1
|
Kicel A, Magiera A, Olszewska MA. Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season. Molecules 2024; 29:4745. [PMID: 39407672 PMCID: PMC11478002 DOI: 10.3390/molecules29194745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Cotoneaster zabelii is a medicinal plant that is beneficial due to its polyphenol-rich leaves. In the course of optimizing the harvest time for C. zabelii cultivated in Poland, the leaf samples were collected monthly during the annual plant vegetation season, and the hydromethanolic leaf extracts were evaluated for their phenolic composition and model biological activities, including antioxidant, antihyperglycemic, and anti-inflammatory effects in vitro. The phenolic profiles were analyzed using UHPLC-PDA-ESI-MS3, HPLC-PDA, and spectrophotometric methods (total phenolic content, TPC) to understand their seasonal variability and its correlation with bioactive properties. The identified phenolic compounds included caffeic acid derivatives, flavan-3-ols (especially (-)-epicatechin and procyanidins B-type), and flavonoids like quercetin mono- and diglycosides. Leaves harvested in July and October contained the highest polyphenolic levels and demonstrated significant antioxidant activity in most tests. The leaves harvested in July, September, and October showed optimal anti-inflammatory effects, whereas the highest antihyperglycemic activity was observed in the leaves collected from June to July. Regarding polyphenolic levels and bioactivity, the summer and autumn months appear to be the most advantageous for harvesting leaf material of optimal quality for phytotherapy.
Collapse
Affiliation(s)
- Agnieszka Kicel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland; (A.M.); (M.A.O.)
| | | | | |
Collapse
|
2
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the therapeutic potential of bioactive exopolysaccharide produced by marine actinobacterium Streptomyces vinaceusdrappus AMG31: A novel approach to drug development. Int J Biol Macromol 2024; 276:133861. [PMID: 39029838 DOI: 10.1016/j.ijbiomac.2024.133861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Acidic exopolysaccharide (EPS) was produced by a marine actinobacterium Streptomyces vinaceusdrappus strain AMG31 with the highest yield of 10.6 g/l. The synthesized EPS has an average molecular weight of 5.1 × 104 g/mol and contains arabinose, glucose, galacturonic acid (0.5:2:2 M ratio), with 39.77 % uronic acid residues and 18.8 % sulfate detected. EPS exhibited antioxidant activities with 93.8 % DPPH radical scavenging and 344.7 μg/mg total antioxidant capacity. It displayed anti-inflammatory effects by inhibiting 5-LOX and COX-2. Regarding the cytotoxic activity, the IC50 values are 301.6 ± 11.8, 260.8 ± 12.2, 29.4 ± 13.5, 351.3 ± 11.2, 254.1 ± 9.8, and 266.5 ± 10.4 μg/ml for PC-3, HEP-2, MCF-7, HCT-116, A-549, HepG-2 respectively, which indicate that the produced EPS does not have strong cytotoxic activities. Moreover, the EPS showed anti-Alzheimer activity via inhibition of the Butyrylcholinesterase enzyme, with the highest percentage of 84.5 % at 100 μg/ml. Interestingly, the EPS showed superior anti-obesity activity by inhibiting lipase enzyme with a rate of 95.3 % compared to orlistat as a positive control (96.8 %) at a concentration of 1000 μg/ml. Additionally, the produced EPS displayed the highest anti-diabetic properties by inhibiting α-amylase (IC50 31.49 μg/ml) and α-glucosidase (IC50 6.48 μg/ml), suggesting antidiabetic potential analogous to acarbose. EPS exhibited promising antibacterial and antibiofilm activity against a wide range of Gram-positive and Gram-negative pathogenic bacteria.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; School of Nuclear Science and Technology, University of South China, Heng Yang, China.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Abd-Allah H, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Ferulic acid nanoemulsion as a promising anti-ulcer tool: in vitro and in vivo assessment. Drug Dev Ind Pharm 2024; 50:460-469. [PMID: 38602337 DOI: 10.1080/03639045.2024.2341786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1β and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| |
Collapse
|
4
|
Lee EJ, Kim YS, Kim JH, Woo KW, Park YH, Ha JH, Li W, Kim TI, An BK, Cho HW, Han JH, Choi JG, Chung HS. Uncovering the colorectal cancer immunotherapeutic potential: Evening primrose (Oenothera biennis) root extract and its active compound oenothein B targeting the PD-1/PD-L1 blockade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155370. [PMID: 38266440 DOI: 10.1016/j.phymed.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The emergence of immune checkpoint inhibitors, a novel class of immunotherapy drugs, represents a major breakthrough in cancer immunotherapy, substantially improving patient survival post-treatment. Blocking programmed death-ligand 1 (PD-L1) and programmed death protein-1 (PD-1) has demonstrated promising clinical results in various human cancer types. The US FDA has recently permitted only monoclonal antibody (mAb)-based PD-L1 or PD-1 blockers. Although these antibodies exhibit high antitumor efficacy, their size- and affinity-induced side effects limit their applicability. PURPOSE As small-molecule-based PD-1/PD-L1 blockers capable of reducing the side effects of antibody therapies are needed, this study focuses on exploring natural ingredient-based small molecules that can target hPD-L1/PD-1 using herbal medicines and their components. METHODS The antitumor potential of evening primrose (Oenothera biennis) root extract (EPRE), a globally utilized traditional herbal medicine, folk remedy, and functional food, was explored. A coculture system was established using human PD-L1-expressed murine MC38 cells (hPD-L1-MC38s) and CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) expressing humanized PD-1. The in vivo experiments utilized a colorectal cancer (CRC) C57BL/6 J mouse model bearing MC38 cells expressing humanized PD-L1 and PD-1 proteins. RESULTS EPRE and its active compound oenothein B effectively hindered the molecular interaction between hPD-L1 and hPD-1. EPRE stimulated tumor-specific T lymphocytes of a hPD-L1/PD-1 CRC mice. This action resulted in the elevated infiltration of cytotoxic CD8+T lymphocytes and subsequent tumor growth reduction. Moreover, the combined therapy of oenothein B, a PD-1/PD-L1 blocker, and FOLFOX (5-fluorouracil plus oxaliplatin) cooperatively suppressed hPD-L1-MC38s growth in the ex vivo model through activated CD8+ TIL antitumor immune response. Oenothein B exhibited a high binding affinity for hPD-L1 and hPD-1. We believe that this study is the first to uncover the inhibitory effects of EPRE and its component, oenothein B, on PD-1/PD-L1 interactions. CONCLUSION This study identified a promising small-molecule candidate from natural products that blocks the hPD-L1/PD-1 signaling pathway. These findings emphasize the potential of EPRE and oenothein B as effective anticancer drugs.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ji Hye Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kyeong Wan Woo
- National Development Institute of Korea Medicine, 27, Wondogwandeok-gil, Jangheung-eup, Jangheung-gun, Jeollanam-do 59319, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Wei Li
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Tae In Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Byeong Kwan An
- National Development Institute of Korea Medicine, 94, Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do 38540, Republic of Korea
| | - Hyun Woo Cho
- National Development Institute of Korea Medicine, 27, Wondogwandeok-gil, Jangheung-eup, Jangheung-gun, Jeollanam-do 59319, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
5
|
Sharifi M, Nourani N, Sanaie S, Hamedeyazdan S. The effect of Oenothera biennis (Evening primrose) oil on inflammatory diseases: a systematic review of clinical trials. BMC Complement Med Ther 2024; 24:89. [PMID: 38360611 PMCID: PMC10867995 DOI: 10.1186/s12906-024-04378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Evening primrose oil (EPO), extracted from the seeds of Oenothera biennis, has gained attention for its therapeutic effects in various inflammatory conditions. METHOD We performed a systematic search in multiple databases and defined the inclusion criteria based on the following PICOs: P: Patients with a form of inflammatory condition, I: EPO, C: Placebo or other therapeutic interventions, O: changes in inflammatory markers or patients' symptoms; S: randomized controlled trials. The quality of the RCTs was evaluated using Cochrane's RoB tool. RESULTS Several conditions were investigated in the literature. In rheumatoid arthritis, mixed results were observed, with some studies reporting significant improvements in symptoms while others found no significant impact. EPO showed some results in diabetes mellitus, atopic eczema, menopausal hot flashes, and mastalgia. However, it did not demonstrate effectiveness in chronic hand dermatitis, tardive dyskinesia, psoriatic arthritis, cystic fibrosis, hepatitis B, premenstrual syndrome, contact lens-associated dry eyes, acne vulgaris, breast cyst, pre-eclampsia, psoriasis, or primary Sjogren's syndrome. Some results were reported from multiple sclerosis after EPO consumption. Studies in healthy volunteers indicated no significant effect of EPO on epidermal atrophy, nevertheless, positive effects on the skin regarding hydration and barrier function were achieved. CONCLUSION Some evidence regarding the potential benefits of EPO in inflammatory disorders were reported however caution is due to the limitations of the current survey. Overall, contemporary literature is highly heterogeneous and fails to provide strong recommendations regarding the efficacy of EPO on inflammatory disorders. Further high-quality studies are necessitated to draw more definite conclusions and establish O. biennis oil effectiveness as an assuring treatment option in alleviating inflammatory conditions.
Collapse
Affiliation(s)
- Melika Sharifi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Nourani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanaz Hamedeyazdan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Abd-Allah H, Youshia J, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Gastroprotective Chitosan Nanoparticles Loaded with Oleuropein: An In Vivo Proof of Concept. Pharmaceutics 2024; 16:153. [PMID: 38276520 PMCID: PMC10819437 DOI: 10.3390/pharmaceutics16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Oleuropein is the main constituent of olive leaf extract, and it has shown antioxidant and gastroprotective properties against gastric ulcers. Chitosan nanoparticles are known for their mucoadhesive abilities, and consequently, they can increase the retention time of drugs in the gastrointestinal tract. Therefore, loading oleuropein onto chitosan nanoparticles is expected to enhance its biological efficiency. Oleuropein-loaded chitosan nanoparticles were prepared and characterized for particle size, surface charge, in vitro release, and anti-inflammatory activity. Their in vivo efficacy was assessed by measuring specific inflammatory and protective biomarkers, along with histopathological examination. The optimum oleuropein chitosan nanoparticles were cationic, had a size of 174.3 ± 2.4 nm and an entrapment efficiency of 92.81%, and released 70% of oleuropein within 8 h. They recorded a lower IC50 in comparison to oleuropein solutions for membrane stabilization of RBCs (22.6 vs. 25.6 µg/mL) and lipoxygenase inhibition (7.17 vs. 15.6 µg/mL). In an ethanol-induced gastric ulcer in vivo model, they decreased IL-1β, TNF-α, and TBARS levels by 2.1, 1.7, and 1.3 fold, respectively, in comparison to increments caused by exposure to ethanol. Moreover, they increased prostaglandin E2 and catalase enzyme levels by 2.4 and 3.8 fold, respectively. Immunohistochemical examination showed that oleuropein chitosan nanoparticles markedly lowered the expression of IL-6 and caspase-3 in gastric tissues in comparison to oleuropein solution. Overall, oleuropein chitosan nanoparticles showed superior gastroprotective effects to oleuropein solution since comparable effects were demonstrated at a 12-fold lower drug dose, delineating that chitosan nanoparticles indeed enhanced the potency of oleuropein as a gastroprotective agent.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| |
Collapse
|
7
|
Alharbi MA, Alrehaili AA, Albureikan MOI, Gharib AF, Daghistani H, Bakhuraysah MM, Aloraini GS, Bazuhair MA, Alhuthali HM, Ghareeb A. In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide. RSC Adv 2023; 13:26406-26417. [PMID: 37671337 PMCID: PMC10476021 DOI: 10.1039/d3ra04009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
In the current study, Bacillus velezensis AG6 was isolated from sediment samples in the Red Sea, identified by traditional microbiological techniques and phylogenetic 16S rRNA sequences. Among eight isolates screened for exopolysaccharide (EPS) production, the R6 isolate was the highest producer with a significant fraction of EPS (EPSF6, 5.79 g L-1). The EPSF6 molecule was found to have a molecular weight (Mw) of 2.7 × 104 g mol-1 and a number average (Mn) of 2.6 × 104 g mol-1 when it was analyzed using GPC. The FTIR spectrum indicated no sulfate but uronic acid (43.8%). According to HPLC, the EPSF6 fraction's monosaccharides were xylose, galactose, and galacturonic acid in a molar ratio of 2.0 : 0.5 : 2.0. DPPH, H2O2, and ABTS tests assessed EPSF6's antioxidant capabilities at 100, 300, 500, 1000, and 1500 μg mL-1 for 15, 60, 45, and 60 minutes. The overall antioxidant activities were dose- and time-dependently increased, and improved by increasing concentrations from 100 to 1500 μg mL-1 after 60 minutes and found to be 91.34 ± 1.1%, 80.20 ± 1.4% and 75.28 ± 1.1% respectively. Next, EPSF6 displayed considerable inhibitory activity toward the proliferation of six cancerous cell lines. Anti-inflammatory tests were performed using lipoxygenase (5-LOX) and cyclooxygenase (COX-2). An MTP turbidity assay method was applied to show the ability of EPSF6 to inhibit Gram-positive bacteria, Gram-negative bacteria, and antibiofilm formation. Together, this study sheds light on the potential pharmacological applications of a secondary metabolite produced by marine Bacillus velezensis AG6. Its expected impact on human health will increase as more research and studies are conducted globally.
Collapse
Affiliation(s)
- Maha A Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Amani A Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mona Othman I Albureikan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Maha M Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ghfren S Aloraini
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
8
|
Márquez-Flores YK, Estrada-Pérez AR, Velasco-Quijano JS, Molina-Urrutia ZM, Rosales-Hernández MC, Fragoso-Morales LG, Meléndez-Camargo ME, Correa-Basurto J. LC-MS metabolomic evidence metabolites from Oenothera rosea L´ Hér. ex Ait with antiproliferative properties on DU145 human prostate cancer cell line. Biomed Pharmacother 2023; 165:115193. [PMID: 37517287 DOI: 10.1016/j.biopha.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Prostate cancer remains one of the leading health issues without a fully effective treatment. Medicinal plants are one of the primary sources of compounds for treating numerous ailments. In this sense, the Oenothera genus contains metabolites with antiproliferative activity on cancer cells. For this, the study aimed to explore the antiproliferative activity of its extracts against prostate cancer and identify its metabolites (under metabolomics analyses) associated with anticancer and/or antiproliferative properties. For this reason, a LC-MS/MS-based metabolomic analysis was performed to demonstrate the possible metabolites present in O. rosea. In addition, the antiproliferative activity of different extracts in the human prostate cancer cell line DU145 was evaluated. All extracts have antiproliferative effects on DU145 cells at 72 h, with moderate activity being the best ethanolic either 48 or 72 h. Finally, by LC-MS/MS-based metabolomics, 307 compounds from aqueous, methanolic, ethanolic, and ethyl acetate extracts from which 40 putative metabolites identified were organized as anti-inflammatory, anticancer, and/or antiproliferative activities according to previously reported. These results provide evidence that O. rosea could be used as an antiproliferative agent due to its chemical contents used as polypharmacy with low concentration levels.
Collapse
Affiliation(s)
- Yazmín K Márquez-Flores
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico; Universidad Tecnológica de México - UNITEC MÉXICO - Campus Marina, Av. Marina Nacional 162 Col. Anáhuac Sección I, Miguel Hidalgo, C.P. 11320 Ciudad de México, Mexico.
| | - Alan R Estrada-Pérez
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340 Ciudad de México, Mexico
| | - Jessica S Velasco-Quijano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico
| | - Zintly M Molina-Urrutia
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Leticia G Fragoso-Morales
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - María Estela Meléndez-Camargo
- Laboratorio de Farmacología y Toxicología renal y hepática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340 Ciudad de México, Mexico.
| |
Collapse
|
9
|
Massei K, Michel T, Obersat GI, Al-Harrasi A, Baldovini N. Phytochemical study of Boswellia dalzielii oleo-gum resin and evaluation of its biological properties. PHYTOCHEMISTRY 2023; 213:113751. [PMID: 37307887 DOI: 10.1016/j.phytochem.2023.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Boswellia dalzielii is a resin-producing tree endemic to West and Central Africa, used by local populations for various medicinal purposes. In this study, B. dalzielii gum resin was analyzed by GC-MS and UHPLC-MS to identify and quantify volatile and non-volatile compounds. Its main volatile constituents were α-pinene (54.9%), followed by α-thujene (4.4%) and α-phellandren-8-ol (4.0%). Pentacyclic triterpenoids such as β-boswellic acids and their derivatives were quantified by UHPLC-MS and their content was shown to reach around 22% of the gum resin. Since some of the volatile and non-volatile compounds identified in this work are known to possess biological effects, the bioactivities of B. dalzielii ethanolic extract, essential oil, as well as fractions of the oil and extract were evaluated. Some of these samples exhibited interesting anti-inflammatory properties, and their antioxidant, anti-ageing and skin-bleaching activities were also tested.
Collapse
Affiliation(s)
- Kimberley Massei
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France
| | - Thomas Michel
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France
| | - Girma Ilayas Obersat
- Nature Is Unique, Girma-Ilayas Obersat, Koepenicker Str. 16 10997, Berlin, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman
| | - Nicolas Baldovini
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France.
| |
Collapse
|
10
|
Elawady ME, Hamed AA, Alsallami WM, Gabr EZ, Abdel-Monem MO, Hassan MG. Bioactive Metabolite from Endophytic Aspergillus versicolor SB5 with Anti-Acetylcholinesterase, Anti-Inflammatory and Antioxidant Activities: In Vitro and In Silico Studies. Microorganisms 2023; 11:microorganisms11041062. [PMID: 37110485 PMCID: PMC10144994 DOI: 10.3390/microorganisms11041062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi are a highly unpredictable group of microorganisms that can create a diverse range of secondary metabolites with biological activity. These metabolites enhance the host's ability to tolerate stress caused by various factors, such as disease, insects, pathogens, and herbivores. The secondary metabolites produced by endophytic fungi may have potential applications in agriculture, pharmacy, and medicine. The purpose of this study was to examine the anti-acetylcholinesterase activity of secondary metabolites extracted from endophytic fungi. Aspergillus versicolor SB5 was one of the many endophytic fungi isolated from Juncus rigidus and identified genetically with accession number ON872302. Our study utilized fermentation and microbial cultivation techniques to obtain secondary metabolites. During the course of our investigation, we isolated a compound called Physcion (C1) from the endophytic fungus Aspergillus versicolor SB5. We subsequently identified that C1 possesses inhibitory activity against COX-2 and LOX-1, with IC50 values of 43.10 and 17.54 µg/mL, respectively, making it an effective anti-inflammatory agent. Moreover, we found that C1 also exhibited potent anticholinesterase activity (86.9 ± 1.21%). In addition to these promising therapeutic properties, our experiments demonstrated that C1 possesses strong antioxidant capacity, as evidenced by its ability to scavenge DPPH, ABTS, O2 radicals, and NO and inhibit lipid peroxidation. To further investigate the molecular mechanisms underlying C1 pharmacological properties, we employed SwissADME web tools to predict the compound's ADME-related physicochemical properties and used Molecular Operating Environment and PyMOL for molecular docking studies.
Collapse
Affiliation(s)
- Mohamed E Elawady
- Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33, Cairo 12622, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, El-Buhouth St. 33, Cairo 12622, Egypt
| | - Wamedh M Alsallami
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Ebtsam Z Gabr
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| |
Collapse
|
11
|
Shalaby AM, Shalaby RH, Alabiad MA, Abdelrahman DI, Alorini M, Jaber FA, Hassan SMA. Evening primrose oil attenuates oxidative stress, inflammation, fibrosis, apoptosis, and ultrastructural alterations induced by metanil yellow in the liver of rat: a histological, immunohistochemical, and biochemical study. Ultrastruct Pathol 2023; 47:188-204. [PMID: 36927382 DOI: 10.1080/01913123.2023.2189987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The food color metanil yellow (Myl) is hazardous to several body systems. Evening primrose oil (EPO) was reported to have anti-inflammatory and anti-oxidant properties. The present work investigated the impact of Myl on the hepatic structure and function of rats and evaluated the protective effect of EPO. Forty adult male rats were divided into four groups: control, EPO (5 g/kg/day), Myl (200 mg/kg/day), and EPO- Myl group. Myl significantly increased liver enzymes, advanced glycation end products (AGE), oxidative stress parameters, pro-inflammatory cytokines, nuclear factor kappa B (NF-κB), and inducible nitric oxide synthase (iNOS). Blood vessels in the liver were dilated and congested, with cellular infiltration around them and associated with fibrosis. The hepatocytes were vacuolated and had dark nuclei. The immunohistochemical expression of iNOS, glial fibrillary acidic protein (GFAP), and Bax was significantly elevated. Ultrastructurally, the hepatocytes showed lipid droplets, irregular condensed nuclei with widened perinuclear space, dilated rER, mitochondria with destructed cristae, and multiple vacuoles. Dilated congested blood sinusoids and collagen fiber bundles were seen between hepatocytes. Interestingly, these alterations were less pronounced in rats co-administrated with EPO and Myl. In conclusion, EPO can protect liver against the toxic effects of Myl due to its anti-inflammatory and anti-oxidant activities.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rania H Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Biomedical Sciences Department, Dubai Medical College for Girls, Dubai, United Arab Emarates
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa I Abdelrahman
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | |
Collapse
|
12
|
Yahia S, Khalil IA, El-Sherbiny IM. Fortified gelatin-based hydrogel scaffold with simvastatin-mixed nanomicelles and platelet rich plasma as a promising bioimplant for tissue regeneration. Int J Biol Macromol 2023; 225:730-744. [PMID: 36400213 DOI: 10.1016/j.ijbiomac.2022.11.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Treatment of intervertebral disc (IVD) degeneration includes conservative and surgical strategies that have a high risk of recurrence. Consequently, tissue engineering represents a promising alternative treatment. This study aimed at healing damaged IVD with a bioimplant that can maintain the function of defected IVD. The developed IVD scaffold is composed of a fortified biocompatible gelatin-based hydrogel to mimic the ECM mechanical properties of IVD and to allow a sustained release of loaded bioactive agents. The hydrogel is laden with platelet-rich plasma (PRP) and simvastatin (SIM)-loaded mixed pluronics nanomicelles because of their regenerative ability and anti-inflammatory effect, respectively. The gelatin-based hydrogel attained swelling of 508.9 ± 7.9 % to 543.1 ± 5.9 % after 24 h. Increasing crosslinking degree of the hydrogel improved its mechanical elasticity up to 0.3 ± 0.1 N/mm2, and retarded its degradation. The optimum mixed nanomicelles had particle size of 84 ± 0.5 nm, a surface charge of -10 ± 7.1 mv, EE% of 84.9 %, and released 88.4 % of SIM after 21 days. Cytotoxicity of IVD components was evaluated using human skin fibroblast for 3 days. WST-test results proved biocompatibility of IVD scaffold. Subcutaneous implantation of the IVD scaffold was performed for 28 days to test in-vivo biocompatibility. Histological and histochemical micrographs depicted normal healing signs such as macrophages, T-cells, angiogenesis and granulation reactions. Introducing PRP in IVD improved healing process and decreased inflammation reactions. The developed multicomponent implant could be used as potential IVD scaffold with desirable mechanical properties, biocompatibility and healing process.
Collapse
Affiliation(s)
- Sarah Yahia
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
13
|
Abdel Shakour ZT, El-Akad RH, Elshamy AI, El Gendy AENG, Wessjohann LA, Farag MA. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem 2023; 399:133948. [DOI: 10.1016/j.foodchem.2022.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
14
|
Ceccacci S, Roger K, Metatla I, Chhuon C, Tighanimine K, Fumagalli S, De Lucia A, Pranke I, Cordier C, Monti MC, Guerrera IC. Promitotic Action of Oenothera biennis on Senescent Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms232315153. [PMID: 36499490 PMCID: PMC9735661 DOI: 10.3390/ijms232315153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Accumulation of senescent dermal fibroblasts drives skin aging. The reactivation of proliferation is one strategy to modulate cell senescence. Recently, we reported the exact chemical composition of the hydrophilic extract of Oenothera biennis cell cultures (ObHEx) and we showed its skin anti-aging properties. The aim of this work is to assess its biological effect specifically on cell senescence. ObHEx action has been evaluated on normal human dermal fibroblasts subjected to stress-induced premature senescence (SIPS) through an ultra-deep proteomic analysis, leading to the most global senescence-associated proteome so far. Mass spectrometry data show that the treatment with ObHEx re-establishes levels of crucial mitotic proteins, strongly downregulated in senescent cells. To validate our proteomics findings, we proved that ObHEx can, in part, restore the activity of 'senescence-associated-ß-galactosidase', the most common hallmark of senescent cells. Furthermore, to assess if the upregulation of mitotic protein levels translates into a cell cycle re-entry, FACS experiments have been carried out, demonstrating a small but significative reactivation of senescent cell proliferation by ObHEx. In conclusion, the deep senescence-associated global proteome profiling published here provides a panel of hundreds of proteins deregulated by SIPS that can be used by the community to further understand senescence and the effect of new potential modulators. Moreover, proteomics analysis pointed to a specific promitotic effect of ObHEx on senescent cells. Thus, we suggest ObHEx as a powerful adjuvant against senescence associated with skin aging.
Collapse
Affiliation(s)
- Sara Ceccacci
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | - Kévin Roger
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | - Ines Metatla
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | | | | | | | - Iwona Pranke
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France
| | - Corinne Cordier
- Cytometry Platform, Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, 75015 Paris, France
| | | | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
- Correspondence:
| |
Collapse
|
15
|
Fecker R, Magyari-Pavel IZ, Cocan I, Alexa E, Popescu IM, Lombrea A, Bora L, Dehelean CA, Buda V, Folescu R, Danciu C. Oxidative Stability and Protective Effect of the Mixture between Helianthus annuus L. and Oenothera biennis L. Oils on 3D Tissue Models of Skin Irritation and Phototoxicity. PLANTS (BASEL, SWITZERLAND) 2022; 11:2977. [PMID: 36365432 PMCID: PMC9655351 DOI: 10.3390/plants11212977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The present study was aimed to evaluate the oxidative stability as well as to assess the protective effect of the mixture of Helianthus annuus L. (HAO) and Oenothera biennis L. (OBO) oils on 3D tissue models of skin irritation and phototoxicity. The following methods were used: GS analysis (fatty acids composition), thiobarbituric acid-reactive substances assay (TBA) (lipid oxidation degree of tested samples), 3D EpiDerm models (skin irritation and phototoxicity). For HAO the detected saturated fatty acids (SFA) were palmitic acid (7.179%), stearic acid (3.586%), eicosanoic (0.138%) and docosanoic acid (0.548%) The monounsaturated acids (MUFA) were palmitoleic acid (0.158%) and oleic acid (28.249%) and the polyunsaturated acids (PUFA) were linoleic acid (59.941%) and linolenic acid (0.208%). For OBO the detected SFA were myristic acid (0.325%), pentadecylic acid (0.281%), palmitic (7.2%), stearic (2.88%), and arachidic acid (0.275%). Regarding MUFA, even a lower proportion (8.196%) was observed, predominantly being oleic acid, cis form (7.175%), oleic (n10) (0.558%) and 11-eicosenoic (0.210%) acids. The higher content was found for PUFA (82.247%), the most significant proportions being linoleic acid (72.093%), arachidonic acid (9.812%) and linolenic (0.233%). Obtained data indicate a good oxidative stability and biocompatibility of the mixture on the 3D EpiDerm models with no irritant and no phototoxic effects. Oenothera biennis L. oil may be an excellent natural choice in order to delay or prevent oxidative damage of Helianthus annuus L. oil.
Collapse
Affiliation(s)
- Ramona Fecker
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 00041 Timişoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 00041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Iuliana Maria Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 00041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 00041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Department of Toxicology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Valentina Buda
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Department of Clinical Pharmacy, Communication in Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Roxana Folescu
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 00041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|
16
|
Alshawwa SZ, Alshallash KS, Ghareeb A, Elazzazy AM, Sharaf M, Alharthi A, Abdelgawad FE, El-Hossary D, Jaremko M, Emwas AH, Helmy YA. Assessment of Pharmacological Potential of Novel Exopolysaccharide Isolated from Marine Kocuria sp. Strain AG5: Broad-Spectrum Biological Investigations. Life (Basel) 2022; 12:life12091387. [PMID: 36143424 PMCID: PMC9504734 DOI: 10.3390/life12091387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
With more than 17 clinically approved Drugs and over 20 prodrugs under clinical investigations, marine bacteria are believed to have a potential supply of innovative therapeutic bioactive compounds. In the current study, Kocuria sp. strain AG5 isolated from the Red Sea was identified and characterized by biochemical and physiological analysis, and examination of a phylogenetic 16S rRNA sequences. Innovative exopolysaccharide (EPS) was separated from the AG5 isolate as a major fraction of EPS (EPSR5, 6.84 g/L−1). The analysis of EPSR5 revealed that EPSR5 has a molecular weight (Mw) of 4.9 × 104 g/mol and number average molecular weight (Mn) of 5.4 × 104 g/mol and contains sulfate (25.6%) and uronic acid (21.77%). Analysis of the monosaccharide composition indicated that the EPSR5 fraction composes of glucose, galacturonic acid, arabinose, and xylose in a molar ratio of 2.0:0.5:0.25:1.0, respectively. Assessment of the pharmacological potency of EPSR5 was explored by examining its cytotoxicity, anti-inflammatory, antioxidant, and anti-acetylcholine esterase influences. The antioxidant effect of EPSR5 was dose- and time-dependently increased and the maximum antioxidant activity (98%) was observed at 2000 µg/mL after 120 min. Further, EPSR5 displayed a significant repressive effect regarding the proliferation of HepG-2, A-549, HCT-116, MCF7, HEP2, and PC3 cells with IC50 453.46 ± 21.8 µg/mL, 873.74 ± 15.4 µg/mL, 788.2 ± 32.6 µg/mL, 1691 ± 44.2 µg/mL, 913.1 ± 38.8 µg/mL, and 876.4 ± 39.8 µg/mL, respectively. Evaluation of the inhibitory activity of the anti-inflammatory activity of EPSR5 indicated that EPSR5 has a significant inhibitory activity toward lipoxygenase (5-LOX) and cyclooxygenase (COX-2) activities (IC50 15.39 ± 0.82 µg/mL and 28.06 ± 1.1 µg/mL, respectively). Finally, ESPR5 presented a substantial hemolysis suppressive action with an IC50 of 65.13 ± 0.89 µg /mL, and a considerable inhibitory activity toward acetylcholine esterase activity (IC50 797.02 μg/mL). Together, this study reveals that secondary metabolites produced by Kocuria sp. strain AG5 marine bacteria serve as an important source of pharmacologically active compounds, and their impact on human health is expected to grow with additional global work and research.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khalid S. Alshallash
- College of Science and Humanities—Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh Province, Riyadh 11432, Saudi Arabia
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed M. Elazzazy
- National Research Centre, Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, Cairo 12622, Egypt
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Cairo 11751, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Dalia El-Hossary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yosra A. Helmy
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| |
Collapse
|
17
|
Abdel-Wahab BA, F. Abd El-Kareem H, Alzamami A, A. Fahmy C, H. Elesawy B, Mostafa Mahmoud M, Ghareeb A, El Askary A, H. Abo Nahas H, G. M. Attallah N, Altwaijry N, M. Saied E. Novel Exopolysaccharide from Marine Bacillus subtilis with Broad Potential Biological Activities: Insights into Antioxidant, Anti-Inflammatory, Cytotoxicity, and Anti-Alzheimer Activity. Metabolites 2022; 12:715. [PMID: 36005587 PMCID: PMC9413097 DOI: 10.3390/metabo12080715] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
In the presented study, Bacillus subtilis strain AG4 isolated from marine was identified based on morphological, physiological, phylogenetic characteristics and an examination of 16S rRNA sequences. Novel exopolysaccharide (EPSR4) was extracted and isolated from the Bacillus subtilis strain as a major fraction of exopolysaccharide (EPS). The analysis of structural characterization indicated that EPSR4 is a β-glycosidic sulphated heteropolysaccharide (48.2%) with a molecular weight (Mw) of 1.48 × 104 g/mole and has no uronic acid. Analysis of monosaccharide content revealed that EPSR4 consists of glucose, rhamnose and arabinose monosaccharide in a molar ratio of 5:1:3, respectively. Morphological analysis revealed that EPSR4 possess a high crystallinity degree with a significant degree of porosity, and its aggregation and conformation in the lipid phase might have a significant impact on the bioactivity of EPSR4. The biological activity of EPSR4 was screened and evaluated by investigating its antioxidant, cytotoxicity, anti-inflammatory, and anti-Alzheimer activities. The antioxidant activity results showed that EPSR4 has 97.6% scavenging activity toward DPPH free radicals at 1500 µg/mL, with an IC50 value of 300 µg/mL, and 64.8% at 1500 µg/mL toward hydrogen peroxide free radicals (IC50 = 1500 µg/mL, 30 min). Furthermore, EPSR4 exhibited considerable inhibitory activity towards the proliferation of T-24 (bladder carcinoma), A-549 (lung cancer) and HepG-2 (hepatocellular carcinoma) cancer cell lines with IC50 of 244 µg/mL, 148 µg/mL and 123 µg/mL, respectively. An evaluation of anti-inflammatory activity revealed that EPSR4 has potent lipoxygenase (LOX) inhibitory activity (IC50 of 54.3 µg/mL) and a considerable effect on membrane stabilization (IC50 = 112.2 ± 1.2 µg/mL), while it showed cyclooxygenase (COX2) inhibitory activity up to 125 µg/mL. Finally, EPSR4 showed considerable inhibitory activity towards acetylcholine esterase activity. Taken together, this study reveals that Bacillus subtilis strain AG4 could be considered as a potential natural source of novel EPS with potent biological activities that would be useful for the healthcare system.
Collapse
Affiliation(s)
- Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran 55461, Saudi Arabia
| | - Hanaa F. Abd El-Kareem
- Zoology Department, Faculty of Science, Ain Shams University, Abbasseya, Cairo 11566, Egypt;
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, P.O. Box 1383, Al Quwayiyah 11961, Saudi Arabia;
| | - Cinderella A. Fahmy
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt;
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Maged Mostafa Mahmoud
- Cancer Biology Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 3646, Jeddah 22252, Saudi Arabia
- Department of Molecular Genetics and Enzymology, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | | | - Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.G.M.A.); (N.A.)
| | - Najla Altwaijry
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.G.M.A.); (N.A.)
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
18
|
Anti-Pulmonary Fibrosis Activities of Triterpenoids from Oenothera biennis. Molecules 2022; 27:molecules27154870. [PMID: 35956820 PMCID: PMC9369581 DOI: 10.3390/molecules27154870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Five new triterpenoids, oenotheralanosterols C-G (1–5), with seven known triterpenoidcompounds, namely 2α,3α,19α-trihydroxy-24-norurs4,12-dien-28-oic acid (6), 3β,23-dihydroxy-1-oxo-olean-12-en-28-oic acid (7), remangilone C (8), knoxivalic acid A (9), termichebulolide (10), rosasecotriterpene A (11), androsanortriterpene C (12), were extracted and separated from the dichloromethane part of Oenothera biennis L. The anti-pulmonary fibrosis activities of all the compounds against TGF-β1-induced damage tonormal human lung epithelial (BEAS-2B) cells were investigated in vitro. The results showed that compounds 1–2, 6, 8, and 11 exhibited significant anti-pulmonary fibrosis activities, with EC50 values ranging from 4.7 μM to 9.9 μM.
Collapse
|
19
|
Determination of Therapeutic and Safety Effects of Zygophyllum coccineum Extract in Induced Inflammation in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7513155. [PMID: 35898689 PMCID: PMC9314163 DOI: 10.1155/2022/7513155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Background Z. coccineum is a facultative plant with many medicinal applications. This study examined the anti-inflammatory activity of Zygophyllum coccineum (Z. coccineum) in an arthritis animal model. Materials and Methods Seventy-Six Wistar Albino rats of either sex randomly divided into six groups (12/each). The inflammation model was done using Complete Freund's Adjuvant in albino rats. The anti-inflammatory activities of the extract were estimated at different dose levels (15.6, 31, and 60 mg/kg) as well as upon using methotrexate (MTX) as a standard drug (0.3 mg/kg). Paw volume and arthritis index scores have been tested in all examined animals' treatments. Histological examination of joints was also performed. Flow cytometric studies were done to isolated osteoclasts. Cytokines assay as well as biochemical testing was done in the examined samples. Results. In vitro studies reported an IC50 of 15.6 μg/ml for Z. coccineum extract in lipoxygenase inhibition assay (L.O.X.). Moreover, it could be noticed that isorhamnetin-3-O-glucoside, tribuloside, and 7-acetoxy-4-methyl coumarin were the most common compounds in Z. coccineum extract separated using L.C.–ESI-TOF–M.S. (liquid chromatography-electrospray ionization ion-trap time-of-flight mass spectrometry). Microscopic examinations of synovial tissue and hind limb muscles revealed the effect of different doses of Z. coccineum extract on restoring chondrocytes and muscles structures. Osteoclast size and apoptotic rate examinations revealed the protective effect of Z. coccineum extract on osteoclast. The results upon induction of animals and upon treatment using of MTX significantly increased apoptotic rate of osteoclast compared to control, while using of 15.6 μg/ml. for Z. coccineum extract lead to recover regular apoptotic rate demonstrating the protective effect of the extract. Z. coccineum extract regulated the secretion of proinflammatory and anti-inflammatory cytokines. Biochemical tests indicated the safety of Z. coccineum extract on kidney and liver functions. Conclusion. Z. coccineum extract has efficient and safe anti-inflammatory potential in an induced rat model.
Collapse
|
20
|
Therapeutic Efficacy of Urtica dioica and Evening Primrose in Patients with Rheumatoid Arthritis: A Randomized Double-Blind, Placebo-Controlled Clinical Trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Selim S, Almuhayawi MS, Alharbi MT, Nagshabandi MK, Alanazi A, Warrad M, Hagagy N, Ghareeb A, Ali AS. In Vitro Assessment of Antistaphylococci, Antitumor, Immunological and Structural Characterization of Acidic Bioactive Exopolysaccharides from Marine Bacillus cereus Isolated from Saudi Arabia. Metabolites 2022; 12:metabo12020132. [PMID: 35208207 PMCID: PMC8874505 DOI: 10.3390/metabo12020132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
A strain of Bacillus cereus was isolated from the Saudi Red Sea coast and identified based on culture features, biochemical characteristics, and phylogenetic analysis of 16S rRNA sequences. EPSR3 was a major fraction of exopolysaccharides (EPS) containing no sulfate and had uronic acid (28.7%). The monosaccharide composition of these fractions is composed of glucose, galacturonic acid, and arabinose with a molar ratio of 2.0: 0.8: 1.0, respectively. EPSR3 was subjected to antioxidant, antitumor, and anti-inflammatory activities. The results revealed that the whole antioxidant activity was 90.4 ± 1.6% at 1500 µg/mL after 120 min. So, the IC50 value against DPPH radical found about 500 µg/mL after 60 min. While using H2O2, the scavenging activity was 75.1 ± 1.9% at 1500 µg/mL after 60 min. The IC50 value against H2O2 radical found about 1500 µg/mL after 15 min. EPSR3 anticytotoxic effect on the proliferation of (Bladder carcinoma cell line) (T-24), (human breast carcinoma cell line) (MCF-7), and (human prostate carcinoma cell line) (PC-3) cells. The calculated IC50 for cell line T-24 was 121 ± 4.1 µg/mL, while the IC50 for cell line MCF-7 was 55.7 ± 2.3 µg/mL, and PC-3 was 61.4 ± 2.6 µg/mL. Anti-inflammatory activity was determined for EPSR3 using different methods as Lipoxygenase (LOX) inhibitory assay gave IC50 12.9 ± 1.3 µg/mL. While cyclooxygenase (COX-2) inhibitory test showed 29.6 ± 0.89 µg /mL. EPSR3 showed potent inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci. The exposure times of EPSR3 for the complete inhibition of cell viability of methicillin resistant S. aureus was found to be 5% at 60 min. Membrane stabilization inhibitory gave 35.4 ± 0.67 µg/mL. EPSR3 has antitumor activity with a reasonable margin of safety. The antitumor activity of EPSR3 may be attributed to its content from uronic acids with potential for cellular antioxidant and anticancer functional properties.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (S.S.); (A.S.A.)
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.A.)
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia; (M.T.A.); (M.K.N.)
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia; (M.T.A.); (M.K.N.)
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat 77454, Saudi Arabia;
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Abdallah S. Ali
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (S.S.); (A.S.A.)
| |
Collapse
|
22
|
Shawky EM, Elgindi MR, Ibrahim HA, Baky MH. The potential and outgoing trends in traditional, phytochemical, economical, and ethnopharmacological importance of family Onagraceae: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114450. [PMID: 34314807 DOI: 10.1016/j.jep.2021.114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Onagraceae is a widely distributed family of flowering plants comprises about 17 genera and more than 650 species of herbs, shrubs, and trees. Onagraceae also common as willowherb family or evening primrose family is divided into two subfamilies; Ludwigioideae (mainly genus; Ludwigia) and Onagroideae. Family Onagraceae is characterized by its numerous traditional uses as treatment of hormonal imbalances, urinary system ailments, prostate health maintenance, and antimicrobial effects. AIM OF THE STUDY This review aims to introduce a holistic overview on the phytochemical composition, economical importance and ethnopharmacological value of different species of family Onagraceae. MATERIALS AND METHODS Literature review was performed using different data bases such as PubMed, Web of Science, Google Scholar and Reaxys searching for articles focused on phytochemical composition, bioactivity and ethnopharmacological history of Onagraceae species. RESULTS Different species of Onagraceae were reported to have a great variety of phytochemicals including flavonoids, tannins, phenolic acids, triterpenoids, saponins, and volatile/fixed oils. Onagraceae exhibited several health benefits and pharmacological activities including anti-inflammatory, antiarthritic and analgesic, antioxidant, cytotoxic, antidiabetic, and antimicrobial. CONCLUSIONS Family Onagraceae is an extremely important family with diverse phytochemical composition which enriches their pharmacological importance and hence it's commercial and economical value.
Collapse
Affiliation(s)
- Enas M Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University. Badr City, 11829, Cairo, Egypt
| | - Mohamed R Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Haitham A Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University. Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
23
|
Phytochemicals in Malignant Pleural Mesothelioma Treatment-Review on the Current Trends of Therapies. Int J Mol Sci 2021; 22:ijms22158279. [PMID: 34361048 PMCID: PMC8348618 DOI: 10.3390/ijms22158279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but highly aggressive tumor of pleura arising in response to asbestos fibers exposure. MPM is frequently diagnosed in the advanced stage of the disease and causes poor prognostic outcomes. From the clinical perspective, MPM is resistant to conventional treatment, thus challenging the therapeutic options. There is still demand for improvement and sensitization of MPM cells to therapy in light of intensive clinical studies on chemotherapeutic drugs, including immuno-modulatory and targeted therapies. One way is looking for natural sources, whole plants, and extracts whose ingredients, especially polyphenols, have potential anticancer properties. This comprehensive review summarizes the current studies on natural compounds and plant extracts in developing new treatment strategies for MPM.
Collapse
|
24
|
Kawakami H, Fuchino H, Kawahara N. Endotoxin Contamination and Reaction Interfering Substances in the Plant Extract Library. Biol Pharm Bull 2021; 43:1767-1775. [PMID: 33132322 DOI: 10.1248/bpb.b20-00489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endotoxin is an unintentional contaminant that has numerous activities and can affect various biological experiments using cells. In this study, we measured the endotoxin activity of samples from a plant extract library (PEL) and determined their degrees of contamination. Endotoxin was detected in approx. 48% (n = 139) and approx. 4% (n = 5) of field-collected and crude drug samples, respectively, and in concentrations >5.0 EU/mL in some samples. The concentrations of endotoxin that affect cells in vitro vary depending on the target cell type. Although the degree of contamination varied in the present study, it was considered to have little effect on the cell experiments. More than 150 PEL samples had problems with reaction courses or recovery rates of Limulus amoebocyte lysate (LAL) tests. In the LAL tests, using three plant extracts [Sanguisorba officinalis L. (Rosaceae), Oenothera biennis L. (Onagraceae), and Lythrum salicaria L. (Lythraceae)], the polyphenolic compounds in the plant extracts affected LAL test and their effects differed depending on the plant species. When the 16 single polyphenol compounds were added to the LAL tests, the compounds with caffeoyl and pyrogallol moieties were found to affect the LAL reaction course and recovery rate. Furthermore, none of the compounds had any effects at concentrations of 1 µM. Because the plant extracts contained analogs of various polyphenolic compounds, they were presumed to actually act synergistically. Our findings demonstrated that attention must be paid to the recovery rate and reaction process of LAL tests with samples containing polyphenolic compounds.
Collapse
Affiliation(s)
- Hitomi Kawakami
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN).,Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroyuki Fuchino
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN).,Graduate School of Pharmaceutical Sciences, Osaka University
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN).,Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
25
|
Abd-ElGawad AM, Elgamal AM, EI-Amier YA, Mohamed TA, El Gendy AENG, I. Elshamy A. Chemical Composition, Allelopathic, Antioxidant, and Anti-Inflammatory Activities of Sesquiterpenes Rich Essential Oil of Cleome amblyocarpa Barratte & Murb. PLANTS 2021; 10:plants10071294. [PMID: 34202270 PMCID: PMC8308966 DOI: 10.3390/plants10071294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed to characterize the chemical composition of the C. amblyocarpa, collected from Egypt, and assess the allelopathic, antioxidant, and anti-inflammatory activities of its EO. The EO of C. amblyocarpa was extracted by hydrodistillation and characterized via gas chromatography–mass spectrometry (GC-MS). The chemometric analysis of the EO composition of the present studied ecospecies and the other reported ecospecies was studied. The allelopathic activity of the EO was evaluated against the weed Dactyloctenium aegyptium. Additionally, antioxidant and anti-inflammatory activities were determined. Forty-eight compounds, with a prespondence of sesquiterpenes, were recorded. The major compounds were caryophyllene oxide (36.01%), hexahydrofarnesyl acetone (7.92%), alloaromadendrene epoxide (6.17%), myrtenyl acetate (5.73%), isoshyobunone (4.52%), shyobunol (4.19%), and trans-caryophyllene (3.45%). The chemometric analysis revealed inconsistency in the EO composition among various studied ecospecies, where it could be ascribed to the environmental and climatic conditions. The EO showed substantial allelopathic inhibitory activity against the germination, seedling root, and shoot growth of D. aegyptium, with IC50 values of 54.78, 57.10, and 74.07 mg L−1. Additionally, the EO showed strong antioxidant potentiality based on the IC50 values of 4.52 mg mL−1 compared to 2.11 mg mL−1 of the ascorbic acid as standard. Moreover, this oil showed significant anti-inflammation via the suppression of lipoxygenase (LOX) and cyclooxygenases (COX1, and COX2), along with membrane stabilization. Further study is recommended for analysis of the activity of pure authentic materials of the major compounds either singularly or in combination, as well as for evaluation of their mechanism(s) and modes of action as antioxidants or allelochemicals.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Correspondence: (A.M.A.-E.); (A.I.E.); Tel.: +00966562680864 (A.M.A.-E.); +201005525108 (A.I.E.)
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Yasser A. EI-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence: (A.M.A.-E.); (A.I.E.); Tel.: +00966562680864 (A.M.A.-E.); +201005525108 (A.I.E.)
| |
Collapse
|
26
|
Potential Activity Mechanisms of Aesculus hippocastanum Bark: Antioxidant Effects in Chemical and Biological In Vitro Models. Antioxidants (Basel) 2021; 10:antiox10070995. [PMID: 34206691 PMCID: PMC8300635 DOI: 10.3390/antiox10070995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
The bark of Aesculus hippocastanum is an herbal remedy used in conditions connected with vascular insufficiency; however, there is a lack of data concerning its mechanisms of action. The present work is a preliminary investigation into some of the potential directions of the bark activity. The phytochemically (qualitative UHPLC-PDA-MS/MS and quantitative UHPLC-PDA assays) characterized extract and its four main constituents (esculin, fraxin, (‒)-epicatechin and procyanidin A2) were first evaluated in terms of their antioxidant capacity. All analytes demonstrated dose-dependent scavenging potential towards the most common in vivo oxidants, with particularly advantageous capacity of the extract and its flavan-3-ol constituents against peroxynitrite (3.37–13.26 mmol AA/g), hydroxyl radical (5.03–8.91 mmol AA/g) and superoxide radical (3.50–5.50 mmol AA/g). Moreover, even at low concentrations (1–5 µg/mL), they protected components of human plasma against oxidative damage inflicted by peroxynitrite, preventing oxidation of plasma protein thiols and diminishing the tyrosine nitration and lipid peroxidation. High efficiency of the analytes was also demonstrated in preventing the peroxynitrite-induced nitrative changes of fibrinogen (up to 80% inhibition for (‒)-epicatechin at 50 µg/mL), an important protein of coagulation cascade. Additionally, the extract and its constituents had, at most, moderate inhibitory activity towards platelet aggregation induced by ADP and only negligible influence on clotting times. The results show that, among the investigated properties, the antioxidant activity might, to the highest extent, be responsible for the bark efficacy in vascular disorders, thus supporting its application in those conditions; they also indicate the directions for future research that would allow for better understanding of the bark activity.
Collapse
|
27
|
Ko HH, Chang YT, Kuo YH, Lin CH, Chen YF. Oenothera laciniata Hill Extracts Exhibits Antioxidant Effects and Attenuates Melanogenesis in B16-F10 Cells via Downregulating CREB/MITF/Tyrosinase and Upregulating p-ERK and p-JNK. PLANTS 2021; 10:plants10040727. [PMID: 33917957 PMCID: PMC8068348 DOI: 10.3390/plants10040727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
Oenothera laciniata Hill is a perennial herb traditionally used to alleviate inflammatory complications. This study investigated the antioxidant and anti-melanogenic activities of O. laciniata. The methanolic extract (OLM) of O. laciniata and its different fractions, including ethyl acetate (OLEF), n-butanol (OLBF), and water (OLWF) fractions, were prepared. Antioxidant activities were evaluated by total phenolic content, the radical-scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•), and superoxide anion (O2−•), reducing capacity, and metal chelating ability. OLM and its fractions exhibited potent antioxidant activity in these in vitro assays, with a correlation between radical-scavenging activity and total phenolic content. OLM and its fractions inhibited the mushroom tyrosinase activity superior to the reference control, ascorbic acid. In B16-F10 melanoma cells, OLM and its fractions significantly decreased melanin production and tyrosinase activity. Mechanistic investigations revealed that OLM and its fractions inhibited tyrosinase and TRP-2 expressions via downregulating MITF and phosphorylated CREB and differentially inducing ERK or JNK phosphorylation. Additionally, OLM and its fractions caused no significant cytotoxicity towards B16-F10 or skin fibroblast cells at concentrations used in these cellular assays. These findings demonstrated the potential of O. laciniata extracts as the ideal skin protective agent with dual antioxidant and anti-melanogenic activities.
Collapse
Affiliation(s)
- Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-H.K.); (Y.-T.C.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeo-Tzu Chang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-H.K.); (Y.-T.C.)
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chia-Hsuan Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2765)
| |
Collapse
|
28
|
Effect of the Oral Administration of Common Evening Primrose Sprout ( Oenothera biennis L.) Extract on Skin Function Improvement in UVB-irradiated Hairless Mice. Pharmaceuticals (Basel) 2021; 14:ph14030222. [PMID: 33800871 PMCID: PMC8000621 DOI: 10.3390/ph14030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Most of the studies on common evening primrose (Oenothera biennis L.) are focused on its oils (isolated from seed, root, and stem tissues). We aimed to investigate the effect of the oral administration of OBS-E on the improvement of skin function in skin-damaged hairless mice exposed to excessive ultraviolet B (UVB) radiation owing to the preliminary in vitro findings regarding the antioxidant, anti-wrinkle, and skin moisturizing activities of OBS-E. OBS-E administration for 14 weeks did not significantly affect the body weight or clinical signs. Significant reductions were observed in wrinkle parameters (area, number, length, and depth, and metalloproteinase levels) in OBS-E-administered mice compared with those in UVB-irradiated control mice. OBS-E significantly increased skin elasticity and hyaluronic acid content, but it significantly decreased transepidermal water loss. Histomorphometrical analysis revealed that OBS-E significantly reduced the epidermal thickness, area of the collagen-occupied region, and number of microfolds and inflammatory and mast cells. These results demonstrate that OBS-E can effectively enhance skin functions in terms of ameliorating wrinkle formation, promoting skin-moisturization, enhancing skin barrier function, and inhibiting inflammatory reactions. The obtained results provide good starting point for the continuation in the process of developing new inner beauty products based on OBS-E.
Collapse
|
29
|
Antioxidant Activity of Sprouts Extracts Is Correlated with Their Anti-Obesity and Anti-Inflammatory Effects in High-Fat Diet-Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8367802. [PMID: 33643424 PMCID: PMC7902152 DOI: 10.1155/2021/8367802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023]
Abstract
Obesity is closely associated with oxidative stress and chronic inflammation leading to related metabolic diseases. Some natural extracts or polyphenols reportedly possess anti-obesity and anti-inflammatory effects as well as antioxidant activity. In this study, we assessed the correlations between the antioxidant, anti-obesity, and anti-inflammatory activities of plant extracts with potent antioxidant activity in diet-induced obese mice. Sprouts of Cedrela sinensis (CS) and Oenothera biennis L. (OB) were selected as the most potent antioxidant plant based on analysis of in vitro antioxidant activity of the extracts of ten different edible plants. C57BL/6 mice were fed with a high-fat diet (HFD) and orally treated with 50% ethanol extract of CS or OB at 50 or 100 mg/kg body weight 5 days a week for 14 weeks. Body weight gain, weight of adipose tissue, adipocyte size, and levels of lipid metabolism, inflammation, and oxidative stress markers were investigated. The CS or OB extract reduced body weight gain, visceral adipose tissue weight, adipocyte size, and plasma leptin levels, and expressions of adipogenic genes (PPARγ and fatty acid synthase) in the adipose tissue and liver of HFD-fed mice. Both extracts also reduced mRNA levels of pro-inflammatory cytokines (IL-6 and TNF-α) and oxidative stress-related genes (heme oxygenase- (HO-) 1 and p40phox). Body weight gain of mice was significantly correlated with visceral adipose tissue weight and adipocyte size. Body weight gain and adipocyte size were significantly correlated with plasma total cholesterol and 8-epi PGF2α levels, mRNA levels of leptin, HO-1, p40phox, and CD-11 in the adipose tissue, and mRNA levels of TNF-α in the adipose tissue and liver. These results suggest that the CS and OB extracts with potent antioxidant activity may inhibit fat deposition in adipose tissue and subsequent inflammation.
Collapse
|
30
|
In Vitro Anti-Wrinkle and Skin-Moisturizing Effects of Evening Primrose (Oenothera biennis) Sprout and Identification of Its Active Components. Processes (Basel) 2021. [DOI: 10.3390/pr9010145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the effect of Oenothera biennis sprout extract (OBS-E) on skin-function improvement in an in vitro system and to identify its pharmaceutically active components. OBS-E showed antioxidant ability in radical scavenging and reducing power assays, significantly inhibited matrix metalloproteinases-1 and -2, and increased the production of type I collagen, indicating its anti-wrinkle activity. Furthermore, OBS-E significantly increased the level of hyaluronic acid (HA) and the expression of moisturizing genes, such as hyaluronic acid synthase 2 (HAS2) and aquaporin 3 (AQP3), indicating it is effective in enhancing skin hydration. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) analyses showed that OBS-E contained high levels of polyphenolic acids, such as gallic acid and ellagic acid, in addition to flavonoid glycosides, such as luteolin 7-glucuronide and quercetin 3-glucuronide. Our results suggest that these major phytochemicals are likely to play crucial roles in the expression of antioxidant, anti-wrinkle, and moisturizing activities of OBS-E.
Collapse
|
31
|
Kim TH, Shin HY, Park SY, Kim H, Chung DK. Development and Validation of a Method for Determining the Quercetin-3- O-glucuronide and Ellagic Acid Content of Common Evening Primrose ( Oenothera biennis) by HPLC-UVD. Molecules 2021; 26:E267. [PMID: 33430409 PMCID: PMC7827709 DOI: 10.3390/molecules26020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
Toward the standardization of common evening primrose (Oenothera biennis) sprout extract (OBS-E), we aimed to obtain indicator compounds and use a validated method. HPLC-UVD allowed simultaneous quantification of the indicator compounds quercetin-3-O-glucuronide and ellagic acid. The method was validated in terms of specificity, linearity, precision, accuracy, and limit of detection/limit of quantification (LOD/LOQ). High specificity and linearity was demonstrated, with correlation coefficients of 1.0000 for quercetin-3-O-glucuronide and 0.9998 for ellagic acid. The LOD/LOQ values were 0.486/1.472 μg/mL for quercetin-3-O-glucuronide and 1.003/3.039 μg/mL for ellagic acid. Intra-day and inter-day variability tests produced relative standard deviation for each compound of <2%, a generally accepted precision criterion. High recovery rate were also obtained, indicating accuracy validation. The OBS-E prepared using various concentrations of ethanol were then analyzed. The 50% ethanol extract had highest content of quercetin-3-O-glucuronide, whereas the 70% ethanol extract possessed the lowest. However, the ellagic acid content was highest in the 70% ethanol extract and lowest in the 90% ethanol extract. Thus, quercetin-3-O-glucuronide and ellagic acid can be used industrially as indicator compounds for O. biennis sprout products, and our validated method can be used to establish indicator compounds for other natural products.
Collapse
Affiliation(s)
- Tae Heon Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Deogyeong-daero 1732, Giheung-gu, Yongin 17104, Korea;
| | - Hyun Young Shin
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea;
| | - Soon Yeong Park
- Dain Natural Co., Ltd., 130-33, Gasong-ro, Pungse-myeon, Dongnam-gu, Cheonan 31216, Korea;
| | - Hoon Kim
- Skin-Biotechnology Center, Kyung Hee University, Gwanggyo-ro 147, Yeongtong-gu, Suwon 16229, Korea
| | - Dae Kyun Chung
- Skin-Biotechnology Center, Kyung Hee University, Gwanggyo-ro 147, Yeongtong-gu, Suwon 16229, Korea
- Graduate School of Biotechnology, Kyung Hee University, Deogyeong-daero 1732, Giheung-gu, Yongin 17104, Korea
| |
Collapse
|
32
|
Polyphenol Extract from Evening Primrose ( Oenothera paradoxa) Inhibits Invasion Properties of Human Malignant Pleural Mesothelioma Cells. Biomolecules 2020; 10:biom10111574. [PMID: 33228230 PMCID: PMC7699585 DOI: 10.3390/biom10111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023] Open
Abstract
Extracts from the defatted evening primrose (Oenothera paradoxa Hudziok) seeds are the source of a range of stable polyphenolic compounds, including ellagic acid, gallic acid, and catechin. Our studies evaluate, for the first time, the influence of evening primrose isopropanol extract (EPE) on malignant pleural mesothelioma (MPM) cells. MPM is rarely diagnosed, its high aggressiveness and frequently noted chemoresistance limit its treatment schemes and it is characterized by low prognostic features. Here, we demonstrate that EPE inhibited MPM growth in a dose-dependent manner in cells with increased invasion properties. Moreover, EPE treatment resulted in cell cycle arrest in the G2/M phase and increased apoptosis in invasive MPM cell lines. Additionally, EPE strongly limited invasion and MMP-7 secretion in MPM cancer cells. Our original data provide evidence about the potential anti-invasive effects of EPE in MPM therapy treatment.
Collapse
|
33
|
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Granica S, Korona-Glowniak I, Ekiert H, Szopa A. Phytochemical and Biological Activity Studies on Nasturtium officinale (Watercress) Microshoot Cultures Grown in RITA ® Temporary Immersion Systems. Molecules 2020; 25:molecules25225257. [PMID: 33187324 PMCID: PMC7696031 DOI: 10.3390/molecules25225257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.
Collapse
Affiliation(s)
- Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis and Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
- Correspondence: ; Tel.: +48-12-620-5436
| |
Collapse
|
34
|
Lee SY, Kim CH, Hwang BS, Choi KM, Yang IJ, Kim GY, Choi YH, Park C, Jeong JW. Protective Effects of Oenothera biennis against Hydrogen Peroxide-Induced Oxidative Stress and Cell Death in Skin Keratinocytes. Life (Basel) 2020; 10:life10110255. [PMID: 33120909 PMCID: PMC7693688 DOI: 10.3390/life10110255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Oenothera biennis (evening primrose) produces bioactive substances with a diverse range of pharmacological functions. However, it is currently unknown whether extract prepared from the aerial parts of O. biennis (APOB) can protect the skin against oxidative stress. OBJECTIVE The aim of this study is to investigate the protective effects of APOB against oxidative stress-induced damage in human skin keratinocytes (HaCaT) and elucidate the underlying mechanisms. METHODS We pretreated HaCaT cells with various concentrations of APOB or the antioxidant N-acetyl-L-cysteine before applying H2O2. We then compared the cell viability, intracellular reactive oxygen species (ROS) production, and DNA and mitochondrial damage between pretreated and untreated control cells using a range of assays, flow cytometry, and Western blot analysis and also examined the reducing power and DPPH free radical scavenging activity of APOB. RESULTS APOB pretreatment significantly increased cell viability, effectively attenuated H2O2-induced comet tail formation, and inhibited H2O2-induced phosphorylation of the histone γH2AX, as well as the number of apoptotic bodies and Annexin V-positive cells. APOB was found to have high reducing power and DPPH radical scavenging activity and also exhibited scavenging activity against intracellular ROS accumulation and restored the loss of mitochondrial membrane potential caused by H2O2. APOB pretreatment almost totally reversed the enhanced cleavage of caspase-3, the degradation of poly (ADP-ribose)-polymerase (PARP), DNA fragmentation that usually occurs in the presence of H2O2, and increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme that is associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). CONCLUSIONS APOB can protect HaCaT cells from H2O2-induced DNA damage and cell death by blocking cellular damage related to oxidative stress via a mechanism that affects ROS elimination and by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Seung Young Lee
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - Chul Hwan Kim
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - Kyung-Min Choi
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - In-Jun Yang
- Department of Physiology, College of Oriental Medicine, Dongguk University, Gyeongju 780-714, Korea;
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea;
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea
- Correspondence: (C.P.); (J.-W.J.); Tel.: +82-51-890-1530 (C.P.); +82-54-530-0884 (J.-W.J.)
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
- Correspondence: (C.P.); (J.-W.J.); Tel.: +82-51-890-1530 (C.P.); +82-54-530-0884 (J.-W.J.)
| |
Collapse
|
35
|
Li W, Li Z, Peng MJ, Zhang X, Chen Y, Yang YY, Zhai XX, Liu G, Cao Y. Oenothein B boosts antioxidant capacity and supports metabolic pathways that regulate antioxidant defense in Caenorhabditis elegans. Food Funct 2020; 11:9157-9167. [PMID: 33026384 DOI: 10.1039/d0fo01635g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oenothein B (OEB) has various biological functions, although few studies have focused on its effect on in vivo metabolic phenotypes. In the present study, the systematic antioxidant activity of OEB was evaluated both in vitro and in vivo, and the effect of OEB on metabolic pathways related to antioxidant capacity of Caenorhabditis elegans (C. elegans) was explored. Our findings indicate that OEB exhibits great antioxidant capacity and ability to scavenge free radicals and that OEB treatment can protect RAW 264.7 macrophages from oxidative damage by increasing superoxide dismutase (SOD) activity, catalase (CAT) activity and glutathione (GSH) content and the corresponding gene expression (sod2, cat, gpx1), while decreasing malonic dialdehyde (MDA) content. Moreover, OEB treatment significantly reduced ROS accumulation under oxidative stress conditions and increased glutathione peroxidase (GPx) activity and decreased MDA content in C. elegans. Metabolomics analysis revealed that sixteen out of forty-two significantly altered metabolites were selected as potential biomarkers related to alterations in the antioxidant status of worms, including metabolic pathways involved in amino acid metabolism, taurine and hypotaurine metabolism, lipid metabolism, and purine metabolism. Overall, our results provide new insights into the effects of OEB treatment on antioxidant capacity and metabolism that suggest that OEB could be a potentially good source of natural antioxidants.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Ziyin Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming-Jun Peng
- Guangzhou Inspection of Food Control, Guangzhou 511400, China
| | - Xiaoying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yunjiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yu-Yu Yang
- Guangzhou Greencream Biotech Co., Ltd, Guangzhou 510663, China
| | | | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| |
Collapse
|
36
|
Fecker R, Buda V, Alexa E, Avram S, Pavel IZ, Muntean D, Cocan I, Watz C, Minda D, Dehelean CA, Soica C, Danciu C. Phytochemical and Biological Screening of Oenothera Biennis L. Hydroalcoholic Extract. Biomolecules 2020; 10:biom10060818. [PMID: 32466573 PMCID: PMC7356052 DOI: 10.3390/biom10060818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Oenothera biennis L. (OB), also commonly known as evening primrose, belongs to the Onagraceae family and has the best studied biological activity of all the members in the family. In therapy, the most frequently used type of extracts are from the aerial part, which are the fatty oils obtained from the seeds and have a wide range of medicinal properties. The aim of this study was to evaluate the phytochemical composition and biological activity of OB hydroalcoholic extract and to provide directions for the antimicrobial effect, antiproliferative and pro-apoptotic potential against A375 melanoma cell line, and anti-angiogenic and anti-inflammatory capacity. The main polyphenols and flavonoids identified were gallic acid, caffeic acid, epicatechin, coumaric acid, ferulic acid, rutin and rosmarinic acid. The total phenolic content was 631.496 µgGAE/mL of extract and the antioxidant activity was 7258.67 μmolTrolox/g of extract. The tested extract had a mild bacteriostatic effect on the tested bacterial strains. It was bactericidal only against Candida spp. and S. aureus. In the set of experimental conditions, the OB extract only manifested significant antiproliferative and pro-apoptotic activity against the A375 human melanoma cell line at the highest tested concentration, namely 60 μg/mL. The migration potential of A375 cells was hampered by the OB extract in a concentration-dependent manner. Furthermore, at the highest tested concentration, the OB extract altered the mitochondrial function in vitro, while reducing the angiogenic reaction, hindering compact tumor formation in the chorioallantoic membrane assay. Moreover, the OB extract elicited an anti-inflammatory effect on the experimental animal model of ear inflammation.
Collapse
Affiliation(s)
- Ramona Fecker
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
- Correspondence: (V.B.); (D.M.); Tel.: +4-0755-100-408 (V.B.)
| | - Ersilia Alexa
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului No. 119, 300641 Timişoara, Romania; (E.A.); (I.C.)
| | - Stefana Avram
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
- Correspondence: (V.B.); (D.M.); Tel.: +4-0755-100-408 (V.B.)
| | - Ileana Cocan
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului No. 119, 300641 Timişoara, Romania; (E.A.); (I.C.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| |
Collapse
|
37
|
Luo Y, Wang H, Li X, He T, Wang D, Wang W, Jia W, Lin Z, Chen S. One injection to profile the chemical composition and dual-antioxidation activities of Rosa chinensis Jacq. J Chromatogr A 2020; 1613:460663. [PMID: 31732156 DOI: 10.1016/j.chroma.2019.460663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
An on-line high-performance liquid chromatography-diode-array-detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection (HPLC-DAD-ESI-IT-TOF-MS-TACD) system was applied for the identification and evaluation of antioxidants in Rosa chinensis Jacq., an edible flower in food industry and a widely used traditional Chinese medicine. With the help of this platform, the HPLC fingerprint, mass fragmentations, and sample activity profiles against 1,1-diphenylpicryl-2-hydrazyl radical (DPPH•) and ferric reducing antioxidant power (FRAP) were recorded after one injection. Using this technique, 80 compounds were separated and identified by their LC/MS behaviors with the assistance of standard compounds. In addition, 11 different Rosa chinensis Jacq. samples were profiled and then quantified for their DPPH• and FRAP activities. Interestingly, a total of 52 compounds showed antioxidative effects against DPPH• and 61 were active against FRAP. The results demonstrated that the on-line system is a powerful technique for antioxidant discovery in Rosa chinensis Jacq. and other food resources.
Collapse
Affiliation(s)
- Yukun Luo
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiang Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Tian He
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Daidong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Wanwan Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Weijuan Jia
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
38
|
Protective Effects of Evening Primrose Oil against Cyclophosphamide-Induced Biochemical, Histopathological, and Genotoxic Alterations in Mice. Pathogens 2020; 9:pathogens9020098. [PMID: 32033362 PMCID: PMC7168665 DOI: 10.3390/pathogens9020098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
Cyclophosphamide (CP) is a well-known antineoplastic agent; however, its clinical use can be associated with various organ toxicities. Evening primrose oil (EPO) contains several phytoconstituents with potent anti-oxidant and anti-inflammatory activities. This experimental study was performed to investigate the chemoprotective effects of EPO in the liver and pancreas of CP-intoxicated mice. Thirty-two albino mice were randomly divided into 4 equal groups: group I received saline (control mice), group II were treated with CP at 100 mg/kg/day for two subsequent days, and groups III and VI were treated with 5 and 10 mg/kg/day bw EPO, respectively for 14 days, followed by two doses of CP at the 15th and 16th days of the experiment. Then, mice were sacrificed and histopathological examinations, biochemical studies, and DNA laddering tests were conducted for hepatic and pancreatic tissues. Cyclophosphamide-intoxicated mice showed significant increases (p < 0.05) in the serum levels of liver enzymes, pancreatic amylase and tissue levels of malondialdehyde, and TNF-α, as well as a significant decrease (p < 0.05) in the serum insulin level. In addition, both hepatic and pancreatic tissues showed disturbed tissue architecture, hydropic degeneration, congested vessels, and inflammatory infiltrates, as well as increased DNA fragmentation. In a dose-dependent manner, pretreatment with EPO was associated with significant improvements (p < 0.05) in all biochemical parameters and significant amelioration of histopathological alterations and DNA fragmentation in CP-intoxicated mice. Pretreatment with EPO showed significant antioxidant, anti-inflammatory, and genoprotective effects against the toxic effects of CP in mice hepatic and pancreatic tissues.
Collapse
|
39
|
Haramiishi R, Okuyama S, Yoshimura M, Nakajima M, Furukawa Y, Ito H, Amakura Y. Identification of the characteristic components in walnut and anti-inflammatory effect of glansreginin A as an indicator for quality evaluation. Biosci Biotechnol Biochem 2020; 84:187-197. [DOI: 10.1080/09168451.2019.1670046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
Walnut is a nutritious food material, but only a few studies have been conducted on the mechanisms of its functions and the technique for quality evaluation. Therefore, we analyzed the components in aqueous methanol extract of walnut, and characterized 30 components, including three new compounds, glansreginin C, ellagic acid 4-O-(3′-O-galloyl)-β-D-xyloside, and platycaryanin A methyl ester. We analyzed the extracts of other nuts using HPLC and clarified that a characteristic peak corresponding to glansreginin A was mainly observed in walnut. These results suggested that glansreginin A might be an indicator component of the quality of walnut. We then examined whether glansreginin A has neuroprotective effect, using lipopolysaccharide (LPS)-induced inflammatory model mice. The results revealed that oral administration of glansreginin A prevented LPS-induced abnormal behavior and LPS-induced hyper-activation of microglia in the hippocampus. These results suggested that glansreginin A has the ability to exert neuroprotective effect via anti-inflammation in the brain.
Collapse
Affiliation(s)
- Rie Haramiishi
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Hideyuki Ito
- Faculty of Health and Welfare Science, Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| |
Collapse
|
40
|
Ilina T, Kashpur N, Granica S, Bazylko A, Shinkovenko I, Kovalyova A, Goryacha O, Koshovyi O. Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L. PLANTS (BASEL, SWITZERLAND) 2019; 8:E541. [PMID: 31775336 PMCID: PMC6963662 DOI: 10.3390/plants8120541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
Galium aparine L., family Rubiaceae, is a widely spread species in the Galium genus. The herb of G. aparine is part of folk remedies and dietary supplements. In this study, we analyzed the chemical composition and immunomodulatory activities of G. aparine herb ethanolic extracts obtained from the plant material by maceration with 20%, 60% or 96% ethanol. The contents of hydroxycinnamic acid derivatives, flavonoids and polyphenols were determined spectrophotometrically, with extractives and polysaccharides quantified gravimetrically. The qualitative composition was studied using UHPLC-DAD-MS/MS analysis; isolation not previously described in G. aparine quercetin rhamnoglucoside was carried out through column chromatography, and the immunomodulatory activity of extracts was determined in the reaction of lymphocyte blast transformation. Major constitutes of extracts were iridoids, i.e., monotropein, 10-desacetylasperulosidic acid and asperulosidic acid; p-hydroxybenzoic acid; hydroxycinnamic acid derivatives, i.e., 3-O-caffeoylquinic, 5-O-caffeoylquinic, 3,4-O-dicaffeoylquinic, 3,5-O-dicaffeoylquinic, 4,5-O-dicaffeoylquinic acids and caffeic acid derivatives; flavonoids, i.e., rutin, quercetin 3-O-rhamnoglucoside-7-O-glucoside, and isorhamnetin 3-O-glucorhamnoside. Significantly, quercetin 3-O-rhamnoglucoside-7-O-glucoside was first isolated and identified in Galium species so far investigated. All G. aparine herb ethanolic extracts stimulate the transformational activity of immunocompetent blood cells, with 96% ethanolic extract being the most active. The data obtained necessitate further research into the mechanisms of immunomodulatory activity of extracts from G. aparine herb.
Collapse
Affiliation(s)
- Tetiana Ilina
- National University of Pharmacy, 53-Pushkinska str., 61002 Kharkiv, Ukraine; (T.I.); (I.S.); (A.K.); (O.G.); (O.K.)
| | - Natalia Kashpur
- Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, 14/16-Pushkinska str., 61057 Kharkiv, Ukraine;
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha str., 02-097 Warsaw, Poland;
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha str., 02-097 Warsaw, Poland;
| | - Igor Shinkovenko
- National University of Pharmacy, 53-Pushkinska str., 61002 Kharkiv, Ukraine; (T.I.); (I.S.); (A.K.); (O.G.); (O.K.)
| | - Alla Kovalyova
- National University of Pharmacy, 53-Pushkinska str., 61002 Kharkiv, Ukraine; (T.I.); (I.S.); (A.K.); (O.G.); (O.K.)
| | - Olga Goryacha
- National University of Pharmacy, 53-Pushkinska str., 61002 Kharkiv, Ukraine; (T.I.); (I.S.); (A.K.); (O.G.); (O.K.)
| | - Oleh Koshovyi
- National University of Pharmacy, 53-Pushkinska str., 61002 Kharkiv, Ukraine; (T.I.); (I.S.); (A.K.); (O.G.); (O.K.)
| |
Collapse
|
41
|
Ishak WMW, Katas H, Yuen NP, Abdullah MA, Zulfakar MH. Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats. Drug Deliv Transl Res 2019; 9:418-433. [PMID: 29667150 DOI: 10.1007/s13346-018-0522-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p < 0.05) being observed at day 14. EPO induced early deposition of collagen as evaluated by Masson trichrome staining that correlated well with the hydroxyproline content assay, with the highest level at days 3 and 7. Vascular endothelial growth factor (VEGF) showed greater amount of new microvasculature formed in the EPO-treated group, while moderate improvement occurs in the LO and OO groups. EPO increased both the expression of proinflammatory cytokines and growth factors in the early stage of healing and declined at the later stage of healing. LO modulates the proinflammatory cytokines and chemokine but did not affect the growth factors. In contrast, OO induced the expression of growth factors rather than proinflammatory cytokines. These data suggest that LO, EPO, and OO emulsions promote wound healing but they accomplish this by different mechanisms.
Collapse
Affiliation(s)
- Wan Maznah Wan Ishak
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Ng Pei Yuen
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Rutkowska M, Olszewska MA, Kolodziejczyk-Czepas J, Nowak P, Owczarek A. Sorbus domestica Leaf Extracts and Their Activity Markers: Antioxidant Potential and Synergy Effects in Scavenging Assays of Multiple Oxidants. Molecules 2019; 24:E2289. [PMID: 31226759 PMCID: PMC6630621 DOI: 10.3390/molecules24122289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022] Open
Abstract
Sorbus domestica leaves are a traditionally used herbal medicine recommended for the treatment of oxidative stress-related diseases. Dry leaf extracts (standardized by LC-MS/MS and LC-PDA) and nine model activity markers (polyphenols), were tested in scavenging assays towards six in vivo-relevant oxidants (O2•-, OH•, NO•, H2O2, ONOO-, HClO). Ascorbic acid (AA) and Trolox (TX) were used as positive standards. The most active extracts were the diethyl ether and ethyl acetate fractions with activities in the range of 3.61-20.03 µmol AA equivalents/mg, depending on the assay. Among the model compounds, flavonoids were especially effective in OH• scavenging, while flavan-3-ols were superior in O2•- quenching. The most active constituents were quercetin, (-)-epicatechin, procyanidins B2 and C1 (3.94-24.16 µmol AA/mg), but considering their content in the extracts, isoquercitrin, (-)-epicatechin and chlorogenic acid were indicated as having the greatest influence on extract activity. The analysis of the synergistic effects between those three compounds in an O2•- scavenging assay demonstrated that the combination of chlorogenic acid and isoquercitrin exerts the greatest influence. The results indicate that the extracts possess a strong and broad spectrum of antioxidant capacity and that their complex composition plays a key role, with various constituents acting complementarily and synergistically.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland.
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland.
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
43
|
Pei X, Xiao J, Wei G, Zhang Y, Lin F, Xiong Z, Lu L, Wang X, Pang G, Jiang Y, Jiang L. Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway. Chem Biol Interact 2019; 298:112-120. [DOI: 10.1016/j.cbi.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/04/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
|
44
|
Kwak CS, Kim MJ, Kim SG, Park S, Kim IG, Kang HS. Antioxidant and antiobesity activities of oral treatment with ethanol extract from sprout of evening primrose (Oenothera laciniata) in high fat diet-induced obese mice. ACTA ACUST UNITED AC 2019. [DOI: 10.4163/jnh.2019.52.6.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chung Shil Kwak
- Institute on Aging, Seoul National University, Seoul 03080, Korea
| | - Mi-Ju Kim
- Institute on Aging, Seoul National University, Seoul 03080, Korea
| | | | | | - In Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | | |
Collapse
|
45
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
46
|
Elghandour MM, Kanth Reddy PR, Salem AZ, Ranga Reddy PP, Hyder I, Barbabosa-Pliego A, Yasaswini D. Plant Bioactives and Extracts as Feed Additives in Horse Nutrition. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Timoszuk M, Bielawska K, Skrzydlewska E. Evening Primrose ( Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants (Basel) 2018; 7:antiox7080108. [PMID: 30110920 PMCID: PMC6116039 DOI: 10.3390/antiox7080108] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Evening primrose (Oenothera L.) is a plant belonging to the family Onagraceae, in which the most numerous species is Oenothera biennis. Some plants belonging to the genus Oenothera L. are characterized by biological activity. Therefore, studies were conducted to determine the dependence of biological activity on the chemical composition of various parts of the evening primrose, mainly leaves, stems, and seeds. Common components of all parts of the Oenothera biennis plants are fatty acids, phenolic acids, and flavonoids. In contrast, primrose seeds also contain proteins, carbohydrates, minerals, and vitamins. Therefore, it is believed that the most interesting sources of biologically active compounds are the seeds and, above all, evening primrose seed oil. This oil contains mainly aliphatic alcohols, fatty acids, sterols, and polyphenols. Evening primrose oil (EPO) is extremely high in linoleic acid (LA) (70–74%) and γ-linolenic acid (GLA) (8–10%), which may contribute to the proper functioning of human tissues because they are precursors of anti-inflammatory eicosanoids. EPO supplementation results in an increase in plasma levels of γ-linolenic acid and its metabolite dihomo-γ-linolenic acid (DGLA). This compound is oxidized by lipoxygenase (15-LOX) to 15-hydroxyeicosatrienoic acid (15-HETrE) or, under the influence of cyclooxygenase (COX), DGLA is metabolized to series 1 prostaglandins. These compounds have anti-inflammatory and anti-proliferative properties. Furthermore, 15-HETrE blocks the conversion of arachidonic acid (AA) to leukotriene A4 (LTA4) by direct inhibition of 5-LOX. In addition, γ-linolenic acid suppresses inflammation mediators such as interleukin 1β (IL-1β), interleukin 6 (IL-6), and cytokine - tumor necrosis factor α (TNF-α). The beneficial effects of EPO have been demonstrated in the case of atopic dermatitis, psoriasis, Sjögren’s syndrome, asthma, and anti-cancer therapy.
Collapse
Affiliation(s)
- Magdalena Timoszuk
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Katarzyna Bielawska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland.
| |
Collapse
|
48
|
Yoshida T, Yoshimura M, Amakura Y. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure. Molecules 2018; 23:E552. [PMID: 29498647 PMCID: PMC6017083 DOI: 10.3390/molecules23030552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric-heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1) the structural characteristics of oenothein B and related dimers; (2) the oxidative metabolites of oenothein B up to heptameric oligomers; (3) the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4) the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.
Collapse
Affiliation(s)
- Takashi Yoshida
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
- Okayama University, Okayama 701-1152, Japan.
| | - Morio Yoshimura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiaki Amakura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
49
|
Paun G, Neagu E, Moroeanu V, Albu C, Ursu TM, Zanfirescu A, Negres S, Chirita C, Radu GL. Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Munir R, Semmar N, Farman M, Ahmad NS. An updated review on pharmacological activities and phytochemical constituents of evening primrose (genus Oenothera ). Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|