1
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2024; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
2
|
Januário AP, Félix C, Félix R, Shiels K, Murray P, Valentão P, Lemos MFL. Exploring the Therapeutical Potential of Asparagopsis armata Biomass: A Novel Approach for Acne Vulgaris Treatment. Mar Drugs 2024; 22:489. [PMID: 39590768 PMCID: PMC11595352 DOI: 10.3390/md22110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Acne vulgaris, a high-prevalence skin condition afflicting people, persists as a significant challenge in the absence of effective treatments and emerging antibiotic resistance. To address this pressing concern, exploration of innovative approaches is of the utmost importance. Asparagopsis armata, an invasive red seaweed renowned for its diverse array of bioactive compounds, emerges as a promising candidate. This study seeks to elucidate the potential utility of A. armata biomass in the treatment of acne vulgaris. Crude extracts were obtained through solid-liquid extraction, and fractions were obtained using liquid-liquid extraction. The analyzed bioactivities included antioxidant, antimicrobial, and anti-inflammatory. Also, chemical characterization was performed to identify free fatty acids and compounds through LC-MS and elements. The present findings unveil compelling attributes, including anti-Cutibacterium acnes activity, cytotoxic and non-cytotoxic effects, antioxidant properties, and its ability to reduce nitric oxide production with consequent anti-inflammatory potential. Additionally, chemical characterization provides insights into its mineral elements, free fatty acids, and diverse compounds. The observed antimicrobial efficacy may be linked to halogenated compounds and fatty acids. Cytoprotection appears to be associated with the presence of glycerolipids and glycosylated metabolites. Furthermore, its antioxidant activity, coupled with anti-inflammatory properties, can be attributed to phenolic compounds, such as flavonoids. This study underscores the potential of A. armata as a natural ingredient in skincare formulations, offering an important contribution to the ongoing battle against acne vulgaris.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Katie Shiels
- LIFE—Health and Wellbeing Biosciences Research Institute, Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (P.M.)
| | - Patrick Murray
- LIFE—Health and Wellbeing Biosciences Research Institute, Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (P.M.)
| | - Patrícia Valentão
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
| |
Collapse
|
3
|
Farag MR, El-Naseery NI, El Behery EI, Nouh DS, El-Mleeh A, Mostafa IMA, Alagawany M, Di Cerbo A, Azzam MM, Mawed SA. The Role of Chlorella vulgaris in Attenuating Infertility Induced by Cadmium Chloride via Suppressing Oxidative Stress and Modulating Spermatogenesis and Steroidogenesis in Male Rats. Biol Trace Elem Res 2024; 202:4007-4020. [PMID: 38114777 DOI: 10.1007/s12011-023-03971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Cadmium (Cd) is an environmental pollutant known as endocrine disruptor . Cd has been reported to induce perturbations of the testicular functions and the subsequent decline of the male fertility of both animals and humans. Chlorella vulgaris (ChV) a species of green microalga has been reported to have multiple beneficial activities such as anti-inflammatory, antioxidant, and antiapoptotic effects. Thus, this work was conducted to declare the benefits of Chlorella vulgaris (ChV) (500 mg/kg doses) against cadmium chloride CdCl2 (2 mg/kg doses) toxicity on the main and accessory reproductive organs' weight, structure, and function of male rats. Briefly, 40 adult male rats in 4 groups (n = 10) were used as follows; control, ChV, CdCl2, and CdCl2+ChV. (i) The 1st group was kept as control fed on pellet chow and water ad libitum. (ii) The second group is Chlorella vulgaris (ChV) group fed with C. vulgaris alga for 10 days (500 mg/kg BW). (iii) The third group was administrated CdCl2 (2mg/kg BW) via subcutaneous injection (S/C) daily for 10 days. (iv) The fourth group administered both CdCl2 and ChV with the abovementioned doses daily for successive 10 days. Our observations declared that cadmium exhibited an adverse influence on the testes and prostate gland architecture indicated by seminiferous tubule destruction, testicular edema, degeneration of Leydig cells, and prostate acini damage. All together affect the epididymal semen quality and quantity including sperm viability, motility, and count. Interestingly, ChV could restore the testicular architecture and spermatozoa regeneration accompanied by semen quality improvement and increased reproductive hormones including testosterone. On the other side, ChV suppresses reactive oxygen species (ROS) formation via enhancement the antioxidant-related genes in the testicular tissue including SOD, CAT, GSH, and MDA and maintaining spermatocyte survival via suppression of apoptotic related genes including caspase3 and activating steroidogenic related genes including StAR and HSD17β3 in the cadmium-treated testes. In this study, ChV could enhance male fertility under normal or stressful conditions and ameliorate the adverse effects of hazardous heavy metals that are widely distributed in our environment.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Eman I El Behery
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa S Nouh
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, 32511, Egypt
| | - Ismail M A Mostafa
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suzan A Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Adamo G, Santonicola P, Picciotto S, Gargano P, Nicosia A, Longo V, Aloi N, Romancino DP, Paterna A, Rao E, Raccosta S, Noto R, Salamone M, Deidda I, Costa S, Di Sano C, Zampi G, Morsbach S, Landfester K, Colombo P, Wei M, Bergese P, Touzet N, Manno M, Di Schiavi E, Bongiovanni A. Extracellular vesicles from the microalga Tetraselmis chuii are biocompatible and exhibit unique bone tropism along with antioxidant and anti-inflammatory properties. Commun Biol 2024; 7:941. [PMID: 39097626 PMCID: PMC11297973 DOI: 10.1038/s42003-024-06612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.
Collapse
Affiliation(s)
- Giorgia Adamo
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Sabrina Picciotto
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Paola Gargano
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Aldo Nicosia
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Valeria Longo
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Daniele P Romancino
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Angela Paterna
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Estella Rao
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Samuele Raccosta
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Rosina Noto
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Salamone
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Irene Deidda
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Palermo, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP), Mainz, Germany
| | | | - Paolo Colombo
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Mingxing Wei
- Cellvax SAS, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, Villejuif, France
| | - Paolo Bergese
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Colloid and Surface Science (CSGI), Florence, Italy
| | - Nicolas Touzet
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Mauro Manno
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Antonella Bongiovanni
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
5
|
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024; 13:725. [PMID: 38472838 DOI: 10.3390/foods13050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, β-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as β-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Buket Özbal
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
6
|
Wang T, Zhu L, Mei L, Kanda H. Extraction and Separation of Natural Products from Microalgae and Other Natural Sources Using Liquefied Dimethyl Ether, a Green Solvent: A Review. Foods 2024; 13:352. [PMID: 38275719 PMCID: PMC10815339 DOI: 10.3390/foods13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Microalgae are a sustainable source for the production of biofuels and bioactive compounds. This review discusses significant research on innovative extraction techniques using dimethyl ether (DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety as an organic solvent, exhibits remarkable properties that enable high extraction rates of various active compounds, including lipids and bioactive compounds, from high-water-content microalgae without the need for drying. In this review, the superiority of liquefied DME extraction technology for microalgae over conventional methods is discussed in detail. In addition, we elucidate the extraction mechanism of this technology and address its safety for human health and the environment. This review also covers aspects related to extraction equipment, various applications of different extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In addition, we anticipate a promising trajectory for the expansion of this technology for the extraction of various resources.
Collapse
Affiliation(s)
| | | | | | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Trentin R, Moschin E, Custódio L, Moro I. Bioprospection of the Antarctic Diatoms Craspedostauros ineffabilis IMA082A and Craspedostauros zucchelli IMA088A. Mar Drugs 2024; 22:35. [PMID: 38248660 PMCID: PMC10820014 DOI: 10.3390/md22010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
In extreme environments such as Antarctica, a diverse range of organisms, including diatoms, serve as essential reservoirs of distinctive bioactive compounds with significant implications in pharmaceutical, cosmeceutical, nutraceutical, and biotechnological fields. This is the case of the new species Craspedostauros ineffabilis IMA082A and Craspedostauros zucchellii IMA088A Trentin, Moschin, Lopes, Custódio and Moro (Bacillariophyta) that are here explored for the first time for possible biotechnological applications. For this purpose, a bioprospection approach was applied by preparing organic extracts (acetone and methanol) from freeze-dried biomass followed by the evaluation of their in vitro antioxidant properties and inhibitory activities on enzymes related with Alzheimer's disease (acetylcholinesterase: AChE, butyrylcholinesterase: BChE), Type 2 diabetes mellitus (T2DM, α-glucosidase, α-amylase), obesity (lipase) and hyperpigmentation (tyrosinase). Extracts were then profiled by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-HR-MS/MS), while the fatty acid methyl ester (FAME) profiles were established by gas chromatography-mass spectrometry (GC-MS). Our results highlighted strong copper chelating activity of the acetone extract from C. ineffabilis and moderate to high inhibitory activities on AChE, BChE, α-amylase and lipase for extracts from both species. The results of the chemical analysis indicated polyunsaturated fatty acids (PUFA) and their derivatives as the possible compounds responsible for the observed activities. The FAME profile showed saturated fatty acids (SFA) as the main group and methyl palmitoleate (C16:1) as the predominant FAME in both species. Overall, our results suggest both Antarctic strains as potential sources of interesting molecules with industrial applications. Further studies aiming to investigate unidentified metabolites and to maximize growth yield and natural compound production are required.
Collapse
Affiliation(s)
- Riccardo Trentin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Emanuela Moschin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Isabella Moro
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
8
|
Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN, Goh KW, Ming LC, Goh BH, Aanniz T. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 2024; 170:115989. [PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Mneyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taouanate, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
9
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
11
|
Farag MR, Alagawany M, Mahdy EAA, El-Hady E, Abou-Zeid SM, Mawed SA, Azzam MM, Crescenzo G, Abo-Elmaaty AMA. Benefits of Chlorella vulgaris against Cadmium Chloride-Induced Hepatic and Renal Toxicities via Restoring the Cellular Redox Homeostasis and Modulating Nrf2 and NF-KB Pathways in Male Rats. Biomedicines 2023; 11:2414. [PMID: 37760855 PMCID: PMC10525457 DOI: 10.3390/biomedicines11092414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In our life scenarios, we are involuntarily exposed to many heavy metals that are well-distributed in water, food, and air and have adverse health effects on animals and humans. Cadmium (Cd) is one of the most toxic 10 chemicals reported by The World Health Organization (WHO), affecting organ structure and function. In our present study, we use one of the green microalga Chlorella vulgaris (ChV, 500 mg/kg body weight) to investigate the beneficial effects against CdCl2-induced hepato-renal toxicity (Cd, 2 mg/kg body weight for 10 days) on adult male Sprague-Dawley rats. In brief, 40 adult male rats were divided into four groups (n = 10); Control, ChV, Cd, and Cd + ChV. Cadmium alters liver and kidney architecture and disturbs the cellular signaling cascade, resulting in loss of body weight, alteration of the hematological picture, and increased ALT, AST, ALP, and urea in the blood serum. Moreover, cadmium puts hepatic and renal cells under oxidative stress due to the up-regulation of lipid peroxidation resulting in a significant increase in the IgG level as an innate immunity protection and induction of the pro-inflammatory cytokines (IL-1β and TNF-α) that causes hepatic hemorrhage, irregular hepatocytes in the liver and focal glomeruli swelling and proximal tubular degeneration in the kidney. ChV additive to CdCl2, could organize the protein translation process via NF-kB/Nrf2 pathways to prevent oxidative damage by maintaining cellular redox homeostasis and improving the survival of and tolerance of cells against oxidative damage caused by cadmium. The present study shed light on the anti-inflammatory and antioxidative properties of Chlorella vulgaris that suppress the toxicity influence of CdCl2.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Eman A. A. Mahdy
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt; (E.A.A.M.); (E.E.-H.)
| | - Enas El-Hady
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt; (E.A.A.M.); (E.E.-H.)
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 6012201, Egypt;
| | - Suzan A. Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy;
| | - Azza M. A. Abo-Elmaaty
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
12
|
Ouahabi S, Loukili EH, Daoudi NE, Chebaibi M, Ramdani M, Rahhou I, Bnouham M, Fauconnier ML, Hammouti B, Rhazi L, Ayerdi Gotor A, Dépeint F, Ramdani M. Study of the Phytochemical Composition, Antioxidant Properties, and In Vitro Anti-Diabetic Efficacy of Gracilaria bursa-pastoris Extracts. Mar Drugs 2023; 21:372. [PMID: 37504903 PMCID: PMC10381155 DOI: 10.3390/md21070372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, a comparison was made of the chemical makeup of different extracts obtained from Gracilaria bursa-pastoris, a type of red seaweed that was gathered from the Nador lagoon situated in the northern part of Morocco. Additionally, their anti-diabetic and antioxidant properties were investigated. The application of GC-MS technology to analyze the fatty acid content of the samples revealed that linoleic acid and eicosenoic acid were the most abundant unsaturated fatty acids across all samples, with palmitic acid and oleic acid following in frequency. The HPLC analysis indicated that ascorbic and kojic acids were the most prevalent phenolic compounds, while apigenin was the most common flavonoid molecule. The aqueous extract exhibited significant levels of polyphenols and flavonoids, registering values of 381.31 ± 0.33 mg GAE/g and 201.80 ± 0.21 mg QE/g, respectively. Furthermore, this particular extract demonstrated a remarkable ability to scavenge DPPH radicals, as evidenced by its IC50 value of 0.17 ± 0.67 mg/mL. In addition, the methanolic extract was found to possess antioxidant properties, as evidenced by its ability to prevent β-carotene discoloration, with an IC50 ranging from 0.062 ± 0.02 mg/mL to 0.070 ± 0.06 mg/mL. In vitro study showed that all extracts significantly inhibited the enzymatic activity of α-amylase and α-glucosidase. Finally, molecular docking models were applied to assess the interaction between the primary phytochemicals identified in G. bursa-pastoris extracts and the human pancreatic α-amylase and α-glucosidase enzymes. The findings suggest that these extracts contain bioactive substances capable of reducing enzyme activity more effectively than the commercially available drug acarbose.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - El Hassania Loukili
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Mohamed Ramdani
- Biochemistry and Biotechnology Laboratory, Faculty of Sciences, Mohamed First University, B.P. 717, Oujda 60000, Morocco
| | - Ilyesse Rahhou
- Higher Institute of Nursing Professions and Health Techniques (ISPITSO), Oujda 63303, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech. 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Belkheir Hammouti
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
- CREHEIO Centre de Recherche de l'Ecole des Hautes Etudes d'Ingénierie, Oujda 60000, Morocco
- Université Euro-Méditerranéenne de Fès, Fez BP 51, Morocco
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Alicia Ayerdi Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Flore Dépeint
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Mohammed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| |
Collapse
|
13
|
Hassan MA, Mahmoud YK, Elnabtiti AAS, El-Hawy AS, El-Bassiony MF, Abdelrazek HMA. Evaluation of Cadmium or Lead Exposure with Nannochloropsis oculata Mitigation on Productive Performance, Biochemical, and Oxidative Stress Biomarkers in Barki Rams. Biol Trace Elem Res 2023; 201:2341-2354. [PMID: 35705889 PMCID: PMC10020321 DOI: 10.1007/s12011-022-03318-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to determine the lead or cadmium exposure of Barki rams and the beneficial role of Nannochlorposis oculata (N. oculata) 4% as a feed supplement, as well as its mitigating role against these elements' impacts concerning performance, biochemical markers of liver enzymes and kidney function, thyroid hormone activity, and oxidative stress markers. Six groups of 36 Barki rams (33.63 ± 1.29 kg) were divided into G1: which served as control; G2: was given 4% dietary N. oculata; G3: was given oral 1 mg/kg cadmium chloride; G4: was given 5 mg/kg/day lead acetate; G5: was given oral 1 mg/kg cadmium chloride and 4% dietary N. oculata, and G6: was given oral 5 mg/kg/day lead acetate and 4% dietary N. oculata; and treatments were continued for 60 days. Cadmium and lead-exposed groups exhibited lower and weaker weight gain as well as feed conversion ratio, respectively, than the control and other groups. Additionally, levels of T3, T4, total proteins, albumin, and glutathione (GSH) were significantly reduced in both G3 and G4 compared to control. However, urea, creatinine, ALT, AST, total cholesterol, triglycerides, protein carbonyl content (PCC), and malondialdehyde (MDA) were significantly increased (P ≤ 0.05) in cadmium and lead-exposed groups. Dietary N. oculata (4%) improves serum proteins, creatinine, urea, T4, and oxidative stress indicators as compared to the control group. Finally, 4% dietary N. oculata greatly enhances the investigated parameters in terms of performance, thyroid hormones, serum biochemical, and antioxidant activity and may assist in reducing the endocrine disrupting effects of Pb and Cd.
Collapse
Affiliation(s)
- Marwa A Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - A A S Elnabtiti
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - A S El-Hawy
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | | | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
14
|
Zhang Z, Holden G, Wang B, Adhikari B. Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates. Food Chem 2023; 406:134931. [PMID: 36529088 DOI: 10.1016/j.foodchem.2022.134931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Spirulina protein concentrate (SPC) was extracted from Spirulina biomass and its structure and technofunctional properties were modified through Maillard reaction with maltodextrin (MD). Wet-heating route was adapted and Maillard reaction was controlled within initial to intermediate stage by avoiding or minimising the formation of melanoidins. A glycation degree of up to 29.1 % was achieved after reaction between SPC and MD, and molecular weight of the SPC increased accordingly. The solubility of SPC was improved only in the pH range around its isoelectric point after conjugation. The antioxidative property of the SPC-MD conjugate was also improved as the DPPH radical scavenging activity increased 19.7 to 30.2 %. Oil-in-water emulsion stabilised by SPC-MD conjugate produced at 6 h had significantly reduced droplet size, increased surface charge, and higher physical stability in temperature range 25-60 °C. The outcome of this research will help broaden the application of SPC in food as emulsifier and encapsulating shell material.
Collapse
Affiliation(s)
- Zijia Zhang
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | - Greg Holden
- Bega Corporate Centre, Melbourne, VIC 3008, Australia
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
15
|
Samarakoon KW, Kuruppu AI, Ko JY, Lee JH, Jeon YJ. Structural Characterization and Anti-Inflammatory Effects of 24-Methylcholesta-5(6), 22-Diene-3β-ol from the Cultured Marine Diatom Phaeodactylum tricornutum; Attenuate Inflammatory Signaling Pathways. Mar Drugs 2023; 21:md21040231. [PMID: 37103370 PMCID: PMC10144052 DOI: 10.3390/md21040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
In the present investigation, 24-methylcholesta-5(6), 22-diene-3β-ol (MCDO), a major phytosterol was isolated from the cultured marine diatom, Phaeodactylum tricornutum Bohlin, and in vitro and in vivo anti-inflammatory effects were determined. MCDO demonstrated very potent dose-dependent inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) against lipopolysaccharide (LPS)-induced RAW 264.7 cells with minimal cytotoxic effects. MCDO also demonstrated a strong and significant suppression of pro-inflammatory cytokines of interleukin-1β (IL-1β) production, but no substantial inhibitory effects were observed on the production of cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at the tested concentrations against LPS treatment on RAW macrophages. Western blot assay confirmed the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions against LPS-stimulated RAW 264.7 cells. In addition, MCDO was assessed for in vivo anti-inflammatory effects using the zebrafish model. MCDO acted as a potent inhibitor for reactive oxygen species (ROS) and NO levels with a protective effect against the oxidative stress induced by LPS in inflammatory zebrafish embryos. Collectively, MCDO isolated from the cultured marine diatom P. tricornutum exhibited profound anti-inflammatory effects both in vitro and in vivo, suggesting that this major sterol might be a potential treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Kalpa W Samarakoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana 10390, Sri Lanka
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Anchala I Kuruppu
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana 10390, Sri Lanka
| | - Ju-Young Ko
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 406-772, Republic of Korea
| | - Ji-Hyeok Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Lee Gill Ya Cancer and Diabetes Institute, Incheon 406-840, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
16
|
Yang N, Zhang Q, Chen J, Wu S, Chen R, Yao L, Li B, Liu X, Zhang R, Zhang Z. Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1144326. [PMID: 37056511 PMCID: PMC10089266 DOI: 10.3389/fpls.2023.1144326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Natural antioxidants are more attractive than synthetic chemical oxidants because of their non-toxic and non-harmful properties. Microalgal bioactive components such as carotenoids, polysaccharides, and phenolic compounds are gaining popularity as very effective and long-lasting natural antioxidants. Few articles currently exist that analyze microalgae from a bibliometric and visualization point of view. This study used a bibliometric method based on the Web of Science Core Collection database to analyze antioxidant research on bioactive compounds in microalgae from 1996 to 2022. According to cluster analysis, the most studied areas are the effectiveness, the antioxidant mechanism, and use of bioactive substances in microalgae, such as carotene, astaxanthin, and tocopherols, in the fields of food, cosmetics, and medicine. Using keyword co-occurrence and keyword mutation analysis, future trends are predicted to improve extraction rates and stability by altering the environment of microalgae cultures or mixing extracts with chemicals such as nanoparticles for commercial and industrial applications. These findings can help researchers identify trends and resources to build impactful investigations and expand scientific frontiers.
Collapse
Affiliation(s)
- Ning Yang
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qingyang Zhang
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- Qingyuan County Edible Fungus Industry Center, Lishui, China
| | - Jingyun Chen
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shilin Wu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ran Chen
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liping Yao
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Bailei Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaojun Liu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Rongqing Zhang
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Zhen Zhang
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
In Vitro Characterization of Limosilactobacillus reuteri Lac Ib01 (OL468126.1) Isolated from Traditional Sheep Dry Sausage and Evaluation of the Activity of Arthrospira platensis or Phycocyanin on Its Growth-Promoting Ability. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The positive impact of probiotic strains on human health is more evident than ever. To achieve the beneficial health effects and desirable functional properties of probiotics, sufficient numbers of these microorganisms must reach the intestinal tract with high survival rates. The purpose of this study was to identify and characterize a novel strain of Limosilactobacillus reuteri isolated from traditional sheep dry sausage and evaluate its growth-promoting ability with the addition of Arthrospira platensis or phycocyanin extract. In vitro experimental approaches were conducted to determine the physiological features of the candidate probiotic isolate, including biochemical identification, 16S rRNA gene sequencing, tolerance assays to acid and bile salts, antimicrobial activities, adherence ability, and antiproliferative assays. The effects of A. platensis or phycocyanin (0, 1, 5, and 8 mg/mL) on the growth of probiotic cultures were studied after 0, 24, 48, and 72 h. Our results showed that the isolated Limosilactobacillus reuteri (OL468126.1) possesses desirable characteristics as a probiotic candidate and can, therefore, be used as an ingredient in functional foods. Furthermore, A. platensis and phycocyanin extract have great potential for enhancing the growth and prolonging the stationary phase of isolated probiotics. Our findings showed that phycocyanin extract not only plays the role of a natural pigment but also acts as a growth promoter of probiotics.
Collapse
|
18
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW. Smart systems in producing algae-based protein to improve functional food ingredients industries. Food Res Int 2023; 165:112480. [PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
Collapse
Affiliation(s)
- Yi Ting Neo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Cheng Loong Ngan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62, Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
20
|
Nutautaitė M, Racevičiūtė-Stupelienė A, Bliznikas S, Vilienė V. Enhancement of Rabbit Meat Functionality by Replacing Traditional Feed Raw Materials with Alternative and More Sustainable Freshwater Cladophora glomerata Macroalgal Biomass in Their Diets. Foods 2023; 12:foods12040744. [PMID: 36832819 PMCID: PMC9955542 DOI: 10.3390/foods12040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Today's challenges in the animal husbandry sector, with customers' demand for more beneficial products, encourage the development of strategies that not only provide more sustainable production from the field to the table but also ensure final product functionality. Thus, the current research was aimed at replacing some traditional feed raw materials in rabbit diets with C. glomerata biomass to improve the functionality of meat. For this purpose, thirty weaned (52-d-old) Californian rabbits were assigned to 3 dietary treatments: standard compound diet (SCD), SCD + 4% C. glomerata (CG4), and SCD + 8% C. glomerata (CG8). At the end of the feeding trial, 122-d-old rabbits were slaughtered, longissimus dorsi (LD) and hind leg (HL) muscles were dissected post-mortem, and moisture, protein, and lipid profiles were determined. Results revealed that CG4 treatment can increase protein (22.17 g/kg), total (192.16 g/kg) and essential (threonine, valine, methionine, lysine, and isoleucine) amino acid levels in rabbit muscles. Both inclusions gradually reduced fat accumulation in muscles (CG8 < CG4 < SCD) but improved the lipid profile's nutritional value by decreasing saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) and increasing polyunsaturated fatty acids (PUFA). As the dose of C. glomerata increased, the level of lipid oxidation decreased. Biomass supplementation enhanced PUFA/SFA and h/H levels while decreasing thrombogenicity index (TI) and atherogenic index (AI) levels in rabbit muscles, potentially contributing to the prevention of heart disease. Overall, dietary supplementation with C. glomerata biomass may be a more beneficial and sustainable nutritional approach to functionally enhancing rabbit meat.
Collapse
Affiliation(s)
- Monika Nutautaitė
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
- Correspondence:
| | - Asta Racevičiūtė-Stupelienė
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Saulius Bliznikas
- Institute of Animal Science, Lithuanian University of Health Sciences, LT-82317 Baisogala, Lithuania
| | - Vilma Vilienė
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| |
Collapse
|
21
|
El-Shall NA, Jiang S, Farag MR, Azzam M, Al-Abdullatif AA, Alhotan R, Dhama K, Hassan FU, Alagawany M. Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Front Immunol 2023; 14:1072787. [PMID: 36798131 PMCID: PMC9927202 DOI: 10.3389/fimmu.2023.1072787] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Increase in drug resistance as well as ineffective immunization efforts against various pathogens (viruses, bacteria and fungi) pose a significant threat to the poultry industry. Spirulina is one of the most widely used natural ingredients which is becoming popular as a nutritional supplement in humans, animals, poultry and aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and essential amino acids. Moreover, it also has considerable quantities of unique natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary supplementation of Spirulina can beneficially affect gut microbial population, serum biochemical parameters, and growth performance of chicken. Additionally, it contains polyphenolic contents having antibacterial effects. Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and quorum sensing in addition to acting directly on the bacterium by weakening and making the bacterial cell walls more porous, subsequently resulting in cytoplasmic content leakage. Additionally, Spirulina has shown antiviral activities against certain common human or animal viruses and this capability can be considered to exhibit potential benefits against avian viruses also. Spirulan, a calcium-rich internal polysaccharide of Spirulina, is potentially responsible for its antiviral effect through inhibiting the entry of several viruses into the host cells, boosting the production of nitric oxide in macrophages, and stimulating the generation of cytokines. Comparatively a greater emphasis has been given to the immune modulatory effects of Spirulina as a feed additive in chicken which might boost disease resistance and improve survival and growth rates, particularly under stress conditions. This manuscript reviews biological activities and immune-stimulating properties of Spirulina and its potential use as a dietary supplement in poultry to enhance growth, gut health and disease resistance.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong, China
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Poultry Production Department, Agriculture Faculty, Mansoura University, Mansoura, Egypt
| | - Abdulaziz A Al-Abdullatif
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Recearch-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Faiz-Ul Hassan
- Institute of animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Abd El-Hack ME, Abdel-Moneim AME, Shehata AM, Mesalam NM, Salem HM, El-Saadony MT, El-Tarabily KA. Microalgae applications in poultry feed. HANDBOOK OF FOOD AND FEED FROM MICROALGAE 2023:435-450. [DOI: 10.1016/b978-0-323-99196-4.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Baldisserotto C, Gentili V, Rizzo R, Di Donna C, Ardondi L, Maietti A, Pancaldi S. Characterization of Neochloris oleoabundans under Different Cultivation Modes and First Results on Bioactivity of Its Extracts against HCoV-229E Virus. PLANTS (BASEL, SWITZERLAND) 2022; 12:26. [PMID: 36616154 PMCID: PMC9823352 DOI: 10.3390/plants12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microalgae are proposed in several biotechnological fields because of their ability to produce biomass enriched in high-value compounds according to cultivation conditions. Regarding the health sector, an emerging area focuses on natural products exploitable against viruses. This work deals with the characterization of the green microalga Neochloris oleoabundans cultivated under autotrophic and mixotrophic conditions as a source of whole aqueous extracts, tested as antivirals against HCoV-229E (Coronaviridae family). Glucose was employed for mixotrophic cultures. Growth and maximum quantum yield of photosystem II were monitored for both cultivations. Algae extracts for antiviral tests were prepared using cultures harvested at the early stationary phase of growth. Biochemical and morphological analyses of algae indicated a different content of the most important classes of bioactive compounds with antiviral properties (lipids, exo-polysaccharides, and total phenolics, proteins and pigments). To clarify which phase of HCoV-229E infection on MRC-5 fibroblast cells was affected by N. oleoabundans extracts, four conditions were tested. Extracts gave excellent results, mainly against the first steps of virus infection. Notwithstanding the biochemical profile of algae/extracts deserves further investigation, the antiviral effect may have been mainly promoted by the combination of proteins/pigments/phenolics for the extract derived from autotrophic cultures and of proteins/acidic exo-polysaccharides/lipids in the case of mixotrophic ones.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Chiara Di Donna
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Luna Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Salem MAEK, Adawy RS, Zaki VH, Zahran E. Nannochloropsis oculata supplementation improves growth, immune response, intestinal integrity, and disease resistance of Nile Tilapia. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:184-196. [PMID: 36478445 DOI: 10.1002/aah.10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The current study evaluated the potential roles of incorporating Nannochloropsis oculata into the diet of Nile Tilapia Oreochromis niloticus in an 8-week trial. METHODS Dietary supplementation of N. oculata was tested at inclusion levels (0% [control], 5% [N5], and 10% [N1]) in triplicate. After the trial, comprehensive fish health indicators were evaluated. RESULT N. oculata-supplemented feed had a stimulatory effect on fish body weight, where a significant increase in final weight and specific growth rate was observed in the N10 group compared to the control. Better feed conversion was observed at N5 and N10 compared to control. Organosomatic indices were elevated significantly in the N5 group compared to the N10 and control groups. Serum lysozyme activity was significantly increased in the N10 group compared to N5 and control groups. Levels of IgM were significantly higher in N10 compared to the control and N5 groups, with no significance between the latter. Amylase activity showed a significant enhancement in N10 compared to N5. Both levels of N. oculata preserved hepatic health and antioxidant status. Light and transmission electron microscopy showed that Nile Tilapia fed N. oculata at both levels enhanced intestinal immunity, integrity, and absorptive efficiency. The protecting effect of N. oculata was confirmed against Aeromonas hydrophila challenge, where cumulative mortalities were significantly decreased in N5 and N10 groups compared with the control and more in N10. CONCLUSION This work confirmed the different beneficial roles of N. oculata dietary supplementation for a Nile Tilapia balanced diet.
Collapse
Affiliation(s)
- Mona Abd El-Khalek Salem
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Fish Diseases and Management, Animal Health Research Institute, Agriculture Research Center, Mansoura, Egypt
| | - Rawia Saad Adawy
- Department of Fish Diseases and Management, Animal Health Research Institute, Agriculture Research Center, Mansoura, Egypt
| | - Viola Hassan Zaki
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Low KL, Idris A, Yusof NM. An optimized strategy for lutein production via microwave-assisted microalgae wet biomass extraction process. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Saeed MU, Hussain N, Shahbaz A, Hameed T, Iqbal HMN, Bilal M. Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications. J Basic Microbiol 2022; 62:1110-1124. [PMID: 34914840 DOI: 10.1002/jobm.202100445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 02/05/2023]
Abstract
Microalgae and cyanobacteria have sparked a lot of interest due to their potential in various industries like biorefineries, biopharmaceuticals, food supplements, nutraceuticals, and other high-value products. Polysaccharides, vitamins, proteins, enzymes, and steroids are valuable products isolated from microalgae and cyanobacteria and potentially used in health and biomedical applications. Bioactive compounds derived from microalgae and cyanobacteria exhibit various pharmaceutical properties like antibacterial, anticancer, antiviral, antialgal, and antioxidant. From the properties listed above, the research for novel antibiotics has become particularly appropriate. In addition, the possible emergence of resistance against pathogens, as well as the potential decline in antibiotic efficacy, has prompted researchers to look for a new source of antibiotics. Microalgae and cyanobacteria have indicated a great and unexplored potential among these sources. For this reason, microalgae and cyanobacteria have been highlighted for their efficiency in different industrial sectors, as well as for their potential uses in the betterment of human and environmental health. This review gives an overview of bioactive compounds and metabolites with several biological properties isolated from microalgae and cyanobacteria for treating different animal and human diseases.
Collapse
Affiliation(s)
- Muhammad U Saeed
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Tooba Hameed
- School of Biochemistry & Biotechnology, University of the Punjab Lahore, Lahore, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
28
|
Lomartire S, Gonçalves AMM. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022; 11:foods11172654. [PMID: 36076839 PMCID: PMC9455623 DOI: 10.3390/foods11172654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
The use of seaweed for therapeutic purposes is ancient, but only in the last decade, with advanced technologies, has it been possible to extract seaweed’s bioactive compounds and test their potential properties. Algal metabolites possess nutritional properties, but they also exhibit antioxidant, antimicrobial, and antiviral activities, which allow them to be involved in several pharmaceutical applications. Seaweeds have been incorporated since ancient times into diets as a whole food. With the isolation of particular seaweed compounds, it would be possible to develop new types of food with therapeutically properties. Polysaccharides make up the majority of seaweed biomass, which has triggered an increase in interest in using seaweed for commercial purposes, particularly in the production of agar, carrageenan, and alginate. The bio-properties of polysaccharides are strictly dependent to their chemical characteristics and structure, which varies depending on the species, their life cycles, and other biotic and abiotic factors. Through this review, techniques for seaweed polysaccharides extraction are reported, with studies addressing the advantages for human health from the incorporation of algal compounds as dietary supplements and food additives.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-239-240-700 (ext. 262-286)
| |
Collapse
|
29
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
30
|
Wood EE, Ross ME, Jubeau S, Montalescot V, Stanley MS. Progress towards a targeted biorefinery of Chromochloris zofingiensis: a review. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:8127-8152. [PMID: 38510795 PMCID: PMC10948469 DOI: 10.1007/s13399-022-02955-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 03/22/2024]
Abstract
Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02955-7.
Collapse
Affiliation(s)
- Eleanor E. Wood
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | - Michael E. Ross
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| | - Sébastien Jubeau
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | | | - Michele S. Stanley
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| |
Collapse
|
31
|
Meat Analogues: Types, Methods of Production and Their Effect on Attributes of Developed Meat Analogues. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Reis B, Ramos-Pinto L, Cunha SA, Pintado M, da Silva JL, Dias J, Conceição L, Matos E, Costas B. Chlorella vulgaris Extracts as Modulators of the Health Status and the Inflammatory Response of Gilthead Seabream Juveniles (Sparus aurata). Mar Drugs 2022; 20:md20070407. [PMID: 35877700 PMCID: PMC9323325 DOI: 10.3390/md20070407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to evaluate the effects of short-term supplementation, with 2% Chlorella vulgaris (C. vulgaris) biomass and two 0.1% C. vulgaris extracts, on the health status (experiment one) and on the inflammatory response (experiment two) of gilthead seabream (Sparus aurata). The trial comprised four isoproteic (50% crude protein) and isolipidic (17% crude fat) diets. A fishmeal-based (FM), practical diet was used as a control (CTR), whereas three experimental diets based on CTR were further supplemented with a 2% inclusion of C. vulgaris biomass (Diet D1); 0.1% inclusion of C. vulgaris peptide-enriched extract (Diet D2) and finally a 0.1% inclusion of C. vulgaris insoluble fraction (Diet D3). Diets were randomly assigned to quadruplicate groups of 97 fish/tank (IBW: 33.4 ± 4.1 g), fed to satiation three times a day in a recirculation seawater system. In experiment one, seabream juveniles were fed for 2 weeks and sampled for tissues at 1 week and at the end of the feeding period. Afterwards, randomly selected fish from each group were subjected to an inflammatory insult (experiment two) by intraperitoneal injection of inactivated gram-negative bacteria, following 24 and 48 h fish were sampled for tissues. Blood was withdrawn for haematological procedures, whereas plasma and gut tissue were sampled for immune and oxidative stress parameters. The anterior gut was also collected for gene expression measurements. After 1 and 2 weeks of feeding, fish fed D2 showed higher circulating neutrophils than seabream fed CTR. In contrast, dietary treatments induced mild effects on the innate immune and antioxidant functions of gilthead seabream juveniles fed for 2 weeks. In the inflammatory response following the inflammatory insult, mild effects could be attributed to C. vulgaris supplementation either in biomass form or extract. However, the C. vulgaris soluble peptide-enriched extract seems to confer a protective, anti-stress effect in the gut at the molecular level, which should be further explored in future studies.
Collapse
Affiliation(s)
- Bruno Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
- Sorgal S.A., EN 109-Lugar da Pardala, 3880-728 São João de Ovar, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.R.); (B.C.); Tel.: +351-223-401-840 (B.R.); +351-223-401-838 (B.C.)
| | - Lourenço Ramos-Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
| | - Sara A. Cunha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (M.P.)
| | - Joana Laranjeira da Silva
- Allmicroalgae, Natural Products SA, Industrial Microalgae Production, Apartado 9, 2449-909 Pataias, Portugal;
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
| | - Luís Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
| | - Elisabete Matos
- Sorgal S.A., EN 109-Lugar da Pardala, 3880-728 São João de Ovar, Portugal
- B2E Associação para a Bioeconomia Azul—Laboratório Colaborativo, Av. Liberdade, UPTEC Mar, 4450-718 Leça da Palmeira, Portugal;
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
- Correspondence: (B.R.); (B.C.); Tel.: +351-223-401-840 (B.R.); +351-223-401-838 (B.C.)
| |
Collapse
|
33
|
ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, Balakrishnan D, Show PL. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered 2022; 13:14681-14718. [PMID: 35946342 PMCID: PMC9373759 DOI: 10.1080/21655979.2022.2100863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
Collapse
Affiliation(s)
- Omar Ashraf ElFar
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities,Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | | | | | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| |
Collapse
|
34
|
Krohn I, Menanteau‐Ledouble S, Hageskal G, Astafyeva Y, Jouannais P, Nielsen JL, Pizzol M, Wentzel A, Streit WR. Health benefits of microalgae and their microbiomes. Microb Biotechnol 2022; 15:1966-1983. [PMID: 35644921 PMCID: PMC9249335 DOI: 10.1111/1751-7915.14082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro‐ and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.
Collapse
Affiliation(s)
- Ines Krohn
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Jeppe Lund Nielsen
- Department for Chemistry and Bioscience Aalborg University Aalborg Denmark
| | - Massimo Pizzol
- Department of Planning Aalborg University Aalborg Denmark
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| |
Collapse
|
35
|
Suraiya S, Ahmmed MK, Haq M. Immunity boosting roles of biofunctional compounds available in aquafoods: A review. Heliyon 2022; 8:e09547. [PMID: 35663745 PMCID: PMC9160354 DOI: 10.1016/j.heliyon.2022.e09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/24/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Aquafoods are diverse and rich in containing various health functional compounds which boost natural immunity. In this manuscript, the contents of biofunctional compounds such as vitamins, minerals, protein and amino acids, ω-3 polyunsaturated fatty acids, and pigments, etc. in various aquafoods like fishes, molluscs, crustaceans, seaweeds etc. are reported. The functional roles of those compounds are also depicted which enhance the immunecompetence and immunomodulation of the consumers. This paper provides an account of the recommended daily dietary intake level of those compounds for human. Those compounds available in aquafoods are recommended as they fight against various infectious diseases by enhancing immunity. Available reports on the bioactive compounds in aquafoods reveal the immunity boosting performances which may offer a new insight into controlling infectious diseases.
Collapse
Affiliation(s)
- Sharmin Suraiya
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
36
|
Protein potential of Desmodesmus asymmetricus grown in greenhouse as an alternative food source for aquaculture. World J Microbiol Biotechnol 2022; 38:92. [DOI: 10.1007/s11274-022-03275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
37
|
Ikeda IK, Sydney EB, Sydney ACN. The potential application of
Spirulina
in dermatology. J Cosmet Dermatol 2022; 21:4205-4214. [DOI: 10.1111/jocd.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
|
38
|
Cheng P, Li Y, Wang C, Guo J, Zhou C, Zhang R, Ma Y, Ma X, Wang L, Cheng Y, Yan X, Ruan R. Integrated marine microalgae biorefineries for improved bioactive compounds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152895. [PMID: 34998757 DOI: 10.1016/j.scitotenv.2021.152895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Marine microalgae offer a promising feedstock for biofuels and other valuable compounds for biorefining and carry immense potential to contribute to a clean energy and environment future. However, it is currently not economically feasible to use marine algae to produce biofuels, and the potential bioactive chemicals account for only a small market share. The production of algal biomass with multiple valuable chemicals is closely related to the algal species, cultivation conditions, culture systems, and production modes. Thus, higher requirements for screening of dominant algal strains, developing integrated technologies with the optimum culture conditions, efficient cultivation systems, and production modes to exploit algal biomass for biorefinery applications, are all needed. This review summarizes the screening of dominant microalgae, discusses the environmental conditions that may affect the growth, as well as the culture systems and production modes, and further emphasizes the valorization options of the algal biomass, which should help to offer a sustainable approach to run a profitable marine algae production system.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, USA
| | - Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiameng Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Xiaochen Ma
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Lu Wang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
39
|
Antioxidant and Anti-Colorectal Cancer Properties in Methanolic Extract of Mangrove-Derived Schizochytrium sp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work studied the antioxidant and anti-colorectal cancer properties of a potential strain of thraustochytrids, Schizochytrium sp. (SMKK1), isolated from mangrove leaf litter. The biomass was extracted with methanol and screened for antioxidant activity using six different assays. The extract exhibited the highest total antioxidant activity (87.37 ± 1.22%) and the lowest nitric oxide radical (75.12 ± 2.22%), and the activity increased with the concentration of the extract. The methanolic extract was further tested for in vitro cytotoxicity on the colon cancer cell line (HT29). The extract was also analyzed for polyunsaturated fatty acids using GC-MS. The five predominant HTVS-based compounds, viz., arachidonic acid, linolenic acid (alpha-linolenic acid and gamma-linolenic acid), eicosapentaenoic acid, and docosahexaenoic acid, were identified in the extract, and these were tested against the colon cancer protein IGF binding (IGF-1) using the in silico docking method. The results revealed that all the five compounds were capable of destroying the colon oncoprotein responsible for anti-colon carcinogen, based on activation energy and also good hydrogen bond interaction against IGF binding proteins. Of the compounds, docosahexaenoic acid was the most effective, having a docking score of −10.8 Kcal/mol. All the five fatty acids passed the ADMET test and were hence accepted for further clinical trials towards the development of anticancer drugs.
Collapse
|
40
|
Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Mar Drugs 2022; 20:142. [PMID: 35200671 PMCID: PMC8880515 DOI: 10.3390/md20020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans.
Collapse
Affiliation(s)
- Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Elvis Djedović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tina Paradžik
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Mahendran MS, Antony Dhanapal ACT, Wong LS, Kasivelu G, Djearamane S. Microalgae as a Potential Source of Bioactive Food Compounds. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.3.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Microalgae are unicellular, photosynthethic organisms that can grow on diverse aquatic habitatss like ponds, lakes, rivers, oceans, waste water and humid soils. Recently, microalgae are gaining importance as renewable sources of biologically active food compounds such as polysaccharides, proteins, essential fatty acids, biopigments such as chlorophylls, carotenoids, astaxanthin, as well as vitamins and minerals.The bioactive food compounds of microalgae enable them to be part of multitude of applications in numerous industrial products for healthy life and ecosystem. This review article summarizes the applications of biologically active food compounds derived from microalgae as nutraceuticals, healthy dietary supplements, pharmaceuticals and cosmetics. Further, this review article highlights the importance of research focus on the identification and extraction of bioactive food compounds from the huge numbers of microlage that exist in nature for sustainable global food security and economy.
Collapse
Affiliation(s)
- Manishaa Sri Mahendran
- 1Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | | | - Ling Shing Wong
- 2Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Govindaraju Kasivelu
- 3MoES - Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology (Deemed to be University) Chennai, India
| | - Sinouvassane Djearamane
- 4Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| |
Collapse
|
42
|
Wu H, Li T, Lv J, Chen Z, Wu J, Wang N, Wu H, Xiang W. Growth and Biochemical Composition Characteristics of Arthrospira platensis Induced by Simultaneous Nitrogen Deficiency and Seawater-Supplemented Medium in an Outdoor Raceway Pond in Winter. Foods 2021; 10:foods10122974. [PMID: 34945525 PMCID: PMC8701333 DOI: 10.3390/foods10122974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Arthrospira platensis, a well-known cyanobacterium, is widely applied not only in human and animal nutrition but also in cosmetics for its high amounts of active products. The biochemical composition plays a key role in the application performance of the Arthrospira biomass. The present study aimed to evaluate the growth and biochemical composition characteristics of A. platensis, cultured with a nitrogen-free and seawater-supplemented medium in an outdoor raceway pond in winter. The results showed that the biomass yield could achieve 222.42 g m−2, and the carbohydrate content increased by 247% at the end of the culture period (26 d), compared with that of the starter culture. The daily and annual areal productivities were 3.96 g m−2 d−1 and 14.44 ton ha−1 yr−1 for biomass and 2.88 g m−2 d−1 and 10.53 ton ha−1 yr−1 for carbohydrates, respectively. On the contrary, a profound reduction was observed in protein, lipid, and pigment contents. Glucose, the main monosaccharide in the A. platensis biomass, increased from 77.81% to 93.75% of total monosaccharides. Based on these results, large-scale production of carbohydrate-rich A. platensis biomass was achieved via a low-cost culture, involving simultaneous nitrogen deficiency and supplementary seawater in winter.
Collapse
Affiliation(s)
- Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jinting Lv
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
| | - Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
| | - Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (H.W.); (T.L.); (J.L.); (Z.C.); (J.W.); (N.W.); (H.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: ; Tel.: +86-20-8902-3223
| |
Collapse
|
43
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Woyda-Ploszczyca AM, Rybak AS. How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK). ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Utilization of microalgae residue and isolated cellulose nanocrystals: A study on crystallization kinetics of poly(ɛ-caprolactone) bio-composites. Int J Biol Macromol 2021; 191:521-530. [PMID: 34560151 DOI: 10.1016/j.ijbiomac.2021.09.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
Exploration of biodegradable materials for conventional application has taken a rising interest across the world. The presented work primarily focused on exploring the effectiveness of isolated CNCs from marine de-oiled green algae biomass residue (Dunaliella tertiolecta) in synthesized poly(ɛ-caprolactone) (PCL). The washed algae biomass residue (WABR) and algae derived CNCs were explored as two different bio-fillers incorporated into PCL for comparison and development of biodegradable and flexible bio-composites with varying bio-filler loading. FTIR, XRD, TGA, UTM, DSC, POM, and SAXS characterized the developed PCL/WABR and PCL/CNC bio-composites. Improved thermal stability was observed in PCL/CNC bio-composites by ~10 °C rise. Besides, increased modulus of 18.38 MPa and tensile strength was obtained in PCL/CNC/1 bio-composites. However, the isothermal kinetics study (at 45 °C) revealed the reduction in the degree of crystallinity of bio-composites, and the axialite formation was visualized via POM. Moreover, CNCs was found as an excellent nucleating agent and effective bio-filler as compared to WABR.
Collapse
|
46
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
47
|
Kuhfuß F, Gassenmeier V, Deppe S, Ifrim G, Rodríguez TH, Frahm B. View on a mechanistic model of Chlorella vulgaris in incubated shake flasks. Bioprocess Biosyst Eng 2021; 45:15-30. [PMID: 34677674 PMCID: PMC8732984 DOI: 10.1007/s00449-021-02627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Kinetic growth models are a useful tool for a better understanding of microalgal cultivation and for optimizing cultivation conditions. The evaluation of such models requires experimental data that is laborious to generate in bioreactor settings. The experimental shake flask setting used in this study allows to run 12 experiments at the same time, with 6 individual light intensities and light durations. This way, 54 biomass data sets were generated for the cultivation of the microalgae Chlorella vulgaris. To identify the model parameters, a stepwise parameter estimation procedure was applied. First, light-associated model parameters were estimated using additional measurements of local light intensities at differ heights within medium at different biomass concentrations. Next, substrate related model parameters were estimated, using experiments for which biomass and nitrate data were provided. Afterwards, growth-related model parameters were estimated by application of an extensive cross validation procedure.
Collapse
Affiliation(s)
- Fabian Kuhfuß
- Biotechnology and Bioprocess Engineering, Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, Lemgo, Germany
| | - Veronika Gassenmeier
- Biotechnology and Bioprocess Engineering, Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, Lemgo, Germany
| | | | - George Ifrim
- "Dunarea de Jos" University of Galati, Galati, Romania
| | - Tanja Hernández Rodríguez
- Biotechnology and Bioprocess Engineering, Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, Lemgo, Germany
| | - Björn Frahm
- Biotechnology and Bioprocess Engineering, Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, Lemgo, Germany.
| |
Collapse
|
48
|
Casciano F, Nissen L, Gianotti A. Effect of formulations and fermentation processes on volatile organic compounds and prebiotic potential of gluten-free bread fortified by spirulina ( Arthrospira platensis). Food Funct 2021; 12:10226-10238. [PMID: 34542123 DOI: 10.1039/d1fo01239h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gluten free (GF) foods, designed and marketed for the needs of people who are unable to metabolize gluten, in recent years have aroused growing interest that has led to the conquest of important market segments, with a strongly growing trend. Given the low protein content of standard GF flours, it is particularly important to fortify GF foods, and to study the effect that this process exerts on functional and sensorial characteristics. In this work, fortification of GF bakery goods was done with the addition of Arthrospira platensis (spirulina) flour. Two different dough formulations (with and without fortification) were fermented by four different processes, including spontaneous, single strains and sourdough starters. The baked products were then subjected to "consumer's tests". During the process, fermentation performances, prebiotic activity, and the VOC (Volatile Organic Compound) profiles were analyzed and compared through robust multivariate statistics. The results obtained evidenced that fortification led to a product with more abundant (medium organic acids) and exclusive bioactives (thymol, borneol, and nicotinic acid), which were correlated to the prebiotic activity of spirulina breads. This work, for the first time indicates that spirulina can be used to fortify GF bakery, improving also its functional potential.
Collapse
Affiliation(s)
- Flavia Casciano
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Campus of Food Science, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy
| | - Lorenzo Nissen
- CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy.
| | - Andrea Gianotti
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Campus of Food Science, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy.,CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy.
| |
Collapse
|
49
|
Brun P, Piovan A, Caniato R, Dalla Costa V, Pauletto A, Filippini R. Anti-Inflammatory Activities of Euglena gracilis Extracts. Microorganisms 2021; 9:2058. [PMID: 34683379 PMCID: PMC8537577 DOI: 10.3390/microorganisms9102058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dietary supplementation with nutrients able to control intestinal and systemic inflammation is of marketable interest. Indeed, gastrointestinal homeostasis plays a significant role in maintaining human health. In this setting, E. gracilis may sustain or promote human health, but the effects on the intestinal inflammatory milieu are not clear. In this study, we investigated the anti-inflammatory activity of E. gracilis and inferred possible mechanisms. Paramylon, crude, and fractionated extracts were obtained from E. gracilis grown in vitro. Phytoconstituents of the extracts were characterized using TLC and HPLC UV-Vis. The anti-inflammatory and antioxidant activities were investigated in primary human macrophages and an intestinal epithelial cell line (HT-29). The analysis of the extracts led to identifying β-carotene, neoxanthin, diadinoxanthin, canthaxanthin, and breakdown products such as pheophytins and pheophorbides. E. gracilis fractionated extracts reduced the production of tumor necrosis factor-α triggered by bacterial lipopolysaccharide (LPS) in the short and long terms. Pheophytin a and b and canthaxanthin increased the intracellular reducing potential and dampened the production of LPS-induced reactive oxygen species and lipid peroxidation, intracellular events usually involved in the perpetuation of chronic inflammatory disorders. This study rationalizes the role of specific extract fractions of E. gracilis in controlling LPS-driven intestinal inflammation.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy;
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (A.P.); (R.C.); (V.D.C.); (R.F.)
| | - Rosy Caniato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (A.P.); (R.C.); (V.D.C.); (R.F.)
| | - Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (A.P.); (R.C.); (V.D.C.); (R.F.)
| | - Anthony Pauletto
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy;
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (A.P.); (R.C.); (V.D.C.); (R.F.)
| |
Collapse
|
50
|
Mamdouh AZ, Zahran E, Mohamed F, Zaki V. Nannochloropsis oculata feed additive alleviates mercuric chloride-induced toxicity in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105936. [PMID: 34388370 DOI: 10.1016/j.aquatox.2021.105936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Using microalgae to alleviate the adverse effects of aquaculture pollutants, including metals, has recently gained much attention. In this context, bioaccumulation, hematological indices, oxidative and antioxidant responses, and histopathological alterations were investigated in Nile tilapia (Oreochromis niloticus) fed with either a control diet or diets containing Nannochloropsis oculata (N. oculata) after exposure to mercuric chloride in order to evaluate the role of this microalgae in protecting against mercury-induced toxicity. Fish exposed to HgCl2 at a dose of ¼ LC50 (0.3 mg/L) (Hg group) for 7-21 days exhibited a significant increase in total mercury concentration with a bioaccumulation pattern of liver>gills>muscle, and a significant decrease in all blood indices except mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), monocyte counts, and neutrophil counts. Malondialdehyde (MDA) levels were significantly increased in the Hg group at all time points relative to the control. Glutathione peroxidase (GPx) activity was significantly increased at days 14 and 21, while catalase (CAT) and GPx activities increased and decreased, respectively, at day 7 compared to the control. Additionally, lysozyme activity and immunoglobulin M (IgM) were significantly decreased in the Hg-exposed group. Severe histopathological alterations were evident in the liver, kidneys, and gills. However, supplementation with N. oculata at a low (5%, 50 g/kg feed) or high (10%, 100 g/kg feed) dose stabilized all parameters and reduced the severity of the histopathological alterations with the high N. oculata diet showing more prominent effects. These results suggest that feeding N. oculata protects Nile tilapia against mercuric chloride-induced toxicity.
Collapse
Affiliation(s)
- Al-Zahraa Mamdouh
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; National institute of Oceanography and Fisheries (NIOF), Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Fatma Mohamed
- National institute of Oceanography and Fisheries (NIOF), Egypt
| | - Viola Zaki
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|