1
|
Xie ZY, Qiu WX, Xu ZY, Li NB, Luo HQ. A novel structurally modified isophorone fluorescent probe for H 2S detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124957. [PMID: 39154401 DOI: 10.1016/j.saa.2024.124957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Hydrogen sulfide (H2S) has a comprehensive contribution to the normal operation and stability of organisms and is also present in environmental water samples and food deterioration. Thus, it is exceedingly promising and significant to develop a highly sensitive detection technique for tracing H2S. Inspired by this, we designed and synthesized a new fluorescent probe 2-[3-[2-[3-bromo-4-(2,4- dinitrobenzenesulfonate)] ethenyl]-5,5-dimethyl-2-cyclohexen-1-ylidene]propanedinitrile (SP-Br) for hydrosulfide ion detection by introducing bromine atom. Compared with reported H2S probes based on the same fluorescent parent, SP-Br has longer fluorescence emission (λem = 670 nm), shorter response time (3 min), lower detection limit (149 nM), and wider detection range (0-30 nM). SP-Br can emit weak yellow fluorescence, and the emission intensity at 670 nm is considerably enhanced in the presence of hydrosulfide ions. The identification mechanism of hydrosulfide ion by SP-Br was verified by high-resolution mass spectrometry, fluorescence, and UV-vis absorption spectroscopy. In addition, SP-Br has been successfully applied to the monitoring of actual water samples and beer samples and has certain development prospects and value in the fields of environmental pollution and food quality analysis.
Collapse
Affiliation(s)
- Zhi Yuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wan Xiang Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Bu T, Yang J, Liu J, Fan X. NaHS immersion alleviates the stress effect of chromium(III) on alfalfa seeds by affecting active oxygen metabolism. PLANT SIGNALING & BEHAVIOR 2024; 19:2375673. [PMID: 38972043 PMCID: PMC11229710 DOI: 10.1080/15592324.2024.2375673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE This study aimed to investigate the regulatory effects of exogenous hydrogen sulfide (H2S) on seed germination, seedling growth, and reactive oxygen species (ROS) homeostasis in alfalfa under chromium (Cr) ion (III) stress. METHODS The effects of 0-4 mM Cr(III) on the germination and seedling growth of alfalfa were first assessed. Subsequently, following seed NaHS immersion, the influence of H2S on alfalfa seed germination and seedling growth under 2 mM Cr(III) stress was investigated, and the substance contents and enzyme activities associated with ROS metabolism were quantified. RESULTS Compared to the control group, alfalfa plant germination was delayed under 2 mM Cr(III) stress for up to 48 h (p < 0.05). At 120 h, the total seedling length was approximately halved, and the root length was roughly one-third of the control. Treatment with 0.02-0.1 mM NaHS alleviated the delay in germination and root growth inhibition caused by 2 mM Cr(III) stress, resulting in an increased ratio of root length to hypocotyl length from 0.57 to 1 above. Additionally, immersion in 0.05 mM NaHS reduced hydrogen peroxide (H2O2) and oxygen-free radicals (O2· -) levels (p < 0.05), boosted glutathione (GSH) levels (p < 0.05), and notably enhanced catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities (p < 0.05) compared to the 2 mM Cr(III) stress treatment group. CONCLUSION Seed immersion in NaHS mitigated the delay in germination and inhibition of root elongation under 2 mM Cr(III) stress. This effect is likely attributed to the regulation of intracellular ROS homeostasis and redox balance through enzymatic and non-enzymatic systems; thus, providing a potential mechanism for combating oxidative stress.
Collapse
Affiliation(s)
- Ting Bu
- University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-Resources in Gansu Province, Qingyang, Gansu Province, China
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
| | - Jianxia Yang
- University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-Resources in Gansu Province, Qingyang, Gansu Province, China
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
| | - Jianxin Liu
- University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-Resources in Gansu Province, Qingyang, Gansu Province, China
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
| | - Xiaofeng Fan
- University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-Resources in Gansu Province, Qingyang, Gansu Province, China
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
| |
Collapse
|
3
|
Liu Y, Yang J, Liu H, Chen Z, Liu G, Pu S. Novel Iminocoumarin-substituted Tetraphenylethylene-based Near-infrared Fluorescent Probe for Ratiometric Detection of F - and H 2S. J Fluoresc 2024:10.1007/s10895-024-03801-x. [PMID: 38874825 DOI: 10.1007/s10895-024-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
An iminocoumarin and tetraphenylethylene compound that exhibits aggregation-induced emission (AIE) and a significant Stokes shift (Δλ = 135 nm) in THF was created via the Knoevenagel condensation method. TPICBT could also be used as a ratiometric near-infrared fluorescent probe for the naked color identification of F- and H2S. It showed a large red shift (˃ 90 nm), good selectivity, and anti-interference. Test strip detection and cell imaging had both been accomplished using the probe. In addition, the probe could conveniently detect H2S produced during food spoilage without laboratory instruments.
Collapse
Affiliation(s)
- Yufeng Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Jianing Yang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
- Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Moradi Digehsara M, Naghshiband Hassani R, Mahna N, Nicola S. Enhanced H 2S biogenesis followed by its postharvest application retarded senescence development by promoting multiple antioxidant protection systems in button mushroom during cold storage. FOOD SCI TECHNOL INT 2024; 30:293-306. [PMID: 37312521 DOI: 10.1177/10820132221133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid postharvest quality deterioration of button mushroom as fruit body surface browning brings about senescence development and limits its distribution potential and postharvest storage. In this investigation, 0.5 mM of NaHS as the optimum concentration for H2S fumigation was applied to retain the quality of Agaricus bisporus mushrooms concerning some qualitative and biochemical attributes evaluation throughout 15 storage-day at 4 °C and 80-90% relative humidity. In H2S fumigated mushrooms, pileus browning index, weight loss and softening decreased, concomitant with higher cell membrane stability as revealed by subsidiary electrolyte leakage, malondialdehyde (MDA) and H2O2 contents compared to the control during the cold storage period. H2S fumigation boosted total phenolics, as presented by the enhanced phenylalanine ammonia-lyase (PAL) activity and total antioxidant scavenging activity, while polyphenol oxidase (PPO) activity diminished. Moreover, in H2S fumigated mushrooms not only peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx) activities but also ascorbic acid and glutathione (GSH) contents increased, even though glutathione (GSSG) content declined. The raised endogenous H2S level prompted by greater cystathionine ß-synthase (CBS), cystathionine ?-lyase (CSE), cysteine synthase (CS), L-cysteine desulfhydrases (LCD) and D-cysteine desulfhydrases (DCD) enzymes activities until 10d in fumigated mushrooms. In general, the increase in endogenous H2S biogenesis promoted by H2S fumigation in button mushrooms resulted in retarding senescence development, maintaining redox balance by boosting multiple enzymatic and non-enzymatic antioxidants defense parameters.
Collapse
Affiliation(s)
- Mahtab Moradi Digehsara
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest, and Food Sciences -DISAFA, Horticultural Sciences -INHORTOSANITAS, University of Torino, Grugliasco, Italy
| |
Collapse
|
5
|
Sun Y, Mu J, Wang Y, Lü C, Zou LW. Rational synthesis of 1,3,4-thiadiazole based ESIPT-fluorescent probe for detection of Cu 2+ and H 2S in herbs, wine and fruits. Anal Chim Acta 2024; 1297:342379. [PMID: 38438245 DOI: 10.1016/j.aca.2024.342379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Here, 1,3,4-thiadiazole unit was employed as novel excited state intramolecular proton transfer (ESIPT) structure to prepare favorable fluorescent probe. High selectivity and rapid response to Cu2+ was obtained and the settling reaction was also used to recover ESIPT characteristics of probe to achieve sequential detection of H2S. Remarkable color change of solution from colorless to bright yellow and fluorescence emission from green to dark realized the visual detection of Cu2+ by naked eyes and transition of probe into portable fluorescent test strips. As expected, L-E could be utilized to quantitatively sense Cu2+ and H2S in different actual water and food samples including herbs, wine and fruits. The limits of detection for Cu2+ and H2S were as low as 34.5 nM and 38.6 nM. Also, probe L-E achieved real-time, portable, on-site quantitative detection of Cu2+ via a colorimeter and a smartphone platform with limit of detection to 90.3 nM.
Collapse
Affiliation(s)
- Yu Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Jie Mu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yongchen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China.
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
6
|
Jiang H, Zhang Q, Li N, Li Z, Chen L, Yang F, Zhao S, Liu X. All-in-one strategy for the nano-engineering of paper-based bifunctional fluorescent platform for robustly-integrated real-time monitoring of food and drinking-water safety. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133735. [PMID: 38335620 DOI: 10.1016/j.jhazmat.2024.133735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cu2+ contamination and food spoilage raise food and drinking water safety issues, posing a serious threat to human health. Besides, Cu2+ and H2S levels indicate excess Cu2+-caused diseases and protein-containing food spoilage. Herein, a coumarin-containing bifunctional paper-based fluorescent platform integrated with a straightforward smartphone color recognition app is developed by an all-in-one strategy. The proposed fluorescent materials can simultaneously detect Cu2+ and H2S for on-demand food and drinking water safety monitoring at home. Specifically, a coumarin-derived fluorescence sensor (referred to as CMIA) with a low detection limit (0.430 μM) and high-selectivity/-sensitivity for Cu2+ is synthesized through a simple one-step route and then loaded onto commercially used cellulose fiber filter paper to engineer a biomass-based fluorescent material (CMIA-FP). The CMIA-FP offers user-friendly, high-precision, fast-responsive, and real-time visual monitoring of Cu2+. Moreover, CMIA forms a chemically stable complex with Cu2+, loaded onto filter paper to prepare another biomass-based fluorescent platform (CMIA-CU-FP) for visual real-time monitoring of H2S. Based on the exquisite composition design, the proposed dual-function paper-based fluorescent materials equipped with a smartphone color recognition program concurrently realize fast, accurate, and easy real-time monitoring of Cu2+ in drinking water and H2S in chicken breast-/shrimp-spoilage, demonstrating an effective detection strategy for the Cu2+ and H2S monitoring and presenting the new type of biomass-based platforms for concentrated reflection of drinking water and food safety.
Collapse
Affiliation(s)
- Huie Jiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qian Zhang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nihao Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhijian Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lijuan Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fengqian Yang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Suqiu Zhao
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinhua Liu
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Yu Y, Wang S, Guo W, Geng M, Sun Y, Li W, Yao G, Zhang D, Zhang H, Hu K. Hydrogen Peroxide Promotes Tomato Leaf Senescence by Regulating Antioxidant System and Hydrogen Sulfide Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:475. [PMID: 38498463 PMCID: PMC10891886 DOI: 10.3390/plants13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Hydrogen peroxide (H2O2) is relatively stable among ROS (reactive oxygen species) and could act as a signal in plant cells. In the present work, detached tomato leaves were treated with exogenous H2O2 at 10 mmol/L for 8 h to study the mechanism of how H2O2 regulates leaf senescence. The data indicated that H2O2 treatment significantly accelerated the degradation of chlorophyll and led to the upregulation of the expression of leaf senescence-related genes (NYC1, PAO, PPH, SGR1, SAG12 and SAG15) during leaf senescence. H2O2 treatment also induced the accumulation of H2O2 and malondialdehyde (MDA), decreased POD and SOD enzyme activities and inhibited H2S production by reducing the expression of LCD1/2 and DCD1/2. A correlation analysis indicated that H2O2 was significantly and negatively correlated with chlorophyll, the expression of leaf senescence-related genes, and LCD1/2 and DCD1/2. The principal component analysis (PCA) results show that H2S showed the highest load value followed by O2•-, H2O2, DCD1, SAG15, etc. Therefore, these findings provide a basis for studying the role of H2O2 in regulating detached tomato leaf senescence and demonstrated that H2O2 plays a positive role in the senescence of detached leaves by repressing antioxidant enzymes and H2S production.
Collapse
Affiliation(s)
- Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Siyue Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Wentong Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Meihui Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Ying Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China;
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Danfeng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (Y.Y.); (S.W.); (D.Z.)
| |
Collapse
|
8
|
Lagarda-Clark EA, Goulet C, Duarte-Sierra A. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce. Biomol Concepts 2024; 15:bmc-2022-0048. [PMID: 38587059 DOI: 10.1515/bmc-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The lifecycle of fresh produce involves a sequence of biochemical events during their ontology, and these events are particularly significant for climacteric fruits. A high demand during ripening is observed in these plant products, which is reflected in a high rate of respiration and ethylene production. Increased respiratory demand triggers the activation of secondary pathways such as alternate oxidase, which do not experience critical increases in energy consumption in non-climacteric fruit. In addition, biochemical events produced by external factors lead to compensatory responses in fresh produce to counteract the oxidative stress caused by the former. The dynamics of these responses are accompanied by signaling, where reactive oxygen species play a pivotal role in fresh product cell perception. This review aims to describe the protection mechanisms of fresh produce against environmental challenges and how controlled doses of abiotic stressors can be used to improve quality and prolong their shelf-life through the interaction of stress and defense mechanisms.
Collapse
Affiliation(s)
- Ernesto Alonso Lagarda-Clark
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| | - Charles Goulet
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Department of Phytology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arturo Duarte-Sierra
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| |
Collapse
|
9
|
Wang Y, Zhang J, Wang D, Wang X, Zhang F, Chang D, You C, Zhang S, Wang X. Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chem 2023; 415:135797. [PMID: 36868069 DOI: 10.1016/j.foodchem.2023.135797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Horticultural products tend to deteriorate during postharvest storage and processing. In this study, cellulose nanofibers (CNFs) were prepared from wood to investigate the effects of CNF treatment on the storage quality, aroma composition, and antioxidant system of fresh-cut apple (Malus domestica) wedges. Compared with control treatment, CNF coating treatment significantly improved the appearance of apple wedges; reduced the decay rate of apple wedges; and delayed the decline in weight loss, firmness, and titratable acid during storage. Gas chromatography-mass spectrometry showed that CNF treatment could maintain the aroma components of apple wedges (stored for 4 days). Further investigations showed that CNF treatment increased the antioxidant system level and decreased reactive oxygen species content and membrane lipid peroxidation level of apple wedges. Overall, this study showed that CNF coating could effectively maintain the quality of fresh-cut apples during cold storage.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Daru Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Dayong Chang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China; Yantai Goodly Biological Technology Co., Ltd., Yan'Tai 241003, Shandong, PR China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| |
Collapse
|
10
|
Shang Z, Meng Q, Tian D, Wang Y, Zhang Z, Zhang Z, Zhang R. Red-emitting fluorescent probe for hydrogen sulfide detection and its applications in food freshness determination and in vivo bioimaging. Food Chem 2023; 427:136701. [PMID: 37423045 DOI: 10.1016/j.foodchem.2023.136701] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
We report the development of a red-emitting fluorescence probe (XDS) for hydrogen sulfide (H2S) detection in biosystems, real-world food samples, and application of this probe for monitoring of H2S production during food spoilage. The XDS probe is developed by coupling of coumarin derivative to rhodanic-CN through a H2S responsive CC bond. Remarkable fluorescence quenching of XDS is observed as a result of the response to H2S. Semi-quantitative detection of H2S in three real-world water and two beer samples and monitoring of H2S production during food spoilage in real-time by "naked-eye" and smartphone colorimetric analysis are then achieved using XDS as the probe. Moreover, XDS is low toxicity, allowing it being used for visualizing endogenous and exogenous H2S in vivo in a mouse model. It is expected that the successful development of XDS could provide an effective tool for investigating the roles of H2S in biomedical system and for future food safety evaluation.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, PR China.
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Tian S, Chen Y, Wang Q, Liu Z, Li Y, Zhao X. Effects of four disease-controlling agents (chlorothalonil, CuCl 2, harpin, and melatonin) on postharvest jujube fruit quality. Sci Rep 2023; 13:8209. [PMID: 37217535 DOI: 10.1038/s41598-023-35392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Postharvest senescence and disease development can reduce the nutritional value of fresh jujube fruit. Herein, four different disease-controlling agents (chlorothalonil, CuCl2, harpin and melatonin) were separately applied to fresh jujube fruit, and all improved postharvest quality (evaluated by disease severity, antioxidant accumulation and senescence) relative to controls. Disease severity was drastically inhibited by these agents, in the order chlorothalonil > CuCl2 > harpin > melatonin. However, chlorothalonil residues were detected even after storage for 4 weeks. These agents increased the activities of defense enzymes including phenylalanine ammonia-lyase, polyphenol oxidase, glutathione reductase and glutathione S-transferase, as well as accumulation of antioxidant compounds such as ascorbic acid, glutathione, flavonoids and phenolics, in postharvest jujube fruit. The enhanced antioxidant content and antioxidant capacity (evaluated by Fe3+ reducing power) was ordered melatonin > harpin > CuCl2 > chlorothalonil. All four agents significantly delayed senescence (evaluated by weight loss, respiration rate and firmness), with the effect ordered CuCl2 > melatonin > harpin > chlorothalonil. Moreover, treatment with CuCl2 also increased copper accumulation ~ threefold in postharvest jujube fruit. Among the four agents, postharvest treatment with CuCl2 could be considered most appropriate for improving postharvest jujube fruit quality under low temperature conditions without sterilization.
Collapse
Affiliation(s)
- Shan Tian
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Ying Chen
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Qianjin Wang
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Zhilan Liu
- Grain and Oil Crops Technology Extension Station, Yongchuan, 402160, Chongqing, China
| | - Yueyue Li
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China.
| | - Xusheng Zhao
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China.
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) is a multitasking potent regulator that facilitates plant growth, development, and responses to environmental stimuli. RECENT ADVANCES The important beneficial effects of H2S in various aspects of plant physiology aroused the interest of this chemical for agriculture. Protein cysteine persulfidation has been recognized as the main redox regulatory mechanism of H2S signaling. An increasing number of studies, including large-scale proteomic analyses and function characterizations, have revealed that H2S-mediated persulfidations directly regulate protein functions, altering downstream signaling in plants. To date, the importance of H2S-mediated persufidation in several abscisic acid signaling-controlling key proteins has been assessed as well as their role in stomatal movements, largely contributing to the understanding of the plant H2S-regulatory mechanism. CRITICAL ISSUES The molecular mechanisms of the H2S sensing and transduction in plants remain elusive. The correlation between H2S-mediated persulfidation with other oxidative posttranslational modifications of cysteines are still to be explored. FUTURE DIRECTIONS Implementation of advanced detection approaches for the spatiotemporal monitoring of H2S levels in cells and the current proteomic profiling strategies for the identification and quantification of the cysteine site-specific persulfidation will provide insight into the H2S signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Ghent University, 26656, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium;
| | - Yanjie Xie
- Nanjing Agricultural University College of Life Sciences, 98430, No.1 Weigang, Nanjing, Jiangsu, China, 210095;
| |
Collapse
|
13
|
Zhang Y, Yun F, Man X, Huang D, Liao W. Effects of Hydrogen Sulfide on Sugar, Organic Acid, Carotenoid, and Polyphenol Level in Tomato Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:719. [PMID: 36840068 PMCID: PMC9965552 DOI: 10.3390/plants12040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the flavor quality of tomato fruit during postharvest. H2S decreased the content of fructose, glucose, carotene and lycopene but increased that of soluble protein, organic acid, malic acid and citric acid. These differences were directly associated with the expression of their metabolism-related genes. Moreover, H2S treatment raised the contents of total phenolics, total flavonoids and most phenolic compounds, and up-regulated the expression level of their metabolism-related genes (PAL5, 4CL, CHS1, CHS2, F3H and FLS). However, the effects of the H2S scavenger hypotaurine on the above flavor quality parameters were opposite to that of H2S, thus confirming the role of H2S in tomato flavor quality. Thus, these results provide insight into the significant roles of H2S in tomato fruit quality regulation and implicate the potential application of H2S in reducing the flavor loss of tomato fruit during postharvest.
Collapse
|
14
|
Jiang W, Zhu D, Zhao L, Liu Y, Wang C, Farid MS, Gu Y, Li J, Li T, Sun Y, Li W, Cheng F. l-Cysteine Treatment Delayed the Quality Deterioration of Fresh-Cut Button Mushrooms by Regulating Oxygen Metabolism, Inhibiting Water Loss, and Stimulating Endogenous H 2S Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:974-984. [PMID: 36550784 DOI: 10.1021/acs.jafc.2c06795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although fresh-cut button mushrooms are popular with consumers, quality deterioration presents a significant shelf-life challenge. In this study, fresh-cut button mushrooms were treated with 0.25 g/L l-cysteine (l-Cys) and evaluated in terms of quality, physiology, and transcriptome sequencing. The results indicated that l-Cys application significantly delayed the browning degree of fresh-cut button mushrooms and reduced weight loss. l-Cys treatment reduced the malondialdehyde content, lipoxygenase activity, and reducing sugar levels while enhancing the soluble protein and total phenolic content. Furthermore, l-Cys treatment reduced the O2- generation rate and H2O2 accumulation while enhancing the catalase activity. Moreover, l-Cys improved the superoxide dismutase, glutathione reductase, and phenylalanine ammonia-lyase activities while reducing those of polyphenol oxidase and peroxidase. Additionally, l-Cys treatment increased endogenous H2S production and AbCBS enzyme activity while decreasing AbCSE enzyme activity. Notably, additional treatment with 1 mM propargylglycine significantly reduced the effect of l-Cys. Moreover, transcriptome sequencing analysis indicated that the differentially expressed genes in the l-Cys group were primarily related to the reactive oxygen species metabolism, oxidoreductase process, membrane integrality, and sulfur metabolism. These findings suggested that l-Cys treatment delayed the aging and extended the shelf life of fresh-cut button mushrooms by regulating the active oxygen species metabolism and water loss and stimulating endogenous H2S production.
Collapse
Affiliation(s)
- Wenwen Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan Zhu
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Longgang Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Muhammad Salman Farid
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yuyi Gu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Tianhao Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxiang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Fansheng Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao 266109, China
| |
Collapse
|
15
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
16
|
Li X, Meng Z, Malik AU, Zhang S, Wang Q. Maintaining the quality of postharvest broccoli by inhibiting ethylene accumulation using diacetyl. Front Nutr 2022; 9:1055651. [PMID: 36458179 PMCID: PMC9707704 DOI: 10.3389/fnut.2022.1055651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Broccoli (Brassica oleracea L. var. Italic) is rich in nutrition. However, it is susceptible to yellowing after harvest, leading to nutritional and economic losses. In this study, diacetyl, a natural food additive compound, was selected to inhibit the yellowing of broccoli florets and maintain the nutrient quality during storage time. It was found that 20 μl L-1 diacetyl treatment for 12 h could significantly delay the yellowing and decrease the weight loss and lignin content of broccoli florets. Meanwhile, diacetyl could maintain higher contents of chlorophyll, vitamin C and flavonoids and suppress the transcript levels of chlorophyll degradation-related genes in broccoli florets. Moreover, accumulations of reactive oxygen species (ROS) were inhibited by diacetyl treatment. Under diacetyl treatment, the generation of ethylene was prevented by inhibiting the activities and related-gene expressions of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Based on our findings, exogenous diacetyl could be employed as a novel bioactive molecule for retarding the yellowing and maintaining the quality of postharvest broccoli.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Zan Meng
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Song Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| |
Collapse
|
17
|
Ranasinghe Arachchige NR, Brown EM, Bowden NB. Sustained Release of Hydrogen Sulfide from Di( t-butanol)dithiophosphate Phenethylamine Salt Encapsulated into Poly(lactic acid) Microparticles to Enhance the Growth of Radish Plants. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2022; 2:1052-1062. [PMID: 37092031 PMCID: PMC10118237 DOI: 10.1021/acsagscitech.2c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 04/25/2023]
Abstract
The slow release of hydrogen sulfide has been shown to be beneficial to plants by protecting them from environmental stressors, increasing germination, and extending the lifetime of harvested fruits. A major challenge in this field is controlling the amount and location of release of hydrogen sulfide so that it is available for use by plants at optimal amounts. This article reports a dual method to release hydrogen sulfide near the roots of plants by controlling its release using the hydrolysis of a dithiophosphate and the degradation of poly(lactic acid) [PLA]. Di(t-butanol)dithiophosphate phenylethylamine (tBDPA) was dissolved in a solution of PLA, and the solvent was allowed to evaporate. The resulting solid was crushed in a blender and separated into microparticles with two different size distributions of 250-500 or 500-2000 μm. The microparticles were characterized by powder X-ray diffraction to measure the presence of microcrystals of tBDPA within PLA, and images obtained using scanning electron microscopy with energy dispersive X-ray analysis confirmed the presence of these crystals. Microparticles of tBDPA loaded within PLA were characterized for their release of phosphorus and hydrogen sulfide, which both showed a burst release within 3 days, followed by a steady release. Radish plants grown with microparticles of PLA loaded with tBDPA had up to a 141% increase in harvest yield compared to plants grown in the presence of free tBDPA not loaded into PLA, PLA microparticles without tBDPA, and control plants grown without PLA or tBDPA. These experiments showed that loading hydrogen sulfide-releasing chemicals into PLA is a promising method to improve the effect of hydrogen sulfide on plants.
Collapse
Affiliation(s)
| | - Eric M. Brown
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ned B. Bowden
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Du M, Zhang P, Wang G, Zhang X, Zhang W, Yang H, Bao Z, Ma F. H 2 S improves salt-stress recovery via organic acid turn-over in apple seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2923-2942. [PMID: 35906186 DOI: 10.1111/pce.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xinyi Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiwei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongqiang Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
19
|
Wang B, Leng J, Wang X, Zhao W. Reversible AIE-active fluorescent probe with a large emission peak shift for ratiometric detection of food freshness indicator H 2S. Food Chem 2022; 386:132768. [PMID: 35349897 DOI: 10.1016/j.foodchem.2022.132768] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
It is crucial to on-site monitor H2S for addressing the concerns associated with food safety. We rationally prepared an AIE-active fluorescent probe (CLBZ) with the aggregated state conversion for sensing H2S in a ratiometric response manner. CLBZ displayed ratiometric response, fast response time (5 s), well-resolved emission peak shift (147 nm) and high selectivity towards H2S, and it can be used as a reversible and reusable probe. The probe-based test strip was also developed to conveniently detect H2S generated during food spoilage in the absence of laboratory instruments. It achieved the consistent results and sensitivity with that determined by the colony forming unit (CFU) assay. These results paved a successful way to develop an effective analytical method for food quality and safety.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Juncai Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
20
|
Wang W, Ni ZJ, Thakur K, Cao SQ, Wei ZJ. Recent update on the mechanism of hydrogen sulfide improving the preservation of postharvest fruits and vegetables. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Deng B, Chen L, Tian S, Shi H, Zhao X. Vitamin B1 delays postharvest senescence and enhances antioxidant accumulation by activating NADPH oxidase in Ziziphus jujuba fruit. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Liu D, Pei Y. The secret of H 2 S to keep plants young and fresh and its products. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:587-593. [PMID: 34921509 DOI: 10.1111/plb.13377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Recently, accumulating evidence has shown that hydrogen sulphide (H2 S), a newly determined gasotransmitter, plays important roles in senescence, which is an essential biological process for plant fitness and an important agricultural trait that is critical for the yield and quality of farm produce. Here, in this review, we summarize the roles of H2 S in senescence, both before and after the harvesting of agricultural products, and the underlying mechanism is also discussed. During the plant growth process, the function of H2 S in the leaf senescence process has been studied extensively, and H2 S plays roles during the whole process, including the initiation, reorganization and terminal stages. While during the postharvest stage, H2 S can prevents farm products from deterioration resulting from over-ripening, pathogen attack and incorrect storage. The underlying H2 S-related mechanisms during different stages of the senescence process are summarized and compared. The most prominent interaction occurs between H2 S and reactive oxygen species, and the molecular mechanism is explored. Additionally, the conserved action mode of H2 S in different life processes and different species is also discussed. In the future, multi-omics analyses over time will be needed to investigate the detailed mechanisms of H2 S, and a safety attribute analysis of H2 S is also required before it can be used in agricultural production.
Collapse
Affiliation(s)
- D Liu
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Y Pei
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| |
Collapse
|
23
|
Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H 2 S) for improving fruit quality traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:594-601. [PMID: 34866296 DOI: 10.1111/plb.13372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulphide (H2 S) is a gaseous molecule and originates endogenously in plants. It is considered a potential signalling agent in various physiological processes of plants. Numerous reports have examined the role of H2 S in fruit ripening and in enhancing fruit quality traits. H2 S coordinates the fruit antioxidant system, fruit ripening phytohormones, such as ethylene and abscisic acid, together with other ripening-related signalling molecules, including nitric oxide and hydrogen peroxide. Although many studies have increased understanding of various aspects of this complex network, there is a gap in understanding crosstalk of H2 S with key players of fruit ripening, postharvest senescence and fruit metabolism. This review focused on deciphering fruit H2 S metabolism, signalling and its interaction with other ripening-related signalling molecules during fruit ripening and postharvest storage. Moreover, we also discuss how H2 S can be used as a tool for improving fruit quality and productivity and reducing postharvest loss of perishable fruits.
Collapse
Affiliation(s)
- R Tayal
- National Institute of Plant Genome Research, New Delhi, India
| | - V Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - M Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Lata D, Homa F, Nayyer MA, Kumar A, Aftab MA, Siddiqui MW. Effect of postharvest hydrogen sulphide on lignification and biochemical markers of pointed gourd. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:704-710. [PMID: 35174603 DOI: 10.1111/plb.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulphide (H2 S) has emerged as a gasotransmitter molecule that modulates several physiological functions in plants, specially, different biotic and abiotic stresses. Pointed gourd (PG) fruits start losing their soft texture and appealing colour within 2-3 days of harvest, resulting in poor marketability and shelf life. Here, the effect of exogenous H2 S (1 and 2 mm) application on lignification and other biochemical markers linked to ripening, shelf-life and edible quality of PG was assessed during cold (12 °C, 85-90% RH) and ambient (27 ± 2 °C, 55 ± 5% RH) storage. The synergistic effect of H2 S was recorded during simulated storage at ambient conditions. Postharvest H2 S treatment (1 mm) effectively delayed yellowing and chlorophyll loss (four-fold reduction) and maintained the phenolic content and higher antioxidant activity (36%). The H2 S-treated PG fruits had significantly lower lignification and membrane permeability i.e. 15% and 13%, respectively, than control samples. H2 S-treated fruit also maintained higher PAL and lower PPO activity. Therefore, postharvest application of H2 S (2 mm) could be effective in maintaining postharvest quality of PG fruits and extending the marketing period.
Collapse
Affiliation(s)
- D Lata
- ICAR-IIHR, Hessaraghatta, Bengaluru, Karnataka, India
| | - F Homa
- Bihar Agricultural University, Sabour, Bihar, India
| | - M A Nayyer
- IIAST, Integral University, Lucknow, Uttar Pradesh, India
| | - A Kumar
- Bihar Agricultural University, Sabour, Bihar, India
| | - M A Aftab
- Bihar Agricultural University, Sabour, Bihar, India
| | - M W Siddiqui
- Bihar Agricultural University, Sabour, Bihar, India
| |
Collapse
|
25
|
Wang L, Chen S, Shao J, Zhang C, Mei L, Wang K, Jin P, Zheng Y. Hydrogen sulfide alleviates chilling injury in peach fruit by maintaining cell structure integrity via regulating endogenous H 2S, antioxidant and cell wall metabolisms. Food Chem 2022; 391:133283. [PMID: 35623280 DOI: 10.1016/j.foodchem.2022.133283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Effects of hydrogen sulfide (H2S) on chilling injury (CI), H2S, antioxidant and cell-wall metabolisms of refrigerated peaches treated with H2S and hypotaurine (HT, H2S scavenger) were investigated in present study. Results revealed that H2S treatment enhanced endogenous H2S content, which was associated with increased related H2S synthase enzymes activities, while HT showed the opposite results. Moreover, H2S treatment induced the accumulation of ascorbic acid, glutathione and the enhancement of antioxidant enzymes activities compared to control and HT, contributing to lower hydrogen peroxide content and superoxide radical production. Furthermore, H2S suppressed the increase of cell-wall degradation enzymes accompanied by higher levels of water-insoluble pectin, 24% KOH-soluble hemicellulose and cellulose, while HT accelerated these components degradation. Therefore, results indicated that H2S mitigated CI of refrigerated peaches by regulating H2S, antioxidant and cell-wall metabolisms, maintaining higher H2S and antioxidants contents, suppressing cell-wall degradation, thereby contributing to redox homeostasis maintenance and cell structure integrity.
Collapse
Affiliation(s)
- Li Wang
- Anhui Agricultural Products Processing Engineering Laboratory, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, PR China.
| | - Shouchao Chen
- Anhui Agricultural Products Processing Engineering Laboratory, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, PR China
| | - Jiawei Shao
- Anhui Agricultural Products Processing Engineering Laboratory, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, PR China
| | - Chen Zhang
- Anhui Agricultural Products Processing Engineering Laboratory, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, PR China
| | - Lin Mei
- Anhui Agricultural Products Processing Engineering Laboratory, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, PR China
| | - Ke Wang
- Anhui Agricultural Products Processing Engineering Laboratory, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
26
|
Zhang Y, Chen Y, Guo Y, Ma Y, Yang M, Fu R, Sun Y. Proteomics study on the changes in amino acid metabolism during broccoli senescence induced by elevated O2 storage. Food Res Int 2022; 157:111418. [DOI: 10.1016/j.foodres.2022.111418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
|
27
|
Sun C, Zhang W, Qu H, Yan L, Li L, Zhao Y, Yang H, Zhang H, Yao G, Hu K. Comparative physiological and transcriptomic analysis reveal MdWRKY75 associated with sucrose accumulation in postharvest 'Honeycrisp' apples with bitter pit. BMC PLANT BIOLOGY 2022; 22:71. [PMID: 35176994 PMCID: PMC8851858 DOI: 10.1186/s12870-022-03453-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Calcium (Ca) deficiency can cause apple bitter pit, reduce the quality and shelf life. WRKY transcription factors play essential role in plant response to multiple disorders. However, the underlying mechanisms causing bitter pit in apple fruit due to Ca deficiency during storage is extremely limited. RESULTS In the present study, the nutritional metabolites and reactive oxygen species (ROS) were compared in Ca-deficient and healthy apple fruit (CK) during storage. Results showed that Ca-deficient apples sustained significantly higher production of ROS, PPO activity, flavonoids, total phenol, total soluble solids (TSS), and sucrose contents, but the contents of Ca, H2O2, titratable acids (TA), glucose and fructose were significantly lower than those of CK during storage. Principal component analysis (PCA) showed that TSS, •O2-, PPO, malondialdehyde (MDA) and Ca were the main factors, and TSS had a positive correlation with sucrose. Furthermore, transcriptome analysis revealed that WRKYs were co-expressed with sucrose metabolism-related enzymes (SWEETs, SS, SPS). qRT-PCR and correlation analysis indicated that MdWRKY75 was correlated positively with MdSWEET1. Moreover, transient overexpression of MdWRKY75 could significantly increase the sucrose content and promote the expression of MdSWEET1 in apple fruit. CONCLUSIONS Calcium deficiency could decrease antioxidant capacity, accelerate nutritional metabolism and up-regulate the expression of WRKYs in apple with bitter pit. Overexpression of MdWRKY75 significantly increased sucrose accumulation and the expression of MdSWEET1. These findings further strengthened knowledge of the basic molecular mechanisms in calcium deficiency apple flesh and contributed to improving the nutritional quality of apple fruit.
Collapse
Affiliation(s)
- Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Weiwei Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271001 China
| | - Haiyong Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 China
| | - Longfei Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Lixia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Yuqi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271001 China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| |
Collapse
|
28
|
Lv YM, Elnur E, Wang W, Thakur K, Du J, Li HN, Ma WP, Liu YQ, Ni ZJ, Wei ZJ. Hydrogen sulfide treatment increases the antioxidant capacity of fresh Lingwu Long Jujube (Ziziphus jujuba cv. Mill) fruit during storage. Curr Res Food Sci 2022; 5:949-957. [PMID: 35677650 PMCID: PMC9168060 DOI: 10.1016/j.crfs.2022.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has been identified as an important gaseous signal molecule in plants. Here, we investigated the effects of H2S on postharvest senescence and antioxidant metabolism of Lingwu Long Jujube (Ziziphus jujuba cv. Mill) fruits (LLJF). Fumigation of Jujube fruits with H2S released from 0.4 mm NaHS could significantly prolong the postharvest shelf life of jujube fruits, reduce the decay rate of fruit, the weight loss of fruit, and inhibit the fruit loss, hardness, color, soluble solids, and titratable acidity. Compared with the control group, exogenous H2S fumigation significantly decreased the loss of chlorophyll, carotenoids, soluble protein, ascorbic acid, phenols, and flavonoids in jujube fruits during post-harvest storage. At the same time, H2S could significantly delay the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2∙−) and promote catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD) activity, and inhibit polyphenol oxidase (PPO) activity. To summarize, H2S can effectively alleviate postharvest senescence and decay of jujube fruits by regulating the ROS accumulation and antioxidant enzymes, and prolong the storage period of postharvest. H2S treatment could significantly prolong the postharvest shelf life of jujube fruits. H2S could significantly delay the accumulation of MDA, H2O2 and O2∙− during storage of jujube fruits. H2S treatment promote CAT, SOD, APX, POD activity, and inhibit PPO activity during storage of jujube fruits. Provides a new method for storage of post-harvest jujube fruits.
Collapse
|
29
|
Hu K, Peng X, Yao G, Zhou Z, Yang F, Li W, Zhao Y, Li Y, Han Z, Chen X, Zhang H. Roles of a Cysteine Desulfhydrase LCD1 in Regulating Leaf Senescence in Tomato. Int J Mol Sci 2021; 22:13078. [PMID: 34884883 PMCID: PMC8658025 DOI: 10.3390/ijms222313078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter in both mammals and plants, plays important roles in plant development and stress responses. Leaf senescence represents the final stage of leaf development. The role of H2S-producing enzyme L-cysteine desulfhydrase in regulating tomato leaf senescence is still unknown. In the present study, the effect of an L-cysteine desulfhydrase LCD1 on leaf senescence in tomato was explored by physiological analysis. LCD1 mutation caused earlier leaf senescence, whereas LCD1 overexpression significantly delayed leaf senescence compared with the wild type in 10-week tomato seedlings. Moreover, LCD1 overexpression was found to delay dark-induced senescence in detached tomato leaves, and the lcd1 mutant showed accelerated senescence. An increasing trend of H2S production was observed in leaves during storage in darkness, while LCD1 deletion reduced H2S production and LCD1 overexpression produced more H2S compared with the wild-type control. Further investigations showed that LCD1 overexpression delayed dark-triggered chlorophyll degradation and reactive oxygen species (ROS) accumulation in detached tomato leaves, and the increase in the expression of chlorophyll degradation genes NYC1, PAO, PPH, SGR1, and senescence-associated genes (SAGs) during senescence was attenuated by LCD1 overexpression, whereas lcd1 mutants showed enhanced senescence-related parameters. Moreover, a correlation analysis indicated that chlorophyll content was negatively correlated with H2O2 and malondialdehyde (MDA) content, and also negatively correlated with the expression of chlorophyll degradation-related genes and SAGs. Therefore, these findings increase our understanding of the physiological functions of the H2S-generating enzyme LCD1 in regulating leaf senescence in tomato.
Collapse
Affiliation(s)
- Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Xiangjun Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221131, China; (Z.Z.); (F.Y.)
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221131, China; (Z.Z.); (F.Y.)
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China;
| | - Yuqi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Yanhong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Xiaoyan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (X.P.); (G.Y.); (Y.Z.); (Y.L.); (Z.H.); (X.C.)
| |
Collapse
|
30
|
Transcriptomics Reveals the ERF2- bHLH2- CML5 Module Responses to H 2S and ROS in Postharvest Calcium Deficiency Apples. Int J Mol Sci 2021; 22:ijms222313013. [PMID: 34884817 PMCID: PMC8657956 DOI: 10.3390/ijms222313013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Calcium deficiency usually causes accelerated quality deterioration in postharvest fruit, whereas the underlining mechanism is still unclear. Here, we report that calcium deficiency induced the development of bitter pit on the surface of apple peels compared with the healthy appearance in control apples during postharvest storage. Physiological analysis indicates that calcium-deficient peels contained higher levels of superoxide anion (O2•−), malondialdehyde (MDA), total phenol, flavonoid contents and polyphenol oxidase (PPO) activity, and reduced calcium, H2S production, anthocyanin, soluble protein content, and peroxidase (POD) activity compared with those in calcium-sufficient peels. The principal component analysis (PCA) results show that calcium content, ROS, and H2S production were the main factors between calcium-deficient and calcium-sufficient apple peels. Transcriptome data indicated that four calmodulin-like proteins (CMLs), seven AP2/ERFs, and three bHLHs transcripts were significantly differentially expressed in calcium-deficient apple peels. RT-qPCR and correlation analyses further revealed that CML5 expression was significantly positively correlated with the expression of ERF2/17, bHLH2, and H2S production related genes. In addition, transcriptional co-activation of CML5 by ERF2 and bHLH2 was demonstrated by apple transient expression assays and dual-luciferase reporter system experiments. Therefore, these findings provide a basis for studying the molecular mechanism of postharvest quality decline in calcium-deficient apples and the potential interaction between Ca2+ and endogenous H2S.
Collapse
|
31
|
Zhu D, Wang C, Liu Y, Ding Y, Winters E, Li W, Cheng F. Gibberellic acid maintains postharvest quality of Agaricus bisporus mushroom by enhancing antioxidative system and hydrogen sulfide synthesis. J Food Biochem 2021; 45:e13939. [PMID: 34545598 DOI: 10.1111/jfbc.13939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
The application of gibberellic acid (GA3 ) treatment to the postharvest quality maintenance of white button mushroom (Agaricus bisporus) was investigated. The optimum concentration of exogenous GA3 was 100 mg/L. At this concentration, the color change was inhibited, the firmness was maintained, and the weight loss and respiratory rates were reduced. The GA3 group had significantly lower malonaldehyde (MDA) content and membrane permeability. Reactive oxygen species accumulation was reduced due to the regulation of polyphenol oxidase (PPO), peroxidase (POD), and superoxide dismutase (SOD) enzyme activities. Moreover, the production of endogenous gaseous signaling molecule hydrogen sulfide (H2 S) was triggered by GA3 treatment, which enhanced cystathionine γ-lyase (AbCSE) and cystathionine β-synthase (AbCBS) activities alongside the corresponding gene expressions. The preservation of button mushroom postharvest storage quality by GA3 was most likely due to the regulation of reactive oxygen species metabolism and hydrogen sulfide biosynthesis. PRACTICAL APPLICATIONS: Mushroom is rich in nutrients and functional substances. However, due to the lack of cuticle, high respiration rate, and moisture content, mushroom's postharvest quality deteriorates rapidly. A safe and effective reagent that prevents the senescence and quality deterioration of harvested mushroom is urgently needed. The effects of plant hormone GA3 on the postharvest quality of edible fungi remain unclear. The present study provided convincing evidence that 100 mg L-1 of GA3 effectively maintained postharvest button mushroom quality by regulating reactive oxygen species metabolism and hydrogen sulfide biosynthesis.
Collapse
Affiliation(s)
- Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | | | - Ye Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yang Ding
- School of Logistics, Beijing Wuzi University, Beijing, China
| | - Emily Winters
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Wenxiang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao, China
| | - Fansheng Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Shandong Province Key Laboratory of Applied Mycology, Qingdao, China
| |
Collapse
|
32
|
Barzegar T, Najafi R, Razavi F, Ghahremani Z. Hydrogen sulfide and phenylalanine alleviate chilling injury in eggplant fruits during cold storage by enhancing antioxidant activities and membrane stability. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Taher Barzegar
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Reza Najafi
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Zahra Ghahremani
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| |
Collapse
|
33
|
Chevilly S, Dolz-Edo L, López-Nicolás JM, Morcillo L, Vilagrosa A, Yenush L, Mulet JM. Physiological and Molecular Characterization of the Differential Response of Broccoli ( Brassica oleracea var. Italica) Cultivars Reveals Limiting Factors for Broccoli Tolerance to Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10394-10404. [PMID: 34445860 PMCID: PMC8528380 DOI: 10.1021/acs.jafc.1c03421] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Broccoli is a cruciferous crop rich in health-promoting metabolites. Due to several factors, including anthropogenic global warming, aridity is increasing in many cultivation areas. There is a great demand to characterize the drought response of broccoli and use this knowledge to develop new cultivars able to maintain yield under water constraints. The aim of this study is to characterize the drought response at the physiological and molecular level of different broccoli (Brassica oleracea L. var. Italica Plenck) cultivars, previously characterized as drought-sensitive or drought-tolerant. This approach aims to identify different traits, which can constitute limiting factors for drought stress tolerance in broccoli. For this purpose, we have compared several physiological parameters and the complete profiles of amino acids, primary metabolites, hormones, and ions of drought-tolerant and drought-sensitive cultivars under stress and control conditions. We have found that drought-tolerant cultivars presented higher levels of methionine and abscisic acid and lower amounts of urea, quinic acid, and the gluconic acid lactone. Interestingly, we have also found that a drought treatment increases the levels of most essential amino acids in leaves and in florets. Our results have established physiological and molecular traits useful as distinctive markers to predict drought tolerance in broccoli or which could be reliably used for breeding new cultivars adapted to water scarcity. We have also found that a drought treatment increases the content of essential amino acids in broccoli.
Collapse
Affiliation(s)
- Sergio Chevilly
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
| | - Laura Dolz-Edo
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
| | - José M. López-Nicolás
- Departamento
de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Luna Morcillo
- Fundación
Centro de Estudios Ambientales del Mediterráneo, Joint Research
Unit University of Alicante—CEAM, University of Alicante, 03080 Alicante, Spain
| | - Alberto Vilagrosa
- Fundación
Centro de Estudios Ambientales del Mediterráneo, Joint Research
Unit University of Alicante—CEAM, University of Alicante, 03080 Alicante, Spain
| | - Lynne Yenush
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
| | - José M. Mulet
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
- . Tel: +34 96 387
77 75. Fax: +34 96 387 78 59
| |
Collapse
|
34
|
Effects of Hydrogen Sulfide on the Quality Deterioration of Button Mushrooms and the Interaction with Ethylene. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02702-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Fang H, Zhou Q, Cheng S, Zhou X, Wei B, Zhao Y, Ji S. 24-epibrassinolide alleviates postharvest yellowing of broccoli via improving its antioxidant capacity. Food Chem 2021; 365:130529. [PMID: 34265646 DOI: 10.1016/j.foodchem.2021.130529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Postharvest crop yellowing is a major concern in the broccoli industry. The effect and underlying mechanisms of 24-epibrassinolide (EBR) treatment on yellowing in postharvest broccoli were investigated. Treatment with 2 µM EBR markedly inhibited the increase of the yellowing index and L* values, causing higher retention of the metric hue angle and chlorophyll content compared to the control. Treatment also alleviated oxidative damage by preventing the accumulation of malondialdehyde and superoxide anion (O2•-). The ascorbic acid content of broccoli reached its lowest value at the end of its shelf life, whereas that of the treated sample was obviously higher than the control. Moreover, treated broccoli exhibited higher superoxide dismutase, ascorbate peroxidase, and phenylalanine ammonia-lyase activities. Multivariate statistical analysis further demonstrated the effective enhancement of EBR treatment on antioxidant enzymes. These results indicate that exogenous application of EBR ameliorates postharvest yellowing by improving the antioxidant capacity of broccoli.
Collapse
Affiliation(s)
- Huixin Fang
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China
| | - Shunchang Cheng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China
| | - Xin Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China
| | - Yingbo Zhao
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, People's Republic of China.
| |
Collapse
|
36
|
Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. PLANT COMMUNICATIONS 2021; 2:100179. [PMID: 34027393 PMCID: PMC8132131 DOI: 10.1016/j.xplc.2021.100179] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Zhong K, Hu X, Zhou S, Liu X, Gao X, Tang L, Yan X. Mitochondria-Targeted Red-Emission Fluorescent Probe for Ultrafast Detection of H 2S in Food and Its Bioimaging Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4628-4634. [PMID: 33876940 DOI: 10.1021/acs.jafc.1c00862] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2S) contributes to human health and prolongs the storage time of postharvest fruits and vegetables. At the same time, H2S can cause a negative impact on some foodstuffs and beverages, so an efficient probe to detect H2S is needed. Herein, a fluorescent turn-on responding probe SPy-DNs for H2S detection has been designed and synthesized. SPy-DNs exhibited a red emission (608 nm), large Stokes shift (111 nm), and a detection limit of a nanomolar level (356 nM) in a dimethylformamide/phosphate-buffered saline (DMF/PBS) (1:1, v/v, 10 mM, pH 7.4) solution. SPy-DNs can detect H2S with ultrafast response within 4 s, which is faster than the response of other reported probes. In addition, the applicability of SPy-DNs to detect H2S has been determined in the actual water samples, targeted mitochondria, and imaged H2S in living cells. Moreover, SPy-DNs was successfully used as a tool to judge H2S levels in beer, which indicates that SPy-DNs possesses the advantage of rapid detection of H2S in foodstuffs.
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xiaoling Hu
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Shiyi Zhou
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xiuying Liu
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xue Gao
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
38
|
Aghdam MS, Alikhani-Koupaei M, Khademian R. Delaying Broccoli Floret Yellowing by Phytosulfokine α Application During Cold Storage. Front Nutr 2021; 8:609217. [PMID: 33869261 PMCID: PMC8047079 DOI: 10.3389/fnut.2021.609217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
During postharvest life, broccoli suffers from floret yellowing confining its economic and nutritional value. The objective of the present study was to explore the mechanisms employed by phytosulfokine α (PSKα) at 150 nM for delaying floret yellowing in broccoli during storage at 4°C for 28 days. Our results showed that the higher endogenous accumulation of hydrogen sulfide (H2S) resulting from the higher gene expression and activities of l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) in broccoli floret treated with 150 nM PSKα may serve as an endogenous signaling molecule for delaying senescence. Moreover, the suppressed ethylene biosynthesis in broccoli floret treated with 150 nM PSKα might be ascribed to lower gene expression and activities of ACC synthase (ACS) and ACC oxidase (ACO). Furthermore, lower gene expression and activities of Mg2+ dechelatase (MDC), pheophytinase (PPH), and pheophorbide a oxygenase (PaO) might be the reasons for the higher accumulation of chlorophyll in broccoli floret treated with 150 nM PSKα. Based on our findings, exogenous PSKα application could be employed as signaling bioactive hormone for retarding floret yellowing of broccoli during storage at 4°C for 28 days.
Collapse
Affiliation(s)
| | - Majid Alikhani-Koupaei
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Higher Education Complex of Saravan, Saravan, Iran
| | - Raheleh Khademian
- Department of Genetic and Plant Breeding, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
39
|
Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2020:8817778. [PMID: 33381540 PMCID: PMC7749770 DOI: 10.1155/2020/8817778] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Reducing oxidative species to non- or less-reactive matter is the principal function of an antioxidant. Plant-based food is the main external source of antioxidants that helps protect our cells from oxidative damage. During postharvest storage and distribution, fruits and vegetables often increase ROS production that is quenched by depleting their antioxidant pools to protect their cells, which may leave none for humans. ROS are molecules produced from oxygen metabolism; some of the most widely analyzed ROS in plants are singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS concentration and lifetime are determined by the availability and composition of the antioxidant system that includes enzymatic components such as SOD, CAT, and APX and nonenzymatic components such as vitamins, polyphenols, and carotenoid. Depending on its concentration in the cell, ROS can either be harmful or beneficial. At high concentrations, ROS can damage various kinds of biomolecules such as lipids, proteins, DNA, and RNA, whereas at low or moderate concentrations, ROS can act as second messengers in the intracellular signaling cascade that mediates various plant responses. Novel postharvest methods are sought to maintain fruit and vegetable quality, including minimizing ROS while preserving their antioxidant content.
Collapse
|
40
|
Dou Y, Chang C, Wang J, Cai Z, Zhang W, Du H, Gan Z, Wan C, Chen J, Zhu L. Hydrogen Sulfide Inhibits Enzymatic Browning of Fresh-Cut Chinese Water Chestnuts. Front Nutr 2021; 8:652984. [PMID: 34150826 PMCID: PMC8212951 DOI: 10.3389/fnut.2021.652984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
This work investigates the role of hydrogen sulfide (H2S) in the browning and regulating the antioxidant defensive system in fresh-cut Chinese water chestnuts. The samples were fumigated with 0, 10, and 15 μl L-1 of H2S and stored at 10°C for 8 days. The results indicated that the H2S treatment significantly inhibited the browning of fresh-cut Chinese water chestnuts, reduced superoxide anion ( O 2 · - ) production rate and H2O2 content accumulation, promoted the increase of total phenol content, and enhanced activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) (P < 0.05). On the other hand, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) activities remained at a low level in the H2S treatment (P < 0.05). This result suggested that H2S treatment might be a promising approach to inhibit browning and prolong the shelf life by enhancing oxidation resistance and inhibiting browning enzyme activity of fresh-cut Chinese water chestnuts during storage. Among them, the 15 μl L-1 H2S treatment had the best effect on fresh-cut Chinese water chestnuts.
Collapse
Affiliation(s)
- Yuan Dou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chunmei Chang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhipeng Cai
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Liqin Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Liqin Zhu
| |
Collapse
|
41
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
42
|
Emir G, Karakaya S, Dilgin Y. Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2019.00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Li L, Kitazawa H, Zhang X, Zhang L, Sun Y, Wang X, Liu Z, Guo Y, Yu S. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus). Food Chem 2020; 340:127833. [PMID: 32919356 DOI: 10.1016/j.foodchem.2020.127833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023]
Abstract
Currently, melatonin (N-acetyl-5-methoxytrytamine) is recognized as a potential scavenger of free radicals. In this study, the effect of exogenous melatonin at various concentrations (0.05, 0.1, and 0.2 mM) on the texture, sensory qualities, and electron leakage in white mushrooms was evaluated at 3 ± 1 °C. It was observed that mushrooms treated with 0.1 mM melatonin were of good quality and their electron leakage was dramatically dampened. The results showed that 0.1 mM melatonin retained a higher adenosine triphosphate level and also prevented the release of cytochrome c into the cytoplasm. More significantly, it prominently inhibited electron leakage by increasing the activities of complexes I and III by the upregulation of AbNdufB9 and AbRIP1. It also regulated respiratory states in mushrooms; delayed the decline of respiratory state 3; enhanced respiratory state 4; boosted the oxidative phosphorylation and efficiency of mitochondria; and ultimately retarded the senescence of the white mushrooms.
Collapse
Affiliation(s)
- Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Hiroaki Kitazawa
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki 305-8642, Japan
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Liming Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yang Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
44
|
Effect of melatonin treatment on visual quality and health-promoting properties of broccoli florets under room temperature. Food Chem 2020; 319:126498. [DOI: 10.1016/j.foodchem.2020.126498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
|
45
|
Zhang NN, Zou H, Lin XY, Pan Q, Zhang WQ, Zhang JH, Wei GH, Shangguan ZP, Chen J. Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean. PLANT, CELL & ENVIRONMENT 2020; 43:1130-1147. [PMID: 32012309 DOI: 10.1111/pce.13736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2 S) is emerging as an important signalling molecule that regulates plant growth and abiotic stress responses. However, the roles of H2 S in symbiotic nitrogen (N) assimilation and remobilization have not been characterized. Therefore, we examined how H2 S influences the soybean (Glycine max)/rhizobia interaction in terms of symbiotic N fixation and mobilization during N deficiency-induced senescence. H2 S enhanced biomass accumulation and delayed leaf senescence through effects on nodule numbers, leaf chlorophyll contents, leaf N resorption efficiency, and the N contents in different tissues. Moreover, grain numbers and yield were regulated by H2 S and rhizobia, together with N accumulation in the organs, and N use efficiency. The synergistic effects of H2 S and rhizobia were also demonstrated by effects on the enzyme activities, protein abundances, and gene expressions associated with N metabolism, and senescence-associated genes (SAGs) expression in soybeans grown under conditions of N deficiency. Taken together, these results show that H2 S and rhizobia accelerate N assimilation and remobilization by regulation of the expression of SAGs during N deficiency-induced senescence. Thus, H2 S enhances the vegetative and reproductive growth of soybean, presumably through interactions with rhizobia under conditions of N deficiency.
Collapse
Affiliation(s)
- Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Hang Zou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of life sciences, Northwest A&F University, Yangling, P.R. China
| | - Xue-Yuan Lin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Qing Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of life sciences, Northwest A&F University, Yangling, P.R. China
| | - Wei-Qin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ge-Hong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of life sciences, Northwest A&F University, Yangling, P.R. China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| |
Collapse
|
46
|
Lin X, Yang R, Dou Y, Zhang W, Du H, Zhu L, Chen J. Transcriptome analysis reveals delaying of the ripening and cell-wall degradation of kiwifruit by hydrogen sulfide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2280-2287. [PMID: 31944323 DOI: 10.1002/jsfa.10260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2 S) is a known signaling molecule in plants, which has the ability to delay fruit ripening. Our previous studies have shown that H2 S treatment could delay the maturation of kiwifruits by inhibiting ethylene production, improving protective enzyme activities, and decreasing the accumulation of reactive oxygen species to protect the cell membrane during storage. The mechanism related to the way in which H2 S affected kiwifruit maturation was still unclear. We performed transcriptome sequencing to explore the influences of H2 S on the softening of kiwifruit. RESULTS The firmness and the soluble solids content (SSC) of the kiwifruit were significantly better maintained with H2 S treatment compared to the control during the storage period (P < 0.05). Transmission electron microscopy (TEM) showed that degradation of the cell wall was inhibited after H2 S treatment. Based on transcriptome data analysis and quantitative real-time polymerase chain reaction (qRT-PCR), expression levels of endo-1,4-β-glucanase (β-glu), β-galactosidase (β-gal) and pectinesterase (PME) decreased whereas pectinesterase inhibitor (PMEI) significantly increased in response to H2 S. The members of the signal transduction pathway involved in ethylene were also identified. Hydrogen sulfide inhibited the expression of ethylene receptor 2 (ETR2), ERF003, ERF5, and ERF016, and increased the expression of ethylene-responsive transcription factor 4 (ERF4) and ERF113. CONCLUSION Hydrogen sulfide could delay the ripening and senescence of kiwifruit by regulating the cell-wall degrading enzyme genes and affecting ethylene signal transduction pathway genes. Our results revealed the effect of H2 S treatment on the softening of kiwifruit at the transcription level, laying a foundation for further research. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaocui Lin
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Rui Yang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuan Dou
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Liqin Zhu
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables; College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables; College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Pingxiang University, Pingxiang, China
| |
Collapse
|
47
|
H 2S signaling in plants and applications in agriculture. J Adv Res 2020; 24:131-137. [PMID: 32292600 PMCID: PMC7150428 DOI: 10.1016/j.jare.2020.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a signaling role in higher plants. It mediates persulfidation, a post-translational modification. It regulates physiological functions ranging from seed germination to fruit ripening. The beneficial effects of exogenous H2S are mainly caused by the stimulation of antioxidant systems.
The signaling properties of the gasotransmitter molecule hydrogen sulfide (H2S), which is endogenously generated in plant cells, are mainly observed during persulfidation, a protein post-translational modification (PTM) that affects redox-sensitive cysteine residues. There is growing experimental evidence that H2S in higher plants may function as a mechanism of response to environmental stress conditions. In addition, exogenous applications of H2S to plants appear to provide additional protection against stresses, such as salinity, drought, extreme temperatures and heavy metals, mainly through the induction of antioxidant systems, in order to palliate oxidative cellular damage. H2S also appears to be involved in regulating physiological functions, such as seed germination, stomatal movement and fruit ripening, as well as molecules that maintain post-harvest quality and rhizobium–legume symbiosis. These properties of H2S open up new challenges in plant research to better understand its functions as well as new opportunities for biotechnological treatments in agriculture in a changing environment.
Collapse
|
48
|
Yao GF, Li C, Sun KK, Tang J, Huang ZQ, Yang F, Huang GG, Hu LY, Jin P, Hu KD, Zhang H. Hydrogen Sulfide Maintained the Good Appearance and Nutrition in Post-harvest Tomato Fruits by Antagonizing the Effect of Ethylene. FRONTIERS IN PLANT SCIENCE 2020; 11:584. [PMID: 32477391 PMCID: PMC7240128 DOI: 10.3389/fpls.2020.00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/17/2020] [Indexed: 05/07/2023]
Abstract
Hydrogen sulfide (H2S) could act as a versatile signaling molecule in delaying fruit ripening and senescence. Ethylene (C2H4) also plays a key role in climacteric fruit ripening, but little attention has been given to its interaction with H2S in modulating fruit ripening and senescence. To study the role of H2S treatment on the fruit quality and nutrient metabolism, tomato fruits at white mature stage were treated with ethylene and ethylene plus H2S. By comparing to C2H4 treatment, we found that additional H2S significantly delayed the color change of tomato fruit, and maintained higher chlorophyll and lower flavonoids during storage. Moreover, H2S could inhibit the activity of protease, maintained higher levels of nutritional-related metabolites, such as anthocyanin, starch, soluble protein, ascorbic acid by comparing to C2H4 treatment. Gene expression analysis showed that additional H2S attenuated the expression of beta-amylase encoding gene BAM3, UDP-glycosyltransferase encoding genes, ethylene-responsive transcription factor ERF003 and DOF22. Furthermore, principal component analysis suggested that starch, titratable acids, and ascorbic acid were important factors for affecting the tomato storage quality, and the correlation analysis further showed that H2S affected pigments metabolism and the transformation of macromolecular to small molecular metabolites. These results showed that additional H2S could maintain the better appearance and nutritional quality than C2H4 treatment alone, and prolong the storage period of post-harvest tomato fruits.
Collapse
Affiliation(s)
- Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chuang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke-Ke Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Guan-Gen Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng Jin
- Department of Ecology and Environment of Anhui Province, Hefei, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Kang-Di Hu,
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Hua Zhang,
| |
Collapse
|
49
|
Li L, Liu Y, Wang S, Zou J, Ding W, Shen W. Magnesium Hydride-Mediated Sustainable Hydrogen Supply Prolongs the Vase Life of Cut Carnation Flowers via Hydrogen Sulfide. FRONTIERS IN PLANT SCIENCE 2020; 11:595376. [PMID: 33362825 PMCID: PMC7755932 DOI: 10.3389/fpls.2020.595376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 05/08/2023]
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen source with high storage capacity (7.6 wt%). Although it is recently established that MgH2 has potential applications in medicine because it sustainably supplies hydrogen gas (H2), the biological functions of MgH2 in plants have not been observed yet. Also, the slow reaction kinetics restricts its practical applications. In this report, MgH2 (98% purity; 0.5-25 μm size) was firstly used as a hydrogen generation source for postharvest preservation of flowers. Compared with the direct hydrolysis of MgH2 in water, the efficiency of hydrogen production from MgH2 hydrolysis could be greatly improved when the citrate buffer solution is introduced. These results were further confirmed in the flower vase experiment by showing higher efficiency in increasing the production and the residence time of H2 in solution, compared with hydrogen-rich water. Mimicking the response of hydrogen-rich water and sodium hydrosulfide (a hydrogen sulfide donor), subsequent experiments discovered that MgH2-citrate buffer solution not only stimulated hydrogen sulfide (H2S) synthesis but also significantly prolonged the vase life of cut carnation flowers. Meanwhile, redox homeostasis was reestablished, and the increased transcripts of representative senescence-associated genes, including DcbGal and DcGST1, were partly abolished. By contrast, the discussed responses were obviously blocked by the inhibition of endogenous H2S with hypotaurine, an H2S scavenger. These results clearly revealed that MgH2-supplying H2 could prolong the vase life of cut carnation flowers via H2S signaling, and our results, therefore, open a new window for the possible application of hydrogen-releasing materials in agriculture.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Liu
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shu Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Zou
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenbiao Shen,
| |
Collapse
|
50
|
He Y, Zhao B, Kan W, Ding L, Yu Z, Wang M, Song B, Wang L. Two isomeric and distinguishable H2S fluorescence probes for monitoring spoilage of eggs and visualizing exogenous and endogenous H2S in living cells. Analyst 2020; 145:213-222. [DOI: 10.1039/c9an01629e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate fabrication of fluorescence probes to efficiently monitor and detect H2S levels in the fields of foodstuffs and physiology is crucial.
Collapse
Affiliation(s)
- Yuqian He
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Limin Ding
- Cadre Ward
- First Hospital of Qiqihar City
- Qiqihar 161005
- People's Republic China
| | - Zhaochuan Yu
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Mingyue Wang
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Bo Song
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| |
Collapse
|