decreased PDGF-BB-increased migration and proliferation in RASMCs. Moreover, the CBMFF suppressed PDGF-BB-increased sprout outgrowth of aortic rings (IC50: 0.047 μg/mL). DISCUSSION AND CONCLUSION These results demonstrate that CBMFF may inhibit PDGF-BB-induced vascular migration and proliferation, most likely through inhibition of the PDGFR-β-mediated MAPK pathway; therefore, the CBMFF may be promising candidate for the development of herbal remedies for vascular disorders.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cells, Cultured
- Chrysanthemum
- Dose-Response Relationship, Drug
- Flowers
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Rats, Sprague-Dawley
- Water/pharmacology
Collapse
Affiliation(s)
- Do-Yoon Kim
- Department of Cosmetic Science, College of Natural Science, Hoseo University , Asan, Chungnam Prefecture , Republic of Korea and
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Ortiz-Ruiz CV, Garcia-Molina MDM, Serrano JT, Tomas-Martinez V, Garcia-Canovas F. Discrimination between alternative substrates and inhibitors of tyrosinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2162-2171. [PMID: 25665009 DOI: 10.1021/jf5051816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many phenolic compounds have been described in the scientific literature as inhibitors of tyrosinase. In this work a test is proposed that allows us to distinguish whether a molecule is an enzyme inhibitor or substrate. The test has several stages. First, the degree of inhibition of the studied molecule is determined on the monophenolase activity (i(M)) and on the diphenolase activity (i(D)). If i(M) = i(D), it is an inhibitor. If i(M) ≠ i(D), the molecule could be substrate or inhibitor. Several additional stages are proposed to solve this ambiguity. The study described herein was carried out using the following molecules: benzoic acid, cinnamic acid, guaiacol, isoeugenol, carvacrol, 4-tert-butylphenol, eugenol, and arbutin.
Collapse
Affiliation(s)
- Carmen Vanessa Ortiz-Ruiz
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , 0100 Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
36
|
Zou Y, Hu W, Ma K, Tian M. Physicochemical properties and antioxidant activities of melanin and fractions from Auricularia auricula fruiting bodies. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0003-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Javan AJ, Javan MJ. Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study. Food Chem 2014; 165:451-9. [DOI: 10.1016/j.foodchem.2014.05.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/06/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022]
|
38
|
Wang S, Liu XM, Zhang J, Zhang YQ. An efficient preparation of mulberroside a from the branch bark of mulberry and its effect on the inhibition of tyrosinase activity. PLoS One 2014; 9:e109396. [PMID: 25299075 PMCID: PMC4192315 DOI: 10.1371/journal.pone.0109396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022] Open
Abstract
A bioactive ingredient in an ethanol extract from the branch bark of cultivated mulberry Husang-32 (Morus multicaulis Perr.) was isolated using a macroporous resin column. The primary component, which was purified by semi-preparative high-performance liquid chromatography diode array detection (HPLC-DAD), was identified as mulberroside A (MA) by liquid chromatograph-mass spectrometer (LC-MS), 1H and 13C nuclear magnetic resonance (NMR) spectra. In total, 4.12 g MA was efficiently extracted from one kilogram of mulberry bark. The enzymatic analysis showed that MA inhibited the generation of dopachrome by affecting the activities of monophenolase and diphenolase of tyrosinase in vitro. This analysis indicated that MA and oxyresveratrol (OR), which is the the aglycone of mulberroside A, exhibited strong inhibition of the monophenolase activity with IC50 values of 1.29 µmol/L and 0.12 µmol/L, respectively. However, the former showed weaker inhibitory activity than the latter for diphenolase. For the monophenolase activity, the inhibitory activity of MA and OR was reversible and showed mixed type 1 inhibition. Additionally, the inhibition constant KI (the inhibition constant of the effectors on tyrosinase) values were 0.385 µmol/L and 0.926 µmol/L, respectively, and the KIS (the inhibition constants of the enzyme-substrate complex) values were 0.177 µmol/L and 0.662 µmol/L, respectively. However, MA showed competitive inhibition of diphenolase activity, and KI was 4.36 µmol/L. In contrast, OR showed noncompetitive inhibition and KI = KIS = 2.95 µmol/L. Taken together, these results provide important information concerning the inhibitory mechanism of MA on melanin synthesis, which is widely used in whitening cosmetics.
Collapse
Affiliation(s)
- Shu Wang
- Silk Biotechnology Laboratory, School of Basic Medical and Biological Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
| | - Xian-Ming Liu
- Silk Biotechnology Laboratory, School of Basic Medical and Biological Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
| | - Jian Zhang
- College of Pharmaceutical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
- * E-mail: (JZ); (YQZ)
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Basic Medical and Biological Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
- * E-mail: (JZ); (YQZ)
| |
Collapse
|
39
|
Hydrogen peroxide helps in the identification of monophenols as possible substrates of tyrosinase. Biosci Biotechnol Biochem 2013; 77:2383-8. [PMID: 24317051 DOI: 10.1271/bbb.130500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tyrosinase exists in three forms in the catalytic cycle depending on the oxidation state of the copper: met- (Em), oxy- (E(ox)), and deoxy- (Ed). When O-quinones, products of the enzymatic reaction, evolve chemically to generate an O-diphenol in the reaction medium, the enzyme acts on a monophenol with O-diphenol as reductant, converting Em to Ed. The binding of Ed to molecular oxygen gives E(ox), which is active on monophenols, but when the O-quinone product does not generate O-diphenol through chemical evolution, the monophenol does not act as an enzyme substrate. The fact that E(ox) can be formed from Em with hydrogen peroxide can be used to help identify whether a monophenol is a substrate of tyrosinase. The results obtained in this study confirm that compounds previously described as inhibitors of the enzyme are true substrates of it.
Collapse
|
40
|
Aydın E, Türkez H. In vitrocytotoxicity, genotoxicity and antioxidant potentials of thymol on human blood cells. JOURNAL OF ESSENTIAL OIL RESEARCH 2013. [DOI: 10.1080/10412905.2013.860411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Lin YF, Hu YH, Lin HT, Liu X, Chen YH, Zhang S, Chen QX. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2889-95. [PMID: 23427826 DOI: 10.1021/jf305481h] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tyrosinase (EC 1.14.18.1), also known as polyphenol oxidase (PPO), is a key enzyme in pigment biosynthesis of organisms. The inhibitory effects of propyl gallate on the activity of mushroom tyrosinase and effects of propyl gallate on pericarp browning of harvested longan fruits in relation to phenolic metabolism were investigated. The results showed that propyl gallate could potently inhibit diphenolase activity of tyrosinase. The inhibitor concentration leading to 50% activity lost (IC50) was determined to be 0.685 mM. Kinetic analyses showed that propyl gallate was a reversible and mixed type inhibitor on this enzyme. The inhibition constants (K(IS) and K(I)) were determined to be 2.135 and 0.661 mM, respectively. Furthermore, the results also showed that propyl gallate treatment inhibited activities of PPO and POD in pericarp of harvested longan fruits, and maintained higher contents of total phenol and flavonoid of longan pericarp. Moreover, propyl gallate treatment also delayed the increases of browning index and browning degree in pericarp of harvested longan fruits. Therefore, application of propyl gallate may be a promising method for inhibiting tyrosinase activity, controlling pericarp browning, and extending shelf life of harvested longan fruits.
Collapse
Affiliation(s)
- Yi-Fen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Garcia-Molina MDM, Muñoz-Muñoz JL, Garcia-Molina F, García-Ruiz PA, Garcia-Canovas F. Action of tyrosinase on ortho-substituted phenols: possible influence on browning and melanogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6447-53. [PMID: 22670832 DOI: 10.1021/jf301238q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The action of tyrosinase on ortho-substituted monophenols (thymol, carvacrol, guaiacol, butylated hydroxyanisole, eugenol, and isoeugenol) was studied. These monophenols inhibit melanogenesis because they act as alternative substrates to L-tyrosine and L-Dopa in the monophenolase and diphenolase activities, respectively, despite the steric hindrance on the part of the substituent in ortho position with respect to the hydroxyl group. We kinetically characterize the action of tyrosinase on these substrates and assess its possible effect on browning and melanognesis. In general, these compounds are poor substrates of the enzyme, with high Michaelis constant values, K(m), and low catalytic constant values, k(cat), so that the catalytic efficiency k(cat)/K(m) is low: thymol, 161 ± 4 M(-1) s(-1); carvacrol, 95 ± 7 M(-1) s(-1); guaiacol, 1160 ± 101 M(-1) s(-1).
Collapse
Affiliation(s)
- Maria del Mar Garcia-Molina
- GENZ: Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia , E-30100, Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
43
|
Loizzo MR, Tundis R, Menichini F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2012.00191.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Satooka H, Kubo I. Effects of thymol on B16-F10 melanoma cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2746-2752. [PMID: 22352891 DOI: 10.1021/jf204525b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aromatic monoterpene, thymol, shows several beneficial activities, such as an antioxidative effect. However, the mechanism of its toxicity remains to be fully defined. In preliminary studies, thymol was characterized as a melanin formation inhibitor in an enzymatic system; however, thymol showed moderate cytotoxicity but not an antimelanogenic effect on B16-F10 melanoma cells. Thymol exhibited cytotoxicity, with an IC(50) value of 400 μM (60.09 μg/mL). This moderate toxic effect was suppressed with the addition of vitamin C and vitamin D, and 20 and 40% of cell viability was increased, respectively. Subsequently, the treatment of L-cysteine on thymol-treated melanoma cells reversed the toxic effect of thymol. Moreover, a significant oxidative stress condition was observed when B16 melanoma cells were cultured with thymol. In conclusion, the antioxidant actions of thymol generate a stable phenoxy radical intermediate, which generates reactive oxygen species and quinone oxide derivatives. Thus, it is proposed that the primary mechanism of thymol toxicity at high doses is due to the formation of antioxidant-related radicals.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States.
| | | |
Collapse
|
45
|
Surwase SN, Patil SA, Apine OA, Jadhav JP. Efficient Microbial Conversion of l-Tyrosine to l-DOPA by Brevundimonas sp. SGJ. Appl Biochem Biotechnol 2012; 167:1015-28. [DOI: 10.1007/s12010-012-9564-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|