1
|
Li Q, Wang S, Wang J, Chen L, Liu W, Li Z, Xu J, Deng Z, Zhou Y. Mechanism of Phloretin Accumulation in Malus hupehensis Grown at High Altitudes: Evidence from Quantitative 4D Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19526-19536. [PMID: 39166542 DOI: 10.1021/acs.jafc.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Phloretin is a natural dihydrochalcone (DHC) that exhibits various pharmacological and therapeutic activities. Malus hupehensis Rehd. (M. hupehensis) is widely planted in the middle of China and its leaves contain an extremely high content of phloridzin, a glycosylated derivative of phloretin. In the present study, we observed a significant increase in phloretin content in the leaves of M. hupehensis planted at high altitudes. To investigate the mechanisms of phloretin accumulation, we explored changes in the proteome profiles of M. hupehensis plants grown at various altitudes. The results showed that at high altitudes, photosynthesis- and DHC biosynthesis-related proteins were downregulated and upregulated, respectively, leading to reduced chlorophyll content and DHC accumulation in the leaves. Moreover, we identified a novel phloridzin-catalyzing glucosidase whose expression level was significantly increased in high-altitude-cultivated plants. This work provided a better understanding of the mechanism of phloretin accumulation and effective and economic strategies for phloretin production.
Collapse
Affiliation(s)
- Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shanshan Wang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Lijun Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wenrui Liu
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ziyan Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Charrière K, Schneider V, Perrignon-Sommet M, Lizard G, Benani A, Jacquin-Piques A, Vejux A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. Int J Mol Sci 2024; 25:5041. [PMID: 38732259 PMCID: PMC11084463 DOI: 10.3390/ijms25095041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.
Collapse
Affiliation(s)
- Karine Charrière
- Université de Franche-Comté, CHU Besançon, UMR 1322 LINC, INSERM CIC 1431, 25000 Besançon, France;
| | - Vincent Schneider
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
| | - Manon Perrignon-Sommet
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
- Memory Resource and Research Center (CMRR), CHU F. Mitterrand, 21000 Dijon, France
| | - Anne Vejux
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| |
Collapse
|
3
|
Santin M, Simoni S, Vangelisti A, Giordani T, Cavallini A, Mannucci A, Ranieri A, Castagna A. Transcriptomic Analysis on the Peel of UV-B-Exposed Peach Fruit Reveals an Upregulation of Phenolic- and UVR8-Related Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091818. [PMID: 37176875 PMCID: PMC10180693 DOI: 10.3390/plants12091818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
UV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the transcriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime) fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88% of the differentially expressed genes-DEGs), compared to 3 h recovery. The overexpression of genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes (HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling process (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to enhance the content of health-promoting compounds in peach fruits and extending the knowledge of the UVR8 gene network.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessia Mannucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Santin M, Zeni V, Grassi A, Ricciardi R, Pieracci Y, Di Giovanni F, Panzani S, Frasconi C, Agnolucci M, Avio L, Turrini A, Giovannetti M, Ruffini Castiglione M, Ranieri A, Canale A, Lucchi A, Agathokleous E, Benelli G. Do changes in Lactuca sativa metabolic performance, induced by mycorrhizal symbionts and leaf UV-B irradiation, play a role towards tolerance to a polyphagous insect pest? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56207-56223. [PMID: 36917375 PMCID: PMC10121541 DOI: 10.1007/s11356-023-26218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Filippo Di Giovanni
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Sofia Panzani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Christian Frasconi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Monica Ruffini Castiglione
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126, Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Science & Technology (NUIST), Nanjing University of Information, Nanjing, 210044, China
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
5
|
Wu Y, Popovsky-Sarid S, Tikunov Y, Borovsky Y, Baruch K, Visser RGF, Paran I, Bovy A. CaMYB12-like underlies a major QTL for flavonoid content in pepper (Capsicum annuum) fruit. THE NEW PHYTOLOGIST 2023; 237:2255-2267. [PMID: 36545937 DOI: 10.1111/nph.18693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The regulation of flavonoid biosynthesis is only partially explored in pepper (Capsicum annuum L.). The genetic basis underlying flavonoid variation in pepper fruit was studied. Variation of flavonoids in fruit of a segregating F2 population was studied using LC-MS followed by quantitative trait locus (QTL) analysis. Near-isogenic lines (NILs), BC1 S1 populations, virus-induced gene silenced (VIGS) and transgenic overexpression were used to confirm the QTL and the underlying candidate gene. A major QTL for flavonoid content was found in chromosome 5, and a CaMYB12-like transcription factor gene was identified as candidate gene. Near-isogenic lines (NILs) contrasting for CaMYB12-like confirmed its association with the flavonoid content variation. Virus-induced gene silencing (VIGS) of CaMYB12-like led to a significant decrease in the expression of several flavonoid pathway genes and a drastic decrease in flavonoid levels in silenced fruits. Expression of CaMYB12-like in the tomato slmyb12 mutant led to enhanced levels of several flavonoids in the fruit skin. Introgression of the CaMYB12-like allele into two cultivated varieties also increased flavonoid content in their fruits. A combination of metabolomic, genetic and gene functional analyses led to discovery of CaMYB12-like as a major regulator of flavonoid variation in pepper fruit and demonstrated its potential to breed for high-flavonoid content in cultivated pepper.
Collapse
Affiliation(s)
- Yi Wu
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Sigal Popovsky-Sarid
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 7534509, Rishon Lezion, Israel
| | - Yury Tikunov
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 7534509, Rishon Lezion, Israel
| | | | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 7534509, Rishon Lezion, Israel
| | - Arnaud Bovy
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
6
|
Santin M, Castagna A, Miras-Moreno B, Rocchetti G, Lucini L, Hauser MT, Ranieri A. Beyond the Visible and Below the Peel: How UV-B Radiation Influences the Phenolic Profile in the Pulp of Peach Fruit. A Biochemical and Molecular Study. FRONTIERS IN PLANT SCIENCE 2020; 11:579063. [PMID: 33193522 PMCID: PMC7661749 DOI: 10.3389/fpls.2020.579063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 05/13/2023]
Abstract
In the last decades, UV-B radiation has attracted attention due to its potential to increase nutraceutical values of fruit and vegetables, especially by inducing the accumulation of phenolics in a structure-dependent way. However, most current studies have investigated the UV-B-driven changes only in the peel or focusing on individual phenolic classes. Adopting an "-omics" approach, this work aimed to deepen the knowledge about the effects of UV-B radiation on the phenolic profile in the pulp of peach fruit. Based on these considerations, melting flesh yellow peaches (Prunus persica L., cv. Fairtime) were subjected to either a 10- or 60-min UV-B treatment (1.39 and 8.33 kJ m-2, respectively), and sampled at different time points from the exposure. A UHPLC-ESI/QTOF-MS analysis coupled with a phenolics-specific database for the annotation of compounds and a multivariate discriminant analysis revealed a marked effect of UV-B radiation on the phenolic profiles of peach pulp. Particularly, a general, transient increase was observed after 24 h from the irradiation, especially for flavanols, flavonols, and flavones. Such behavior diverges from what was observed in the peel, where an overall increase of phenolics was observed after 36 h from the irradiation. Concerning the flavonols in the pulp, UV-B exposure stimulated a specific accumulation of isorhamnetin and kaempferol derivatives, with variations imposed by the different sugar moiety bound. Anthocyanins, which were the second most abundant flavonoid group after flavonols, displayed a general decrease after 36 h that was not attributable to specific molecules. The UV-B treatments also increased the glycoside/aglycone ratio of flavonols and anthocyanins after 24 h, by increasing the glycoside concentration of both, flavonols and anthocyanins, and decreasing the aglycone concentration of anthocyanins. In support of the biochemical results, targeted gene expression analysis by RT-qPCR revealed an UV-B-induced activation of many genes involved in the flavonoid pathway, e.g., CHS, F3H, F3'H, DFR, as well as some MYB transcription factors and few genes involved in the UV-B perception. Generally, all the flavonoid-related and MYB genes showed a transient UV-B dose-dependent activation after 6 h from the irradiation, similarly to what was observed in the peel.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Ortega-Hernández E, Nair V, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic Acid in Red Prickly Pears ( Opuntia ficus-indica cv. Rojo Vigor). Int J Mol Sci 2019; 20:ijms20215327. [PMID: 31731568 PMCID: PMC6862142 DOI: 10.3390/ijms20215327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated the effects of ultraviolet B (UVB) radiation and wounding stress, applied alone or combined, on the biosynthesis of phenolic compounds and ascorbic acid in the peel and pulp of red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Whole and wounded-fruit samples were treated with UVB radiation (6.4 W·m-2) for 0 and 15 min, and stored for 24 h at 16 °C. Phytochemical analyses were performed separately in the peel and pulp. The highest phenolic accumulation occurred after storage of the whole tissue treated with UVB, where the main phenolic compounds accumulated in the peel and pulp were quercetin, sinapic acid, kaempferol, rosmarinic acid, and sinapoyl malate, showing increases of 709.8%, 570.2%, 442.8%, 439.9%, and 186.2%, respectively, as compared with the control before storage. Phenylalanine ammonia-lyase (PAL) activity was increased after storage of the whole and wounded tissue treated with UVB light, and this increase in PAL activity was associated to phenolic accumulation. On the other hand, l-galactono-γ-lactone dehydrogenase (GalLDH) activity and ascorbic acid biosynthesis was enhanced due to UVB radiation, and the effect was increased when UVB was applied in the wounded tissue showing 125.1% and 94.1% higher vitamin C content after storage when compared with the control. Respiration rate was increased due to wounding stress, whereas ethylene production was increased by wounding and UVB radiation in prickly pears. Results allowed the generation of a physiological model explaining the UVB and wound-induced accumulation of phenolic compounds and ascorbic acid in prickly pears, where wounding facilitates UVB to access the underlying tissue and enhances an apparent synergistic response.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Colonia Tecnologico, Monterrey, NL 64849, Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
- Correspondence: ; Tel.: +52-33-3669-3000 (ext. 2396)
| |
Collapse
|
8
|
Extraction of phytochemicals from tomato leaf waste using subcritical carbon dioxide. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018; 128:359-365. [DOI: 10.1016/j.phrs.2017.10.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/05/2023]
|
10
|
Takshak S, Bhushan Agrawal S. Interactive effects of supplemental ultraviolet-B radiation and indole-3-acetic acid on Coleus forskohlii Briq.: Alterations in morphological-, physiological-, and biochemical characteristics and essential oil content. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:313-326. [PMID: 28858704 DOI: 10.1016/j.ecoenv.2017.08.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Ultraviolet (UV)-B radiation and the growth hormone indole-3-acetic acid (IAA) have been known to cause various changes in plants at morphological and physiological levels as individual entities, but their interactive effects on the overall plant performance remain practically unknown. The present study was conducted under near-natural field conditions to evaluate the effects of supplemental (s)-UV-B (ambient+3.6kJm-2day-1) treatment alone, and in combination with two doses of IAA (200ppm and 400ppm) exogenously applied as foliar spray on various growth-, morphological-, physiological-, and biochemical parameters of an indigenous medicinal plant, Coleus forskohlii. Under s-UV-B, the plant growth and morphology were adversely affected (along with reductions in protein- and chlorophyll contents) with concomitant increase in secondary metabolites (as substantiated by an increase in the activities of various enzymes of the phenylpropanoid pathway) and cumulative antioxidative potential (CAP), suggesting the plant's capability of adaptive resilience against UV-B. The essential oil content of the plant was, however, compromised reducing its pharmaceutical value. IAA application at both doses led to a reversal in the effects caused by s-UV-B radiation alone; both the plant growth as well as the essential oil content improved, especially at the higher IAA dose, suggesting its ameliorative role against UV-B induced oxidative stress, and also in improving the plant's medicinal value.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
11
|
Catola S, Castagna A, Santin M, Calvenzani V, Petroni K, Mazzucato A, Ranieri A. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit. PLANTA 2017; 246:263-275. [PMID: 28516293 DOI: 10.1007/s00425-017-2710-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/12/2017] [Indexed: 05/10/2023]
Abstract
The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects flavonoid synthesis towards anthocyanin production and suggests that the hp-1 allele negatively influences the response of flavonoid biosynthesis to UV-B.
Collapse
Affiliation(s)
- Stefano Catola
- Trees and Timber Institute IVALSA, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Valentina Calvenzani
- Department of BioSciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Katia Petroni
- Department of BioSciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Andrea Mazzucato
- Department of Agricultural and Forestry Sciences, University of Tuscia, Via S. C. de Lellis, 01100, Viterbo, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
12
|
Popovsky-Sarid S, Borovsky Y, Faigenboim A, Parsons EP, Lohrey GT, Alkalai-Tuvia S, Fallik E, Jenks MA, Paran I. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:445-459. [PMID: 27844114 DOI: 10.1007/s00122-016-2825-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.
Collapse
Affiliation(s)
- Sigal Popovsky-Sarid
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7528809, Rishon Lezion, Israel
- Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7528809, Rishon Lezion, Israel
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7528809, Rishon Lezion, Israel
| | - Eugene P Parsons
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Gregory T Lohrey
- US Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Sharon Alkalai-Tuvia
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7528809, Rishon Lezion, Israel
| | - Elazar Fallik
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7528809, Rishon Lezion, Israel
| | - Matthew A Jenks
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, 1090 Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7528809, Rishon Lezion, Israel.
| |
Collapse
|
13
|
Dzakovich MP, Ferruzzi MG, Mitchell CA. Manipulating Sensory and Phytochemical Profiles of Greenhouse Tomatoes Using Environmentally Relevant Doses of Ultraviolet Radiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6801-6808. [PMID: 27561664 DOI: 10.1021/acs.jafc.6b02983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.
Collapse
Affiliation(s)
- Michael P Dzakovich
- Department of Horticulture and Landscape Architecture, Purdue University , 625 Agriculture Mall Drive, West Lafayette, Indiana 47907-2010, United States
| | - Mario G Ferruzzi
- Department of Food Science, Purdue University , 745 Agriculture Mall Drive, West Lafayette, Indiana 47907-2010, United States
| | - Cary A Mitchell
- Department of Horticulture and Landscape Architecture, Purdue University , 625 Agriculture Mall Drive, West Lafayette, Indiana 47907-2010, United States
| |
Collapse
|
14
|
Martí R, Roselló S, Cebolla-Cornejo J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers (Basel) 2016; 8:E58. [PMID: 27331820 PMCID: PMC4931623 DOI: 10.3390/cancers8060058] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
A diet rich in vegetables has been associated with a reduced risk of many diseases related to aging and modern lifestyle. Over the past several decades, many researches have pointed out the direct relation between the intake of bioactive compounds present in tomato and a reduced risk of suffering different types of cancer. These bioactive constituents comprise phytochemicals such as carotenoids and polyphenols. The direct intake of these chemoprotective molecules seems to show higher efficiencies when they are ingested in its natural biological matrix than when they are ingested isolated or in dietary supplements. Consequently, there is a growing trend for improvement of the contents of these bioactive compounds in foods. The control of growing environment and processing conditions can ensure the maximum potential accumulation or moderate the loss of bioactive compounds, but the best results are obtained developing new varieties via plant breeding. The modification of single steps of metabolic pathways or their regulation via conventional breeding or genetic engineering has offered excellent results in crops such as tomato. In this review, we analyse the potential of tomato as source of the bioactive constituents with cancer-preventive properties and the result of modern breeding programs as a strategy to increase the levels of these compounds in the diet.
Collapse
Affiliation(s)
- Raúl Martí
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Salvador Roselló
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Jaime Cebolla-Cornejo
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Cno., De Vera s/n, 46022 València, Spain.
| |
Collapse
|
15
|
Ayvaz H, Santos AM, Rodriguez-Saona LE. Understanding Tomato Peelability. Compr Rev Food Sci Food Saf 2016; 15:619-632. [DOI: 10.1111/1541-4337.12195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2015] [Accepted: 01/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Huseyin Ayvaz
- Dept. of Food Engineering; Canakkale Onsekiz Mart Univ; Canakkale 17020 Turkey
| | - Alejandra M. Santos
- Dept. of Food Science and Technology; The Ohio State Univ; 110 Parker Food Science and Technology Building, 2015 Fyffe Rd. Columbus OH 43210 U.S.A
| | - Luis E. Rodriguez-Saona
- Dept. of Food Science and Technology; The Ohio State Univ; 110 Parker Food Science and Technology Building, 2015 Fyffe Rd. Columbus OH 43210 U.S.A
| |
Collapse
|
16
|
Scattino C, Negrini N, Morgutti S, Cocucci M, Crisosto CH, Tonutti P, Castagna A, Ranieri A. Cell wall metabolism of peaches and nectarines treated with UV-B radiation: a biochemical and molecular approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:939-947. [PMID: 25766750 DOI: 10.1002/jsfa.7168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ultra-violet B (UV-B) radiation has been shown to improve, at least in selected genotypes, both the health-promoting potential and the aesthetic properties of tomato and peach fruits during their post-harvest period. The effects of post-harvest UV-B treatment on the cell-wall metabolism of peaches and nectarines (Prunus persica L. Batsch) were assessed in this study. Three cultivars, Suncrest (melting flesh, MF) and Babygold 7 (non-melting flesh, NMF) peaches and Big Top (slow melting, SM) nectarine, differing in the characteristics of textural changes and softening during ripening, were analysed. RESULTS The effects of UV-B differ in relation to the cultivar considered. In MF 'Suncrest' fruit, UV-B treatment significantly reduced the loss of flesh firmness despite the slight increase in the presence and activity of endo-polygalacturonase. The activity of exo-polygalacturonase increased as well, while endo-1,4-β-D-glucanase/β-D-glucosidase, β-galactosidase and pectin methylesterase were substantially unaffected by the treatment. The UV-B-induced reduction of flesh softening was paralleled by the inhibition of PpExp gene transcription and expansin protein accumulation. The UV-B treatment did not induce differences in flesh firmness between control and UV-B-treated NMF 'Babygold 7' and SM 'Big Top' fruit. CONCLUSION Based on these results, post-harvest UV-B treatment may be considered a promising tool to improve shelf-life and quality of peach fruit.
Collapse
Affiliation(s)
- Claudia Scattino
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Noemi Negrini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Silvia Morgutti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Maurizio Cocucci
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
17
|
Sgherri C, Scattino C, Pinzino C, Tonutti P, Ranieri AM. Ultraviolet-B radiation applied to detached peach fruit: A study of free radical generation by EPR spin trapping. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:124-31. [PMID: 26263515 DOI: 10.1016/j.plaphy.2015.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 05/23/2023]
Abstract
In peaches, phenolic compounds are the major sources of antioxidants, and cyanidin-3-O-glucoside is the main anthocyanin present, above all in the skin. Anthocyanin content has been shown to increase after UV-B irradiation, which may be very harmful for all biological organisms due to the induction of the generation of reactive oxygen species (ROS). Peach fruits (cv. 'Suncrest') were exposed during post-harvest to supplemental ultraviolet-B radiation. A spin-trapping technique was used to monitor the generation of free radicals under UV-B, and 5-(diethoxy-phosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) was used as the spin trap. The flesh of peaches was essentially unaffected by the treatment, whereas the skin was responsive at the end of the treatment, accumulating ascorbate, flavonoids, cyanidin-3-O-glucoside, and showing a higher antioxidant activity. The levels of stable free radicals were also lower at the end of treatment. Carbon-centred radicals contributed the most to the total amounts of free radicals, whereas hydroxyl radicals and oxygen-centred free radicals contributed minimally. The carbon-centred free radical identified was the same as the one obtained after irradiation of authentic cyanidin-3-O-glucoside. During UV-B treatment cyanidin-3-O-glucoside increased and was capable of radicalization protecting the other organic molecules of the cell from oxidation. ROS, among which hydroxyl radicals, were thus maintained to minimal levels. This ability of cyanidin-3-O-glucoside displayed the mechanism underlined the tolerance to UV-B irradiation indicating that shelf life can be prolonged by the presence of anthocyanins. Thus, UV-B technique results a good approach to induce antioxidant production in peach fruits increasing their nutraceutical properties.
Collapse
Affiliation(s)
- C Sgherri
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124 Pisa, Italy.
| | - C Scattino
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124 Pisa, Italy.
| | - C Pinzino
- Institute of Chemistry of Organometallic Compounds (ICCOM), Italian National Research Council (CNR), Area Della Ricerca Del CNR di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - P Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, I-56127 Pisa, Italy.
| | - A M Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| |
Collapse
|
18
|
Hoang VLT, Innes DJ, Shaw PN, Monteith GR, Gidley MJ, Dietzgen RG. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 2015; 16:561. [PMID: 26220670 PMCID: PMC4518526 DOI: 10.1186/s12864-015-1784-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. RESULTS A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. CONCLUSIONS The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.
Collapse
Affiliation(s)
- Van L T Hoang
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Innes
- Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland, Australia.
| | - P Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - Ralf G Dietzgen
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Monforte L, Tomás-Las-Heras R, Del-Castillo-Alonso MÁ, Martínez-Abaigar J, Núñez-Olivera E. Spatial variability of ultraviolet-absorbing compounds in an aquatic liverwort and their usefulness as biomarkers of current and past UV radiation: a case study in the Atlantic-Mediterranean transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:248-57. [PMID: 25765377 DOI: 10.1016/j.scitotenv.2015.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 05/24/2023]
Abstract
The spatial variability of ultraviolet-absorbing compounds (UVACs) in the freshwater liverwort Jungermannia exsertifolia subsp. cordifolia was studied in mid-latitudes (the Atlantic-Mediterranean transition) across a wide lati-altitudinal gradient, with the aim of testing the usefulness of UVACs as biomarkers of current ambient levels of UV radiation. We analysed 17 samples from streams located in the main mountain ranges of the Iberian Peninsula, differentiating methanol-soluble (SUVACs, mainly located in the vacuoles) and methanol-insoluble (IUVACs, bound to cell walls) compounds, since they represent different manners to cope with UV radiation. In both fractions, the bulk level of UVACs and the concentrations of several individual compounds were measured. In addition, we measured Fv/Fm, DNA damage and sclerophylly index (SI) as possible additional UV biomarkers. UVACs showed a high variability, probably due not only to the gradients of macroenvironmental factors (UV radiation, PAR, and water temperature), but also to microenvironmental factors inherent to the dynamic nature of mountain streams. Two soluble coumarins were positively correlated with UV levels and could be used for ambient UV biomonitoring in the spatial scale. In contrast to the variability in UVACs, the relatively homogeneous values of Fv/Fm and the lack of any DNA damage made these variables useless for ambient UV biomonitoring, but suggested a strong acclimation capacity of this liverwort to changing environmental conditions (in particular, to UV levels). Finally, UVACs of fresh samples of the liverwort were compared to those of herbarium samples collected in the same lati-altitudinal gradient. SUVACs were significantly higher in fresh samples, whereas IUVACs generally showed the contrary. Thus, IUVACs were more stable than SUVACs and hence more adequate for retrospective UV biomonitoring. In conclusion, UVAC compartmentation should be taken into account for bryophyte-based UV biomonitoring in future studies.
Collapse
Affiliation(s)
- Laura Monforte
- Edificio Científico-Tecnológico, Universidad de La Rioja, Avda. Madre de Dios 51, E-26006 Logroño, Spain
| | - Rafael Tomás-Las-Heras
- Edificio Científico-Tecnológico, Universidad de La Rioja, Avda. Madre de Dios 51, E-26006 Logroño, Spain
| | | | - Javier Martínez-Abaigar
- Edificio Científico-Tecnológico, Universidad de La Rioja, Avda. Madre de Dios 51, E-26006 Logroño, Spain.
| | - Encarnación Núñez-Olivera
- Edificio Científico-Tecnológico, Universidad de La Rioja, Avda. Madre de Dios 51, E-26006 Logroño, Spain
| |
Collapse
|
20
|
Calvenzani V, Castagna A, Ranieri A, Tonelli C, Petroni K. Hydroxycinnamic acids and UV-B depletion: Profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1. JOURNAL OF PLANT PHYSIOLOGY 2015; 181:75-82. [PMID: 26002085 DOI: 10.1016/j.jplph.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 05/18/2023]
|
21
|
Valdez-Morales M, Espinosa-Alonso LG, Espinoza-Torres LC, Delgado-Vargas F, Medina-Godoy S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5281-5289. [PMID: 24792924 DOI: 10.1021/jf5012374] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The phenolic content and antioxidant and antimutagenic activities from the peel and seeds of different tomato types (grape, cherry, bola and saladette type), and simulated tomato industrial byproducts, were studied. Methanolic extracts were used to quantify total phenolic content, groups of phenolic compounds, antioxidant activities, and the profile of phenolic compounds (by HPLC-DAD). Antimutagenic activity was determined by Salmonella typhimurium assay. The total phenolic content and antioxidant activity of tomato and tomato byproducts were comparable or superior to those previously reported for whole fruit and tomato pomace. Phenolic compounds with important biological activities, such as caffeic acid, ferulic acid, chlorogenic acids, quercetin-3-β-O-glycoside, and quercetin, were quantified. Differences in all phenolic determinations due to tomato type and part of the fruit analyzed were observed, peel from grape type showing the best results. Positive antimutagenic results were observed in all samples. All evaluated materials could be used as a source of potential nutraceutical compounds.
Collapse
Affiliation(s)
- Maribel Valdez-Morales
- Instituto Politécnico Nacional , Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional CIIDIR, Unidad Sinaloa, Laboratorio de Alimentos Funcionales, Departamento de Biotecnología Agrı́cola, Guasave, Sinaloa Mexico C.P. 81101
| | | | | | | | | |
Collapse
|
22
|
Scattino C, Castagna A, Neugart S, Chan HM, Schreiner M, Crisosto CH, Tonutti P, Ranieri A. Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chem 2014; 163:51-60. [PMID: 24912695 DOI: 10.1016/j.foodchem.2014.04.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 12/27/2022]
Abstract
In the present study the possibility of enhancing phenolic compound contents in peaches and nectarines by post-harvest irradiation with UV-B was assessed. Fruits of 'Suncrest' and 'Babygold 7' peach and 'Big Top' nectarine cultivars were irradiated with UV-B for 12 h, 24 h and 36 h. Control fruits underwent the same conditions but UV-B lamps were screened by benzophenone-treated polyethylene film. The effectiveness of the UV-B treatment in modulating the concentration of phenolic compounds and the expression of the phenylpropanoid biosynthetic genes, was genotype-dependent. 'Big Top' and 'Suncrest' fruits were affected by increasing health-promoting phenolics whereas in 'Babygold 7' phenolics decreased after UV-B irradiation. A corresponding trend was exhibited by most of tested phenylpropanoid biosynthesis genes. Based on these results UV-B irradiation can be considered a promising technique to increase the health-promoting potential of peach fruits and indirectly to ameliorate the aesthetic value due to the higher anthocyanin content.
Collapse
Affiliation(s)
- Claudia Scattino
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Susanne Neugart
- Department Quality, Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| | - Helen M Chan
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monika Schreiner
- Department Quality, Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Pietro Tonutti
- Life Science Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
23
|
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. FRONTIERS IN PLANT SCIENCE 2014; 5:534. [PMID: 25346743 PMCID: PMC4191440 DOI: 10.3389/fpls.2014.00534] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.
Collapse
Affiliation(s)
- Laura Zoratti
- Department of Biology, University of OuluOulu, Finland
| | | | - Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de la FronteraTemuco, Chile
| | - Hely Häggman
- Department of Biology, University of OuluOulu, Finland
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of NorwayTromsø, Norway
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord HoltTromsø, Norway
- *Correspondence: Laura Jaakola, Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Holtveien 62, NO-9037 Tromsø, Norway e-mail:
| |
Collapse
|
24
|
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. FRONTIERS IN PLANT SCIENCE 2014; 5:534. [PMID: 25346743 DOI: 10.3389/fpls.2014.005341996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.
Collapse
Affiliation(s)
- Laura Zoratti
- Department of Biology, University of Oulu Oulu, Finland
| | | | - Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de la Frontera Temuco, Chile
| | - Hely Häggman
- Department of Biology, University of Oulu Oulu, Finland
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway Tromsø, Norway ; Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord Holt Tromsø, Norway
| |
Collapse
|
25
|
Castagna A, Dall’Asta C, Chiavaro E, Galaverna G, Ranieri A. Effect of Post-harvest UV-B Irradiation on Polyphenol Profile and Antioxidant Activity in Flesh and Peel of Tomato Fruits. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1214-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Castagna A, Chiavaro E, Dall’Asta C, Rinaldi M, Galaverna G, Ranieri A. Effect of postharvest UV-B irradiation on nutraceutical quality and physical properties of tomato fruits. Food Chem 2013. [DOI: 10.1016/j.foodchem.2012.09.095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Kusano M, Fukushima A. Current challenges and future potential of tomato breeding using omics approaches. BREEDING SCIENCE 2013; 63:31-41. [PMID: 23641179 PMCID: PMC3621443 DOI: 10.1270/jsbbs.63.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/30/2012] [Indexed: 05/16/2023]
Abstract
As tomatoes are one of the most important vegetables in the world, improvements in the quality and yield of tomato are strongly required. For this purpose, omics approaches such as metabolomics and transcriptomics are used not only for basic research to understand relationships between important traits and metabolism but also for the development of next generation breeding strategies of tomato plants, because an increase in the knowledge improves the taste and quality, stress resistance and/or potentially health-beneficial metabolites and is connected to improvements in the biochemical composition of tomatoes. Such omics data can be applied to network analyses to potentially reveal unknown cellular regulatory networks in tomato plants. The high-quality tomato genome that was sequenced in 2012 will likely accelerate the application of omics strategies, including next generation sequencing for tomato breeding. In this review, we highlight the current studies of omics network analyses of tomatoes and other plant species, in particular, a gene coexpression network. Key applications of omics approaches are also presented as case examples to improve economically important traits for tomato breeding.
Collapse
Affiliation(s)
- Miyako Kusano
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Corresponding author (e-mail: )
| | - Atsushi Fukushima
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
28
|
Ehret DL, Usher K, Helmer T, Block G, Steinke D, Frey B, Kuang T, Diarra M. Tomato fruit antioxidants in relation to salinity and greenhouse climate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1138-45. [PMID: 23311953 DOI: 10.1021/jf304660d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A two-year study of antioxidants in greenhouse tomato was conducted. Plants were treated continuously with nutrient solution electrical conductivities (EC) of 2, 4, or 6 dS m⁻¹. Increasing EC reduced yield per plant and fruit size. Oxygen radical absorbance capacity (ORAC), lutein, β-carotene, lycopene, and vitamin C concentrations were evaluated in harvested fruit. ORAC and all antioxidants with the exception of lutein increased with EC. None of the 10 genes involved in antioxidant metabolism were affected by salinity in ripe fruit, but the expression of three of them (ZDS, CrtR-b1, and NCED1) varied with the stage of fruit development. Antioxidant concentrations were related to greenhouse climatic conditions. β-Carotene, lycopene, lutein, and vitamin C responded negatively to light and positively to temperature, whereas ORAC was unresponsive. Multiple regressions of antioxidants in relation to EC and climatic factors showed that antioxidants responded more strongly to light and temperature than to EC.
Collapse
Affiliation(s)
- David L Ehret
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada , P.O. Box 1000, Agassiz, BC V0M 1A0, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lazzeri V, Calvenzani V, Petroni K, Tonelli C, Castagna A, Ranieri A. Carotenoid profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1 tomato fruit under UV-B depletion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4960-4969. [PMID: 22533968 DOI: 10.1021/jf205000u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although light is recognized as one of the main factors influencing fruit carotenogenesis, the specific role of UV-B radiation has been poorly investigated. The present work is addressed to assess the molecular events underlying carotenoid accumulation in presence or absence of ultraviolet-B (UV-B) light in tomato fruits of wild-type and high pigment-1 (hp-1), a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression analyses indicated that in wild-type fruits UV-B radiation mainly negatively affects the carotenoid biosynthetic genes encoding enzymes downstream of lycopene both in flesh and peel, suggesting that the down-regulation of genes CrtL-b and CrtL-e and the subsequent accumulation of lycopene during tomato ripening are determined at least in part by UV-B light. In contrast to wild-type, UV-B depletion did not greatly affect carotenoid accumulation in hp-1 and generally determined minor differences in gene expression between control and UV-B-depleted conditions.
Collapse
Affiliation(s)
- Valerio Lazzeri
- Dipartimento di Biologia delle Piante Agrarie, Università degli Studi di Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
30
|
A Validated HPLC-DAD Method for Routine Determination of Ten Phenolic Compounds in Tomato Fruits. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-011-9355-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Gwynn-Jones D, Jones AG, Waterhouse A, Winters A, Comont D, Scullion J, Gardias R, Graee BJ, Lee JA, Callaghan TV. Enhanced UV-B and elevated CO(2) impacts sub-arctic shrub berry abundance, quality and seed germination. AMBIO 2012; 41 Suppl 3:256-68. [PMID: 22864699 PMCID: PMC3535057 DOI: 10.1007/s13280-012-0311-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO(2) on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO(2) stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO(2) increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO(2) interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO(2) on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.
Collapse
Affiliation(s)
- Dylan Gwynn-Jones
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, Wales, SY23 3DA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tohge T, Kusano M, Fukushima A, Saito K, Fernie AR. Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. PLANT SIGNALING & BEHAVIOR 2011; 6:1987-92. [PMID: 22112450 PMCID: PMC3337192 DOI: 10.4161/psb.6.12.18240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In order to adapt to environmental changes of light species and intensity, higher plants furnish complicate signaling systems such as the UVR/COP/HY5 cascade which links several diverse classes of photoreceptors. In addition UV-B light provokes accelerated production of UV-B protectants such as flavonoids and vitamins. Following intensive research efforts, genes in the UV-B signaling cascade have been characterized via forward genetics approaches following mutant screens relying on sensitivity to UV-B irradiation. However detailed processes of the linkage between light signaling and the upregulation of metabolite accumulation remain unclear. Here we review both the light signal cascades and metabolite pathways responding to UV-B exposure. Finally we generate co-expression network analysis using published data in order to find novel candidate genes which link light signaling and transcriptional regulation to metabolic biosynthesis in attempt to describe how these processes are interlinked.
Collapse
Affiliation(s)
- Takayuki Tohge
- RIKEN Plant Science Center; Yokohama, Japan
- Max-Planck Institute for Molecular Plant Physiology; Potsdam-Golm, Germany
- Correspondence to: Takayuki Tohge, or Alisdair R. Fernie,
| | | | | | - Kazuki Saito
- RIKEN Plant Science Center; Yokohama, Japan
- Graduate School of Pharmaceutical Sciences; Chiba University; Chiba, Japan
| | - Alisdair R. Fernie
- Max-Planck Institute for Molecular Plant Physiology; Potsdam-Golm, Germany
- Correspondence to: Takayuki Tohge, or Alisdair R. Fernie,
| |
Collapse
|
33
|
Atkinson NJ, Dew TP, Orfila C, Urwin PE. Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9673-82. [PMID: 21830786 DOI: 10.1021/jf202081t] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Induction of abiotic stress in tomato plants has been proposed as a mechanism for improving the nutritional quality of fruits. However, the occurrence of biotic stress can interfere with normal abiotic stress responses. In this study, the combined effect of water stress and infection with plant-parasitic nematodes on the nutritional quality of tomato was investigated. Plants were exposed to one or both stresses, and the levels of phenolic compounds, carotenoids, and sugars in fruits were analyzed as well as physiological responses. Levels of carotenoids lycopene and β-carotene were lower in water-stressed tomatoes but exhibited a different response pattern under combined stress. Nematode stress was associated with increased flavonoid levels, albeit with reduced yields, while chlorogenic acid was increased by nematodes, water stress, and the combined stress. Sugar levels were higher only in tomatoes exposed to both stresses. These results emphasize the importance of studying plant stress factors in combination.
Collapse
Affiliation(s)
- Nicky J Atkinson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:219-29. [PMID: 21763532 DOI: 10.1016/j.plantsci.2011.05.009] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 05/18/2023]
Abstract
Anthocyanins represent the major red, purple, violet and blue pigments in many flowers and fruits. They attract pollinators and seed dispersers and defend plants against abiotic and biotic stresses. Anthocyanins are produced by a specific branch of the flavonoid pathway, which is differently regulated in monocot and dicot species. In the monocot maize, the anthocyanin biosynthesis genes are activated as a single unit by a ternary complex of MYB-bHLH-WD40 transcription factors (MBW complex). In the dicot Arabidopsis, anthocyanin biosynthesis genes can be divided in two subgroups: early biosynthesis genes (EBGs) are activated by co-activator independent R2R3-MYB transcription factors, whereas late biosynthesis genes (LBGs) require an MBW complex. In addition to this, a complex regulatory network of positive and negative feedback mechanisms controlling anthocyanin synthesis in Arabidopsis has been described. Recent studies have broadened our understanding of the regulation of anthocyanin synthesis in flowers and fruits, indicating that a regulatory system based on the cooperation of MYB, bHLH and WD40 proteins that control floral and fruit pigmentation is common to many dicot species.
Collapse
Affiliation(s)
- Katia Petroni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | | |
Collapse
|
35
|
Tan HL, Thomas-Ahner JM, Grainger EM, Wan L, Francis DM, Schwartz SJ, Erdman JW, Clinton SK. Tomato-based food products for prostate cancer prevention: what have we learned? Cancer Metastasis Rev 2010; 29:553-68. [PMID: 20803054 PMCID: PMC3806204 DOI: 10.1007/s10555-010-9246-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence derived from a vast array of laboratory studies and epidemiological investigations have implicated diets rich in fruits and vegetables with a reduced risk of certain cancers. However, these approaches cannot demonstrate causal relationships and there is a paucity of randomized, controlled trials due to the difficulties involved with executing studies of food and behavioral change. Rather than pursuing the definitive intervention trials that are necessary, the thrust of research in recent decades has been driven by a reductionist approach focusing upon the identification of bioactive components in fruits and vegetables with the subsequent development of single agents using a pharmacologic approach. At this point in time, there are no chemopreventive strategies that are standard of care in medical practice that have resulted from this approach. This review describes an alternative approach focusing upon development of tomato-based food products for human clinical trials targeting cancer prevention and as an adjunct to therapy. Tomatoes are a source of bioactive phytochemicals and are widely consumed. The phytochemical pattern of tomato products can be manipulated to optimize anticancer activity through genetics, horticultural techniques, and food processing. The opportunity to develop a highly consistent tomato-based food product rich in anticancer phytochemicals for clinical trials targeting specific cancers, particularly the prostate, necessitates the interactive transdisciplinary research efforts of horticulturalists, food technologists, cancer biologists, and clinical translational investigators.
Collapse
Affiliation(s)
- Hsueh-Li Tan
- The Ohio State University Nutrition (OSUN) Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - Lei Wan
- The Ohio State University Nutrition (OSUN) Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - David M. Francis
- Department of Horticulture and Crop Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Steven J. Schwartz
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| | - John W. Erdman
- Department of Food Science and Human Nutrition and the Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Steven K. Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, A456 Starling Loving Hall, 320 West 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Calvenzani V, Martinelli M, Lazzeri V, Giuntini D, Dall'Asta C, Galaverna G, Tonelli C, Ranieri A, Petroni K. Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: flavonoid profiling and gene expression. PLANTA 2010; 231:755-65. [PMID: 20033231 DOI: 10.1007/s00425-009-1082-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/26/2009] [Indexed: 05/10/2023]
Abstract
The tomato high pigment-1 (hp-1) mutant is characterised by exaggerated photoresponsiveness and increased fruit pigmentation, and carries a mutation in the HP1/LeDDB1 gene, encoding the tomato homologue of the negative regulator of the light signal transduction DDB1a from Arabidopsis. Here, we investigated the molecular events underlying flavonoid accumulation in flesh and peel of wild-type and hp-1 fruits in presence or absence of UV-B light. In hp-1 peel, a twofold higher level of rutin and an earlier accumulation of flavonoids than in wild-type were observed, which correlated to the earlier activation of most flavonoid biosynthetic genes compared to wild-type. In hp-1 flesh, flavonoid content was up to 8.5-fold higher than in wild-type and correlated to the higher transcript level of flavonoid genes compared to wild-type. In both tissues, the expression of flavonoid genes was correlated with the anticipated and/or enhanced activation of the light signal transduction genes: LeCOP1LIKE, LeCOP1 and LeHY5. In wild-type, flavonoid content was severely reduced by UV-B depletion mostly in peel, whereas in hp-1 it was significantly increased in flesh. The activation of flavonoid and light signal transduction genes was UV-B dependent mostly at the mature green stage, whereas LeDDB1 expression was not regulated by UV-B.
Collapse
Affiliation(s)
- Valentina Calvenzani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Becatti E, Petroni K, Giuntini D, Castagna A, Calvenzani V, Serra G, Mensuali-Sodi A, Tonelli C, Ranieri A. Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10979-89. [PMID: 19877686 DOI: 10.1021/jf902555x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effect of UV-B shielding on ethylene production in ripening tomato fruits and the contribution of ethylene and UV-B radiation on carotenoid accumulation and profile during ripening were assessed to get more insight about the interplay between these two regulatory factors. To this aim, rin and nor tomato mutants, unable to produce ripening ethylene, and cv Ailsa Craig were cultivated under control or UV-B depleted conditions until full fruit ripening. The significantly decreased ethylene evolution following UV-B depletion, evident only in Ailsa Craig, suggested the requirement of functional rin and nor genes for UVB-mediated ethylene production. Carotenoid content and profile were found to be controlled by both ethylene and UV-B radiation. This latter influenced carotenoid metabolism either in an ethylene-dependent or -independent way, as indicated by UVB-induced changes also in nor and rin carotenoid content and confirmed by correlation plots between ethylene evolution and carotenoid accumulation performed separately for control and UV-B shielded fruits. In conclusion, natural UV-B radiation influences carotenoid metabolism in a rather complex way, involving ethylene-dependent and -independent mechanisms, which seem to act in an antagonistic way.
Collapse
Affiliation(s)
- Elisa Becatti
- Department of Agricultural Chemistry and Biotechnology, University of Pisa, via del Borghetto 80, I-56124 Pisa
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dall'Asta C, Falavigna C, Galaverna G, Sforza S, Dossena A, Marchelli R. A multiresidual method for the simultaneous determination of the main glycoalkaloids and flavonoids in fresh and processed tomato (Solanum lycopersicum L.) by LC-DAD-MS/MS. J Sep Sci 2009; 32:3664-71. [DOI: 10.1002/jssc.200900365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|