1
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
2
|
Mei Y, Hu Y, Tao X, Shang J, Qian M, Suo F, Li J, Cao L, Wang Z, Xiao W. Chemical Profiling of Shen-Wu-Yi-Shen Tablets Using UPLC-Q-TOF-MS/MS and Its Quality Evaluation Based on UPLC-DAD Combined with Multivariate Statistical Analysis. J Chromatogr Sci 2024; 62:534-553. [PMID: 38251765 DOI: 10.1093/chromsci/bmae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/03/2023] [Indexed: 01/23/2024]
Abstract
Shen-Wu-Yi-Shen tablets (SWYST) is a traditional Chinese medicine prescription used for treating chronic kidney disease (CKD). This study aims to characterize the constituents in SWYST and evaluate the quality based on the quantification of multiple bioactive components. SWYST samples were analyzed with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and a data-processing strategy. As a result, 215 compounds in SWYST were unambiguously identified or tentatively characterized, including 14 potential new compounds. Meanwhile, strategies based on characteristic fragments for rapid identification were summarized, indicating that the qualitative method is accurate and feasible. Notably, the glucose esters of laccaic acid D-type anthraquinone were first found and their fragmentation patterns were described by comparing that of O-glycoside isomers. Besides, based on comparisons of the cleavage ways of mono-acyl glucose with different acyl groups or acylation sites, differences in fragmentation pathways between 1,2-di-O-acyl glucose and 1,6-di-O-acyl glucose were proposed for the first time and verified by reference substances. In addition, a validated UPLC-DAD was established for the determination of 11 major bioactive components related to treatment of CKD (albiflorin, paeoniflorin, 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside (TSG), 1-O-galloyl-2-O-cinnamoyl-β-d-glucose, emodin-8-O-β-d-glucoside, chrysophanol-O-β-d-glucoside, aloe-emodin, rhein, emodin, chrysophanol and physcion). Moreover, TSG and 1-O-galloyl-2-O-cinnamoyl-β-d-glucose were found as the quality markers related to the origins of SWYST based on multivariate statistical analysis. Conclusively, the findings in this work provide a feasible reference for further studies on quality research and mechanisms of action in treating CKD.
Collapse
Affiliation(s)
- Yudan Mei
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yumei Hu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Xiaoqian Tao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Jing Shang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Mengyu Qian
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Fengtai Suo
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Jifeng Li
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Liang Cao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Wei Xiao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
- Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang 222047, China
| |
Collapse
|
3
|
Yadeta AT. Chemical structures, biological activities, and medicinal potentials of amine compounds detected from Aloe species. Front Chem 2024; 12:1363066. [PMID: 38496272 PMCID: PMC10940337 DOI: 10.3389/fchem.2024.1363066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Unrestricted interest in Aloe species has grown rapidly, and a lot of research is currently being done to learn more about the properties of the various Aloe constituents. Organic compounds containing amine as functional group are present in a vivid variety of compounds, namely, amino acids, hormones, neurotransmitters, DNA, alkaloids, dyes, etc. These compounds have amine functional groups that have various biological activities, which make them responsible for medicinal potential in the form of pharmaceutical, nutraceutical, and cosmeceutical applications. Consequently, the present review work provides an indication of the amines investigated in Aloe species and their therapeutic uses. Various amine compounds of the Aloe species have effective biological properties to treat diseases. Generally, the genus Aloe has various active amine-containing compounds to combat diseases when humans use them in various forms.
Collapse
|
4
|
Du J, Li Y, Lu X, Geng Z, Yuan Y, Liu Y, Li J, Wang M, Wang J. Metabolomics-based study on the changes of endogenous metabolites during adventitious bud formation from leaf margin of Bryophyllum pinnatum (Lam.) Oken. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107845. [PMID: 37364508 DOI: 10.1016/j.plaphy.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Bryophyllum pinnatum (Lam.) Oken is an ornamental and ethno-medicine plant, which can grow a circle of adventitious bud around the leaf margin. The dynamic change of metabolites during the development of B. pinnatum remains poorly understood. Here, leaves from B. pinnatum at four developmental stages were sampled based on morphological characteristics. A non-targeted metabolomics approach was used to evaluate the changes of endogenous metabolites during adventitious bud formation in B. pinnatum. The results showed that differential metabolites were mainly enriched in sphingolipid metabolism, flavone and flavonol biosynthesis, phenylalanine metabolism, and tricarboxylic acid cycle pathway. The metabolites assigned to amino acids, flavonoids, sphingolipids, and the plant hormone jasmonic acid decreased from period Ⅰ to Ⅱ, and then increased from period Ⅲ to Ⅳ with the emergence of adventitious bud (period Ⅲ). While the metabolites related to the tricarboxylic acid cycle showed a trend of first increasing and then decreasing during the four observation periods. Depending on the metabolite changes, leaves may provide conditions similar to in vitro culture for adventitious bud to occur, thus enabling adventitious bud to grow at the leaf edge. Our results provide a basis for illustrating the regulatory mechanisms of adventitious bud in B. pinnatum.
Collapse
Affiliation(s)
- Jialin Du
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xu Lu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhaopeng Geng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuanyuan Yuan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yue Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Juanling Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Minjuan Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junli Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
5
|
Elferjane MR, Jovanović AA, Milutinović V, Čutović N, Jovanović Krivokuća M, Marinković A. From Aloe vera Leaf Waste to the Extracts with Biological Potential: Optimization of the Extractions, Physicochemical Characterization, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:2744. [PMID: 37514358 PMCID: PMC10386512 DOI: 10.3390/plants12142744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In the study, the optimization of the extraction from Aloe vera leaf waste was performed via varying solid-to-solvent ratio, solvent type, extraction time, and technique (maceration, heat-, ultrasound-, and microwave-assisted extractions-HAE, UAE, and MAE, respectively). The optimal extraction conditions for achieving the highest polyphenol content are a 1:30 ratio, 70% ethanol, and 30 min of HAE. Total flavonoid and protein contents were significantly higher in the extract from MAE, while total condensed tannin content was the highest in HAE. LC-MS analysis quantified 13 anthraquinone and chromone compounds. The variations in the FT-IR spectra of the extracts obtained by different extraction procedures are minor. The influence of extraction conditions on the antioxidant ability of the extracts depended on applied antioxidant assays. The extracts possessed medium inhibition properties against Staphylococcus aureus and weak inhibitory activity against Enterococcus feacalis. The extracts had stimulative effect on HaCaT cell viability. Regarding the extraction yield, there was a significant difference between the used extraction techniques (MAE > HAE > maceration and UAE). The presented study is an initial step in the production of polyphenol-rich extracts from A. vera leaf waste aimed to be used for the potential preparation of pharmaceutical and cosmetic formulations for the skin.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Aleksandra A Jovanović
- Institute for the Application of the Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natalija Čutović
- Institute for Medicinal Plant Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of the Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Phytochemical Analysis, Antibacterial and Antibiofilm Activities of Aloe vera Aqueous Extract against Selected Resistant Gram-Negative Bacteria Involved in Urinary Tract Infections. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In bacterial infections, including urinary tract infections (UTIs), the gap between the development of new antimicrobials and antimicrobial resistance is dramatically increasing, especially in Gram-negative (Gram–) bacteria. All healthy products that can be used per se or that may be sources of antibacterial compounds should be considered in the fight against this major public health threat. In the present study, the phytochemical composition of Aloe vera extract was investigated by HPLC–MS/MS, and we further evaluated its antibacterial and antibiofilm formation activity against selected resistant Gram– bacteria involved in UTIs, namely, Achromobacter xylosoxidans 4892, Citrobacter freundii 426, Escherichia coli 1449, Klebsiella oxytoca 3003, Moraxella catarrhalis 4222, Morganella morganii 1543, Pseudomonas aeruginosa 3057, and a reference strain E. coli ATCC 25922. Inhibition zones (IZs) of the extract were determined using the well diffusion method, minimum inhibitory (MIC), and bactericidal (MBC) concentration by the two-fold serial microdilution assay, and antibiofilm formation activity by the crystal violet attachment assay. Aloe-emodin and its derivatives were the major constituent (75.74%) of A. vera extract, the most important of them being aloesin (30.22%), aloe-emodin-diglucoside (12.58%), and 2′-p-methoxycoumaroylaloeresin B (9.64%). The minerals found in the extract were sulfur (S), silicon (Si), chlorine (Cl), potassium (K), and bromine (Br). Except for the clinical strain E. coli 1449, which was totally non-susceptible, A. vera demonstrated noteworthy antibacterial activity with MIC and MBC values ranging from 0.625 to 5 mg/mL and 5 to 10 mg/mL, respectively. A. vera also demonstrated dose-dependent antibacterial effects, and the reference strain E. coli ATCC 25922 was the most susceptible with MIC = 0.625 and IZ = 19 mm at 20 mg/mL. The antibiofilm formation potential of A. vera extract was strong at 2MIC and MIC (93–100% of biofilm formation inhibition), moderate at MIC/2 (32–41%), weak at MIC/4 (14–21%), and nil at MIC/8.
Collapse
|
7
|
Ahluwalia B, Magnusson MK, Larsson F, Savolainen O, Ross AB, Öhman L. Differences in Metabolite Composition of Aloe barbadensis Mill. Extracts Lead to Differential Effects on Human Blood T Cell Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196643. [PMID: 36235182 PMCID: PMC9571688 DOI: 10.3390/molecules27196643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Aloe barbadensis Mill. (Aloe) is used for diverse therapeutic properties including immunomodulation. However, owing to the compositionally complex nature of Aloe, bioactive component(s) responsible for its beneficial properties, though thought to be attributed to polysaccharides (acemannan), remain unknown. We therefore aimed to determine the metabolite composition of various commercial Aloe extracts and assess their effects on human blood T cell activity in vitro. Peripheral blood mononuclear cells (PBMC) from healthy donors were stimulated polyclonally in presence or absence of various Aloe extracts. T cell phenotype and proliferation were investigated by flow cytometry. Aloe extracts were analyzed using targeted 1H-NMR spectroscopy for standard phytochemical quality characterization and untargeted gas chromatography mass spectrometry (GC-MS) for metabolite profiling. Aloe extracts differing in their standard phytochemical composition had varying effects on T cell activation, proliferation, apoptosis, and cell-death in vitro, although this was not related to the acemannan content. Furthermore, each Aloe extract had its own distinct metabolite profile, where extracts rich in diverse sugar and sugar-derivatives were associated with reduced T cell activity. Our results demonstrate that all commercial Aloe extracts are unique with distinct metabolite profiles, which lead to differential effects on T cell activity in vitro, independent of the acemannan content.
Collapse
Affiliation(s)
- Bani Ahluwalia
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Research and Development, Calmino Group AB, 413 46 Gothenburg, Sweden
- Correspondence:
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fredrik Larsson
- Research and Development, Calmino Group AB, 413 46 Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Faculty of Health Sciences, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Alastair B. Ross
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Proteins and Metabolites Team, AgResearch, Lincoln 7674, New Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
8
|
Valorization of Aloe vera Skin By-Products to Obtain Bioactive Compounds by Microwave-Assisted Extraction: Antioxidant Activity and Chemical Composition. Antioxidants (Basel) 2022; 11:antiox11061058. [PMID: 35739955 PMCID: PMC9220353 DOI: 10.3390/antiox11061058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Aloe vera skin (AVS) is a major by-product of Aloe processing plants all over the world. In this study, response surface methodology was used to optimize microwave-assisted extraction (MAE) of bioactive compounds from AVS. The influence of extraction parameters, such as ethanol concentration (%Et), extraction temperature (T), time (t) and solvent volume (V), on extraction yield (Y), total phenolic content (TPC), antioxidant activity (DPPH and FRAP methods) and aloin content, was studied. Optimum extraction conditions were determined as 80% ethanol, 80 °C, 36.6 min and 50 mL and optimized extracts showed interesting contents of polyphenols and antioxidant performance. The phenolic profile was determined by HPLC-DAD/MS and some major phenolic compounds, such as aloin A, aloin B, aloesin, aloe-emodin, aloeresin D, orientin, cinnamic acid and chlorogenic acid, were quantified while eight other compounds were tentatively identified. Moreover, structural and thermal properties were studied by FTIR and TGA analyses, respectively. The obtained results suggested the potential of AVS as a promising source of bioactive compounds, thus increasing the added value of this agricultural waste.
Collapse
|
9
|
Amen Y, Elsbaey M, Othman A, Sallam M, Shimizu K. Naturally Occurring Chromone Glycosides: Sources, Bioactivities, and Spectroscopic Features. Molecules 2021; 26:7646. [PMID: 34946728 PMCID: PMC8704703 DOI: 10.3390/molecules26247646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Chromone glycosides comprise an important group of secondary metabolites. They are widely distributed in plants and, to a lesser extent, in fungi and bacteria. Significant biological activities, including antiviral, anti-inflammatory, antitumor, antimicrobial, etc., have been discovered for chromone glycosides, suggesting their potential as drug leads. This review compiles 192 naturally occurring chromone glycosides along with their sources, classification, biological activities, and spectroscopic features. Detailed biosynthetic pathways and chemotaxonomic studies are also described. Extensive spectroscopic features for this class of compounds have been thoroughly discussed, and detailed 13C-NMR data of compounds 1-192, have been added, except for those that have no reported 13C-NMR data.
Collapse
Affiliation(s)
- Yhiya Amen
- Department of Agro-Environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (Y.A.); (A.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Marwa Elsbaey
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Othman
- Department of Agro-Environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (Y.A.); (A.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
| | - Mahmoud Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (Y.A.); (A.O.)
| |
Collapse
|
10
|
Integrated Metabolomics and Volatolomics for Comparative Evaluation of Fermented Soy Products. Foods 2021; 10:foods10112516. [PMID: 34828797 PMCID: PMC8624193 DOI: 10.3390/foods10112516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography–mass spectrometry), GC-MS (gas chromatography–mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.
Collapse
|
11
|
A novel nonapeptide SSDAFFPFR from Antarctic krill exerts a protective effect on PC12 cells through the BCL-XL/Bax/Caspase-3/p53 signaling pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Yan H, Pu ZJ, Zhang ZY, Zhou GS, Zou DQ, Guo S, Li C, Zhan ZL, Duan JA. Research on Biomarkers of Different Growth Periods and Different Drying Processes of Citrus wilsonii Tanaka Based on Plant Metabolomics. FRONTIERS IN PLANT SCIENCE 2021; 12:700367. [PMID: 34335665 PMCID: PMC8317225 DOI: 10.3389/fpls.2021.700367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
Fruit of Citrus wilsonii Tanaka called as "Xiang yuan" in Chinese, which means fragrant and round. It was widely used in the pharmaceutical and food industries. This fruit has well-known health benefits such as antioxidant, radical scavenging, and anti-inflammatory. Naringin, deacetylnomilin, citric acid, limonin, and nomilin were the characteristic components of Citrus wilsonii Tanaka. Although the fruit of Citrus wilsonii Tanaka possessed many applications, there was a lack of research on the growth period and drying process. In this study, plant metabolomics was used to analyze the biomarkers of the growth period, and appearance indicators and metabolites abundance were combined for the analysis of change regularities of the growth period. The representative differential metabolites of naringin, citric acid, and limonin were screened out, and the abundance of these components was relatively highest in the middle of the growth period. Therefore, the fruit of Citrus wilsonii Tanaka should be harvested before it turned yellow completely, which could effectively ensure the content of potential active ingredients. In the comparison of different drying methods, citric acid and naringin were considered to be representative differential components, but limonoids were relatively stable and not easily affected by drying methods. Naringin was an index component that could not only be reflected the maturity but also related to different drying methods. Considering its physical and chemical properties and its position, naringin had the potential to be a biomarker of Citrus wilsonii Tanaka.
Collapse
Affiliation(s)
- Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zong-Jin Pu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen-Yu Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gui-Sheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-Qian Zou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Li
- Jumpcan Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Zhi-Lai Zhan
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Bendjedid S, Lekmine S, Tadjine A, Djelloul R, Bensouici C. Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Sazhina NN, Lapshin PV, Zagoskina NV. The Kinetics of Initiated Oxidation of Phosphatidylcholine Liposomes with Introduced Aloe Extracts and Determination of their Antioxidant Activity. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Sazhina NN, Lapshin PV, Zagoskina NV, Palmina NP. Inhibition of Phosphotidylcholine Liposome Oxidation by Phenolics from Aloe Extracts: A. arborescens, A. pillansii, and A. squarrosa. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162020070146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lin F, Cai F, Luo B, Gu R, Ahmed S, Long C. Variation of Microbiological and Biochemical Profiles of Laowo Dry-Cured Ham, an Indigenous Fermented Food, during Ripening by GC-TOF-MS and UPLC-QTOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8925-8935. [PMID: 32706588 DOI: 10.1021/acs.jafc.0c03254] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fermented foods have unique microbiota and metabolomic profiles that can support dietary diversity, digestion, and gut health of consumers. Laowo ham (LWH) is an example of an indigenous fermented food from Southwestern China that has cultural, ecological, economic, and health significance to local communities. We carried out ethnobiological surveys coupled with metagenomic and metabolomic analyses using GC-TOF-MS and UPLC-QTOF-MS to elucidate the microbiota and metabolic profiles of LWH samples at different ripening stages. The results from high-throughput sequencing showed a total of 502 bacterial genera in LWH samples with 12 genera of bacteria and 6 genera of fungi identified as dominant groups. This is the first study to our knowledge to report the bacteria of Lentibacillus and Mesorhizobium along with fungi Eremascus and Xerochrysium on a fermented meat product. Findings further revealed that the metabolite profiles among LWH samples were significantly different. In total, 27 and 30 metabolites from GC-TOF-MS and UPLC-QTOF-MS analysis, respectively, were annotated as highly discriminative metabolites. Among the differential compounds, the relative contents of most amino acids showed the highest in the LWH sample ripened for two years, while some metabolites with potential therapeutic effects such as levetiracetam were the most abundant in the LWH sample ripened for three years. The correlation analysis indicated that the dominant microbes were closely related to differential metabolites, highlighting the importance of their functional characterization. Findings indicate that the consumption of LWH contributes to microbiological and chemical diversity of human diets as well as suggests efficacy of combining GC-MS and LC-MS to study the metabolites in dry-cured meat products.
Collapse
Affiliation(s)
- Fengke Lin
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
| | - Fei Cai
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
| | - Binsheng Luo
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
| | - Ronghui Gu
- School of Liquor and Food Engineering, Guizhou University, Huixia Road in Huaxi District, Guiyang 550025, People's Republic of China
| | - Selena Ahmed
- Food and Health Lab, Sustainable Food and Bioenergy Systems Program, Department of Health and Human Development, Montana State University, Bozeman Montana 59717, United States of America
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road in Heilongtan, Kunming 650201, People's Republic of China
| |
Collapse
|
17
|
Lee MY, Seo HS, Singh D, Lee SJ, Lee CH. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng. J Ginseng Res 2020; 44:413-423. [PMID: 32372863 PMCID: PMC7195594 DOI: 10.1016/j.jgr.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. METHODS We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. RESULTS The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. CONCLUSION Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.
Collapse
Affiliation(s)
- Mee Youn Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Han Sol Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Lazarova I, Zengin G, Sinan KI, Aneva I, Uysal S, Picot-Allain MCN, Aktumsek A, Bouyahya A, Mahomoodally MF. Metabolomics profiling and biological properties of root extracts from two Asphodelus species: A. albus and A. aestivus. Food Res Int 2020; 134:109277. [PMID: 32517915 DOI: 10.1016/j.foodres.2020.109277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
The pharmacological properties of Asphodelus species have been advocated previously. In this respect, the present study attempts to unravel the antioxidant and enzyme inhibitory activity of root extracts of two Asphodelus species, namely, A. albus and A. aestivus. Data gathered demonstrated that the dichloromethane (25.49, 51.30, 104.31, and 81.58 mg Trolox equivalents [TEs]/g, for 2,2-diphenyl-1-picrylhydrazyl [DPPH], 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) [ABTS], cupric ion reducing antioxidant capacity [CUPRAC], and ferric reducing antioxidant power[FRAP] assays respectively) and ethyl acetate (20.60, 41.86, 89.07, and 57.85 mg TEs/g, for DPPH, ABTS, CUPRAC, and FRAP assays respectively) extracts of A. albus roots showed highest radical scavenging and reducing potential. These findings were in accordance with total phenolic content observed which showed the highest phenolic content of A. albus dichloromethane (30.74 mg gallic acid equivalents [GAEs]/g) and ethyl acetate (23.41 mg GAEs/g) extracts. Interestingly, A. albus and A. aestivus root extracts were active inhibitors of tyrosinase and lipase, with values varying from 56.52 to 71.49 mg kojic acid equivalent/g and 34.88 to 86.32 mg orlistat equivalent/g, respectively. Flavonoids, anthraquinones, and phenolic acids were identified as main individual compounds in chemical profile analysis. This is the first report of the presence of aloin A, aloin B, and aloesin in species other than in Aloe. Scientific evidences gathered from this study claimed the biological activity of the studied Asphodelus species and provided rationale for further investigations which might lead to the development of novel pharmacophores to alleviate oxidative stress related complications, obesity, as well as, skin hyperpigmentation complications.
Collapse
Affiliation(s)
- Irina Lazarova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2, Dunav str., 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | | | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research-BAS, 2 Gagarin Str., 1113 Sofia, Bulgaria
| | - Sengul Uysal
- Erciyes University Halil Bayraktar Health Services Vocational College, Kayseri Turkey; Ziya Eren Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | | | - Abdurrahman Aktumsek
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius; Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
| |
Collapse
|
19
|
Lee S, Oh DG, Singh D, Lee JS, Lee S, Lee CH. Exploring the metabolomic diversity of plant species across spatial (leaf and stem) components and phylogenic groups. BMC PLANT BIOLOGY 2020; 20:39. [PMID: 31992195 PMCID: PMC6986006 DOI: 10.1186/s12870-019-2231-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants have been used as an important source of indispensable bioactive compounds in various cosmetics, foods, and medicines. However, the subsequent functional annotation of these compounds seems arduous because of the largely uncharacterized, vast metabolic repertoire of plant species with known biological phenotypes. Hence, a rapid multi-parallel screening and characterization approach is needed for plant functional metabolites. RESULTS Fifty-one species representing three plant families, namely Asteraceae, Fabaceae, and Rosaceae, were subjected to metabolite profiling using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultrahigh-performance liquid chromatography quadrupole orbitrap ion trap tandem mass spectrometry (UHPLC-Q-orbitrap-MS/MS) as well as multivariate analyses. Partial least squares discriminant analysis (PLS-DA) of the metabolite profiling datasets indicated a distinct clustered pattern for 51 species depending on plant parts (leaves and stems) and relative phylogeny. Examination of their relative metabolite contents showed that the extracts from Fabaceae plants were abundant in amino acids, fatty acids, and genistein compounds. However, the extracts from Rosaceae had higher levels of catechin and ellagic acid derivatives, whereas those from Asteraceae were higher in kaempferol derivatives and organic acids. Regardless of the different families, aromatic amino acids, branch chain amino acids, chlorogenic acid, flavonoids, and phenylpropanoids related to the shikimate pathway were abundant in leaves. Alternatively, certain amino acids (proline, lysine, and arginine) as well as fatty acids levels were higher in stem extracts. Further, we investigated the associated phenotypes, i.e., antioxidant activities, affected by the observed spatial (leaves and stem) and intra-family metabolomic disparity in the plant extracts. Pearson's correlation analysis indicated that ellagic acid, mannitol, catechin, epicatechin, and quercetin derivatives were positively correlated with antioxidant phenotypes, whereas eriodictyol was positively correlated with tyrosinase inhibition activity. CONCLUSIONS This work suggests that metabolite profiling, including multi-parallel approaches and integrated bioassays, may help the expeditious characterization of plant-derived metabolites while simultaneously unraveling their chemodiversity.
Collapse
Affiliation(s)
- Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
| | - Dong-Gu Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22755 Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22755 Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
20
|
Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Edible coating gels developed from the Aloe vera plant have been used as a traditional medicine for about 3000 years. Aloe vera contains approximately 110 potentially active constituents from six different classes: chromone and its glycoside derivatives; anthraquinone and its glycoside derivatives; flavonoids; phenylpropanoids and coumarins; phenylpyrone and phenol derivatives; and phytosterols and others. Apart from medicinal uses, Aloe gels have an important role in food preservation as edible coatings. They provide an edible barrier for atmospheric gases and moisture and help to reduce the respiration and transpiration of fresh produce, which helps to preserve its postharvest quality. To date, numerous studies have been conducted on the postharvest use of Aloe vera gel. The present review article summarizes and discusses existing available information about the chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera.
Collapse
|
21
|
Integrated Metabolomics and Transcriptomics Unravel the Metabolic Pathway Variations for Different Sized Beech Mushrooms. Int J Mol Sci 2019; 20:ijms20236007. [PMID: 31795288 PMCID: PMC6928633 DOI: 10.3390/ijms20236007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022] Open
Abstract
Beech mushrooms (Hypsizygus marmoreus) are largely relished for their characteristic earthy flavor, chewy-texture, and gustatory and nutritional properties in East Asian societies. Intriguingly, the aforementioned properties of beech mushroom can be subsumed under its elusive metabolome and subtle transcriptome regulating its various stages of growth and development. Herein, we carried out an integrated metabolomic and transcriptomic profiling for different sized beech mushrooms across spatial components (cap and stipe) to delineate their signature pathways. We observed that metabolite profiles and differentially expressed gene (DEGs) displayed marked synergy for specific signature pathways according to mushroom sizes. Notably, the amino acid, nucleotide, and terpenoid metabolism-related metabolites and genes were more abundant in small-sized mushrooms. On the other hand, the relative levels of carbohydrates and TCA intermediate metabolites as well as corresponding genes were linearly increased with mushroom size. However, the composition of flavor-related metabolites was varying in different sized beech mushrooms. Our study explores the signature pathways associated with growth, development, nutritional, functional and organoleptic properties of different sized beech mushrooms.
Collapse
|
22
|
Rodríguez-Rodríguez MZ, Meléndez-Pizarro CO, Espinoza-Hicks JC, Quintero-Ramos A, Sánchez-Madrigal MÁ, Meza-Velázquez JA, Jiménez-Castro JA. Effects of UV-C irradiation and traditional thermal processing on acemannan contained in Aloe vera gel blends. Carbohydr Polym 2019; 222:114998. [PMID: 31320065 DOI: 10.1016/j.carbpol.2019.114998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
The effects of pH (3.5, 4.5, and 5.5) and UV-C irradiation dose (12.8, 24.2, 35.8, and 54.6 mJ/cm2) on the physicochemical properties changes in 10% Aloe vera gel blends; in addition, the acemannan concentration and structural changes in the precipitated polysaccharides were evaluated. A thermal treatment (TT; 45 s at 90 °C) was used for comparison. In contrast to TT, a dose of 24.2 mJ/cm2 did not induce significant changes of free sugar content. Moreover, TT and UV-C irradiation did not significantly affect the content of mannose but increased those of galactose, fructose, and glucose. 1H NMR analysis revealed minimal changes in the isolated fractions of acemannan, indicating that compared to the unprocessed control sample, the acemannan deacetylation was more pronounced by TT (27%) than by UV-C irradiation (11% at 54.6 mJ/cm2), without any significant difference between the two. UV-C irradiation of Aloe vera gel blends at pH 3.5 and 24.2 mJ/cm2 was an alternative to TT and efficiently preserve the characteristics of acemannan.
Collapse
Affiliation(s)
- Maylem Z Rodríguez-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Carmen O Meléndez-Pizarro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - José C Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Armando Quintero-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico.
| | - Miguel Á Sánchez-Madrigal
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Jorge A Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Artículo 123 s/n, Fracc. Filadelfia 35010, Gómez Palacio, Dgo., Mexico
| | - Jorge A Jiménez-Castro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| |
Collapse
|
23
|
Satria D, Tamrakar S, Suhara H, Kaneko S, Shimizu K. Mass Spectrometry-Based Untargeted Metabolomics and α-Glucosidase Inhibitory Activity of Lingzhi ( Ganoderma lingzhi) During the Developmental Stages. Molecules 2019; 24:E2044. [PMID: 31146329 PMCID: PMC6600326 DOI: 10.3390/molecules24112044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022] Open
Abstract
Lingzhi is a Ganoderma mushroom species which has a wide range of bioactivities. Analysis of the changes in metabolites during the developmental stages of lingzhi is important to understand the underlying mechanism of its biosynthesis, as well as its bioactivity. It may also provide valuable information for the cultivation efficiency of lingzhi. In this study, mass spectrometry based untargeted metabolomics was carried out to analyze the alteration of metabolites during developmental stages of lingzhi. Eight developmental stages were categorized on the basis of morphological changes; starting from mycelium stage to post-mature stage. GC/MS and LC/MS analyses along with multivariate analysis of lingzhi developmental stages were performed. Amino acids, organic acids, sugars, polyols, fatty acids, fatty alcohols, and some small polar metabolites were extracted as marker metabolites from GC/MS analysis, while, lanostane-type triterpenoids were observed in LC/MS analysis of lingzhi. The marker metabolites from untargeted analysis of lingzhi developmental stages were correlated with the α-glucosidase inhibitory activity. Two metabolites, compounds 34 and 35, were identified as potential contributors of the α-glucosidase inhibitory activity. The current result shows that some metabolites are involved in the developmental process and α-glucosidase inhibitory activity of lingzhi.
Collapse
Affiliation(s)
- Dedi Satria
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
- Faculty of Health and Sciences, Muhammadiyah University of Sumatera Barat, Bukittinggi 26181, Indonesia.
| | - Sonam Tamrakar
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Hiroto Suhara
- Miyazaki Prefectural Wood Utilization Research Center, Miyazaki 885-0037, Japan.
| | - Shuhei Kaneko
- Fukuoka Prefecture Forest Research & Extension Center, Fukuoka 818-8549, Japan.
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
24
|
Chan W, Zhao Y, Zhang J. Evaluating the performance of sample preparation methods for ultra-performance liquid chromatography/mass spectrometry based serum metabonomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:561-568. [PMID: 30614103 DOI: 10.1002/rcm.8381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Metabonomics investigating perturbation to endogenous metabolism in response to external stimuli is emerging as a powerful tool for clinical diagnosis as well as in many other areas. The ability to retrieve reliable and reproducible information from complex biological fluids such as serum is crucial for its further applications. METHODS In this study, the performance of the commonly used sample preparation methods for ultra-performance liquid chromatography/mass spectrometry (UPLC/MS)-based metabonomics was investigated. Specifically, we compared the extraction efficiencies, the method reproducibility, and the ability to identify potential biomarkers using solvent-based protein precipitation and solid-phase extraction (SPE) for serum metabonomic studies. Differences between extraction methods were explored using principal component analysis (PCA) and orthogonal partial least squares-discrimination analysis (OPLS-DA). RESULTS Among the sample preparation methods tested, solvent-based protein precipitation using methanol has demonstrated the best analytical precision and extraction efficiency. Furthermore, this study revealed, for the first time, gender-specific differences in levels of two lysophosphatidylcholines (lysoPC 18:0 and lysoPC 18:1) in rat serum samples. CONCLUSIONS The performance of sample preparation methods for UPLC/MS-based serum metabonomics was evaluated systematically. Results showed sample preparation by solvent precipitation using methanol provided the best analytical precision and extraction efficiency for UPLC/MS-based serum metabonomics.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yao Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
25
|
Gulumian M, Yahaya ES, Steenkamp V. African Herbal Remedies with Antioxidant Activity: A Potential Resource Base for Wound Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4089541. [PMID: 30595712 PMCID: PMC6282146 DOI: 10.1155/2018/4089541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022]
Abstract
The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.
Collapse
Affiliation(s)
- Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewura Seidu Yahaya
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Pharmacology, University of Cape Coast, Cape Coast, Ghana
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Amiruddin Zakaria Z, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J. Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. Int J Mol Sci 2018; 19:E2843. [PMID: 30235891 PMCID: PMC6163315 DOI: 10.3390/ijms19092843] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Aloe genus plants, distributed in Old World, are widely known and have been used for centuries as topical and oral therapeutic agents due to their health, beauty, medicinal, and skin care properties. Among the well-investigated Aloe species are A. arborescens, A. barbadensis, A. ferox, and A. vera. Today, they account among the most economically important medicinal plants and are commonly used in primary health treatment, where they play a pivotal role in the treatment of various types of diseases via the modulation of biochemical and molecular pathways, besides being a rich source of valuable phytochemicals. In the present review, we summarized the recent advances in botany, phytochemical composition, ethnobotanical uses, food preservation, and the preclinical and clinical efficacy of Aloe plants. These data will be helpful to provide future directions for the industrial and medicinal use of Aloe plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Sevil Albayrak
- Department of Biology, Science Faculty, Erciyes University, Kayseri 38039, Turkey.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Yadav Uprety
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, P.O. Box 1030 Kirtipur, Kathmandu, Nepal.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box 812 Yaounde, Cameroon.
| | - Zubaida Yousef
- Department of Botany, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Integrative Pharmacogenomics Institute (iPROMISE), Level 7, FF3 Building, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, via Beldiletto 1/3, 20100 Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
27
|
Peng C, Viana T, Petersen MA, Larsen FH, Arneborg N. Metabolic footprint analysis of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. Metabolomics 2018; 14:93. [PMID: 30830430 DOI: 10.1007/s11306-018-1391-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There has been a growing interest towards creating defined mixed starter cultures for alcoholic fermentations. Previously, metabolite differences between single and mixed cultures have been explored at the endpoint of fermentations rather than during fermentations. OBJECTIVES To create metabolic footprints of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. METHODS 1H NMR- and GC-MS-based metabolomics was used to identify metabolites that discriminate single and mixed cultures of Lachancea thermotolerans (LT) and Saccharomyces cerevisiae (SC) during alcoholic fermentations. RESULTS Twenty-two metabolites were found when comparing single LT and mixed cultures, including both non-volatiles (carbohydrate, amino acid and acids) and volatiles (higher alcohols, esters, ketones and aldehydes). Fifteen of these compounds were discriminatory only at the death phase initiation (T1) and fifteen were discriminatory only at the death phase termination (T2) of LT in mixed cultures. Eight metabolites were discriminatory at both T1 and T2. These results indicate that specific metabolic changes may be descriptive of different LT growth behaviors. Fifteen discriminatory metabolites were found when comparing single SC and mixed cultures. These metabolites were all volatiles, and twelve metabolites were discriminatory only at T2, indicating that LT-induced changes in volatiles occur during the death phase of LT in mixed cultures and not during their initial growth stage. CONCLUSIONS This work provides a detailed insight into yeast metabolites that differ between single and mixed cultures, and these data may be used for understanding and eventually predicting yeast metabolic changes in wine fermentations.
Collapse
Affiliation(s)
- Chuantao Peng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Tiago Viana
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
- Chr.Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Flemming Hofmann Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
28
|
Qin XX, Zhang MY, Han YY, Hao JH, Liu CJ, Fan SX. Beneficial Phytochemicals with Anti-Tumor Potential Revealed through Metabolic Profiling of New Red Pigmented Lettuces (Lactuca sativa L.). Int J Mol Sci 2018; 19:E1165. [PMID: 29641499 PMCID: PMC5979491 DOI: 10.3390/ijms19041165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/01/2022] Open
Abstract
The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce (Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.
Collapse
Affiliation(s)
- Xiao-Xiao Qin
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102202, China.
- Beijing Bei Nong Enterprise Management Co., Ltd., Beijing 102206, China.
| | - Ming-Yue Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102202, China.
| | - Ying-Yan Han
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102202, China.
| | - Jing-Hong Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102202, China.
| | - Chao-Jie Liu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102202, China.
| | - Shuang-Xi Fan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102202, China.
| |
Collapse
|
29
|
Bio-prospecting endemic MascareneAloesfor potential neuroprotectants. Phytother Res 2017; 31:1926-1934. [DOI: 10.1002/ptr.5941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 01/02/2023]
|
30
|
Ryu HW, Yuk HJ, An JH, Kim DY, Song HH, Oh SR. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Park YJ, Park SY, Valan Arasu M, Al-Dhabi NA, Ahn HG, Kim JK, Park SU. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers. Molecules 2017; 22:E313. [PMID: 28218705 PMCID: PMC6155894 DOI: 10.3390/molecules22020313] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/17/2022] Open
Abstract
Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA) facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Soo-Yun Park
- National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hyung-Geun Ahn
- Science & Technology Policy Division, Ministry of Agriculture, Food, and Rural Affairs, Sejong-si 30110, Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 406-772, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
32
|
Park SY, Lee SY, Yang JW, Lee JS, Oh SD, Oh S, Lee SM, Lim MH, Park SK, Jang JS, Cho HS, Yeo Y. Comparative analysis of phytochemicals and polar metabolites from colored sweet potato ( Ipomoea batatas L.) tubers. Food Sci Biotechnol 2016; 25:283-291. [PMID: 30263269 DOI: 10.1007/s10068-016-0041-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/11/2023] Open
Abstract
We determined the phytochemical diversity, including carotenoids, flavonoids, anthocyanins, and phenolic acids, in sweet potatoes (Ipomoea batatas L.) with distinctive flesh colors (white, orange, and purple) and identified hydrophilic primary metabolites. Carotenoid content was considerably higher in orange-fleshed sweet potatoes, wherein β-carotene was the most plentiful, and anthocyanins were detected only in purple-fleshed sweet potatoes. The levels of phenolic acids and flavonoids were relatively higher in purple-fleshed sweet potatoes than those in the other two varieties. Forty-one primary and 18 secondary metabolite profiles were subjected to multivariate statistical analyses, which fully distinguished among the varieties and separated orange- and purple-fleshed sweet potatoes from white-fleshed sweet potatoes based on the high levels of sugars, sugar alcohols, and secondary metabolites. This is the first study to determine comprehensive metabolic differences among different color-fleshed sweet potatoes and provides useful information for genetic manipulation of sweet potatoes to influence primary and secondary metabolism.
Collapse
Affiliation(s)
- Soo-Yun Park
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - So Young Lee
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Jung Wook Yang
- 2Bioenergy Crop Research Institute, Rural Development Administration, Muan, Jeonnam, 58545 Korea
| | - Joon-Seol Lee
- 2Bioenergy Crop Research Institute, Rural Development Administration, Muan, Jeonnam, 58545 Korea
| | - Sung-Dug Oh
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Seonwoo Oh
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Si Myung Lee
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Myung-Ho Lim
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Soon Ki Park
- 3School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Jae-Seon Jang
- 4Department of Food & Nutrition, Gachon University, Seongnam, Gyeonggi, 13120 Korea
| | - Hyun Suk Cho
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Yunsoo Yeo
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| |
Collapse
|
33
|
Jang YK, Jung ES, Lee HA, Choi D, Lee CH. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9452-60. [PMID: 26465673 DOI: 10.1021/acs.jafc.5b03873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.
Collapse
Affiliation(s)
- Yu Kyung Jang
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
34
|
Chemotaxonomic Metabolite Profiling of 62 Indigenous Plant Species and Its Correlation with Bioactivities. Molecules 2015; 20:19719-34. [PMID: 26540030 PMCID: PMC6332367 DOI: 10.3390/molecules201119652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022] Open
Abstract
Chemotaxonomic metabolite profiling of 62 indigenous Korean plant species was performed by ultrahigh performance liquid chromatography (UHPLC)-linear trap quadrupole-ion trap (LTQ-IT) mass spectrometry/mass spectrometry (MS/MS) combined with multivariate statistical analysis. In partial least squares discriminant analysis (PLS-DA), the 62 species clustered depending on their phylogenetic family, in particular, Aceraceae, Betulaceae, and Fagaceae were distinguished from Rosaceae, Fabaceae, and Asteraceae. Quinic acid, gallic acid, quercetin, quercetin derivatives, kaempferol, and kaempferol derivatives were identified as family-specific metabolites, and were found in relatively high concentrations in Aceraceae, Betulaceae, and Fagaceae. Fagaceae and Asteraceae were selected based on results of PLS-DA and bioactivities to determine the correlation between metabolic differences among plant families and bioactivities. Quinic acid, quercetin, kaempferol, quercetin derivatives, and kaempferol derivatives were found in higher concentrations in Fagaceae than in Asteraceae, and were positively correlated with antioxidant and tyrosinase inhibition activities. These results suggest that metabolite profiling was a useful tool for finding the different metabolic states of each plant family and understanding the correlation between metabolites and bioactivities in accordance with plant family.
Collapse
|
35
|
Kim NK, Park HM, Lee J, Ku KM, Lee CH. Seasonal Variations of Metabolome and Tyrosinase Inhibitory Activity of Lespedeza maximowiczii during Growth Periods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8631-8639. [PMID: 26345477 DOI: 10.1021/acs.jafc.5b03566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lespedeza species are useful for pasture and energy crops as well as medical plants. We determined the metabolites discriminated from the each growth period (3, 4, 6, 8, 15, and 18 months) after germination in leaves and stems of Lespedeza maximowizii by a metabolomics technique. Specifically, levels of sugars and luteolin-dominated derivatives were significantly elevated in samples harvested in November. This may be related to the cold tolerance mechanism against the low temperatures of the winter season. The concentrations of secondary metabolites, isoflavones and flavanones, as well as tyrosinase inhibitory activity were the highest in the 6 month samples, which were harvested in September, during the fall season. The tyrosinase inhibitory activity in leaves was higher than that in stems irrespective of the growth period. This study suggests that mass spectrometry-based metabolite profiling could be used as a tool to examine quantitative or qualitative metabolite changes related to seasonal variations and to understand the correlation between activity and metabolites.
Collapse
Affiliation(s)
- Na kyung Kim
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26505, United States
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
36
|
Lee HJ, Suh DH, Jung ES, Park HM, Jung GY, Do SG, Lee CH. Metabolomics of Lonicera caerulea fruit during ripening and its relationship with color and antioxidant activity. Food Res Int 2015; 78:343-351. [PMID: 28433302 DOI: 10.1016/j.foodres.2015.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023]
Abstract
We performed mass spectrometry-based metabolites profiling in Lonicera caerulea fruits according to seven ripening stages. During ripening, fruit color significantly changed from green to red, with sugars, organic acids, phenolic acids, anthocyanins, and flavonoids significantly altered. In particular, the contents of cyanidin-3-glucoside, peonidin-glucoside, peonidin-3-rutinoside and cyanidin-3-rutinoside, which are closely associated with color, were elevated from stages four to seven. The changes of antioxidant activity during ripening were similar to those of total phenolic and flavonoid contents. L. caerulea fruits at stage six (pale-purple) had higher antioxidant activity and total phenolic and flavonoid contents with higher cyanidin-3,5-diglucoside contents than those at stage seven (fully purple). From this study, we revealed the changes in the contents of primary and secondary metabolites with antioxidant properties during ripening, and these results could be helpful to determine the optimal harvest stage of L. caerulea fruit.
Collapse
Affiliation(s)
- Heon Joong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ga-Young Jung
- Wellness R & D Center, Univera, Inc., Seoul 04782, Republic of Korea
| | - Seon-Gil Do
- Wellness R & D Center, Univera, Inc., Seoul 04782, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
37
|
Mistry B, Keum YS, Kim DH. Synthesis and Biological Evaluation of Berberine Derivatives Bearing 4-Aryl-1-Piperazine Moieties. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14381686689721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Piperazine moieties with disubstituted N-aryl groups are linked to the isoquinoline alkaloid, berberine, through a pentyloxy side chain, replacing its 9-methoxyl group. The nine synthesised compounds are screened for antioxidant potency, in vitro anticancer activities against Hela and Caski cervical cancer cell lines and for cytotoxicity towards Malin Darby canine kidney cell lines. Several compounds demonstrate significant antioxidant potency and most of the compounds exhibit equipotent, or better, anticancer activity when compared to berberine.
Collapse
Affiliation(s)
- Bhupendra Mistry
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Young-Soo Keum
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Doo Hwan Kim
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
38
|
Zhong JS, Wan JZ, Ding WJ, Wu XF, Xie ZY. Multi-responses extraction optimization combined with high-performance liquid chromatography-diode array detection–electrospray ionization-tandem mass spectrometry and chemometrics techniques for the fingerprint analysis of Aloe barbadensis Miller. J Pharm Biomed Anal 2015; 107:131-40. [DOI: 10.1016/j.jpba.2014.12.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/17/2022]
|
39
|
Lee SY, Lee S, Lee S, Oh JY, Jeon EJ, Ryu HS, Lee CH. Primary and secondary metabolite profiling of doenjang, a fermented soybean paste during industrial processing. Food Chem 2014; 165:157-66. [PMID: 25038662 DOI: 10.1016/j.foodchem.2014.05.089] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/25/2014] [Accepted: 05/15/2014] [Indexed: 11/23/2022]
Abstract
In this study, a comprehensive metabolite profile analysis of doenjang, a fermented soybean paste, at various steps of its industrial 5-step production process was conducted, by combining gas and liquid chromatography-mass spectrometry techniques with multivariate analysis. From the partial least squares discriminant analysis of primary and secondary metabolites, the patterns were clearly distinguishable between the various processing steps (step 1: steaming, step 2: drying, step 3: meju fermentation, step 4: brining, step 5: doenjang aging). Of the primary metabolites, most of the monosaccharides, amino acids, and fatty acids increased in steps 3-5. Isoflavone and soyasaponin derivatives were major secondary metabolites identified during the processing of doenjang. Isoflavone glycosides gradually decreased after step 1, while isoflavone aglycones distinctly increased in steps 4-5. Soyasaponins generally decreased during processing after step 2. Increased isoflavone aglycones, such as daidzein, glycitein, and genistein, were observed in steps 4-5 showed the strongest positive correlation with doenjang's antioxidant potential and total phenolic content.
Collapse
Affiliation(s)
- Su Yun Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Sarah Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Ji Young Oh
- Food Research Institute, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Eun Jung Jeon
- Food Research Institute, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Hyung Seok Ryu
- Food Research Institute, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
40
|
Kim GR, Jung ES, Lee S, Lim SH, Ha SH, Lee CH. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities. Molecules 2014; 19:15673-86. [PMID: 25268721 PMCID: PMC6271636 DOI: 10.3390/molecules191015673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/16/2022] Open
Abstract
Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.
Collapse
Affiliation(s)
- Ga Ryun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sarah Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Crop Biotech Institute, College of Life Sciences, Kyung Hee University, Suwon 446-701, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
41
|
Suh DH, Lee S, Heo DY, Kim YS, Cho SK, Lee S, Lee CH. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8764-71. [PMID: 25101804 DOI: 10.1021/jf5020704] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) was performed using gas chromatography-time-of-flight-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry with multivariate analysis. Different species and parts of pitayas (red peel, RP; white peel, WP; red flesh, RF; and white flesh, WF) were clearly separated by partial least-squares discriminate analysis. Furthermore, betalain-related metabolites, such as betacyanins and betaxanthins, or their precursors were described on the basis of their metabolites. The results of antioxidant activity tests [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing ability of plasma (FRAP)], total phenolic contents (TPC), total flavonoid contents (TFC), and total betacyanin contents (TBC) showed the following: RP ≥ WP > RF > WF. TPC, TFC, TBC, and betalain-related metabolites were higher in the peel than in the flesh and suggested to be the main contributors to antioxidant activity in pitayas. Therefore, peels as well as pulp of pitaya could beneficially help in the food industry.
Collapse
Affiliation(s)
- Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Lucini L, Pellizzoni M, Pellegrino R, Molinari GP, Colla G. Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. Food Chem 2014; 170:501-7. [PMID: 25306376 DOI: 10.1016/j.foodchem.2014.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/22/2014] [Accepted: 08/10/2014] [Indexed: 01/24/2023]
Abstract
The phytochemical profile of Aloe barbadensis Mill. and Aloe arborescens Mill. was investigated using colorimetric assays, triple quadrupole and time-of-flight mass spectrometry, focusing on phenolic secondary metabolites in the different leaf portions. Hydroxycinnamic acids, several characteristic anthrones and chromones, the phenolic dimer feralolide and flavonoids such as flavones and isoflavones were identified. The stable radical DPPH test and the ORAC assay were then used to determine the in vitro radical scavenging. The outer green rind was the most active, while the inner parenchyma was much less effective. The 5-methylchromones aloesin, aloeresin A and aloesone were the most active among the pure secondary metabolites tested. The results suggest that several compounds are likely to contribute to the overall radical scavenging activity, and indicate that leaf portion must be taken into account when the plant is used for its antioxidant properties.
Collapse
Affiliation(s)
- Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, via Emilia parmense 84, 29122 Piacenza, Italy.
| | - Marco Pellizzoni
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, via Emilia parmense 84, 29122 Piacenza, Italy
| | - Roberto Pellegrino
- Department of Chemistry, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gian Pietro Molinari
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, via Emilia parmense 84, 29122 Piacenza, Italy
| | - Giuseppe Colla
- Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
43
|
John KMM, Ayyanar M, Jeeva S, Suresh M, Enkhtaivan G, Kim DH. Metabolic variations, antioxidant potential, and antiviral activity of different extracts of Eugenia singampattiana (an endangered medicinal plant used by Kani tribals, Tamil Nadu, India) leaf. BIOMED RESEARCH INTERNATIONAL 2014; 2014:726145. [PMID: 25133179 PMCID: PMC4123486 DOI: 10.1155/2014/726145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
Abstract
Eugenia singampattiana is an endangered medicinal plant used by the Kani tribals of South India. The plant had been studied for its antioxidant, antitumor, antihyperlipidemic, and antidiabetic activity. But its primary and secondary metabolites profile and its antiviral properties were unknown, and so this study sought to identify this aspect in Eugenia singampattiana plant through different extraction methods along with their activities against porcine reproductive and respiratory syndrome virus (PRRSV). The GC-MS analysis revealed that 11 primary metabolites showed significant variations among the extracts. Except for fructose all other metabolites were high with water extract. Among 12 secondary metabolites showing variations, the levels of 4-hydroxy benzoic acid, caffeic acid, rutin, ferulic acid, coumaric acid, epigallocatechin gallate, quercetin, myricetin, and kaempferol were high with methanol extract. Since the flavonoid content of methanol extracts was high, the antioxidant potential, such as ABTS, and phosphomolybdenum activity increased. The plants antiviral activity against PRRSV was for the first time confirmed and the results revealed that methanol 25 µg and 75 to 100 µg in case of water extracts revealed antiviral activity.
Collapse
Affiliation(s)
- K. M. Maria John
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Muniappan Ayyanar
- Department of Botany & Microbiology, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur District, Tamil Nadu 613503, India
| | - Subbiah Jeeva
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-729, Republic of Korea
| | - Murugesan Suresh
- Department of Botany, VHN Senthikumara Nadar College, Virudhunagar, Tamil Nadu 626001, India
| | - Gansukh Enkhtaivan
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
44
|
Maria John KM, Enkhtaivan G, Kim JJ, Kim DH. Metabolic variation and antioxidant potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits (apple, grapes) and beverage (black tea). Food Chem 2014; 163:46-50. [PMID: 24912694 DOI: 10.1016/j.foodchem.2014.04.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
Secondary metabolic variation of wild apple (Malus prunifolia) was compared with fruits that contained high flavan-3-ol like grapes (GR), apple (App) and the beverage, black tea (BT). The polyphenol contents in wild apple was higher than in GR and App but less than BT. The identified phenolic acids (gallic, protocatechuic, chlorogenic, p-coumaric and ferulic acids) and flavonoids (quercetin and myricetin) indicate that wild apple was higher than that of App. Among all the samples, BT had highest antioxidant potential in terms of 2,2'-Azinobis (3-thylbenzothiazoline-6-sulfonic acid) diammonium salt (95.36%), metal chelating (45.36%) and phosphomolybdenum activity (95.8 mg/g) because of the high flavan-3-ol content. The gallic acid and epigallocatechin gallate were highly correlated with antioxidant potential and these metabolites levels are higher in wild apple than that of App. Wild apples being a non-commercial natural source, a detailed study of this plant will be helpful for the food additive and preservative industry.
Collapse
Affiliation(s)
- K M Maria John
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Gansukh Enkhtaivan
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Ju Jin Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
45
|
Hyun TK, Lee S, Rim Y, Kumar R, Han X, Lee SY, Lee CH, Kim JY. De-novo RNA sequencing and metabolite profiling to identify genes involved in anthocyanin biosynthesis in Korean black raspberry (Rubus coreanus Miquel). PLoS One 2014; 9:e88292. [PMID: 24505466 PMCID: PMC3914977 DOI: 10.1371/journal.pone.0088292] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/07/2014] [Indexed: 11/28/2022] Open
Abstract
The Korean black raspberry (Rubus coreanus Miquel, KB) on ripening is usually consumed as fresh fruit, whereas the unripe KB has been widely used as a source of traditional herbal medicine. Such a stage specific utilization of KB has been assumed due to the changing metabolite profile during fruit ripening process, but so far molecular and biochemical changes during its fruit maturation are poorly understood. To analyze biochemical changes during fruit ripening process at molecular level, firstly, we have sequenced, assembled, and annotated the transcriptome of KB fruits. Over 4.86 Gb of normalized cDNA prepared from fruits was sequenced using Illumina HiSeq™ 2000, and assembled into 43,723 unigenes. Secondly, we have reported that alterations in anthocyanins and proanthocyanidins are the major factors facilitating variations in these stages of fruits. In addition, up-regulation of F3'H1, DFR4 and LDOX1 resulted in the accumulation of cyanidin derivatives during the ripening process of KB, indicating the positive relationship between the expression of anthocyanin biosynthetic genes and the anthocyanin accumulation. Furthermore, the ability of RcMCHI2 (R. coreanus Miquel chalcone flavanone isomerase 2) gene to complement Arabidopsis transparent testa 5 mutant supported the feasibility of our transcriptome library to provide the gene resources for improving plant nutrition and pigmentation. Taken together, these datasets obtained from transcriptome library and metabolic profiling would be helpful to define the gene-metabolite relationships in this non-model plant.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Sarah Lee
- Division of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yeonggil Rim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Xiao Han
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Choong Hwan Lee
- Division of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
46
|
Kwack SJ, Do SG, Kim YW, Kim YJ, Gwak HM, Park HJ, Roh T, Shin MK, Lim SK, Kim HS, Lee BM. The no-observed-adverse-effect level (NOAEL) of baby aloe powder (BAP) for nutraceutical application based upon toxicological evaluation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1319-1331. [PMID: 25343283 DOI: 10.1080/15287394.2014.951590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aloe has been used in versatile herbal medications and nutraceuticals throughout history. Aloe is widely considered to be generally safe for humans and used globally. The effectiveness and pharmacological properties of aloe are dependent upon when the plant is collected. However, little is known about the toxicology of whole-body aloe collected within less than 1 yr. Based upon widespread exposure to aloe, it is important to determine a daily intake level of this chemical to ensure its safety for humans. To determine the no-observed-adverse-effect level (NOAEL) of baby aloe powder (BAP) for clinical application, Sprague-Dawley (SD) rats were treated orally for 4 wk with 4 different concentrations: 0, 0.125, 0.5, and 2 g/kg body weight (bw). In this study, no significant or dose-dependent toxicological effects of BAP were observed in biochemical or hematological parameters, urinalysis, clinical signs, body weight, and food and water consumption. There were changes in some biomarkers in certain treated groups compared to controls; however, all values were within their reference ranges and not dose-dependent. Based on these results, the NOAEL of BAP was estimated to be greater than 2 g/kg bw in male and 2 g/kg bw in female SD rats. Collectively, these data suggest that BAP used in this study did not produce any marked subacute toxic effects up to a maximum concentration of 2 g/kg bw, and thus use in nutraceuticals and in pharmaceutical and cosmetic applications at a concentration of >2 g/kg is warranted.
Collapse
Affiliation(s)
- Seung Jun Kwack
- a Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam , South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee YS, Ju HK, Kim YJ, Lim TG, Uddin MR, Kim YB, Baek JH, Kwon SW, Lee KW, Seo HS, Park SU, Yang TJ. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation. PLoS One 2013; 8:e82479. [PMID: 24358188 PMCID: PMC3865001 DOI: 10.1371/journal.pone.0082479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022] Open
Abstract
Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Kyoung Ju
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeon Jeong Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Gyu Lim
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Md Romij Uddin
- Department of Crop Science, Chungnam National University, Yuseong-Gu, Daejeon, Republic of Korea
| | - Yeon Bok Kim
- Department of Crop Science, Chungnam National University, Yuseong-Gu, Daejeon, Republic of Korea
| | - Jin Hong Baek
- Kim Jeong Moon Aloe Co. LTD, SeoCho-Gu, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul, Republic of Korea
| | - Hak Soo Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Yuseong-Gu, Daejeon, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
|
49
|
Zhao J, Deng J, Chen Y, Li S. Advanced phytochemical analysis of herbal tea in China. J Chromatogr A 2013; 1313:2-23. [DOI: 10.1016/j.chroma.2013.07.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
|
50
|
Park SY, Lim SH, Ha SH, Yeo Y, Park WT, Kwon DY, Park SU, Kim JK. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6999-7007. [PMID: 23782237 DOI: 10.1021/jf401330e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.
Collapse
Affiliation(s)
- Soo-Yun Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|