1
|
Viscarra F, Chrestia JF, Sanchez Y, Pérez EG, Biggin PC, Bouzat C, Bermudez I, López JJ. Side Groups Convert the α7 Nicotinic Receptor Agonist Ether Quinuclidine into a Type I Positive Allosteric Modulator. ACS Chem Neurosci 2023; 14:2876-2887. [PMID: 37535446 DOI: 10.1021/acschemneuro.3c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
The quinuclidine scaffold has been extensively used for the development of nicotinic acetylcholine receptor (nAChR) agonists, with hydrophobic substituents at position 3 of the quinuclidine framework providing selectivity for α7 nAChRs. In this study, six new ligands (4-9) containing a 3-(pyridin-3-yloxy)quinuclidine moiety (ether quinuclidine) were synthesized to gain a better understanding of the structural-functional properties of ether quinuclidines. To evaluate the pharmacological activity of these ligands, two-electrode voltage-clamp and single-channel recordings were performed. Only ligand 4 activated α7 nAChR. Ligands 5 and 7 had no effects on α7 nAChR, but ligands 6, 8, and 9 potentiated the currents evoked by ACh. Ligand 6 was the most potent and efficacious of the potentiating ligands, with an estimated EC50 for potentiation of 12.6 ± 3.32 μM and a maximal potentiation of EC20 ACh responses of 850 ± 120%. Ligand 6 increased the maximal ACh responses without changing the kinetics of the current responses. At the single-channel level, the potentiation exerted by ligand 6 was evidenced in the low micromolar concentration range by the appearance of prolonged bursts of channel openings. Furthermore, computational studies revealed the preference of ligand 6 for an intersubunit site in the transmembrane domain and highlighted some putative key interactions that explain the different profiles of the synthesized ligands. Notably, Met276 in the 15' position of the transmembrane domain 2 almost abolished the effects of ligand 6 when mutated to Leu. We conclude that ligand 6 is a novel type I positive allosteric modulator (PAM-I) of α7 nAChR.
Collapse
Affiliation(s)
- Franco Viscarra
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, U.K
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | - Juan Facundo Chrestia
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
| | - Yaima Sanchez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, U.K
| | - Jhon J López
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| |
Collapse
|
2
|
Appiani R, Pallavicini M, Hamouda AK, Bolchi C. Pyrrolidinyl benzofurans and benzodioxanes: Selective α4β2 nicotinic acetylcholine receptor ligands with different activity profiles at the two receptor stoichiometries. Bioorg Med Chem Lett 2022; 65:128701. [PMID: 35346843 DOI: 10.1016/j.bmcl.2022.128701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
A series of racemic benzofurans bearing N-methyl-2-pyrrolidinyl residue at C(2) or C(3) has been synthesized and tested for affinity at the α4β2 and α3β4 nicotine acetylcholine receptors (nAChRs). As previously reported for the benzodioxane based analogues, hydroxylation at proper position of benzene ring results in high α4β2 nAChR affinity and α4β2 vs. α3β4 nAChR selectivity. 7-Hydroxy-N-methyl-2-pyrrolidinyl-1,4-benzodioxane (2) and its 7- and 5-amino benzodioxane analogues 3 and 4, which are all α4β2 nAChR partial agonists, and 2-(N-methyl-2-pyrrolidinyl)-6-hydroxybenzofuran (12) were selected for functional characterization at the two α4β2 stoichiometries, the high sensitivity (α4)2(β2)3 and the low sensitivity (α4)3(β2)2. The benzene pattern substitution, which had previously been found to control α4β2 partial agonist activity and α4β2 vs. α3β4 selectivity, proved to be also involved in stoichiometry-selectivity. The 7-hydroxybenzodioxane derivative 2 selectively activates (α4)2(β2)3 nAChR, which cannot be activated by its 5-amino analogue 4. A marginal structural modification, not altering the base pyrrolidinyl benzodioxane scaffold, resulted in opposite activity profiles at the two α4β2 nAChR isoforms providing an interesting novel case study.
Collapse
Affiliation(s)
- Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy.
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy.
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
3
|
Bavo F, Pallavicini M, Appiani R, Bolchi C. Determinants for α4β2 vs. α3β4 Subtype Selectivity of Pyrrolidine-Based nAChRs Ligands: A Computational Perspective with Focus on Recent cryo-EM Receptor Structures. Molecules 2021; 26:molecules26123603. [PMID: 34204637 PMCID: PMC8231201 DOI: 10.3390/molecules26123603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
The selectivity of α4β2 nAChR agonists over the α3β4 nicotinic receptor subtype, predominant in ganglia, primarily conditions their therapeutic range and it is still a complex and challenging issue for medicinal chemists and pharmacologists. Here, we investigate the determinants for such subtype selectivity in a series of more than forty α4β2 ligands we have previously reported, docking them into the structures of the two human subtypes, recently determined by cryo-electron microscopy. They are all pyrrolidine based analogues of the well-known α4β2 agonist N-methylprolinol pyridyl ether A-84543 and differ in the flexibility and pattern substitution of their aromatic portion. Indeed, the direct or water mediated interaction with hydrophilic residues of the relatively narrower β2 minus side through the elements decorating the aromatic ring and the stabilization of the latter by facing to the not conserved β2-Phe119 result as key distinctive features for the α4β2 affinity. Consistently, these compounds show, despite the structural similarity, very different α4β2 vs. α3β4 selectivities, from modest to very high, which relate to rigidity/extensibility degree of the portion containing the aromatic ring and to substitutions at the latter. Furthermore, the structural rationalization of the rat vs. human differences of α4β2 vs. α3β4 selectivity ratios is here proposed.
Collapse
Affiliation(s)
- Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
- Correspondence:
| |
Collapse
|
4
|
Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur J Med Chem 2020; 200:112419. [PMID: 32502862 DOI: 10.1016/j.ejmech.2020.112419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
1,4-Benzodioxane has long been a versatile template widely employed to design molecules endowed with diverse bioactivities. Its use spans the last decades of medicinal chemistry until today concerning many strategies of drug discovery, not excluding the most advanced ones. Here, more than fifty benzodioxane-related lead compounds, selected from recent literature, are presented showing the different approaches with which they have been developed. Agonists and antagonists at neuronal nicotinic, α1 adrenergic and serotoninergic receptor subtypes and antitumor and antibacterial agents form the most representative classes, but a variety of other biological targets are addressed by benzodioxane-containing compounds.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy.
| |
Collapse
|
5
|
Matera C, Bono F, Pelucchi S, Collo G, Bontempi L, Gotti C, Zoli M, De Amici M, Missale C, Fiorentini C, Dallanoce C. The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochem Pharmacol 2019; 163:154-168. [PMID: 30772268 DOI: 10.1016/j.bcp.2019.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
In this paper, we designed, synthesized and tested a small set of three new derivatives potentially targeting the D3R-nAChR heteromer, a receptor complex recently identified and characterized as the molecular entity that, in dopaminergic neurons, mediates the neurotrophic effects of nicotine. By means of a partially rigidified spacer of variable length, we incorporated in the new compounds (1a-c) the pharmacophoric substructure of a known β2-subunit-containing nAChR agonist (A-84543) and that of the D2/D3R agonist drug ropinirole. All the compounds retained the ability to bind with high affinity both β2-subunit-containing nAChR and D3R. Compound 1a, renamed HyNDA-1, which is characterized by the shortest linker moiety, was the most interesting ligand. We found, in fact, that HyNDA-1 significantly modulated structural plasticity on both mice and human dopaminergic neurons, an effect strongly prevented by co-incubating this ligand with either nAChR or D3R antagonists. Moreover, the neurotrophic effects of HyNDA-1 were specifically lost by disrupting the complex with specific interfering peptides. Interestingly, by using the Bioluminescence Resonance Energy Transfer 2 (BRET2) assay in HEK-293 transfected cells, we also found that HyNDA-1 has the ability to increase the affinity of interaction between nAChR and D3R. Overall, our results indicate that the neurotrophic effects of HyNDA-1 are mediated by activation of the D3R-nAChR heteromeric complex specifically expressed on dopaminergic neurons.
Collapse
Affiliation(s)
- Carlo Matera
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Federica Bono
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Silvia Pelucchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Ginetta Collo
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Leonardo Bontempi
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cecilia Gotti
- Istituto di Neuroscienze, CNR, Via Vanvitelli 32, 20129 Milan, Italy
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Cristina Missale
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| |
Collapse
|
6
|
Discovery, cocrystallization and biological evaluation of novel piperidine derivatives as high affinity Ls-AChBP ligands possessing α7 nAChR activities. Eur J Med Chem 2018; 160:37-48. [PMID: 30317024 DOI: 10.1016/j.ejmech.2018.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 11/23/2022]
Abstract
A series of novel pyridine-substituted piperidine derivatives were discovered as low nanomolar Ls-AChBP ligands with α7 nAChR partial agonism or antagonism activities. A high-resolution antagonist-bound Ls-AChBP complex was successfully resolved with a classic Loop C opening phenomenon and unique sulfur-π interactions which deviated from our previous docking mode to a large extent. With the knowledge of the co-complex, 27 novel piperidine derivatives were designed and synthesized. The structure-activity relationships (SARs) of the aromatic and pyridine regions were well established and binding modes were illustrated with the help of molecular docking which indicated that interactions with Trp 143 and the "water bridge" are essential for the high binding affinities. Halogen bonding as well as the space around 5'- or 6'- position of the pyridine ring was also proposed to influence the binding conformation of the compounds. Notably, two enantiomers of compound 2 showed opposite functions toward α7 nAChR and compound (S)-2 showed sub-nanomolar affinity (Ki = 0.86 nM) on Ls-AChBP and partial agonism (pEC50 = 4.69 ± 0.11,Emax = 36.1%) on α7 nAChR with reasonable pharmacokinetics (PK) properties and fine ability of blood-brain-barrier (BBB) penetration. This study provided promising hits to develop candidates targeting nAChR-related CNS diseases.
Collapse
|
7
|
Zhu J, Enamorado MF, Comins DL. Synthesis of C-4 Substituted Amido Nicotine Derivatives via Copper(I)- and (II)-Catalyzed Cross-Coupling Reactions. J Org Chem 2016; 81:11529-11534. [PMID: 27768301 DOI: 10.1021/acs.joc.6b02319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The syntheses of seven novel amido nicotine derivatives 12-18 from (S)-nicotine are presented. (S)-Nicotine and (S)-6-chloronicotine derivatives were cross-coupled with the corresponding amides 6-10 at the C-4 position of the pyridine ring via copper(I)-mediated reactions. Derivatives 16-18 were also obtained via copper(II)-mediated reactions from (S)-nicotine containing a C-4 boronic acid pinacol ester group. The optimization of reaction conditions for both routes provided a useful method for preparing C-4 amide-containing nicotine analogs.
Collapse
Affiliation(s)
- Jiancheng Zhu
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Monica F Enamorado
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Daniel L Comins
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
8
|
Bolchi C, Bavo F, Fumagalli L, Gotti C, Fasoli F, Moretti M, Pallavicini M. Novel 5-substituted 3-hydroxyphenyl and 3-nitrophenyl ethers of S-prolinol as α4β2-nicotinic acetylcholine receptor ligands. Bioorg Med Chem Lett 2016; 26:5613-5617. [PMID: 27818109 DOI: 10.1016/j.bmcl.2016.10.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
A series of 3-nitrophenyl and 3-hydroxyphenyl ethers of (S)-N-methylprolinol bearing bulky and lipophilic substituents at phenyl C5 were tested for affinity at α4β2 and α3β4 nAChRs. The two phenyl ethers 5-substituted with 6-hydroxy-1-hexynyl showed high α4β2 affinity and significantly increased α4β2/α3β4 selectivity compared to the respective unsubstituted parent compounds. Within the two series of novel phenyl ethers, we observed parallel shifts in affinity and, furthermore, the increase in α4β2/α3β4 selectivity resulting from the hydroxyalkynyl substitution parallels that reported for the same modification at the 3-pyridyl ether of (S)-N-methylprolinol (A-84543), a well-known potent α4β2 agonist. On the basis of these results, our nitrophenyl and hydroxyphenyl prolinol ethers can be considered bioisosteres of the pyridyl ether A-84543 and lead compounds candidable to analogous optimization processes.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Cecilia Gotti
- CNR, Istituto di Neuroscienze, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, I-20129 Milano, Italy
| | - Francesca Fasoli
- CNR, Istituto di Neuroscienze, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, I-20129 Milano, Italy
| | - Milena Moretti
- CNR, Istituto di Neuroscienze, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, I-20129 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
9
|
Bolchi C, Bavo F, Gotti C, Fumagalli L, Fasoli F, Binda M, Mucchietto V, Sciaccaluga M, Plutino S, Fucile S, Pallavicini M. From pyrrolidinyl-benzodioxane to pyrrolidinyl-pyridodioxanes, or from unselective antagonism to selective partial agonism at α4β2 nicotinic acetylcholine receptor. Eur J Med Chem 2016; 125:1132-1144. [PMID: 27810599 DOI: 10.1016/j.ejmech.2016.10.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022]
Abstract
Each of the four aromatic -CH= of (S,R)-2-pyrrolidinyl-1,4-benzodioxane [(S,R)-6] and of its epimer at the dioxane stereocenter (S,S)-6, previously reported as α4β2 nAChR ligands, was replaced with nitrogen. The resulting four diastereoisomeric pairs of pyrrolidinyl-pyridodioxanes were studied for the nicotinic affinity and activity at α4β2, α3β4 and α7 nAChR subtypes and compared to their common carbaisostere. It turned out that such isosteric substitutions are highly detrimental, but with the important exception of the S,R stereoisomer of the pyrrolidinyl-pyridodioxane with the pyridine nitrogen adjacent to the dioxane and seven atoms distant from the pyrrolidine nitrogen. Indeed, this stereo/regioisomer not only maintained the α4β2 affinity of [(S,R)-6], but also greatly improved in selectivity over the α3β4 and α7 subtypes and, most importantly, exhibited a highly selective α4β2 partial agonism. The finding that [(S,R)-6] is, instead, an unselective α4β2 antagonist indicates that the benzodioxane substructure confers affinity for the α4β2 nAChR binding site, but activation of this receptor subtype needs benzodioxane functionalization under strict steric requirements, such as the previously reported 7-OH substitution or the present isosteric modification.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Cecilia Gotti
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, Milano, I-20129, Italy
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesca Fasoli
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, Milano, I-20129, Italy
| | - Matteo Binda
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Vanessa Mucchietto
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, Milano, I-20129, Italy
| | - Miriam Sciaccaluga
- I.R.C.C.S. Neuromed, Istituto Neurologico Mediterraneo, via Atinese 18, I-86077, Pozzilli (Isernia), Italy
| | - Simona Plutino
- Dipartimento di Fisiologia e Farmacologia, Università di Roma La Sapienza, Piazzale Moro 5, 00185 Roma, Italy
| | - Sergio Fucile
- I.R.C.C.S. Neuromed, Istituto Neurologico Mediterraneo, via Atinese 18, I-86077, Pozzilli (Isernia), Italy; Dipartimento di Fisiologia e Farmacologia, Università di Roma La Sapienza, Piazzale Moro 5, 00185 Roma, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy.
| |
Collapse
|
10
|
Wang X, Emoto M, Miyake Y, Itto K, Xu S, Fujii H, Hirata H, Arimoto H. Novel blood–brain barrier-permeable spin probe for in vivo electron paramagnetic resonance imaging. Bioorg Med Chem Lett 2016; 26:4947-4949. [DOI: 10.1016/j.bmcl.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023]
|
11
|
Horti AG, Wong DF. Clinical Perspective and Recent Development of PET Radioligands for Imaging Cerebral Nicotinic Acetylcholine Receptors. PET Clin 2016; 4:89-100. [PMID: 20046884 DOI: 10.1016/j.cpet.2009.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Ogunjirin AE, Fortunak JM, Brown LL, Xiao Y, Dávila-García MI. Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen. Neurochem Res 2015; 40:2131-42. [PMID: 26508288 PMCID: PMC4741274 DOI: 10.1007/s11064-015-1705-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a crucial role in a number of clinically relevant mental and neurological pathways, as well as autonomic and immune functions. The development of subtype-selective ligands for nAChRs therefore is potentially useful for targeted therapeutic management of conditions where nAChRs are involved. We tested if selectivity for a particular nAChR subtype can be achieved through small structural modifications of a lead compound containing the nicotinic pharmacophore by changing the distance between the electronegative elements. For this purpose, analogs of A-84543 were designed, synthesized and characterized as potentially new nAChR subtype-selective ligands. Compounds were tested for their binding properties in rat cerebral cortical tissue homogenates, and subtype-selectivity was determined using stably transfected HEK cells expressing different nAChR subtypes. All compounds synthesized were found to competitively displace [(3)H]-epibatidine ([(3)H]EB) from the nAChR binding site. Of all the analogues, H-11MNH showed highest affinity for nAChRs compared to a ~ fivefold to tenfold lower affinity of A-84543. All other compounds had affinities >10,000 nM. Both A-84543 and H-11MNH have highest affinity for α2β2 and α4β2 nAChRs and show moderate affinity for β4- and α7-containing receptors. H-11MNH was found to be a full agonist with high potency at α3β4, while A-84543 is a partial agonist with low potency. Based on their unique pharmacological binding properties we suggest that A-84543 and its desmethylpyrrolidine analog can be useful as pharmacological ligands for studying nAChRs if selective pharmacological and/or genetic tools are used to mask the function of other receptors subtypes.
Collapse
Affiliation(s)
- Adebowale E Ogunjirin
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Joseph M Fortunak
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - LaVerne L Brown
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Martha I Dávila-García
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA.
| |
Collapse
|
13
|
Bolchi C, Valoti E, Gotti C, Fasoli F, Ruggeri P, Fumagalli L, Binda M, Mucchietto V, Sciaccaluga M, Budriesi R, Fucile S, Pallavicini M. Chemistry and Pharmacology of a Series of Unichiral Analogues of 2-(2-Pyrrolidinyl)-1,4-benzodioxane, Prolinol Phenyl Ether, and Prolinol 3-Pyridyl Ether Designed as α4β2-Nicotinic Acetylcholine Receptor Agonists. J Med Chem 2015. [PMID: 26225816 DOI: 10.1021/acs.jmedchem.5b00904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Some unichiral analogues of 2R,2'S-2-(1'-methyl-2'-pyrrolidinyl)-7-hydroxy-1,4-benzodioxane, a potent and selective α4β2-nAChR partial agonist, were designed by opening dioxane and replacing hydroxyl carbon with nitrogen. The resulting 3-pyridyl and m-hydroxyphenyl ethers have high α4β2 affinity and good subtype selectivity, which get lost if OH is removed from phenyl or the position of pyridine nitrogen is changed. High α4β2 affinity and selectivity are also attained by meta hydroxylating the 3-pyridyl and the phenyl ethers of (S)-N-methylprolinol and the phenyl ether of (S)-2-azetidinemethanol, known α4β2 agonists, although the interaction mode of the aryloxymethylene substructure cannot be assimilated to that of benzodioxane. Indeed, the α4β2 and α3β4 functional tests well differentiate behaviors that the binding tests homologize: both the 3-hydroxyphenyl and the 5-hydroxy-3-pyridyl ether of N-methylprolinol are α4β2 full agonists, but only the latter is highly α4β2/α3β4 selective, while potent and selective partial α4β2 agonism characterizes the hydroxybenzodioxane derivative and its two opened semirigid analogues.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Cecilia Gotti
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milano, I-20129, Italy
| | - Francesca Fasoli
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milano, I-20129, Italy
| | - Paola Ruggeri
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Matteo Binda
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Vanessa Mucchietto
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milano, I-20129, Italy
| | - Miriam Sciaccaluga
- I.R.C.C.S. Neuromed, Istituto Neurologico Mediterraneo, Via Atinese 18, I-86077, Pozzilli, Isernia, Italy
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna , Via Belmeloro 6, I-40126, Bologna, Italy
| | - Sergio Fucile
- I.R.C.C.S. Neuromed, Istituto Neurologico Mediterraneo, Via Atinese 18, I-86077, Pozzilli, Isernia, Italy.,Dipartimento di Fisiologia e Farmacologia, Università di Roma La Sapienza , Piazzale Moro 5, 00185 Roma, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| |
Collapse
|
14
|
Vabre B, Petiot P, Declercq R, Zargarian D. Fluoro and Trifluoromethyl Derivatives of POCOP-Type Pincer Complexes of Nickel: Preparation and Reactivities in SN2 Fluorination and Direct Benzylation of Unactivated Arenes. Organometallics 2014. [DOI: 10.1021/om500472b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Boris Vabre
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pauline Petiot
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Richard Declercq
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Davit Zargarian
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
15
|
Liu Y, Paige M, Olson TT, Al-Muhtasib N, Xie T, Hou S, White MP, Cordova A, Guo JL, Kellar KJ, Xiao Y, Brown ML. Synthesis and pharmacological characterization of new neuronal nicotinic acetylcholine receptor ligands derived from Sazetidine-A. Bioorg Med Chem Lett 2014; 24:2954-6. [DOI: 10.1016/j.bmcl.2014.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/17/2022]
|
16
|
Placzek MS, Chmielecki JM, Houghton C, Calder A, Wiles C, Jones GB. Fluoroalkynylations of Aryl Halides under Continuous-Flow Homogeneous Catalysis. J Flow Chem 2013. [DOI: 10.1556/jfc-d-13-00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Sachdeva H, Dwivedi D, Arya K, Khaturia S, Saroj R. Synthesis, anti-inflammatory activity, and QSAR study of some Schiff bases derived from 5-mercapto-3-(4′-pyridyl)-4H-1,2,4-triazol-4-yl-thiosemicarbazide. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0507-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Martı́nez-Prieto LM, Melero C, del Rı́o D, Palma P, Cámpora J, Álvarez E. Synthesis and Reactivity of Nickel and Palladium Fluoride Complexes with PCP Pincer Ligands. NMR-Based Assessment of Electron-Donating Properties of Fluoride and Other Monoanionic Ligands. Organometallics 2012. [DOI: 10.1021/om2009793] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luis Miguel Martı́nez-Prieto
- Instituto de Investigaciones
Quı́micas, CSIC-Universidad de Sevilla, c/Américo
Vespucio, 49, 41092, Sevilla, Spain
| | - Cristóbal Melero
- Instituto de Investigaciones
Quı́micas, CSIC-Universidad de Sevilla, c/Américo
Vespucio, 49, 41092, Sevilla, Spain
| | - Diego del Rı́o
- SRI International, 333 Ravenswood
Avenue, Menlo Park, California 94025, United States
| | - Pilar Palma
- Instituto de Investigaciones
Quı́micas, CSIC-Universidad de Sevilla, c/Américo
Vespucio, 49, 41092, Sevilla, Spain
| | - Juan Cámpora
- Instituto de Investigaciones
Quı́micas, CSIC-Universidad de Sevilla, c/Américo
Vespucio, 49, 41092, Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones
Quı́micas, CSIC-Universidad de Sevilla, c/Américo
Vespucio, 49, 41092, Sevilla, Spain
| |
Collapse
|
19
|
Yu LF, Tückmantel W, Eaton JB, Caldarone B, Fedolak A, Hanania T, Brunner D, Lukas RJ, Kozikowski AP. Identification of novel α4β2-nicotinic acetylcholine receptor (nAChR) agonists based on an isoxazole ether scaffold that demonstrate antidepressant-like activity. J Med Chem 2012; 55:812-23. [PMID: 22148173 DOI: 10.1021/jm201301h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening toward other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.
Collapse
Affiliation(s)
- Li-Fang Yu
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Role of α7- and β4-containing nicotinic acetylcholine receptors in the affective and somatic aspects of nicotine withdrawal: studies in knockout mice. Behav Genet 2011; 42:423-36. [PMID: 22009521 DOI: 10.1007/s10519-011-9511-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
To assess which nicotinic acetylcholine receptors (nAChRs) are involved in the aversive aspects of nicotine withdrawal, brain reward function and the somatic signs of nicotine withdrawal were assessed in mice that lack α7 and β4 nAChR subunits. Brain reward function was assessed with the intracranial self-stimulation (ICSS) procedure, in which elevations in ICSS thresholds reflect an anhedonic mood state. At 3-6 h of spontaneous nicotine/saline withdrawal, thresholds were elevated in nicotine-withdrawing α7(+/+) and β4(+/+), but not α7(-/-) or β4(-/-), mice compared with saline-withdrawing mice, indicating a delay in the onset of withdrawal in the knockout mice. From 8 to 100 h of withdrawal, thresholds in α7(+/+) and α7(-/-) mice were equally elevated, whereas thresholds in β4(+/+) and β4(-/-) mice returned to baseline levels. Somatic signs were attenuated in nicotine-withdrawing β4(-/-), but not α7(-/-), mice. Administration of a low dose of the nAChR antagonist mecamylamine induced threshold elevations in α7(-/-), but not α7(+/+), mice, whereas the highest dose tested only elevated thresholds in α7(+/+) mice. Mecamylamine-induced threshold elevations were similar in β4(-/-) and β4(+/+) mice. In conclusion, null mutation of the α7 and β4 nAChR subunits resulted in a delayed onset of the anhedonic aspects of the spontaneous nicotine withdrawal syndrome. Previous findings of attenuated somatic signs of nicotine withdrawal in β4(-/-), but not α7(-/-), mice were confirmed in the present study, indicating an important role for β4-containing nAChRs in the somatic signs of nicotine withdrawal. The mecamylamine-precipitated withdrawal data suggest that compensatory adaptations may occur in constitutive α7(-/-) mice or that mecamylamine may interact with other receptors besides nAChRs in these mice. In summary, the present results indicate an important role for α7 and β4-containing nAChRs in the anhedonic or somatic signs of nicotine withdrawal.
Collapse
|
21
|
Liu J, Eaton JB, Caldarone B, Lukas RJ, Kozikowski AP. Chemistry and pharmacological characterization of novel nitrogen analogues of AMOP-H-OH (Sazetidine-A, 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) as α4β2-nicotinic acetylcholine receptor-selective partial agonists. J Med Chem 2010; 53:6973-85. [PMID: 20822184 DOI: 10.1021/jm100765u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to advance therapeutic applications of nicotinic ligands, continuing research efforts are being directed toward the identification and characterization of novel nicotinic acetylcholine receptor (nAChR) ligands that are both potent and subtype selective. Herein we report the synthesis and pharmacological evaluation of members of a new series of 3-alkoxy-5-aminopyridine derivatives that display good selectivity for the α4β2-nAChR subtype based on ligand binding and functional evaluations. The most potent ligand in this series, compound 64, showed high radioligand binding affinity and selectivity for rat α4β2-nAChR with a K(i) value of 1.2 nM and 4700-fold selectivity for α4β2- over α3β4-nAChR, and ∼100-fold selectivity for functional, high-sensitivity, human α4β2-nAChR over α3β4*-nAChR. In the mouse forced swim test, compound 64 exhibited antidepressant-like effects. Structure-activity relationship (SAR) analyses suggest that the introduction of additional substituents to the amino group present on the pyridine ring of the N-demethylated analogue of compound 17 can provide potent α4β2-nAChR-selective ligands for possible use in treatment of neurological and psychiatric disorders including depression.
Collapse
Affiliation(s)
- Jianhua Liu
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
22
|
Kozikowski AP, Eaton JB, Bajjuri KM, Chellappan SK, Chen Y, Karadi S, He R, Caldarone B, Manzano M, Yuen PW, Lukas RJ. Chemistry and pharmacology of nicotinic ligands based on 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol (AMOP-H-OH) for possible use in depression. ChemMedChem 2009; 4:1279-91. [PMID: 19569163 DOI: 10.1002/cmdc.200900079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AMOP-H-OH (sazetidine-A; 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) and some sulfur-bearing analogues were tested for their activities in vitro against human alpha4beta2-, alpha4beta4-, alpha3beta4*- and alpha1*-nicotinic acetylcholine receptors (nAChRs). AMOP-H-OH was also assessed in an antidepressant efficacy model. AMOP-H-OH and some of its analogues have high potency and selectivity for alpha4beta2-nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (alpha4)(3)(beta2)(2)-nAChRs. More prolonged exposure to AMOP-H-OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for alpha4beta2-nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of alpha4beta2-nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP-H-OH and some of its analogues have a set of binding sites on alpha4beta2-nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP-H-OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP-H-OH also has profound and high potency antidepressant-like effects in the forced swim test. The net action of prolonged exposure to AMOP-H-OH or its analogues, as for nicotine, seems to be a selective decrease in alpha4beta2-nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression.
Collapse
Affiliation(s)
- Alan P Kozikowski
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci 2009; 86:575-84. [PMID: 19303028 DOI: 10.1016/j.lfs.2009.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/05/2009] [Accepted: 02/12/2009] [Indexed: 11/20/2022]
Abstract
AIMS There is an urgent need for positron emission tomography (PET) imaging of the nicotinic acetylcholine receptors (nAChR) to study the role of the nicotinic system in Alzheimer's and Parkinson's diseases, schizophrenia, drug dependence and many other disorders. Greater understanding of the underlying mechanisms of the nicotinic system could direct the development of medications to treat these disorders. Central nAChRs also contribute to a variety of brain functions, including cognition, behavior and memory. MAIN METHODS Currently, only two radiotracers, (S)-3-(azetidin-2-ylmethoxy)-2-[(18)F]fluoropyridine (2-[(18)F]FA) and (S)-5-(azetidin-2-ylmethoxy)-2-[(18)F]fluoropyridine (6-[(18)F]FA), are available for studying nAChRs in human brain using PET. However, the "slow" brain kinetics of these radiotracers hamper mathematical modeling and reliable measurement of kinetic parameters since it takes 4-7 h of PET scanning for the tracers to reach steady state. The imaging drawbacks of the presently available nAChR radioligands have initiated the development of radioligands with faster brain kinetics by several research groups. KEY FINDINGS This minireview attempts to survey the important achievements of several research groups in the discovery of PET nicotinic radioligands reached recently. Specifically, this article reviews papers published from 2006 through 2008 describing the development of fifteen new nAChR (11)C-and (18)F-ligands that show improved imaging properties over 2-[(18)F]FA. SIGNIFICANCE The continuous efforts of radiomedicinal chemists led to the development of several interesting PET radioligands for imaging of nAChR including [(18)F]AZAN, a potentially superior alternative to 2-[(18)F]FA.
Collapse
|
24
|
Dallanoce C, Magrone P, Bazza P, Grazioso G, Rizzi L, Riganti L, Gotti C, Clementi F, Frydenvang K, De Amici M. New Analogues of Epiboxidine Incorporating the 4,5-Dihydroisoxazole Nucleus: Synthesis, Binding Affinity at Neuronal Nicotinic Acetylcholine Receptors, and Molecular Modeling Investigations. Chem Biodivers 2009; 6:244-59. [DOI: 10.1002/cbdv.200800077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Scates BA, Lashbrook BL, Chastain BC, Tominaga K, Elliott BT, Theising NJ, Baker TA, Fitch RW. Polyethylene glycol-based homologated ligands for nicotinic acetylcholine receptors. Bioorg Med Chem 2008; 16:10295-300. [PMID: 19006672 PMCID: PMC2903455 DOI: 10.1016/j.bmc.2008.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/16/2008] [Accepted: 10/18/2008] [Indexed: 10/21/2022]
Abstract
A homologous series of polyethylene glycol (PEG) monomethyl ethers were conjugated with three ligand series for nicotinic acetylcholine receptors. Conjugates of acetylaminocholine, the cyclic analog 1-acetyl-4,4-dimethylpiperazinium, and pyridyl ether A-84543 were prepared. Each series was found to retain significant affinity at nicotinic receptors in rat cerebral cortex with tethers of up to six PEG units. Such compounds are hydrophilic ligands which may serve as models for fluorescent/affinity probes and multivalent ligands for nAChR.
Collapse
Affiliation(s)
- Bradley A. Scates
- Department of Chemistry, Indiana State University, 600 Chestnut Street, Science S35E, Terre Haute, IN 47809, USA
| | - Bethany L. Lashbrook
- Department of Chemistry, Indiana State University, 600 Chestnut Street, Science S35E, Terre Haute, IN 47809, USA
| | | | | | | | | | | | - Richard W. Fitch
- Department of Chemistry, Indiana State University, 600 Chestnut Street, Science S35E, Terre Haute, IN 47809, USA
| |
Collapse
|
26
|
Abdrakhmanova GR, Carroll FI, Damaj MI, Martin BR. 3'-Fluoro substitution in the pyridine ring of epibatidine improves selectivity and efficacy for alpha4beta2 versus alpha3beta4 nAChRs. Neuropharmacology 2008; 55:1287-92. [PMID: 18775444 DOI: 10.1016/j.neuropharm.2008.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
The analog of epibatidine having a fluoro substituent at the 3' position of the pyridine ring has been recently developed and shown to possess binding affinity in the pM range to alpha4beta2 nAChRs and in the nM range to alpha7 nAChRs and to exhibit potent agonist activity in nicotine-induced analgesia tests. Here we used patch-clamp technique in a whole-cell configuration to compare functional activity of 3'-fluoroepibatidine to that of epibatidine by itself on recombinant alpha4beta2, alpha7 and alpha3beta4 neuronal nAChRs. The agonist effect of (+/-)-epibatidine was partial and yielded comparable EC50s of 0.012 microM (72% efficacy) and 0.027 microM (81% efficacy) at alpha4beta2 and alpha3beta4 nAChRs, respectively, but was full at alpha7 nAChRs with an EC50 of 4.8 muM. Testing of the analog at different concentrations revealed that it acts as a full agonist with an EC50 of 0.36 microM at alpha4beta2 nAChRs and induces partial agonist effect (66% efficacy) at alpha7 nAChRs with an EC50 of 9.8 microM and an IC50 corresponding to 225 microM. In contrast, the analog caused only 24% maximal activation at the range of concentrations from 0.1 to 100 microM and, in addition, induced an inhibition of alpha3beta4 nAChR function with an IC50 of 8.3 microM. Our functional data, which are in agreement with previous binding and behavioral findings, demonstrate that 3'-fluoro substitution in the pyridine ring of epibatidine results in an improved pharmacological profile as observed by an increased efficacy and selectivity for alpha4beta2 versus alpha3beta4 nAChRs.
Collapse
Affiliation(s)
- Galya R Abdrakhmanova
- Department of Pharmacology and Toxicology (G.R.A., M.I.D., B.R.M.), Virginia Commonwealth University, Richmond, VA 23298, United States.
| | | | | | | |
Collapse
|
27
|
Sang Y, Zhao J, Jia X, Zhai H. Asymmetric Synthesis of (+)-Pyrido[3,4-b]homotropane. J Org Chem 2008; 73:3589-92. [DOI: 10.1021/jo8002425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingxia Sang
- Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China, Department of Chemistry, Shanghai University, Shanghai 200436, China, and The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 College Road, Beijing 100083, China
| | - Jingrui Zhao
- Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China, Department of Chemistry, Shanghai University, Shanghai 200436, China, and The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 College Road, Beijing 100083, China
| | - Xueshun Jia
- Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China, Department of Chemistry, Shanghai University, Shanghai 200436, China, and The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 College Road, Beijing 100083, China
| | - Hongbin Zhai
- Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China, Department of Chemistry, Shanghai University, Shanghai 200436, China, and The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 College Road, Beijing 100083, China
| |
Collapse
|
28
|
Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F. Central Nicotinic Receptors: Structure, Function, Ligands, and Therapeutic Potential. ChemMedChem 2007; 2:746-67. [PMID: 17295372 DOI: 10.1002/cmdc.200600207] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.
Collapse
Affiliation(s)
- M Novella Romanelli
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Kozikowski AP, Chellappan SK, Henderson D, Fulton R, Giboureau N, Xiao Y, Wei ZL, Guilloteau D, Emond P, Dolle F, Kellar KJ, Kassiou M. Acetylenic Pyridines for Use in PET Imaging of Nicotinic Receptors. ChemMedChem 2007; 2:54-7. [PMID: 17096450 DOI: 10.1002/cmdc.200600220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alan P Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yuan H, Petukhov PA. Computational evidence for the ligand selectivity to the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors. Bioorg Med Chem 2006; 14:7936-42. [PMID: 16919961 DOI: 10.1016/j.bmc.2006.07.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 11/24/2022]
Abstract
The homology models of the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors (nAChRs) suggest that the two nAChR subtypes are different in their ligand-binding pockets due to the non-conserved residues in the beta-subunits. The docking of nicotine, epibatidine, A-84543, and the two analogs of A-84543 ligands 1 and 2 to the homology models of alpha4beta2 and alpha3beta4 is presented. It is found that the protonated amino groups of these ligands bind to the alpha-subunits, whereas the remaining parts of the ligands bind to the beta-subunits. The two non-conserved amino acids Lys77 and Phe117 in the beta2-subunit corresponding to Ile77 and Gln117 in the beta4-subunit are identified to be the key players determining the binding modes of the ligands. We demonstrate how the increase in the number of the atoms connecting the pyrrolidine and pyridine rings in A-84543, 1, and 2, and an introduction of the alkynyl substituent in the pyridine ring affect the binding and shift the selectivity of these ligands toward the beta2-containing receptors. Further improvement in affinity and selectivity in this and other series of the ligands may be achieved by designing molecules that would specifically target the non-conserved regions in nAChRs.
Collapse
Affiliation(s)
- Hongbin Yuan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
31
|
Chellappan SK, Xiao Y, Tueckmantel W, Kellar KJ, Kozikowski AP. Synthesis and pharmacological evaluation of novel 9- and 10-substituted cytisine derivatives. Nicotinic ligands of enhanced subtype selectivity. J Med Chem 2006; 49:2673-6. [PMID: 16640326 PMCID: PMC2504867 DOI: 10.1021/jm051196m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and pharmacological properties of several cytisine derivatives. Among them, two 10-substituted derivatives showed much higher selectivities for the alpha4beta2 nAChR subtype in binding assays than cytisine. The 9-vinyl derivative was found to have a very similar agonist activity profile to that of cytisine.
Collapse
Affiliation(s)
- Sheela K Chellappan
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
32
|
Abdrakhmanova GR, Damaj MI, Carroll FI, Martin BR. 2-Fluoro-3-(4-nitro-phenyl)deschloroepibatidine is a novel potent competitive antagonist of human neuronal alpha4beta2 nAChRs. Mol Pharmacol 2006; 69:1945-52. [PMID: 16505153 DOI: 10.1124/mol.105.021782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A patch-clamp technique in a whole-cell configuration was used to examine the functional activity of recently developed 2-fluoro-3-(substituted phenyl)deschloroepibatidine analogs on two major subtypes of neuronal nicotinic acetylcholine receptors (nAChRs), alpha4beta2 and alpha3beta4, that predominate in the central and peripheral nervous systems, respectively. These epibatidine analogs have been shown previously to possess high binding affinity to alpha4beta2 but not to alpha7 nAChRs and to inhibit nicotine-induced analgesia in behavioral pain tests. The 2-fluoro-3-(4-nitro-phenyl)deschloroepibatidine (4-nitro-PFEB) exhibited the most pronounced antagonist activity among these analogs when tested electrophysiologically on alpha4beta2 nAChRs. It inhibited acetylcholine (ACh)-induced currents in a concentration-dependent manner with an IC(50) value of 0.1 microM and produced complete inhibition at approximately 1 microM concentration. 4-Nitro-PFEB at 0.1 microM concentration produced a 4-fold rightward shift in the ACh concentration-response curve without altering maximum ACh-induced response. This inhibitory effect of 4-nitro-PFEB was voltage- and use-independent and was partially reversible at its 1 microM concentration. The rise and decay kinetics of ACh-induced currents was not altered in the presence of 4-nitro-PFEB. In contrast to alpha4beta2 nAChRs, this compound did not affect alpha3beta4 nAChR-mediated currents at < or =1 microM (IC(50) approximately 63.9 microM). Overall, these functional data agree with previous binding and behavioral findings and suggest collectively that 4-nitro-PFEB is the most effective and selective antagonist of alpha4beta2 versus alpha3beta4 and alpha7 nAChRs among the tested analogs, acting on alpha4beta2 nAChR through a competitive mechanism with a potency 17-fold higher than that of dihydro-beta-erythroidine.
Collapse
Affiliation(s)
- Galya R Abdrakhmanova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay Street, P.O. Box 980524, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
33
|
Kimura H, Fujiwara T, Katoh T, Nishide K, Kajimoto T, Node M. Synthesis of (-)-Epibatidine and Its Derivatives from Chiral Allene-1,3-dicarboxylate Esters. Chem Pharm Bull (Tokyo) 2006; 54:399-402. [PMID: 16508202 DOI: 10.1248/cpb.54.399] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
(-)-Epibatidine, an excellent candidate of non-opioidal anesthesia, was formally synthesized in short steps from di-(l)-menthyl (R)-allene-1,3-dicarboxylate that was facilely prepared as a single isomer by means of crystallization-induced asymmetric transformation from a diastereomer mixture of (R)- and (S)-allene-1,3-dicarboxylates. Taking advantage of the chiral synthesis, derivatives of (-)-epibatidine were also prepared for targeting diagnostic agents that could bind nicotinic acetylcholine receptors (nAChRs) in the mammalian central nerve system.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Pharmaceutical Manufacturing Chemistry, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Cassels BK, Bermúdez I, Dajas F, Abin-Carriquiry JA, Wonnacott S. From ligand design to therapeutic efficacy: the challenge for nicotinic receptor research. Drug Discov Today 2005; 10:1657-65. [PMID: 16376826 DOI: 10.1016/s1359-6446(05)03665-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
S-Nicotine, the principal psychoactive constituent of Nicotiana tabacum, underpins addiction to tobacco smoking. Although tobacco consumption is a leading cause of death worldwide, nicotine itself is also proposed to have potential therapeutic benefits for a diverse range of conditions. Nicotine interacts with its cognate receptors in the central nervous system to exert a predominantly modulatory influence, making neuronal nicotinic receptors attractive therapeutic targets. Here, we focus on three natural products as lead compounds for drug discovery programs, nicotine, epibatidine and cytisine, and consider the aims and limitations that shape these drug discovery endeavors.
Collapse
Affiliation(s)
- Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Casilla 653, Santiago, Chile.
| | | | | | | | | |
Collapse
|
35
|
Huang Y, Zhu Z, Xiao Y, Laruelle M. Epibatidine analogues as selective ligands for the αxβ2-containing subtypes of nicotinic acetylcholine receptors. Bioorg Med Chem Lett 2005; 15:4385-8. [PMID: 16039849 DOI: 10.1016/j.bmcl.2005.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/08/2005] [Accepted: 06/09/2005] [Indexed: 11/22/2022]
Abstract
A series of epibatidine analogues was synthesized and characterized in vitro. These compounds are high affinity ligands for the nicotinic acetylcholine receptors (nAChR). They display binding selectivity for the alpha(x)beta2 subtypes of nAChRs over the alpha(x)beta4 subtypes, and especially for the alpha4beta2 and alpha2beta2 subtypes. Furthermore, most of these new nicotinic compounds display little, if any, agonist activities at alpha3beta4 nAChR. As a result they might become lead structures for the design and synthesis of highly selective ligands for nAChR subtypes containing the beta2 subunit.
Collapse
Affiliation(s)
- Yiyun Huang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | |
Collapse
|