1
|
Gulyas BZ, Mogeni B, Jackson P, Walton J, Caton SJ. Biofortification as a food-based strategy to improve nutrition in high-income countries: a scoping review. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39269149 DOI: 10.1080/10408398.2024.2402998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Biofortification (increasing the micronutrient content of food before harvest) has been successfully used to nutritionally improve staple foods in low- and middle-income countries. This approach could also help address micronutrient shortfalls in at-risk populations in high-income countries (HICs), however, the potential of biofortification interventions in this context is not well understood. The aim of this scoping review is to assess the nature and extent of available research evidence on biofortified foods in relation to human consumption in HICs. Literature searches were conducted in MEDLINE, WoS, ProQuest, CINAHL, AGRIS and Epistemonikos. Forty-six peer-reviewed articles were included. Most research was conducted in the USA (n = 15) and Italy (n = 11), on cereal crops (n = 14) and vegetables (n = 11), and on selenium (n = 12) and provitamin A (n = 11). Seven research domains were identified in the literature: bioavailability (n = 17); nutrient stability (n = 11); opinions and attitudes (n = 9); functionality (n = 9); sensory properties (n = 2); safety (n = 1); and modeling (n = 1). Evidence from HICs in each domain is limited. There is a need for more research particularly in areas sensitive to the cultural and socio-economic context.
Collapse
Affiliation(s)
- Boglarka Z Gulyas
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Brenda Mogeni
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Peter Jackson
- Institute for Sustainable Food, University of Sheffield, Sheffield, UK
| | - Jenny Walton
- Commercialization and Scaling, HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Samantha J Caton
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
3
|
Knez M, Stangoulis JCR. Dietary Zn deficiency, the current situation and potential solutions. Nutr Res Rev 2023; 36:199-215. [PMID: 37062532 DOI: 10.1017/s0954422421000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zinc (Zn) deficiency is a worldwide problem, and this review presents an overview of the magnitude of Zn deficiency with a particular emphasis on present global challenges, current recommendations for Zn intake, and factors that affect dietary requirements. The challenges of monitoring Zn status are clarified together with the discussion of relevant Zn bioaccessibility and bioavailability issues. Modern lifestyle factors that may exacerbate Zn deficiency and new strategies of reducing its effects are presented. Biofortification, as a potentially useful strategy for improving Zn status in sensitive populations, is discussed. The review proposes potential actions that could deliver promising results both in terms of monitoring dietary and physiological Zn status as well as in alleviating dietary Zn deficiency in affected populations.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
- Center of Research Excellence in Nutrition and Metabolism, University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, 11000Belgrade, Serbia
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
| |
Collapse
|
4
|
Jin Z, Peng S, Nie L. Active compounds: A new direction for rice value addition. Food Chem X 2023; 19:100781. [PMID: 37780340 PMCID: PMC10534106 DOI: 10.1016/j.fochx.2023.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 10/03/2023] Open
Abstract
The development of rice active compounds is conducive to improving the added value of rice. This paper focused on the types and effects of active compounds in rice. Furthermore, it summarized the effect of rice storage and processing technology on rice active compounds. We conclude the following: Rice contains a large number of active compounds that are beneficial to humans. At present, the research on the action mechanism of rice active compounds on the human body is not deep enough, and the ability to deeply process rice is insufficient, greatly limiting the development of the rice active compound industry. To maximize the added value of rice, it is necessary to establish a dedicated preservation and processing technology system based on the physicochemical properties of the required active compounds. Additionally, attention should be paid to the development and application of composite technologies during the development of the rice active compound industry.
Collapse
Affiliation(s)
- Zhaoqiang Jin
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Shaobing Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lixiao Nie
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| |
Collapse
|
5
|
Zinc Fortification: Current Trends and Strategies. Nutrients 2022; 14:nu14193895. [PMID: 36235548 PMCID: PMC9572300 DOI: 10.3390/nu14193895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc, through its structural and cofactor roles, affects a broad range of critical physiological functions, including growth, metabolism, immune and neurological functions. Zinc deficiency is widespread among populations around the world, and it may, therefore, underlie much of the global burden of malnutrition. Current zinc fortification strategies include biofortification and fortification with zinc salts with a primary focus on staple foods, such as wheat or rice and their products. However, zinc fortification presents unique challenges. Due to the influences of phytate and protein on zinc absorption, successful zinc fortification strategies should consider the impact on zinc bioavailability in the whole diet. When zinc is absorbed with food, shifts in plasma zinc concentrations are minor. However, co-absorbing zinc with food may preferentially direct zinc to cellular compartments where zinc-dependent metabolic processes primarily occur. Although the current lack of sensitive biomarkers of zinc nutritional status reduces the capacity to assess the impact of fortifying foods with zinc, new approaches for assessing zinc utilization are increasing. In this article, we review the tools available for assessing bioavailable zinc, approaches for evaluating the zinc nutritional status of populations consuming zinc fortified foods, and recent trends in fortification strategies to increase zinc absorption.
Collapse
|
6
|
Low-volume procedure to determine phytate and ascorbic acid in potatoes: standardization and analysis of Indian cultivars. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wang Y, Meng Y, Ma Y, Liu L, Wu D, Shu X, Pan L, Lai Q. Combination of High Zn Density and Low Phytic Acid for Improving Zn Bioavailability in Rice (Oryza stavia L.) Grain. RICE (NEW YORK, N.Y.) 2021; 14:23. [PMID: 33638799 PMCID: PMC7914331 DOI: 10.1186/s12284-021-00465-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/12/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Zn deficiency is one of the leading public health problems in the world. Staple food crop, such as rice, cannot provide enough Zn to meet the daily dietary requirement because Zn in grain would chelate with phytic acid, which resulted in low Zn bioavailability. Breeding new rice varieties with high Zn bioavailability will be an effective, economic and sustainable strategy to alleviate human Zn deficiency. RESULTS The high Zn density mutant LLZ was crossed with the low phytic acid mutant Os-lpa-XS110-1, and the contents of Zn and phytic acid in the brown rice were determined for the resulting progenies grown at different sites. Among the hybrid progenies, the double mutant always displayed significantly higher Zn content and lower phytic acid content in grain, leading to the lowest molar ratio of phytic acid to Zn under all environments. As assessed by in vitro digestion/Caco-2 cell model, the double mutant contained the relatively high content of bioavailable Zn in brown rice. CONCLUSIONS Our findings suggested pyramiding breeding by a combination of high Zn density and low phytic acid is a practical and useful approach to improve Zn bioavailability in rice grain.
Collapse
Affiliation(s)
- Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, China.
| | - Yusha Meng
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, China
| | - Yanping Ma
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, China
| | - Lei Liu
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Liqing Pan
- Yuyao County Agricultural Techniques Promotion and Service Station, Yuyao Agricultural and Rural Bureau, Ningbo, 315400, China
| | - Qixian Lai
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, China
| |
Collapse
|
8
|
Biological Application of a Fluorescent Zinc Sensing Probe for the Analysis of Zinc Bioavailability Using Caco-2 Cells as an In-Vitro Cellular Model. J Fluoresc 2020; 30:1553-1565. [PMID: 32946027 DOI: 10.1007/s10895-020-02608-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Zinc is essential for growth and development of all living organisms, especially human being. Deficiency of micronutrients like zinc and iron has been linked to the manifestation of hidden hunger. Therefore, it is imperative that development of some rapid screening method for bioavailable zinc in various crops and food commodities would be an essential addition in battle against zinc deficiency related hidden hunger. One such method could be the usage of fluorescence based zinc ion sensing probe which would be robust and convenient for estimating bioavailable zinc. To address this issue, NBD-TPEA, a highly sensitive zinc ion sensing probe, have been used in this study towards the development of a novel fluorescence based approach for the analysis of zinc bioavailability in Caco-2 cells as an in-vitro cellular model. The use of this probe showed dose dependent sensitivity towards increasing concentrations of zinc ion uptake by Caco-2 cells. It also showed specificity for zinc ion uptake as compared to other metal ions in-vitro. These observations correlated extremely well with zinc uptake analysis by cell imaging and conventional analytical technique like, ICP-MS. The developed assay was then tested in mushroom and some selected biofortified derivatives of wheat for determining the levels of their bioavailable zinc using Caco-2 cells. The data as obtained with these food samples in our developed bioassay correlated well with the other sophisticated analytical techniques thus validating our cell based assay. Hence, the developed assay could serve as a simple but sensitive tool for determining bioavailable zinc in various food samples.
Collapse
|
9
|
Sanjeeva Rao D, Neeraja CN, Madhu Babu P, Nirmala B, Suman K, Rao LVS, Surekha K, Raghu P, Longvah T, Surendra P, Kumar R, Babu VR, Voleti SR. Zinc Biofortified Rice Varieties: Challenges, Possibilities, and Progress in India. Front Nutr 2020; 7:26. [PMID: 32318582 PMCID: PMC7154074 DOI: 10.3389/fnut.2020.00026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Zinc malnutrition is a major issue in developing countries where polished rice is a staple food. With the existing significant genetic variability for high zinc in polished rice, the development of biofortified rice varieties was targeted in India with support from HarvestPlus, Department of Biotechnology, and Indian Council of Agricultural Research of Government of India. Indian Institute of Rice Research (IIRR) facilitates rice varietal release through All India Coordinated Rice Improvement Project (AICRIP) and also supports rice biofortification program in India. Various germplasm sets of several national institutions were characterized at IIRR for their zinc content in brown rice using energy-dispersive X-ray fluorescence spectroscopy indicating the range of zinc to be 7.3 to 52.7 mg/kg. Evaluation of different mapping populations involving wild germplasm, landraces, and varieties for their zinc content showed the feasibility of favorable recombination of high zinc content and yield. Ninety-nine genotypes from germplasm and 344 lines from mapping populations showed zinc content of ≥28 mg/kg in polished rice meeting the target zinc content set by HarvestPlus. Through AICRIP biofortification trial constituted since 2013, 170 test entries were nominated by various national institutions until 2017, and four biofortified rice varieties were released. Only the test entry with target zinc content, yield, and quality parameters is promoted to the next year; thus, each test entry is evaluated for 3 years across 17 to 27 locations for their performance. Multilocation studies of two mapping populations and AICRIP biofortification trials indicated the zinc content to be highly influenced by environment. The bioavailability of a released biofortified rice variety, viz., DRR Dhan 45 was found to twice that of control IR64. The technology efficacy of the four released varieties developed through conventional breeding ranged from 48 to 75% with zinc intake of 38 to be 47% and 46 to 57% of the RDA for male and female, respectively. The observations from the characterization of germplasm and mapping populations for zinc content and development of national evaluation system for the release of biofortified rice varieties have been discussed in the context of the five criteria set by biofortification program.
Collapse
Affiliation(s)
- D Sanjeeva Rao
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - C N Neeraja
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - P Madhu Babu
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - B Nirmala
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - K Suman
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - L V Subba Rao
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - K Surekha
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - P Raghu
- ICMR-National Institute of Nutrition, Hyderabad, India
| | - T Longvah
- ICMR-National Institute of Nutrition, Hyderabad, India
| | - P Surendra
- Agricultural Research Station, University of Agricultural Sciences-D, Bangalore, India
| | - Rajesh Kumar
- Department of Plant Breeding and Genetics, AICRIP (Rice), Rajendra Agricultural University, Samastipur, India
| | | | - S R Voleti
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| |
Collapse
|
10
|
Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020; 12:E762. [PMID: 32183116 PMCID: PMC7146416 DOI: 10.3390/nu12030762] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc absorption in the small intestine is one of the main mechanisms regulating the systemic homeostasis of this essential trace element. This review summarizes the key aspects of human zinc homeostasis and distribution. In particular, current knowledge on human intestinal zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed. Their investigation is increasingly performed using in vitro cellular intestinal models, which are continually being refined and keep gaining importance for studying zinc uptake and transport via the human intestinal epithelium. The vast majority of these models is based on the human intestinal cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis is placed on summarizing previous applications as well as key results of these models, comparing their results to data obtained in humans, and discussing their advantages and limitations.
Collapse
Affiliation(s)
- Maria Maares
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| |
Collapse
|
11
|
Maares M, Duman A, Keil C, Schwerdtle T, Haase H. The impact of apical and basolateral albumin on intestinal zinc resorption in the Caco-2/HT-29-MTX co-culture model. Metallomics 2019; 10:979-991. [PMID: 29931006 DOI: 10.1039/c8mt00064f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of intestinal zinc resorption and its regulation are still topics of ongoing research. To this end, the application of suitable in vitro intestinal models, optimized with regard to their cellular composition and medium constituents, is of crucial importance. As one vital aspect, the impact of cell culture media or buffer compounds, respectively, on the speciation and cellular availability of zinc has to be considered when investigating zinc resorption. Thus, the present study aims to investigate the impact of serum, and in particular its main constituent serum albumin, on zinc uptake and toxicity in the intestinal cell line Caco-2. Furthermore, the impact of serum albumin on zinc resorption is analyzed using a co-culture of Caco-2 cells and the mucin-producing goblet cell line HT-29-MTX. Apically added albumin significantly impaired zinc uptake into enterocytes and buffered its cytotoxicity. Yet, undigested albumin does not occur in the intestinal lumen in vivo and impairment of zinc uptake was abrogated by digestion of albumin. Interestingly, zinc uptake, as well as gene expression studies of mt1a and selected intestinal zinc transporters after zinc incubation for 24 h, did not show significant differences between 0 and 10% serum. Importantly, the basolateral application of serum in a transport study significantly enhanced fractional apical zinc resorption, suggesting that the occurrence of a zinc acceptor in the plasma considerably affects intestinal zinc resorption. This study demonstrates that the apical and basolateral medium composition is crucial when investigating zinc, particularly its intestinal resorption, using in vitro cell culture.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | | | | | | | | |
Collapse
|
12
|
Wahengbam ED, Das AJ, Green BD, Hazarika MK. Studies on in vitro bioavailability and starch hydrolysis in zinc fortified ready-to-eat parboiled rice ( komal chawal). Journal of Food Science and Technology 2019; 56:3399-3407. [PMID: 31274908 DOI: 10.1007/s13197-019-03824-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Abstract
Zinc fortified parboiled rice (komal chawal) was produced from a low amylose variety of rice by applying 'brown rice parboiling' method. In addition to the effect of milling on fortification, the effectiveness of fortification upon the amount of bioaccessible (in vitro digest) and bioavailable (cellular uptake) form of Zn was tested. The effect on glycaemic index was also assessed by employing an in vitro starch hydrolysis assay. The bioaccessible form of Zn in the unmilled fortified rice were ranged in between 4.24 and 11.07 mg/100 g, which was significantly higher (p < 0.05) than the milled and unfortified parboiled rice. Similarly, the % absorption of bioavailable Zn was negligible in the unfortified parboiled rice as compared to the fortified rice (14.5-24.5%). The estimated GI of fortified parboiled rice samples was in the range of 50.97-59.79, which was lower than the unfortified parboiled rice (58.80-62.53) and raw rice (78.71-84.64). The results thus demonstrated that Zn fortified komal chawal can be a novel and rapidly produced micronutrient enhanced ready-to-eat rice.
Collapse
Affiliation(s)
- Elizabeth D Wahengbam
- 1Department of Food Engineering and Technology, Tezpur University, Assam, 784028 India
| | - Arup Jyoti Das
- 1Department of Food Engineering and Technology, Tezpur University, Assam, 784028 India
| | - Brian D Green
- 2Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5HN UK
| | - Manuj K Hazarika
- 1Department of Food Engineering and Technology, Tezpur University, Assam, 784028 India
| |
Collapse
|
13
|
Knez M, Tako E, Glahn RP, Kolba N, de Courcy-Ireland E, Stangoulis JCR. Linoleic Acid:Dihomo-γ-Linolenic Acid Ratio Predicts the Efficacy of Zn-Biofortified Wheat in Chicken (Gallus gallus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1394-1400. [PMID: 29359556 DOI: 10.1021/acs.jafc.7b04905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The amount of Zn absorbed from Zn-biofortified wheat material has been determined using an in vivo model of Zn absorption. The erythrocyte linoleic:dihomo -γ-linolenic acid (LA:DGLA) ratio was used as a biomarker of Zn status. Two groups of chickens (n = 15) were fed different diets: a high-Zn (46.5 μg Zn g-1) and a low-Zn wheat-based diet (32.8 μg Zn g-1). Dietary Zn intakes, body weight, serum Zn, and the erythrocyte fatty acid profile were measured, and tissues were taken for gene expression analysis. Serum Zn concentrations were greater in the high Zn group (p < 0.05). Duodenal mRNA expression of various Zn transporters demonstrated expression upregulation in the birds fed a low Zn diet (n = 15, p < 0.05). The LA:DGLA ratio was higher in the birds fed the low Zn diet (p < 0.05). The higher amount of Zn in the biofortified wheat resulted in a greater Zn uptake.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University , GPO Box 2100, Adelaide SA 5001, Australia
| | - Elad Tako
- USDA/ARS, Robert W. Holley Centre for Agriculture and Health, Cornell University , Ithaca, New York 14853, United States
| | - Raymond P Glahn
- USDA/ARS, Robert W. Holley Centre for Agriculture and Health, Cornell University , Ithaca, New York 14853, United States
| | - Nikolai Kolba
- USDA/ARS, Robert W. Holley Centre for Agriculture and Health, Cornell University , Ithaca, New York 14853, United States
| | - Emma de Courcy-Ireland
- College of Science and Engineering, Flinders University , GPO Box 2100, Adelaide SA 5001, Australia
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University , GPO Box 2100, Adelaide SA 5001, Australia
| |
Collapse
|
14
|
Kumar A, Lal MK, Kar SS, Nayak L, Ngangkham U, Samantaray S, Sharma SG. Bioavailability of iron and zinc as affected by phytic acid content in rice grain. J Food Biochem 2017. [DOI: 10.1111/jfbc.12413] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Lin L, Zheng F, Zhou H, Li S. Biomimetic Gastrointestinal Tract Functions for Metal Absorption Assessment in Edible Plants: Comparison to In Vivo Absorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6282-6287. [PMID: 28685577 DOI: 10.1021/acs.jafc.7b02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A biomimetic gastrointestinal tract, including in vitro digestion and biomimetic biomembrane extraction, has been proposed for absorption assessment of metals from edible plants. However, its validity is still unknown. Herein, two species of edible plants, Anoectochilus roxburghii and Radix astragali, were selected and digested in a bionic mouth, stomach, and intestine, and then trace metals (Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, As, and Pb) were transformed to their final metal species. To check model predictability, in vitro and in vivo metal absorption were imitated and tested by monolayer liposome extraction and rat stomach or single-pass duodenal intestine, respectively. A strong correlation was established between in vivo and in vitro metal absorption ratios, with 0.89 > R2 > 0.66, and a significant relationship (p < 0.05) was exhibited for stomach, intestine, two plant species, and 10 metal species. Our biomimetic system could be used as low-cost alternatives to animal and clinical studies for multi-metal absorption.
Collapse
Affiliation(s)
- Luxiu Lin
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| | - Fengying Zheng
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| | - Haifeng Zhou
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| | - Shunxing Li
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| |
Collapse
|
16
|
Dias DM, Costa NMB, Nutti MR, Tako E, Martino HSD. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. Crit Rev Food Sci Nutr 2017; 58:2136-2146. [PMID: 28414527 DOI: 10.1080/10408398.2017.1306484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe). Therefore, assessing iron and zinc bioavailability in biofortified crops is imperative to evaluate the efficacy of breeding programs. This review aimed to investigate the advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. In vitro, animal and isotopic human studies have shown high iron and zinc bioavailability in biofortified staple food crops. Human studies provide direct knowledge regarding the effectiveness of biofortification, however, human studies are time consuming and are more expensive than in vitro and animal studies. Moreover, in vitro studies may be a useful preliminary screening method to identify promising plant cultivars, however, these studies cannot provide data that are directly applicable to humans. None of these methods provides complete information regarding mineral bioavailability, thus, a combination of these methods should be the most appropriate strategy to investigate the effectiveness of zinc and iron biofortification programs.
Collapse
Affiliation(s)
- Desirrê Morais Dias
- a Department of Nutrition and Health , Federal University of Viçosa , Viçosa , Minas Gerais , Brazil
| | - Neuza Maria Brunoro Costa
- b Department of Pharmacy and Nutrition , Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alto Universitario , Alegre , ES , Brazil
| | - Marilia Regini Nutti
- c EMBRAPA Food Technology , Rio de Janeiro, Brazil-Leader of the Brazilian Biofortification Network
| | - Elad Tako
- d USDA/ARS , Robert W. Holley Center for Agriculture and Health, Cornell University , Ithaca , New York , USA
| | | |
Collapse
|
17
|
Vaz-Tostes MDG, Verediano TA, de Mejia EG, Brunoro Costa NM. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1326-1332. [PMID: 25899136 DOI: 10.1002/jsfa.7226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. RESULTS In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). CONCLUSION Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification.
Collapse
Affiliation(s)
- Maria das Graças Vaz-Tostes
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, PH Holfs, 36570-000, Viçosa, MG, Brazil
| | - Thaisa Agrizzi Verediano
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, PH Holfs, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
18
|
Hashimoto A, Ohkura K, Takahashi M, Kizu K, Narita H, Enomoto S, Miyamae Y, Masuda S, Nagao M, Irie K, Ohigashi H, Andrews GK, Kambe T. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting. Biochem J 2015; 472:183-93. [PMID: 26385990 DOI: 10.1042/bj20150862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2023]
Abstract
Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans.
Collapse
Affiliation(s)
- Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Katsuma Ohkura
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | | | - Kumiko Kizu
- Department of Life and Living, Osaka Seikei College, Osaka, Japan
| | - Hiroshi Narita
- Department of Food Science, Kyoto Women's University, Kyoto, Japan
| | - Shuichi Enomoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Center for Molecular Imaging Science, RIKEN Kobe Institute, Kobe, Japan
| | - Yusaku Miyamae
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seiji Masuda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaya Nagao
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hajime Ohigashi
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | - Glen K Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Lv C, Zhao G, Lönnerdal B. Bioavailability of iron from plant and animal ferritins. J Nutr Biochem 2015; 26:532-40. [DOI: 10.1016/j.jnutbio.2014.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|
20
|
Lahive E, O'Halloran J, Jansen MAK. A marriage of convenience; a simple food chain comprised of Lemna minor (L.) and Gammarus pulex (L.) to study the dietary transfer of zinc. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:75-81. [PMID: 24731282 DOI: 10.1111/plb.12179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Macrophytes contribute significantly to the cycling of metals in aquatic systems, through accumulation during growth and release during herbivory or decomposition. Accumulation of high levels of metals has been extensively documented in Lemnaceae (duckweeds). However, the degree of trophic transfer of metals from Lemnaceae to secondary consumers remains poorly understood. This study demonstrates that zinc accumulated in Lemna minor is bioavailable to the herbivore consumer Gammarus pulex. Overall, the higher the zinc content of L. minor, the more zinc accumulated in G. pulex. Accumulation in G. pulex was such that mortality occurred when they were fed high zinc-containing L. minor. Yet, the percentage of consumed zinc retained by G. pulex actually decreased with higher zinc concentrations in L. minor. We hypothesise that this decrease reflects internal zinc metabolism, including a shift from soluble to covalently bound zinc in high zinc-containing L. minor. Consistently, relatively more zinc is lost through depuration when G. pulex is fed L. minor with high zinc content. The developed Lemna-Gammarus system is simple, easily manipulated, and sensitive enough for changes in plant zinc metabolism to be reflected in metal accumulation by the herbivore, and therefore suitable to study ecologically relevant metal cycling in aquatic ecosystems.
Collapse
Affiliation(s)
- E Lahive
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | | | | |
Collapse
|
21
|
Clemens S. Zn and Fe biofortification: the right chemical environment for human bioavailability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:52-57. [PMID: 25017159 DOI: 10.1016/j.plantsci.2014.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
A considerable fraction of global disease burden and child mortality is attributed to Fe and Zn deficiencies. Biofortification, i.e. the development of plants with more bioavailable Zn and Fe, is widely seen as the most sustainable solution, provided suitable crops can be generated. In a cereal-dominated diet availability of Fe and Zn for absorption by the human gut is generally low and influenced by a highly complex chemistry. This complexity has mostly been attributed to the inhibitory effect of Fe and Zn binding by phytate, the principal phosphorus storage compound in cereal and legume seeds. However, phytate is only part of the answer to the multifaceted bioavailability question, albeit an important one. Recent analyses addressing elemental distribution and micronutrient speciation in seeds strongly suggest the existence of different Fe and Zn pools. Exploration of natural variation in maize showed partial separation of phytate levels and Fe bioavailability. Observations made with transgenic plants engineered for biofortification lend further support to this view. From a series of studies the metal chelator nicotianamine is emerging as a key molecule. Importantly, nicotianamine levels have been found to not only increase the loading of Fe and Zn into grains. Bioavailability assays indicate a strong activity of nicotianamine also as an enhancer of intestinal Fe and Zn absorption.
Collapse
Affiliation(s)
- Stephan Clemens
- University of Bayreuth, Department of Plant Physiology and Research Center of Food Quality, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
22
|
Wada Y, Lönnerdal B. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4175-4185. [PMID: 24720734 DOI: 10.1021/jf501617s] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heating processes are applied to milk and dairy products to ensure their microbiological safety and shelf lives. However, how differences in "industrial" thermal treatments affect protein digestibility is still equivocal. In this study, raw milk was subjected to pasteurization, three kinds of ultra-high-temperature (UHT) treatment, and in-can sterilization and was investigated by in vitro and in vivo digestion and proteomic methods. In-can sterilized milk, followed by UHT milk samples, showed a rapid decrease in protein bands during the course of digestion. However, protein digestibility determined by a Kjeldahl procedure showed insignificant differences. Proteomic analysis revealed that lactulosyllysine, which reflects a decrease in protein digestibility, in α-lactalbumin, β-lactoglobulin, and caseins was higher in in-can sterilized milk, followed by UHT milk samples. Thus, industrial heating may improve the digestibility of milk proteins by denaturation, but the improvement is likely to be offset by heat-derived modifications involved in decreased protein digestibility.
Collapse
Affiliation(s)
- Yasuaki Wada
- Department of Nutrition, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Japan
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
23
|
La Frano MR, de Moura FF, Boy E, Lönnerdal B, Burri BJ. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr Rev 2014; 72:289-307. [PMID: 24689451 DOI: 10.1111/nure.12108] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
International research efforts, including those funded by HarvestPlus, a Challenge Program of the Consultative Group on International Agricultural Research (CGIAR), are focusing on conventional plant breeding to biofortify staple crops such as maize, rice, cassava, beans, wheat, sweet potatoes, and pearl millet to increase the concentrations of micronutrients that are commonly deficient in specific population groups of developing countries. The bioavailability of micronutrients in unfortified staple crops in developing regions is typically low, which raises questions about the efficacy of these crops to improve population micronutrient status. This review of recent studies of biofortified crops aims to assess the micronutrient bioavailability of biofortified staple crops in order to derive lessons that may help direct plant breeding and to infer the potential efficacy of food-based nutrition interventions. Although reducing the amounts of antinutrients and the conduction of food processing generally increases the bioavailability of micronutrients, antinutrients still possess important benefits, and food processing results in micronutrient loss. In general, biofortified foods with relatively higher micronutrient density have higher total absorption rates than nonbiofortified varieties. Thus, evidence supports the focus on efforts to breed plants with increased micronutrient concentrations in order to decrease the influence of inhibitors and to offset losses from processing.
Collapse
Affiliation(s)
- Michael R La Frano
- Department of Nutrition, University of California, Davis, Davis, California, USA; Western Human Nutrition Research Center, United States Department of Agriculture, Davis, California, USA
| | | | | | | | | |
Collapse
|
24
|
Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats – Motility and morphological influences. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|