1
|
An JY, Kim SY, Kim HJ, Bae HJ, Lee HD, Choi YY, Cho YE, Cho SY, Lee SJ, Lee S, Park SJ. Geraniin from the methanol extract of Pilea mongolica suppresses LPS-induced inflammatory responses by inhibiting IRAK4/MAPKs/NF-κB/AP-1 pathway in HaCaT cells. Int Immunopharmacol 2024; 140:112767. [PMID: 39083922 DOI: 10.1016/j.intimp.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The skin acts as a vital barrier, shielding the body from external threats that can trigger dryness, itching, and inflammation. Pilea mongolica, a traditional Chinese medicinal herb, holds promise for various ailments, yet its anti-inflammatory properties remain understudied. This study aimed to explore the potential anti-inflammatory effects of the methanol extract of P. mongolica (MEPM) and its underlying molecular mechanisms and active compounds in LPS-stimulated human keratinocytes. MEPM treatment, at concentrations without cytotoxicity, significantly decreased NO productions and the iNOS, IL-6, IL-1β, and TNF-α levels in LPS-induced HaCaT cells. Moreover, MEPM suppressed IRAK4 expression and phosphorylation of JNK, ERK, p38, p65, and c-Jun, suggesting that the anti-inflammatory effects of MEPM result from the inhibition of IRAK4/MAPK/NF-κB/AP-1 signaling pathway. Through LC/MS/MS analysis, 30 compounds and 24 compounds were estimated in negative and positive modes, respectively, including various anti-inflammatory compounds, such as corilagin and geraniin. Through HPLC analysis, geraniin was found to be present in MEPM at a concentration of 18.87 mg/g. Similar to MEPM, geraniin reduced iNOS mRNA expression and inhibited NO synthesis. It also decreased mRNA and protein levels of inflammatory cytokines, including IL-6 and TNF-α, and inhibited IRAK4 expression and the phosphorylation of MAPKs, NF-κB, and AP-1 pathways. Therefore, it can be inferred that the anti-inflammatory effects of MEPM are attributable to geraniin. Thus, MEPM and its active compound geraniin are potential candidates for use in natural functional cosmetics.
Collapse
Affiliation(s)
- Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Su-Jung Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
3
|
Li L, Ma L, Qian H, Wang Z, Chen M, Wang C, Gu W, Lv T, Jin J. GGPPS Negatively Regulates the Formation of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Acute Lung Injury. Inflammation 2024:10.1007/s10753-024-02104-4. [PMID: 39052180 DOI: 10.1007/s10753-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are life-threatening diseases. Neutrophil extracellular traps (NETs) play a key role in lung damage. Geranylgeranyl diphosphate synthase (GGPPS) is associated with the development of inflammatory diseases. We aimed to explore the role of GGPPS in NETs formation in ARDS/ALI. First, lung pathological changes in lipopolysaccharide (LPS)-induced ALI mice after myeloid-specific GGPPS deletion were evaluated. The level of NETs formation was analyzed by immunofluorescence, PicoGreen assay and Western blotting. Next, we determined the role of GGPPS in NETs formation and underlying mechanisms using immunofluorescence, flow cytometry, DCFH-DA, and SYTOX GREEN staining in vitro. Finally, the correlation between GGPPS expression incirculating neutrophils and dsDNA levels in plasma was evaluated. Myeloid-specific GGPPS deletion mice showed increased NETs deposition in lung tissue and aggravated histopathological damage of lung tissue. In vitro, GGPPS deficiency in neutrophils resulted in increased NETs formation by Phorbol-12-myristate-13-acetate (PMA), which was reversed by Geranylgeranyl diphosphate (GGPP). In addition, inhibitors blocking protein kinase C (PKC) and NADPH-oxidase (NOX) decreased NETs formation induced by GGPPS deletion. Importantly, GGPPS expression in circulating neutrophils was decreased in ARDS patients compared with the healthy control, and the level of dsDNA in plasma of ARDS patients was negatively correlated with the GGPPS expression. Taken together, GGPPS deficiency in neutrophils aggravates LPS-induced lung injury by promoting NETs formation via PKC/NOX signaling. Thus, neutrophil GGPPS could be a key therapeutic target for ARDS.
Collapse
Affiliation(s)
- Lulu Li
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, No. 305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, No. 68, Zhongshan Road, Wuxi, 214086, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China
| | - Zheng Wang
- Department of Science and Technology, Kangda College, Nanjing Medical University, No. 88, Chunhui Road, Lianyungang, 222000, China
| | - Meizi Chen
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, No. 102, Luojiajing Road, Chenzhou, 423000, China
- Department of Respiratory and Critical Care Medicine, Affiliated the First People's Hospital of Chenzhou, University of South China, No. 102, Luojiajing Road, Chenzhou, 423000, China
| | - Chunlei Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Nantong University, No. 37, Chenggang Road, Nantong, 226001, China
- Department of Endocrinology, The First People's Hospital of Yancheng, No. 66, South Renmin Road, Yancheng, 224006, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China.
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
4
|
Bao Y, Chen X, Li Y, Yuan S, Han L, Deng X, Ran J. Chronic Low-Grade Inflammation and Brain Structure in the Middle-Aged and Elderly Adults. Nutrients 2024; 16:2313. [PMID: 39064755 PMCID: PMC11280392 DOI: 10.3390/nu16142313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Low-grade inflammation (LGI) mainly acted as the mediator of the association of obesity and inflammatory diet with numerous chronic diseases, including neuropsychiatric diseases. However, the evidence about the effect of LGI on brain structure is limited but important, especially in the context of accelerating aging. This study was then designed to close the gap, and we leveraged a total of 37,699 participants from the UK Biobank and utilized inflammation score (INFLA-score) to measure LGI. We built the longitudinal relationships of INFLA-score with brain imaging phenotypes using multiple linear regression models. We further analyzed the interactive effects of specific covariates. The results showed high level inflammation reduced the volumes of the subcortex and cortex, especially the globus pallidus (β [95% confidence interval] = -0.062 [-0.083, -0.041]), thalamus (-0.053 [-0.073, -0.033]), insula (-0.052 [-0.072, -0.032]), superior temporal gyrus (-0.049 [-0.069, -0.028]), lateral orbitofrontal cortex (-0.047 [-0.068, -0.027]), and others. Most significant effects were observed among urban residents. Furthermore, males and individuals with physical frailty were susceptive to the associations. The study provided potential insights into pathological changes during disease progression and might aid in the development of preventive and control targets in an age-friendly city to promote great health and well-being for sustainable development goals.
Collapse
Affiliation(s)
- Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Xixi Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Yongxuan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Shenghao Yuan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Lefei Han
- School of Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Jinjun Ran
- School of Public Health, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Cuffaro D, Digiacomo M, Macchia M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023; 15:4966. [PMID: 38068824 PMCID: PMC10707977 DOI: 10.3390/nu15234966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
6
|
Zhang X, Zhou Q, Zhou Y, Wang Z, Wang J, Wang M. Asymmetric synthesis of chiral (thio)chromanes and exploration on their structure-activity relationship in macrophages. RSC Adv 2023; 13:30391-30400. [PMID: 37854489 PMCID: PMC10580023 DOI: 10.1039/d3ra06428j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
A CuCl/(R,R)-Ph-BPE-catalyzed enantioselective hydroallylation of 2H-chromenes and 2H-thiochromenes with allylic phosphate electrophiles is developed, which enables highly efficient and atom-economical asymmetric access to a series of 4-allyl chromanes and thiochromanes in high yields (up to 91%) with excellent enantioselectivities (up to 99% ee). These valuable chiral chromane and thiochromane products can serve as crucial intermediates for accessing bioactive compounds containing oxygen and sulfur atoms. In addition, the antioxidant and anti-inflammatory effects of various chromanes and thiochromanes were investigated in RAW 264.7 macrophages. The chromanes and thiochromanes exhibited significant inhibitory effects on the production of reactive oxygen species (ROS) and the secretion of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). These findings indicate that the newly synthesized chromanes and thiochromanes hold promise as potential lead compounds for the development of antioxidant and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Biological Science, The University of Hong Kong Hong Kong 999077 China
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Yue Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Zihao Wang
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong 999077 China
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University Hong Kong 999077 China
| | - Jun Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry, Hong Kong Baptist University Hong Kong 999077 China
| | - Mingfu Wang
- School of Biological Science, The University of Hong Kong Hong Kong 999077 China
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
7
|
Southern J, Gonzalez G, Borgas P, Poynter L, Laponogov I, Zhong Y, Mirnezami R, Veselkov D, Bronstein M, Veselkov K. Genomic-driven nutritional interventions for radiotherapy-resistant rectal cancer patient. Sci Rep 2023; 13:14862. [PMID: 37684345 PMCID: PMC10491580 DOI: 10.1038/s41598-023-41833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Radiotherapy response of rectal cancer patients is dependent on a myriad of molecular mechanisms including response to stress, cell death, and cell metabolism. Modulation of lipid metabolism emerges as a unique strategy to improve radiotherapy outcomes due to its accessibility by bioactive molecules within foods. Even though a few radioresponse modulators have been identified using experimental techniques, trying to experimentally identify all potential modulators is intractable. Here we introduce a machine learning (ML) approach to interrogate the space of bioactive molecules within food for potential modulators of radiotherapy response and provide phytochemically-enriched recipes that encapsulate the benefits of discovered radiotherapy modulators. Potential radioresponse modulators were identified using a genomic-driven network ML approach, metric learning and domain knowledge. Then, recipes from the Recipe1M database were optimized to provide ingredient substitutions maximizing the number of predicted modulators whilst preserving the recipe's culinary attributes. This work provides a pipeline for the design of genomic-driven nutritional interventions to improve outcomes of rectal cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Joshua Southern
- Department of Computing, Imperial College London, London, SW7 2BX, UK
| | - Guadalupe Gonzalez
- Department of Computing, Imperial College London, London, SW7 2BX, UK
- Prescient Design, Genentech, Basel, 4052, Switzerland
| | - Pia Borgas
- North Middlesex University Hospital, London, N18 1QX, UK
| | - Liam Poynter
- Department of Surgery and Cancer, Imperial College London, London, SW7 2BX, UK
| | - Ivan Laponogov
- Department of Surgery and Cancer, Imperial College London, London, SW7 2BX, UK
| | - Yoyo Zhong
- Department of Surgery and Cancer, Imperial College London, London, SW7 2BX, UK
| | | | - Dennis Veselkov
- Department of Computing, Imperial College London, London, SW7 2BX, UK
| | - Michael Bronstein
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Kirill Veselkov
- Prescient Design, Genentech, Basel, 4052, Switzerland.
- Department of Environmental Health Sciences, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
8
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
9
|
Shin S, Ajuwon KM. Role of heat shock protein 70 in regulation of anti-inflammatory response to curcumin in 3T3-L1 adipocytes. Nutr Res Pract 2023; 17:397-407. [PMID: 37266116 PMCID: PMC10232195 DOI: 10.4162/nrp.2023.17.3.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Curcumin is a well-known phytochemical with anti-inflammatory effects. Heat shock protein (HSP) 70, an intracellular chaperone, inhibits proinflammatory signaling activation. Although curcumin has been shown to induce HSP70 expression in various cell types, whether HSP70 mediates the anti-inflammatory effects of curcumin in mature adipocytes remains unclear. MATERIALS/METHODS To assess the role of HSP70 in regulating the anti-inflammatory response to curcumin in adipocytes, fully differentiated 3T3-L1 adipocytes were treated with curcumin, lipopolysaccharide (LPS), and/or the HSP70 inhibitor pifithrin-μ (PFT-μ). The expression levels of HSP70 and proinflammatory cytokines were then measured. RESULTS Curcumin upregulated HSP70 expression at both protein and mRNA levels and attenuated LPS-induced Il6, Ptx3, and Ccl2 mRNA upregulation. PFT-μ tended to exacerbate the LPS-induced upregulation of Il6, Ptx3, Ccl2, and Tnfa mRNA expression. However, on curcumin pretreatment, the tendency of PFT-μ to upregulate LPS-induced proinflammatory cytokine expression decreased or disappeared. CONCLUSION These results indicate that HSP70 is involved in the regulation of inflammatory responses but may not be crucial for the anti-inflammatory effects of curcumin in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women’s University, Seoul 01797, Korea
| | - Kolapo M. Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Shao D, Shen W, Miao Y, Gao Z, Pan M, Wei Q, Yan Z, Zhao X, Ma B. Sulforaphane prevents LPS-induced inflammation by regulating the Nrf2-mediated autophagy pathway in goat mammary epithelial cells and a mouse model of mastitis. J Anim Sci Biotechnol 2023; 14:61. [PMID: 37131202 PMCID: PMC10155371 DOI: 10.1186/s40104-023-00858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Mastitis not only deteriorates the composition or quality of milk, but also damages the health and productivity of dairy goats. Sulforaphane (SFN) is a phytochemical isothiocyanate compound with various pharmacological effects such as anti-oxidant and anti-inflammatory. However, the effect of SFN on mastitis has yet to be elucidated. This study aimed to explore the anti-oxidant and anti-inflammatory effects and potential molecular mechanisms of SFN in lipopolysaccharide (LPS)-induced primary goat mammary epithelial cells (GMECs) and a mouse model of mastitis. RESULTS In vitro, SFN downregulated the mRNA expression of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6), inhibited the protein expression of inflammatory mediators (cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS)) while suppressing nuclear factor kappa-B (NF-κB) activation in LPS-induced GMECs. Additionally, SFN exhibited an antioxidant effect by increasing Nrf2 expression and nuclear translocation, up-regulating antioxidant enzymes expression, and decreasing LPS-induced reactive oxygen species (ROS) production in GMECs. Furthermore, SFN pretreatment promoted the autophagy pathway, which was dependent on the increased Nrf2 level, and contributed significantly to the improved LPS-induced oxidative stress and inflammatory response. In vivo, SFN effectively alleviated histopathological lesions, suppressed the expression of inflammatory factors, enhanced immunohistochemistry staining of Nrf2, and amplified of LC3 puncta LPS-induced mastitis in mice. Mechanically, the in vitro and in vivo study showed that the anti-inflammatory and anti-oxidative stress effects of SFN were mediated by the Nrf2-mediated autophagy pathway in GMECs and a mouse model of mastitis. CONCLUSIONS These results indicate that the natural compound SFN has a preventive effect on LPS-induced inflammation through by regulating the Nrf2-mediated autophagy pathway in primary goat mammary epithelial cells and a mouse model of mastitis, which may improve prevention strategies for mastitis in dairy goats.
Collapse
Affiliation(s)
- Dan Shao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxiang Shen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zuoting Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Arancibia-Riveros C, Domínguez-López I, Tresserra-Rimbau A, Guo X, Estruch R, Martínez-González MÁ, Fitó M, Ros E, Ruiz-Canela M, Lamuela-Raventós RM. Total urinary polyphenol excretion: a biomarker of an anti-inflammatory diet and metabolic syndrome status. Am J Clin Nutr 2023; 117:814-822. [PMID: 37019541 DOI: 10.1016/j.ajcnut.2022.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Chronic inflammation is associated with noncommunicable diseases, including obesity, metabolic syndrome (MetS), and CVDs. The Mediterranean diet has been shown to have strong anti-inflammatory effects, attributed in part to the polyphenol richness of many of its components. OBJECTIVES This study aimed to assess the value of polyphenols as a urinary biomarker of an anti-inflammatory diet and their influence on MetS status. METHODS A longitudinal analysis was performed in Spain considering 543 participants with high CVD risk in a PREDIMED study. Approximately 52% of the participants were women and 48% were men with a mean age of 67.5 (5.9) y. Total polyphenol excretion (TPE) in urine was determined at baseline and 5 y of intervention using a validated Folin-Ciocalteu spectrophotometric method, and the dietary inflammatory index (DII) was calculated from a validated 137-item food-frequency questionnaire. Three categories were built according to tertiles of change in the DII score. Multivariable linear regression analyses were performed to assess the association of changes in TPE with changes in the DII scores and with MetS status at 5 y. RESULTS Tertiles 2 and 3 compared with tertile 1 presented a lower anti-inflammatory potential of the diet and were inversely associated with TPE in women [-0.30 mg gallic acid equivalent (GAE)/g creatinine; 95% CI: -0.46, -0.15; P value = 0.006 and -0.29 mg GAE/g creatinine; 95% CI: -0.43, -0.15; P value = 0.005], respectively. The mean changes in TPE were 7.9 (56.1) mg GAE/g creatinine in women and 7.7 (48.2) mg GAE/g creatinine in men. In addition, TPE was inversely associated with changes in MetS status [-0.06 (-0.09; -0.02), P value = 0.009] in both men and women. CONCLUSIONS Urinary polyphenols may be a potential biomarker of anti-inflammatory diet consumption in women and are prospectively associated with improvement in MetS.
Collapse
|
12
|
Sharma A, Dheer D, Singh I, Puri V, Kumar P. Phytoconstituent-Loaded Nanofibrous Meshes as Wound Dressings: A Concise Review. Pharmaceutics 2023; 15:pharmaceutics15041058. [PMID: 37111544 PMCID: PMC10143731 DOI: 10.3390/pharmaceutics15041058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
In the past, wounds were treated with natural materials, but modern wound dressings include functional elements to expedite the process of healing and to improve skin recovery. Due to their exceptional properties, nanofibrous wound dressings are now the most cutting-edge and desirable option. Similar in structure to the skin’s own extracellular matrix (ECM), these dressings can promote tissue regeneration, wound fluid transportation, and air ductility for cellular proliferation and regeneration owing to their nanostructured fibrous meshes or scaffolds. Many academic search engines and databases, such as Google Scholar, PubMed, and Sciencedirect, were used to conduct a comprehensive evaluation of the literature for the purposes of this investigation. Using the term “nanofibrous meshes” as a keyword, this paper focuses on the importance of phytoconstituents. This review article summarizes the most recent developments and conclusions from studies on bioactive nanofibrous wound dressings infused with medicinal plants. Several wound-healing methods, wound-dressing materials, and wound-healing components derived from medicinal plants were also discussed.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Correspondence: (V.P.); (P.K.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Correspondence: (V.P.); (P.K.)
| |
Collapse
|
13
|
Lower intensity of physical activity strengthens the effect of dietary inflammatory index on the risk of all-cause and cause-specific mortality. Mech Ageing Dev 2023; 211:111777. [PMID: 36708959 DOI: 10.1016/j.mad.2023.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
To examine the independent and joint associations of dietary inflammation index (DII) and physical activity (PA) with mortality risk. We analyzed data for 20,165 study participants aged ≥ 18 from The Rural Chinese Cohort Study. The Cox proportional hazard model was used to calculate the hazard ratio (HR) and 95% confidence interval (CI) of mortality associated with DII and PA. The dose-response association between DII and mortality risk was intuitively generated by the restricted cubic splines model. During the mean 5.03-year follow-up, a total of 1110 cases of all-cause mortality were identified. Compared with people in quartile 1 of DII, positive associations were found in quartile 4 for all-cause (HR 1.27; 95%CI 1.06-1.52), CVD (HR 1.45; 95%CI 1.09-1.91), and other mortality (HR 1.52; 95%CI 1.10-2.09), while a linear association was demonstrated. Compared with people of quartile 1 of DII and high intensity of PA, those with quartile 4 of DII and low intensity of PA had higher risk of all-cause (HR 1.96; 95%CI 1.50-2.56), CVD (HR 2.68; 95%CI 1.71-4.19), and other mortality (HR 1.83; 95%CI 1.19-2.83). A pro-inflammatory diet was significantly associated with increased risk of mortality and lower PA may strengthen the effect.
Collapse
|
14
|
Mungofa N, Sibanyoni JJ, Mashau ME, Beswa D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227995. [PMID: 36432098 PMCID: PMC9696032 DOI: 10.3390/molecules27227995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Indigenous leafy vegetables (ILVs) play a pivotal role in sustaining the lives of many people of low socio-economic status who reside in rural areas of most developing countries. Such ILVs contribute to food security since they withstand harsher weather and soil conditions than their commercial counterparts and supply important nutrients such as dietary fibre, vitamins and minerals. Furthermore, ILVs contain bioactive components such as phenolic compounds, flavonoids, dietary fibre, carotene content and vitamin C that confer health benefits on consumers. Several studies have demonstrated that regular and adequate consumption of vegetables reduces risks of chronic conditions such as diabetes, cancer, metabolic disorders such as obesity in children and adults, as well as cardiovascular disease. However, consumption of ILVs is very low globally as they are associated with unbalanced and poor diets, with being food for the poor and with possibly containing toxic heavy metals. Therefore, this paper reviews the role of ILVs as food security crops, the biodiversity of ILVs, the effects of processing on the bioactivity of ILVs, consumer acceptability of food derived from ILVs, potential toxicity of some ILVs and the potential role ILVs play in the future of eating.
Collapse
Affiliation(s)
- Nyarai Mungofa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
| | - July Johannes Sibanyoni
- School of Hospitality and Tourism, University of Mpumalanga, Mbombela Campus, Mbombela 1200, South Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 1709, South Africa
- Correspondence:
| |
Collapse
|
15
|
Natural carbazole alkaloid murrayafoline A displays potent anti-neuroinflammatory effect by directly targeting transcription factor Sp1 in LPS-induced microglial cells. Bioorg Chem 2022; 129:106178. [DOI: 10.1016/j.bioorg.2022.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
16
|
Traditional processing increases biological activities of Dendrobium offificinale Kimura et. Migo in Southeast Yunnan, China. Sci Rep 2022; 12:14814. [PMID: 36045147 PMCID: PMC9433373 DOI: 10.1038/s41598-022-17628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 12/28/2022] Open
Abstract
The orchid Dendrobium officinale grows throughout southeast China and southeast Asian countries and is used to treat inflammation and diabetes in traditional Chinese medicine. Tie pi feng dou is a well-known traditional Chinese medicine made from the dried D. officinale stems. Processing alters the physicochemical properties of TPFD; however, it is unclear how processing affects the quality and medicinal value of this plant. Here, we analyzed and compared the chemical composition of fresh stems of D. officinale and TPFD and explored possible explanations for the enhanced medicinal efficacy of processed D. officinale stems using qualitative and quantitative methods. To identify the components of FSD and TPFD, we used ultra-high-performance liquid chromatography combined with mass spectrometry in negative and positive ion modes and interpreted the data using the Human Metabolome Database and multivariate statistical analysis. We detected 23,709 peaks and identified 2352 metabolites; 370 of these metabolites were differentially abundant between FSD and TPFD (245 more abundant in TPFD than in FSD, and 125 less abundant), including organooxygen compounds, prenol lipids, flavonoids, carboxylic acids and their derivatives, and fatty acyls. Of these, 43 chemical markers clearly distinguished between FSD and TPFD samples, as confirmed using orthogonal partial least squares discriminant analysis. A pharmacological activity analysis showed that, compared with FSD, TPFD had significantly higher levels of some metabolites with anti-inflammatory activity, consistent with its use to treat inflammation. In addition to revealing the basis of the medicinal efficacy of TPFD, this study supports the benefits of the traditional usage of D. officinale.
Collapse
|
17
|
Zhang J, Feng Y, Yang X, Li Y, Wu Y, Yuan L, Li T, Hu H, Li X, Huang H, Wang M, Huo W, Gao Y, Ke Y, Wang L, Zhang W, Chen Y, Fu X, Hu F, Zhang M, Sun L, Zhang Z, Hu D, Zhao Y. Dose-Response Association of Dietary Inflammatory Potential with All-Cause and Cause-Specific Mortality. Adv Nutr 2022; 13:1834-1845. [PMID: 35524691 PMCID: PMC9526847 DOI: 10.1093/advances/nmac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/09/2022] [Accepted: 05/03/2022] [Indexed: 01/28/2023] Open
Abstract
Although the association of dietary inflammatory potential, evaluated by the dietary inflammatory index (DII), with all-cause and cause-specific mortality has been reported, evidence remains equivocal, with no relevant dose-response meta-analysis having been conducted. To examine the dose-response association of dietary inflammatory potential with risk of all-cause, cancer, and cardiovascular disease (CVD) mortality, PubMed, Embase, and Web of Science were systematically searched up to August 9, 2021. Cohort studies were included if DII was reported as ≥3 levels or per incremental increase, and if the associations of DII with all-cause, cancer, and CVD mortality were assessed. Generalized least squares regression was used to estimate study-specific dose-response associations, and the random effect model was used to pool the RRs and 95% CIs of all-cause, cancer, and CVD mortality per 1-unit increase in DII. Restricted cubic splines were used to intuitively display the dose-response association between dietary inflammatory potential and mortality. Of the 1415 studies retrieved, 15 articles (17 cohort studies involving 397,641 participants) were included in this meta-analysis. With per 1-unit increase in DII, the risks were significantly increased for all-cause mortality (RR: 1.04; 95% CI: 1.03, 1.05, I2 = 51.8%; P-heterogeneity = 0.009), cancer mortality (RR: 1.02; 95% CI: 1.00, 1.04, I2 = 58.6%; P-heterogeneity = 0.013), and CVD mortality (RR: 1.04; 95% CI: 1.02, 1.06, I2 = 85.7%; P-heterogeneity <0.001), respectively. Restricted cubic splines showed significant positive linear associations between DII and the above 3 outcomes. Our study indicated that proinflammatory diets can increase the risk of all-cause, cancer, and CVD mortality in a linear manner.
Collapse
Affiliation(s)
- Jinli Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xingjin Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hao Huang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Longkang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenkai Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaobing Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Liang Sun
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Zhao
- Address correspondence to YZ (E-mail: )
| |
Collapse
|
18
|
Renal tubular PAR2 promotes interstitial fibrosis by increasing inflammatory responses and EMT process. Arch Pharm Res 2022; 45:159-173. [PMID: 35334088 DOI: 10.1007/s12272-022-01375-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
Renal fibrosis is defined by excessive extracellular matrix (ECM) accumulation and is associated with a decreased kidney function. Increased inflammation and infiltration of inflammatory cells are the key features of renal fibrosis development; however, the mechanism of how inflammation starts is still un-known. Here, we show that the activation of epithelial Protease-activating receptor 2 (PAR2) signaling plays an important role in the initiation of inflammation via increased chemokine expression and inflammatory cell induction. In the adenine diet-induced renal fibrosis mouse model, PAR2 expression was significantly increased in the renal tubule region. Kidneys from PAR2-knockout mice were protected from adenine diet-induced renal fibrosis, kidney dysfunction, and inflammation. Using NRK52E kidney epithelial cells, we further elucidated the mechanisms underlying these processes. Activation of PAR2 signaling pathway by PAR2 agonist specifically increased the levels of chemokines, including MCP1 and MCP3, via the MAPK-NF-κB signaling pathway. Inhibition of the MAPK signaling pathway attenuated PAR2 agonist-induced NF-κB activation, chemokine expression, and macrophage cell induction. Furthermore, PAR2 activation directly increased mesenchymal cell markers in epithelial cells. Taken together, we found that increased PAR2 expression and the PAR2/MAPK signaling pathway promote renal fibrosis by increasing the inflammatory responses and promoting EMT process.
Collapse
|
19
|
Bujak T, Zagórska-Dziok M, Ziemlewska A, Nizioł-Łukaszewska Z, Lal K, Wasilewski T, Hordyjewicz-Baran Z. Flower Extracts as Multifunctional Dyes in the Cosmetics Industry. Molecules 2022; 27:molecules27030922. [PMID: 35164187 PMCID: PMC8838747 DOI: 10.3390/molecules27030922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Flowers are a natural source of bioactive compounds that not only have antioxidant, anti-inflammatory, and anti-aging properties, but can also be used as natural dyes. For this reason, nowadays plants are widely used to produce natural cosmetics and foods. In these studies, the properties of the water extracts of Papaver rhoeas L., Punica granatum L., Clitoria ternatea L., Carthamus tinctorius L., and Gomphrena globosa L., as bioactive, natural dyes, were investigated. Plant flower extracts were tested for their antioxidant (ABTS and DPPH radical methods) and anti-inflammatory effects by determining the ability to inhibit the activity of lipoxygenase and proteinase. The extracts were tested for their cytotoxic effect on skin cells, using Alamar Blue and Neutral Red tests. The ability to inhibit the activity of enzymes responsible for the destruction of elastin and collagen was also studied. Research has shown that extracts have no toxic effect on skin cells, are a rich source of antioxidants and show the ability to inhibit the activity of elastase and collagenase enzymes. P. rhoeas extract showed the strongest antioxidant properties with IC50 value of 24.8 ± 0.42 µg/mL and 47.5 ± 1.01 µg/mL in ABTS and DPPH tests, respectively. The tested plants are also characterized by an anti-inflammatory property, for which the ability to inhibit lipoxygenase at a level above 80% and proteinase at the level of about 55% was noted. Extracts from P. rhoeas, C. ternatea, and C. tinctorius show the strongest coloring ability and can permanently dye cosmetic products, without significant color changes during the storage of the product.
Collapse
Affiliation(s)
- Tomasz Bujak
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (K.L.)
- Correspondence:
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (K.L.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (K.L.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (K.L.)
| | - Kamila Lal
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (K.L.)
| | - Tomasz Wasilewski
- Department of Industrial Chemistry, University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland;
- Research and Development Department, ONLYBIO.life S.A., Wojska Polskiego 65, 85-825 Bydgoszcz, Poland
| | - Zofia Hordyjewicz-Baran
- ŁUKASIEWICZ Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetykow 9, 47-225 Kedzierzyn-Kozle, Poland;
| |
Collapse
|
20
|
Душенков B, Душенкова A. [Not Available]. PAEMI SINO 2022; 24:113-122. [PMID: 36225268 PMCID: PMC9553026 DOI: 10.25005/2074-0581-2022-24-1-113-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Высокая заболеваемость и смертность от COVID-19 привели к чрезвычайной ситуации в области здравоохранения во всём мире, вызвав активизацию и консолидацию усилий в соответствующих областях научных исследований и практике здравоохранения.
Collapse
Affiliation(s)
- B Душенков
- Кафедра естественных наук Колледжа Хостос Коммьюнити, Городской университет Нью-Йорка, Бронкс, Нью-Йорк, США
| | - A Душенкова
- Институт фармации и наук о здоровье, Университет Фэрли Дикинсона, Флорхам Парк, Нью-Джерси, США
| |
Collapse
|
21
|
Bernhart JA, Turner-McGrievy GM, Wirth MD, Shivappa N, Hébert JR. The IMAGINE Intervention: Impacting Physical Activity, Body Fat, Body Mass Index, and Dietary Inflammatory Index. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2022; 7:e000181. [PMID: 35832660 PMCID: PMC9272997 DOI: 10.1249/tjx.0000000000000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Many behavior-change interventions focused on nutrition and physical activity (PA) have been implemented to prevent disease and promote optimal health. Purpose This study examined changes in PA with Energy-adjusted Dietary Inflammatory Index (E-DII™) and chronic disease risk factors in participants of a multicomponent intervention. Methods Data from the Inflammation Management Intervention (IMAGINE) were used. Participants self-selected into the intervention or control group. At baseline and 12 weeks (post-intervention), participants completed three unannounced 24-hour dietary recalls (24HR), anthropometric measures (height, weight), and a dual x-ray absorptiometry scan. PA was measured using Sensewear® armbands. E-DII scores were calculated from the 24HR. Descriptive statistics and t-tests summarized variables and multiple regression assessed relationships between PA and body mass index (BMI), total body fat percent, and E-DII scores. Results Intervention participants increased moderate-to-vigorous PA (MVPA) and lowered BMI, total body fat, and E-DII scores compared to controls. Every 10-minute increase in post-intervention MVPA was associated with 1.6 kg/m2 lower BMI (p<0.01) and 2.4% lower body fat percent (p<0.01) among control participants, after adjusting for covariates. Every 10-minute increase in post-intervention MVPA was associated with 0.3 lower (i.e., less inflammatory) post-intervention E-DII (p=0.01) scores among intervention participants, after adjusting for covariates. Conclusion Participants who changed dietary intake changed PA. While changes were in expected directions, this intervention's emphasis on dietary behaviors compared to PA may have attenuated the relationship between PA and study outcomes.
Collapse
Affiliation(s)
- John A. Bernhart
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, USA
| | - Gabrielle M. Turner-McGrievy
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, USA
| | - Michael D. Wirth
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA,Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC USA,College of Nursing, University of South Carolina, Columbia, SC USA,Connecting Health Innovations LLC, Columbia, SC USA
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA,Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC USA,Connecting Health Innovations LLC, Columbia, SC USA
| | - James R. Hébert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA,Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC USA,Connecting Health Innovations LLC, Columbia, SC USA
| |
Collapse
|
22
|
Rai SK, Ganeshan S, Mariappan R, Rajendran AP, Balasubramaniem A, Pugazhendhi A, Varalakshmi P. Mesoporous nanoparticles for the delivery of (9S,E)-8-ethyl-9-methylnonadec-6-en-3-one (EME): A study of anti-inflammatory and tumor suppressing potential in RAW 264.7, He La and HepG2 cell lines. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Fernandes ACF, Santana ÁL, Vieira NC, Gandra RLP, Rubia C, Castro‐Gamboa I, Macedo JA, Macedo GA. In vitro effects of peanut skin polyphenolic extract on oxidative stress, adipogenesis, and lipid accumulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Annayara C. F. Fernandes
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ádina L. Santana
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
- Food Science Institute Kansas State University Manhattan USA
| | - Natália C. Vieira
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Renata L. P. Gandra
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Camila Rubia
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ian Castro‐Gamboa
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Juliana A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Gabriela A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
24
|
Mishan MA, Khazeei Tabari MA, Mahrooz A, Bagheri A. Role of microRNAs in the anticancer effects of the flavonoid luteolin: a systematic review. Eur J Cancer Prev 2021; 30:413-421. [PMID: 33720053 DOI: 10.1097/cej.0000000000000645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flavonoids, a broad class of polyphenolic compounds, can potentially have several therapeutic properties in human diseases, including protective effects against oxidative stress, inflammation, cardiovascular disease, diabetes, neurodegenerative disorders, and cancers. Luteolin as a member of flavonoids has been found to exhibit several anticancer properties mainly through cell apoptosis induction, inhibition of invasion, cell proliferation, network formation, and migration. Recent studies have revealed that phytochemicals such as luteolin may exert therapeutic properties through microRNAs (miRNAs or miRs), which have been emerged as important molecules in cancer biology in recent years. miRNAs, as a class of noncoding RNAs, have several important roles in cancer progression or regression. In this review, we aimed to summarize and discuss the role of miRNAs in the luteolin effects on different cancers. This review can be in line with the studies, which have shown that miRNAs may be potential therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran
| | | | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
- Department of Clinical Biochemistry and Medical Genetics, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Fruit and vegetable consumption and incident breast cancer: a systematic review and meta-analysis of prospective studies. Br J Cancer 2021; 125:284-298. [PMID: 34006925 PMCID: PMC8292326 DOI: 10.1038/s41416-021-01373-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis of prospective studies to clarify the relation of fruit and vegetable consumption with incident breast cancer. METHODS We searched systematically PubMed and EMBASE databases up to November 2020 to include prospective studies that reported the association of fruit and vegetable consumption with incident breast cancer. The pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated for the highest versus the lowest category of total fruit and vegetable, total fruit and total vegetable consumption, as well as fruit juice and subgroups of vegetables in relation to breast cancer incidence, using a random-effect model. RESULTS Total fruit and vegetable consumption was associated with lower overall (RR = 0.91, 95% CI = 0.87-0.95) and postmenopausal breast cancer risk (RR = 0.88, 95% CI = 0.79-0.99). Total fruit consumption was associated with lower overall (RR = 0.93, 95% CI = 0.88-0.99) and postmenopausal breast cancer risk (RR = 0.93, 95% CI = 0.87-0.99). Total fruit and vegetable intake were associated with 11% and 26% lower risk of oestrogen- and progesterone-receptor-positive (ER+/PR+) and -negative (ER-/PR-) breast cancer, respectively. Total vegetable consumption was associated with 27% lower risk of ER-/PR- breast cancer. Fruit juice consumption was associated with increased overall breast cancer risk (RR = 1.04, 95% CI = 1.01-1.07). We did not find significant associations for subgroups of vegetable intake and breast cancer risk. CONCLUSIONS These findings suggest that high total fruit and vegetable consumption are associated with reduced risk of overall, postmenopausal, ER+/PR+ and ER-/PR- breast cancer.
Collapse
|
26
|
Shin S, Ajuwon KM. Effect of lipopolysaccharide on peripheral tissue and hypothalamic expression of metabolic and inflammatory markers in mice fed high-fat diets with distinct 18-carbon fatty acid composition. Lipids 2021; 56:509-519. [PMID: 34212398 DOI: 10.1002/lipd.12318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023]
Abstract
Physiological and metabolic effects of fatty acids are determined by their degree of saturation and chain length. Effects of 18-carbon fatty acids with various degrees of saturation on inflammatory, oxidative, and neuropeptide gene transcription, especially in the hypothalamus, in response to LPS-induced acute inflammation have not been well studied. We conducted this study to test whether diets with distinct 18-carbon fatty acid differentially affect inflammatory and metabolic response to LPS exposure in the hypothalamus, liver, and muscle tissues. Four experimental diets were fed for 4 weeks to male C57BL/6J mice, and a terminal 4-h lipopolysaccharide (LPS) injection was administered. Diets included a control diet (CON) containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil, and three high-fat diets (HFD) containing 25% kcal fat from lard and 20% kcal fat from either shea butter (SHB; saturated fatty acid-rich fat), olive oil (OLO; monounsaturated fatty acid-rich oil), or soybean oil (SBO; polyunsaturated fatty acid-rich fat). Compared to CON, HFD-fed mice had higher weight gain and body fat accumulation. The SBO group had lowest Cpt1b expression in the liver, and OLO group had the lowest Pomc and the highest Lepr expression in the hypothalamus. LPS challenge increased pro-inflammatory cytokine mRNA expression in the brain and peripheral tissues. However, the diets did not exert distinguishable effects on LPS-induced inflammatory responses. Therefore, saturation degree of 18-carbon fatty acids may not play a critical role in their effects on inflammatory and metabolic indicators in response to acute inflammation induced by LPS.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea.,Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana, USA
| | - Kolapo M Ajuwon
- Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana, USA.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Ghalishourani SS, Farzollahpour F, Shirinbakhshmasoleh M, Kolahdouz S, Ghaedi E, Behrouzian M, Haghighian HK, Campbell MS, Asbaghi O, Moodi V. Effects of grape products on inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2021; 35:4898-4912. [PMID: 33908079 DOI: 10.1002/ptr.7120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials (RCTs) were conducted to determine the effects of grapes and grape products on inflammation and oxidative stress among adults. PubMed, Scopus, ISI Web of Science, and Cochrane Library databases were searched up to July 2020 to identify RCTs investigating the effects of grape and grape products on inflammatory and oxidative stress markers. Weighted mean differences (WMD) were pooled using a random-effects model. Of the 8,962 identified studies, 24 RCTs (27 arms) were included in the statistical analysis. Grape products significantly reduced serum C-reactive protein (CRP) levels (WMD: -0.35 mg/L; 95% CI: -0.62, -0.09, p = .008), but they had no significant effect on serum tumor necrosis factor-alpha (TNF-α) (WMD = -1.08 pg/ml; 95% CI: -2.29, 0.11, p = .07), interleukin-6 (IL-6) (WMD = 0.13 pg/ml; 95% CI: -0.35, 0.60, p = .60), total antioxidant capacity (TAC) (WMD = 0.15; 95% CI: -0.35, 0.65, p = .54), or malondialdehyde (MDA) (WMD = 0.14; 95% CI: -0.64, 0.92, p = .72). The analysis indicated possible decreasing effects of grapes and grape products on CRP, but they might not be able to change IL-6, TNF-α, TAC, and MDA concentrations. Nonetheless, further studies are warranted before definitive conclusions may be reached.
Collapse
Affiliation(s)
- Samira Sadat Ghalishourani
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Shakiba Kolahdouz
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Behrouzian
- Department of Pediatrics, Faculty of Medicine, Golestan Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Khadem Haghighian
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Marilyn S Campbell
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vihan Moodi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Optimization of extraction process and antioxidant activities of saponins from Camellia fascicularis leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021; 13:pharmaceutics13020145. [PMID: 33499333 PMCID: PMC7912052 DOI: 10.3390/pharmaceutics13020145] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Non-communicable chronic diseases (NCDs) are nowadays the principal cause of death, especially in most industrialized nations. These illnesses have increased exponentially with the consumption of diets very high in fat and sugar, not to mention stress and physical inactivity among other factors. The potential impact of suboptimal diets on NCDs’ morbidity and mortality rates brings to the forefront the necessity for a new way of improving dietary habits. The literature provides extensive scientific work that presents evidence that phenolic compounds from diets have antioxidant, anti-inflammatory and antiproliferative activities that impact human health. Gut microbiota modulation by some phenolic compounds leads to favorable changes in abundance, diversity, and in the immune system. However, polyphenol’s limited bioavailability needs to be overcome, highlighting their application in new delivery systems and providing their health benefits in well-established ways such as health maintenance, treatment or adjuvant to conventional pharmacological treatments. In this context, novel dietary approaches, including new food supplements, have emerged to prevent diseases and preserve health.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Correspondence: ; Tel.: +351-96-3654-899
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
30
|
Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1866597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Afam I. O. Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Postharvest-Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Henry Silungwe
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Thakhani Takalani
- Univen Centre for Continuing Education, University of Venda, Thohoyandou 0950, South Africa
| | - Adewale O Omolola
- Department of Agricultural Engineering, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Henry O Udeh
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Tonna A Anyasi
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
31
|
Biscuits from Fermented Roasted Buckwheat Flour - Phenolics Profile and Bioaccessible Angiotensin Converting Enzyme Inhibitory Activity. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2020. [DOI: 10.2478/aucft-2020-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
The bioaccessible angiotensin converting enzyme (ACE) inhibitory activity of biscuits formulated from roasted common buckwheat flour after fermentation by select bacteria was studied. The same content of total phenolic compounds was found in fermented flour and in biscuits obtained from them. Generally, fermentation of flour did not changes the ACE inhibitory activity, whereas baking process significantly increased the ACE inhibitory activity of examined products. The potential bioaccessible ACE inhibitory activity from biscuits was very high. Phenolic acids such as protocatechuic, vanillic and syringic acids as well as flavonoids: kaempferol and epicatechin in the digested buckwheat biscuits have the highest impact on ACE inhibitory activity. A high significant correlations were found between IC50 and total phenolic compounds of fermented flours, biscuits before and after digestion. The data obtained in this study closely associates phenolic compounds with ACE inhibitory activity.
Collapse
|
32
|
Hitchcock JK, Mkwanazi N, Barnett C, Graham LM, Katz AA, Hunter R, Schäfer G, Kaschula CH. The Garlic Compound Z-Ajoene, S-Thiolates COX2 and STAT3 and Dampens the Inflammatory Response in RAW264.7 Macrophages. Mol Nutr Food Res 2020; 65:e2000854. [PMID: 33274836 DOI: 10.1002/mnfr.202000854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/15/2020] [Indexed: 01/05/2023]
Abstract
SCOPE Garlic (Allium sativum) has been used for centuries as a prophylactic and therapeutic medicinal agent to control inflammation-associated pathologies. To investigate the underlying mechanisms, an in vitro inflammatory model is established using RAW264.7 murine macrophages exposed to low-doses of lipopolysaccharide (LPS) in the presence of garlic compounds allicin and Z-ajoene (ZA), mimicking regular garlic consumption. METHODS AND RESULTS Both allicin and Z-ajoene dampen both transcript and protein expression of the pro-inflammatory cytokines IL1β, IL6, and IL12β, and upregulate the expression of the anti-inflammatory cytokine IL10. Protein arrays of selected secreted inflammatory mediators confirm that Z-ajoene has a pronounced down-regulatory effect on LPS-induced inflammatory cytokines and chemokines. Many of these proteins are known targets of the transcription factor signal transducer and activator of transcription 3 (STAT3); and indeed, Z-ajoene or its analogue dansyl-ajoene is found to decrease phosphorylation and nuclear translocation of STAT3, and to covalently modify the protein by S-thiolation at Cys108, Cys367, and Cys687. Z-Ajoene dose-dependently and non-competitively inhibit the activity of cyclooxygenase 2 (COX2), possibly attributed to S-thiolation at Cys9 and Cys299. CONCLUSION The characterization of Z-ajoene's activity of targeting and covalently modifying STAT3 and COX2, both important regulators of inflammation, may contribute to the health benefits of regular dietary garlic consumption.
Collapse
Affiliation(s)
- Jessica K Hitchcock
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Nonkululeko Mkwanazi
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Christopher Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Lisa M Graham
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville, 7530, South Africa
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Georgia Schäfer
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, 7925, South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
33
|
Zbakh H, Salhi G, Bochkov V, Ciudad CJ, Noé V, Hassoun M, Riadi H. Insights on the anti-inflammatory and antitumor activities of extracts from the marine green alga Codium decorticatum. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Zhang XW, Feng N, Wang LC, Liu D, Hua YM, Zhang C, Tu PF, Zeng KW. Small-molecule arone protects from neuroinflammation in LPS-activated microglia BV-2 cells by targeting histone-remodeling chaperone ASF1a. Biochem Pharmacol 2020; 177:113932. [DOI: 10.1016/j.bcp.2020.113932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
|
35
|
Xiong J, Chan YH, Rathinasabapathy T, Grace MH, Komarnytsky S, Lila MA. Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chem 2020; 331:127279. [PMID: 32563800 DOI: 10.1016/j.foodchem.2020.127279] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Stability of protein-polyphenol aggregate particles, created by complexing polyphenols from blueberry and muscadine grape pomaces with a rice-pea protein isolate blend, was evaluated in an in vitro gastrointestinal model. Recovery index (RI; % total phenolics present post-digestion) was 69% and 62% from blueberry and muscadine grape protein-polyphenol particles, compared to 23% and 31% for the respective pomace extracts. Anthocyanins RI was 52% and 42% from particles (6% and 13% from pomace extracts), and proanthocyanidins RI was 77% and 73% from particles (25% and 14% from pomace extracts), from blueberry and grape, respectively. Protein-polyphenol particle digests retained 1.5 to 2-fold higher antioxidant capacity and suppressed the expression of pro-inflammatory cytokines, iNOS, IL6, and IL1β, compared to unmodified extract digests, which only suppressed IL6. Protein-polyphenol particles as a delivery vehicle in foods may confer better stability during gastrointestinal transit, allow protected polyphenols to reach the gut microbiota, and preserve polyphenol bioactivity.
Collapse
Affiliation(s)
- Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Yu Hsuan Chan
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA; School of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Slavko Komarnytsky
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
36
|
Chang HW, Sudirman S, Yen YW, Mao CF, Ong AD, Kong ZL. Blue Mussel ( Mytilus edulis) Water Extract Ameliorates Inflammatory Responses and Oxidative Stress on Osteoarthritis in Obese Rats. J Pain Res 2020; 13:1109-1119. [PMID: 32606898 PMCID: PMC7293401 DOI: 10.2147/jpr.s244372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effects of Mytilus edulis water extract (MWE) on an anterior cruciate ligament transection and a partial medial meniscectomy surgery to induced osteoarthritis (OA) with the high-fat diet (HFD)-induced obese rats. Methods The male Sprague-Dawley rats were fed with HFD for 4 weeks before surgery. The OA rats were orally administered with MWE (108.5, 217.0, and 542.5 mg/kg) for 6 weeks. Results The administration of MWE affected weight loss, triglycerides content, and total cholesterol level. MWE also enhanced the activity of superoxide dismutase and decreased lipid peroxidation degree. Moreover, MWE reduced proinflammatory cytokines level, alleviated inflammation and swelling of the osteoarthritic knee, and reduced loss of proteoglycan in articular cartilage tissue. Conclusion MWE suppressed proinflammatory mediators and attenuated the cartilage degradation and pain in osteoarthritis rats under obesity condition. Therefore, MWE has the potential to act as an alternative for osteoarthritis treatment.
Collapse
Affiliation(s)
- Heng-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Palembang, Ogan Ilir Regency 30862, Indonesia
| | - Yu-Wen Yen
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chien-Feng Mao
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Alan Darmasaputra Ong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
37
|
Zbakh H, Zubía E, Reyes CDL, Calderón-Montaño JM, López-Lázaro M, Motilva V. Meroterpenoids from the Brown Alga Cystoseira usneoides as Potential Anti-Inflammatory and Lung Anticancer Agents. Mar Drugs 2020; 18:E207. [PMID: 32290492 PMCID: PMC7230911 DOI: 10.3390/md18040207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory and anticancer properties of eight meroterpenoids isolated from the brown seaweed Cystoseira usneoides have been evaluated. The algal meroterpenoids (AMTs) 1-8 were tested for their inhibitory effects on the production of the pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), and the expression of cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in LPS-stimulated THP-1 human macrophages. The anticancer effects were assessed by cytotoxicity assays against human lung adenocarcinoma A549 cells and normal lung fibroblastic MRC-5 cells, together with flow cytometry analysis of the effects of these AMTs on different phases of the cell cycle. The AMTs 1-8 significantly reduced the production of TNF-α, IL-6, and IL-1β, and suppressed the COX-2 and iNOS expression, in LPS-stimulated cells (p < 0.05). The AMTs 1-8 displayed higher cytotoxic activities against A549 cancer cells than against MRC-5 normal lung cells. Cell cycle analyses indicated that most of the AMTs caused the arrest of A549 cells at the G2/M and S phases. The AMTs 2 and 5 stand out by combining significant anti-inflammatory and anticancer activities, while 3 and 4 showed interesting selective anticancer effects. These findings suggest that the AMTs produced by C. usneoides may have therapeutic potential in inflammatory diseases and lung cancer.
Collapse
Affiliation(s)
- Hanaa Zbakh
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain; (H.Z.); (J.M.C.-M.); (M.L.-L.)
- Department of Biology, Faculty of Sciences, University of Abdelmalek Essaâdi, Tetouan 93000, Morocco
| | - Eva Zubía
- Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz) 11510, Spain; (E.Z.); (C.d.l.R.)
| | - Carolina de los Reyes
- Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz) 11510, Spain; (E.Z.); (C.d.l.R.)
| | - José M. Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain; (H.Z.); (J.M.C.-M.); (M.L.-L.)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain; (H.Z.); (J.M.C.-M.); (M.L.-L.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain; (H.Z.); (J.M.C.-M.); (M.L.-L.)
| |
Collapse
|
38
|
Farvid MS, Spence ND, Holmes MD, Barnett JB. Fiber consumption and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Cancer 2020; 126:3061-3075. [PMID: 32249416 DOI: 10.1002/cncr.32816] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Associations between fiber intake and breast cancer risk have been evaluated in prospective studies, but overall, the evidence is inconsistent. The authors performed a systematic review and meta-analysis of prospective studies to investigate the relation between intake of total and types of fiber with breast cancer incidence. METHODS The MEDLINE and Excerpta Medica dataBASE (EMBASE) databases were searched through July 2019 for prospective studies that reported on the association between fiber consumption and incident breast cancer. The pooled relative risk (RR) and 95% confidence intervals (95% CI) were estimated comparing the highest versus the lowest category of total and types of fiber consumption, using a random-effects meta-analysis. RESULTS The authors identified 17 cohort studies, 2 nested case-control studies, and 1 clinical trial study. Total fiber consumption was associated with an 8% lower risk of breast cancer (comparing the highest versus the lowest category, pooled RR, 0.92; 95% CI, 0.88-0.95 [I2 = 12.6%]). Soluble fiber was found to be significantly inversely associated with risk of breast cancer (pooled RR, 0.90 [95% CI, 0.84-0.96; I2 = 12.6%]) and insoluble fiber was found to be suggestively inversely associated with risk of breast cancer (pooled RR, 0.93 [95% CI, 0.86-1.00; I2 = 33.4%]). Higher total fiber intake was associated with a lower risk of both premenopausal and postmenopausal breast cancers (pooled RR, 0.82 [95% CI, 0.67-0.99; I2 = 35.2%] and pooled RR, 0.91 [95% CI, 0.88-0.95; I2 = 0.0%], respectively). Furthermore, the authors observed a nonsignificant inverse association between intake of total fiber and risk of both estrogen and progesterone receptor-positive and estrogen and progesterone receptor-negative breast cancers. CONCLUSIONS A random-effects meta-analysis of prospective observational studies demonstrated that high total fiber consumption was associated with a reduced risk of breast cancer. This finding was consistent for soluble fiber as well as for women with premenopausal and postmenopausal breast cancer.
Collapse
Affiliation(s)
- Maryam S Farvid
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Nicholas D Spence
- Department of Sociology and Interdisciplinary Center for Health and Society, University of Toronto, Toronto, Ontario, Canada
| | - Michelle D Holmes
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Junaidah B Barnett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
39
|
DiMarco-Crook C, Rakariyatham K, Li Z, Du Z, Zheng J, Wu X, Xiao H. Synergistic anticancer effects of curcumin and 3',4'-didemethylnobiletin in combination on colon cancer cells. J Food Sci 2020; 85:1292-1301. [PMID: 32144766 DOI: 10.1111/1750-3841.15073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Chemoprevention strategies employing the use of multiple dietary bioactive components and their metabolites in combination offer advantages due to their low toxicity and potential synergistic interactions. Herein, for the first time, we studied the combination of curcumin and 3',4'-didemethylnobiletin (DDMN), a primary metabolite of nobiletin, to determine their combinatory effects in inhibiting growth of human colon cancer cells. Isobologram analysis revealed a synergistic interaction between curcumin and DDMN in the inhibition of cell growth of HCT116 colon cancer cells. The combination treatment induced significant G2 -M cell-cycle arrest and extensive apoptosis, which greatly exceeded the effects of individual treatments with curcumin or DDMN. Proteins associated with these heightened anticarcinogenic effects were p53, p21, HO-1, c-poly(ADP-ribose) polymerase, Cdc2, and Cdc25c; each of the proteins was confirmed to be substantially impacted by the combination treatment, more than by individual treatments alone. Interestingly, an increase in the stability of curcumin was also observed with the presence of DDMN in cell culture medium, which could offer an explanation in part for the synergistic interaction between curcumin and DDMN. This newly identified synergy between curcumin and DDMN should be explored further to determine its chemopreventive potential against colon cancer in vivo. PRACTICAL APPLICATION: This study identifies for the first time the synergistic inhibition of colon cancer cell growth by the dietary component curcumin present in turmeric, in combination with a metabolite of nobiletin, a unique citrus flavonoid. The synergism of the combination may be due to cell-cycle arrest and apoptosis induced by the combination as well as an improvement in the stability of curcumin as a result of the antioxidant property of the nobiletin metabolite. These significant findings of synergism between curcumin and the nobiletin metabolite could offer potential chemopreventive value against colon cancer.
Collapse
Affiliation(s)
| | | | - Zhengze Li
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Zheyuan Du
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Jinkai Zheng
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xian Wu
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Dept. of Kinesiology and Health, Miami Univ., Oxford, OH, 45056, USA
| | - Hang Xiao
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
40
|
Osukoya O, Nwoye-Ossy M, Olayide I, Ojo O, Adewale O, Kuku A. Antioxidant activities of peptide hydrolysates obtained from the seeds ofTreculia africanaDecne (African breadfruit). Prep Biochem Biotechnol 2020; 50:504-510. [DOI: 10.1080/10826068.2019.1709980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Olukemi Osukoya
- Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Miracle Nwoye-Ossy
- Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Israel Olayide
- Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oluwafemi Ojo
- Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Olusola Adewale
- Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adenike Kuku
- Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
41
|
Kim C, Ji J, Ho Baek S, Lee JH, Ha IJ, Lim SS, Yoon HJ, Je Nam Y, Ahn KS. Fermented dried Citrus unshiu peel extracts exert anti-inflammatory activities in LPS-induced RAW264.7 macrophages and improve skin moisturizing efficacy in immortalized human HaCaT keratinocytes. PHARMACEUTICAL BIOLOGY 2019; 57:392-402. [PMID: 31188689 PMCID: PMC6566750 DOI: 10.1080/13880209.2019.1621353] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Context: Citrus unshiu Markovich (Rutaceae) peel is known to contain high concentrations of flavonoids and exerts pharmacological effects on antioxidant, anti-inflammation, allergies, diabetes and viral infections. Objective: Very little is known about potential activity of fermented dried Citrus unshiu peel extracts (FCU) using Bacillus subtilis, as well as its mechanism of action. We investigated the effects of FCU on the anti-inflammatory activities in murine macrophages and moisturizing effects in human keratinocytes. Materials and methods: We isolated the Bacillus subtilis from Cheonggukjang and FCU using these Bacillus subtilis to prepare samples. The cells were pre-treated with various extracts for 2 h and then induced with LPS for 22 h. We determined the NO assay, TNF-α, IL-6 and PGE2 in RAW 264.7 ells. The expression of SPT and Filaggrin by FCU treatment was measured in HaCaT cells. Result: We found that two types of FCU highly suppressed LPS-induced nitric oxide (NO) without exerting cytotoxic effects on RAW 264.7 cells (21.9 and 15.4% reduction). FCU inhibited the expression of LPS-induced iNOS and COX-2 proteins and their mRNAs in a concentration-dependent manner. TNF-α (59 and 30.9% reduction), IL-6 (39.1 and 65.6% reduction), and PGE2 secretion (78.6 and 82.5% reduction) were suppressed by FCU in LPS-stimulated macrophages. Furthermore, FCU can induce the production of hyaluronic acid (38 and 38.9% induction) and expression of Filaggrin and SPT in HaCaT keratinocyte cells. Discussion and conclusion: FCU potentially inhibits inflammation, improves skin moisturizing efficacy, and it may be a therapeutic candidate for the treatment of inflammation and dry skin.
Collapse
Affiliation(s)
- Chulwon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun Ji
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Woosuk University, Wanju, Korea
| | - Jong Hyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul, Republic of Korea
| | - Soon Sung Lim
- Institute of Natural Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | | | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- CONTACT Kwang Seok Ahn Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Republic of Korea
| |
Collapse
|
42
|
Bagheri A, Nachvak SM, Abdollahzad H, Rezaei M. Inflammatory Potential of Diet and the Risk of Prostate Cancer: A Casecontrol Study in the West of Iran. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180620141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Prostate cancer is one of the most common cancer in worldwide and inflammatory
reactions may be the major risk factors for it. Diet has a potential role in the running of inflammatory
reactions. Dietary Inflammatory Index (DII) is a tool that can assess the inflammatory potential
of a diet.
Objective:
Study of the effect of Dietary Inflammatory Index (DII) and body composition on the risk
of prostate cancer was the aim of this research.
Methods:
We assessed the ability of Dietary Inflammatory Index (DII) to predict prostate cancer in a
case-control study conducted in Kermanshah, Iran in 2016. The study included 50 cases with primary
prostate cancer and 150 healthy controls. Anthropometric indices were measured by Bioelectric Impedance
Analysis (BIA). The DII was computed based on the intake of 32 nutrients assessed using a
147-items food frequency questionnaire. The multivariate logistic regression was used to evaluate the
odds ratio, with DII expressed as a dichotomous variable.
Results:
There were no statistically significant differences in body composition between case and control
groups, but participants with DII > 0.80 had significant differences in BMI, LBM, SLM, MBF and TBW
versus participant with DII ≤ 0.80. Also, men with higher DII scores were at increased risk of prostate
cancer [OR: 1.77; 95% confidence interval 1.28-2.44] and categorical variable [OR DII>0.80 vs ≤ 0.80:
3.81; 95% confidence interval: 1.49-9.75].
Conclusion:
These findings suggest that a pro-inflammatory diet is a risk factor for prostate cancer
and also can have the impact on body composition.
Collapse
Affiliation(s)
- Amir Bagheri
- Nutritional Science Department, School of Nutritional Science & Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M. Nachvak
- Nutritional Science Department, School of Nutritional Science & Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Abdollahzad
- Nutritional Science Department, School of Nutritional Science & Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansour Rezaei
- Department of Biostatistics, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
43
|
Liu W, Huang S, Li Y, Zheng X, Zhang K. Synergistic effect of tolfenamic acid and glycyrrhizic acid on TPA-induced skin inflammation in mice. MEDCHEMCOMM 2019; 10:1819-1827. [PMID: 31814955 PMCID: PMC6839815 DOI: 10.1039/c9md00345b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
Tolfenamic acid (TA) and glycyrrhizic acid (GA) are well-known components with anti-inflammatory properties. However, their combined effects on inflammation have not been well studied. The present study aimed to investigate the in vivo anti-inflammatory effects of TA combined with GA using a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema model, as well as the underlying mechanisms thereof. The results indicated that TA combined with GA led to a stronger inhibition on TPA-induced mouse ear edema compared to the singular treatments. In addition, the combined treatment significantly alleviated subcutaneous tissue inflammation caused by TPA. Further mechanistic investigations demonstrated that TA combined with GA decreased the levels of TPA-induced interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, the combined treatment effectively inhibited nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), phosphor-ERK1/2 and phosphor-JNK, which was accompanied by blocking of the activation and the phosphorylation in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. Collectively, our findings revealed that different anti-inflammatory components used in combination lead to enhanced inhibitory effects against inflammation.
Collapse
Affiliation(s)
- Wenfeng Liu
- School of Biotechnology and Health Sciences , Wuyi University , Jiangmen 529020 , China
- International Healthcare Innovation Institute (Jiangmen) , China
| | - Shun Huang
- Nanfang PET Center , Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515 , China .
| | - Yonglian Li
- Guangdong Industry Polytechnic , Guangzhou , 510300 , China
| | - Xi Zheng
- School of Biotechnology and Health Sciences , Wuyi University , Jiangmen 529020 , China
- Susan Lehman Cullman Laboratory for Cancer Research , Department of Chemical Biology , Ernest Mario School of Pharmacy, Rutgers , The State University of New Jersey , Piscataway , NJ 08854 , USA
| | - Kun Zhang
- School of Biotechnology and Health Sciences , Wuyi University , Jiangmen 529020 , China
| |
Collapse
|
44
|
Ryu S, Shivappa N, Veronese N, Kang M, Mann JR, Hébert JR, Wirth MD, Loprinzi PD. Secular trends in Dietary Inflammatory Index among adults in the United States, 1999-2014. Eur J Clin Nutr 2019; 73:1343-1351. [PMID: 30542148 DOI: 10.1038/s41430-018-0378-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate secular trends in Dietary Inflammatory Index (DII) scores in the United States between 1999 and 2014. METHODS Data from adults over 19 years from the 1999 to 2014 National Health and Nutrition Examination Survey (N = 39,191) were used. DII scores, at each 2-year cycle, were evaluated from a 24-h recall, including 26 food parameters for DII calculation. Analyses were conducted in 2018. RESULTS For the entire sample, there was a quadratic trend (Ptrend < 0.001), with the DII scores peaking in 2003-2004, and then decreasing during the cycles from 2005 to 2014. Similar quadratic trends (Ptrend < 0.001) were observed by age, gender, race-ethnicity, and education. CONCLUSION Males, non-Hispanic Blacks, younger adults, and those with less education adults had the highest DII scores (i.e., indicating the greatest inflammatory potential). The overall DII scores of the US population showed a quadratic trend from 1999 to 2014. Continued monitoring of DII changes is needed to better understand changes in the inflammatory potential of diet of American adults, and how they relate to changes in the risk of chronic disease.
Collapse
Affiliation(s)
- Seungho Ryu
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, USA
| | - Nitin Shivappa
- Epidemiology and Biostatistics, The Cancer Prevention and Control Program, University of South Carolina, Connecting Health Innovations, LLC, Columbia, USA
| | - Nicola Veronese
- Laboratory of Nutritional Biochemistry, Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, Bari, Italy
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, Bari Best, Italy
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, USA
| | - Joshua R Mann
- Department of Preventive Medicine, University of Mississippi Medical Center, School of Medicine and John D. Bower School of Population Health, Jackson, USA
| | - James R Hébert
- Epidemiology and Biostatistics, The Cancer Prevention and Control Program, University of South Carolina, Connecting Health Innovations, LLC, Columbia, USA.
| | - Michael D Wirth
- Epidemiology and Biostatistics, The Cancer Prevention and Control Program, University of South Carolina, Connecting Health Innovations, LLC, Columbia, USA
- College of Nursing at USC, University of South Carolina, Columbia, SC, USA
| | - Paul D Loprinzi
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, USA
| |
Collapse
|
45
|
Phillips CM, Chen LW, Heude B, Bernard JY, Harvey NC, Duijts L, Mensink-Bout SM, Polanska K, Mancano G, Suderman M, Shivappa N, Hébert JR. Dietary Inflammatory Index and Non-Communicable Disease Risk: A Narrative Review. Nutrients 2019; 11:E1873. [PMID: 31408965 PMCID: PMC6722630 DOI: 10.3390/nu11081873] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
There are over 1,000,000 publications on diet and health and over 480,000 references on inflammation in the National Library of Medicine database. In addition, there have now been over 30,000 peer-reviewed articles published on the relationship between diet, inflammation, and health outcomes. Based on this voluminous literature, it is now recognized that low-grade, chronic systemic inflammation is associated with most non-communicable diseases (NCDs), including diabetes, obesity, cardiovascular disease, cancers, respiratory and musculoskeletal disorders, as well as impaired neurodevelopment and adverse mental health outcomes. Dietary components modulate inflammatory status. In recent years, the Dietary Inflammatory Index (DII®), a literature-derived dietary index, was developed to characterize the inflammatory potential of habitual diet. Subsequently, a large and rapidly growing body of research investigating associations between dietary inflammatory potential, determined by the DII, and risk of a wide range of NCDs has emerged. In this narrative review, we examine the current state of the science regarding relationships between the DII and cancer, cardiometabolic, respiratory and musculoskeletal diseases, neurodevelopment, and adverse mental health outcomes. We synthesize the findings from recent studies, discuss potential underlying mechanisms, and look to the future regarding novel applications of the adult and children's DII (C-DII) scores and new avenues of investigation in this field of nutritional research.
Collapse
Affiliation(s)
- Catherine M Phillips
- HRB Centre for Diet and Health Research, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland.
- HRB Centre for Diet and Health Research, School of Public Health, University College Cork, Western Gateway Building, Western Rd, Cork, Co. Cork, Ireland.
| | - Ling-Wei Chen
- HRB Centre for Diet and Health Research, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Barbara Heude
- Research Team on the Early Life Origins of Health (EAROH), Centre for Research in Epidemiology and Statistics (CRESS), INSERM, Université de Paris, F-94807 Villejuif, France
| | - Jonathan Y Bernard
- Research Team on the Early Life Origins of Health (EAROH), Centre for Research in Epidemiology and Statistics (CRESS), INSERM, Université de Paris, F-94807 Villejuif, France
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Kinga Polanska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Giulia Mancano
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Nitin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
- Connecting Health Innovations LLC, Columbia, SC 29201, USA
| |
Collapse
|
46
|
Ma Z, Zhang X, Xu L, Liu D, Di S, Li W, Zhang J, Zhang H, Li X, Han J, Yan X. Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies. Pharmacol Res 2019; 145:104265. [DOI: 10.1016/j.phrs.2019.104265] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/26/2022]
|
47
|
Li YZ, Chen JH, Tsai CF, Yeh WL. Anti-inflammatory Property of Imperatorin on Alveolar Macrophages and Inflammatory Lung Injury. JOURNAL OF NATURAL PRODUCTS 2019; 82:1002-1008. [PMID: 30892032 DOI: 10.1021/acs.jnatprod.9b00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Imperatorin is one of the furanocoumarin derivatives and exists in many medicinal herbs with anticancer, antiviral, antibacterial, and antihypertensive activities. In this study, we examined the anti-inflammatory effects of imperatorin on inflammation-associated lung diseases. Imperatorin reduced iNOS and COX-2 expression and also IL-6 and TNFα production enhanced by zymosan. Imperatorin also inhibited the signaling pathways of JAK/STAT and NF-κB. Moreover, in vivo study also revealed that zymosan-induced immune cell infiltration, pulmonary fibrosis, and edema were relieved by imperatorin in mice. We found that imperatorin exerts anti-inflammatory effects that are associated with amelioration of lung inflammation, edema, and rapid fibrosis. Studies on alveolar macrophages also reveal that imperatorin reduced the production of pro-inflammatory mediators and cytokines and inhibited pro-inflammatory JAK1/STAT3 and NF-κB signaling pathways. These results indicate that imperatorin may be a potential anti-inflammatory agent for inflammatory-associated lung diseases.
Collapse
Affiliation(s)
- Ya-Zhen Li
- Department of Biological Science and Technology , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
| | - Jia-Hong Chen
- Department of General Surgery , Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Taichung , 42743 , Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology , Asia University , No. 500 Lioufeng Road , Taichung , 41354 , Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
- Research Center for Tumor Medical Science , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
| |
Collapse
|
48
|
Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194:107-131. [PMID: 30268770 DOI: 10.1016/j.pharmthera.2018.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
|
50
|
Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV. In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines 2018; 6:biomedicines6040107. [PMID: 30463216 PMCID: PMC6316011 DOI: 10.3390/biomedicines6040107] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/27/2023] Open
Abstract
The study investigated the anti-inflammatory activity of the hydro methanolic extract of six leafy vegetables, namely Cassia auriculata, Passiflora edulis, Sesbania grandiflora, Olax zeylanica, Gymnema lactiferum, and Centella asiatica. The anti-inflammatory activity of methanolic extracts of leafy vegetables was evaluated using four in vitro-based assays: hemolysis inhibition, proteinase inhibition, protein denaturation inhibition, and lipoxygenase inhibition. Results showed that the percent inhibition of hemolysis from these leaf extracts (25–100 µg/mL dry weight basis (DW)) was within the range from 5.4% to 14.9%, and the leaves of P. edulis and O. zeylanica showed a significantly higher (p < 0.05) inhibition levels. Percent inhibition of protein denaturation of these leafy types was within the range of 36.0–61.0%, and the leaf extract of C. auriculata has exhibited a significantly higher (p < 0.05) inhibition level. Proteinase inhibitory activity of these leaf extracts was within the range of 20.2–25.9%. The lipoxygenase inhibition was within the range of 3.7–36.0%, and the leaf extract of G. lactiferum showed an improved ability to inhibit lipoxygenase activity. In conclusion, results revealed that all the studied leaves possess anti-inflammatory properties at different levels, and this could be due to the differences in the composition and concentration of bioactive compounds.
Collapse
Affiliation(s)
- K D P P Gunathilake
- Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka.
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka.
| | - K K D S Ranaweera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka.
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|