1
|
Erin N, Tavşan E, Haksever S, Yerlikaya A, Riganti C. Targeting BMP-1 enhances anti-tumoral effects of doxorubicin in metastatic mammary cancer: common and distinct features of TGF-β inhibition. Breast Cancer Res Treat 2025; 210:563-574. [PMID: 39792296 PMCID: PMC11953206 DOI: 10.1007/s10549-024-07592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process. In addition, secretion of bone morphogenetic protein 1 (BMP-1), which is crucial for the proteolytic release of TGF-β, was markedly high in metastatic mammary cancer cells compared to non-metastatic cells. Although TGF-β inhibitors are in clinical trials, systemic inhibition of TGF-β may produce heavy side effects. We here hypothesize that inhibition of BMP-1 proteolytic activity inhibits TGF-β activity and induces anti-tumoral effects. METHOD AND RESULTS Effects of specific BMP-1 inhibitor on liver and brain metastatic murine mammary cancer cells (4TLM and 4TBM), as well as on human mammary cancer MDA-MB-231 and MCF-7 cells, were examined and compared with the results of TGF-β inhibition. Inhibition of BMP-1 activity markedly suppressed proliferation of cancer cells and enhanced anti-tumoral effects of doxorubicin. Inhibition of BMP-1 activity but not of TGF-β activity decreased colony and spheroid formation. Differential effects of BMP-1 and TGF-β inhibitors on TGF-β secretion was also observed. CONCLUSIONS These results demonstrated for the first time that the inhibition of BMP-1 activity has therapeutic potential for treatment of metastatic mammary cancer and enhances the anti-tumoral effects of doxorubicin.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Esra Tavşan
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Seren Haksever
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", Via Nizza 44, 10126, Turin, Italy
- Interdepartmental Center "G.Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, 10126, Turin, Italy
| |
Collapse
|
2
|
Li XY, Kang JX, Han H, Ma YN, Liu Z, Chen X. Rapid Synthesis of Primary Amides Using Ammonia Borane. J Org Chem 2025; 90:1720-1726. [PMID: 39846305 DOI: 10.1021/acs.joc.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We report the rapid synthesis of primary amides by directly using commercially available ammonia borane (NH3·BH3), sodium hexamethyldisilazide (NaHMDS), and esters. The success of this protocol relies on NH3·BH3 as the nitrogen source being considerably more convenient and NaHMDS being an excellent proton abstractor but not participating in the nucleophilic addition reaction. The reaction had a wide substrate scope containing bioactive molecules, and most of the substrates were efficiently amidated over 90% yields.
Collapse
Affiliation(s)
- Xiao-Yun Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Xin Kang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang 453007, China
| | - Hui Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Adewale AT, Sharma S, Mouawad JE, Nguyen XX, Bradshaw AD, Feghali-Bostwick C. IGF-II regulates lysyl oxidase propeptide and mediates its effects in part via basic helix-loop-helix E40. Matrix Biol 2024; 132:24-33. [PMID: 38852924 PMCID: PMC11329355 DOI: 10.1016/j.matbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.
Collapse
Affiliation(s)
- Adegboyega Timothy Adewale
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Shailza Sharma
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| | - Joe E Mouawad
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Xinh-Xinh Nguyen
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| |
Collapse
|
4
|
Miranda P, Mirisis AA, Kukushkin NV, Carew TJ. Pattern detection in the TGFβ cascade controls the induction of long-term synaptic plasticity. Proc Natl Acad Sci U S A 2023; 120:e2300595120. [PMID: 37748056 PMCID: PMC10556637 DOI: 10.1073/pnas.2300595120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) is required for long-term memory (LTM) for sensitization in Aplysia. When LTM is induced using a two-trial training protocol, TGFβ inhibition only blocks LTM when administrated at the second, not the first trial. Here, we show that TGFβ acts as a "repetition detector" during the induction of two-trial LTM. Secretion of the biologically inert TGFβ proligand must coincide with its proteolytic activation by the Bone morphogenetic protein-1 (BMP-1/Tolloid) metalloprotease, which occurs specifically during trial two of our two-trial training paradigm. This paradigm establishes long-term synaptic facilitation (LTF), the cellular correlate of LTM. BMP-1 application paired with a single serotonin (5HT) pulse induced LTF, whereas neither a single 5HT pulse nor BMP-1 alone effectively did so. On the other hand, inhibition of endogenous BMP-1 activity blocked the induction of two-trial LTF. These results suggest a unique role for TGFβ in the interaction of repeated trials: during learning, repeated stimuli engage separate steps of the TGFβ cascade that together are necessary for the induction of long-lasting memories.
Collapse
Affiliation(s)
- Paige Miranda
- Center for Neural Science, New York University, New York, NY10003
| | | | - Nikolay V. Kukushkin
- Center for Neural Science, New York University, New York, NY10003
- Liberal Studies, New York University, New York, NY10003
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY10003
| |
Collapse
|
5
|
Kellett KAB, Fisher K, Aldworth H, Hooper NM. Proteolysis of the low-density lipoprotein receptor in hepatocytes is mediated by BMP1 but not by other astacin proteases. FEBS Lett 2023; 597:1489-1502. [PMID: 37235726 PMCID: PMC10953048 DOI: 10.1002/1873-3468.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Bone morphogenetic protein 1 (BMP1), a member of the astacin family of zinc-metalloproteases, proteolytically cleaves the low-density lipoprotein receptor (LDLR) within its ligand-binding domain, reducing the binding and cellular uptake of LDL-cholesterol. Here, we aimed to determine whether astacin proteases other than BMP1 may also cleave LDLR. Although human hepatocytes express all six astacin proteases, including the meprins and mammalian tolloid, we found through pharmacological inhibition and genetic knockdown that only BMP1 contributed to the cleavage of LDLR in its ligand-binding domain. We also found that the minimum amino acid change required to render mouse LDLR susceptible to cleavage by BMP1 is mutation at the P1' and P2 positions of the cleavage site. When expressed in cells, the resulting humanised-mouse LDLR internalised LDL-cholesterol. This work provides insight into the biological mechanisms regulating LDLR function.
Collapse
Affiliation(s)
- Katherine A. B. Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
- Present address:
Horizons InstituteUniversity of LeedsLeedsLS2 9JTUK
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
| | - Harry Aldworth
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
| |
Collapse
|
6
|
Mizoguchi T, Mikami S, Yatou M, Kondo Y, Omaru S, Kuwabara S, Okura W, Noda S, Tenno T, Hiroaki H, Itoh M. Small-Molecule-Mediated Suppression of BMP Signaling by Selective Inhibition of BMP1-Dependent Chordin Cleavage. Int J Mol Sci 2023; 24:4313. [PMID: 36901744 PMCID: PMC10001940 DOI: 10.3390/ijms24054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BMP signaling is critical for many biological processes. Therefore, small molecules that modulate BMP signaling are useful for elucidating the function of BMP signaling and treating BMP signaling-related diseases. Here, we performed a phenotypic screening in zebrafish to examine the in vivo effects of N-substituted-2-amino-benzoic acid analogs NPL1010 and NPL3008 and found that they affect BMP signaling-dependent dorsal-ventral (D-V) patterning and bone formation in zebrafish embryos. Furthermore, NPL1010 and NPL3008 suppressed BMP signaling upstream of BMP receptors. BMP1 cleaves Chordin, an antagonist of BMP, and negatively regulates BMP signaling. Docking simulations demonstrated that NPL1010 and NPL3008 bind BMP1. We found that NPL1010 and NPL3008 partially rescued the disruptions in the D-V phenotype caused by bmp1 overexpression and selectively inhibited BMP1-dependent Chordin cleavage. Therefore, NPL1010 and NPL3008 are potentially valuable inhibitors of BMP signaling that act through selective inhibition of Chordin cleavage.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shohei Mikami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mari Yatou
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yui Kondo
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuhei Omaru
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuhei Kuwabara
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Wataru Okura
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Syouta Noda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Aichi, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
7
|
Khan BA, Hamdani SS, Ahmed MN, Hameed S, Ashfaq M, Shawky AM, Ibrahim MAA, Sidhom PA. Synthesis, X-ray diffraction analysis, quantum chemical studies and α-amylase inhibition of probenecid derived S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. J Enzyme Inhib Med Chem 2022; 37:1464-1478. [PMID: 35616297 PMCID: PMC9154803 DOI: 10.1080/14756366.2022.2078969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sulphonamide and 1,3,4-oxadiazole moieties are present as integral structural parts of many drugs and pharmaceuticals. Taking into account the significance of these moieties, we herein present the synthesis, single-crystal X-ray analysis, DFT studies, and α-amylase inhibition of probenecid derived two S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. The synthesis has been accomplished in high yields. The final structures of both hybrids have been established completely with the help of different spectro-analytical techniques, including NMR, FTIR, HR-MS, and single-crystal X-ray diffraction analyses. In an effort to confirm the experimental findings, versatile quantum mechanical calculations and Hirshfeld Surface analysis have been performed. α-Amylase inhibition assay has been executed to investigate the enzyme inhibitory potential of both hybrids. The low IC50 value (76.92 ± 0.19 μg/mL) of hybrid 2 shows the good α-amylase inhibition potential of the respective compound. Ultimately, the binding affinities and features of the two hybrids are elucidated utilising a molecular docking technique against the α-amylase enzyme.
Collapse
Affiliation(s)
- Bilal Ahmad Khan
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Syeda Shamila Hamdani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha, Pakistan
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Sharma U, Vadon-Le Goff S, Harlos K, Zhao Y, Mariano N, Bijakowski C, Bourhis JM, Moali C, Hulmes DJS, Aghajari N. Dynamics of the secreted frizzled related protein Sizzled and potential implications for binding to bone morphogenetic protein-1 (BMP-1). Sci Rep 2022; 12:14850. [PMID: 36050373 PMCID: PMC9437010 DOI: 10.1038/s41598-022-18795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.
Collapse
Affiliation(s)
- Urvashi Sharma
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
- National Institute of Biologicals, A-32, Institutional Area, Sector 62, Noida, 201309, India
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Natacha Mariano
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Cecile Bijakowski
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Jean-Marie Bourhis
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
9
|
Wu C, Cook R, Wu P, Srikumar N, Chee E, Sawyer WS, Wang H, Hazen M, Hotzel I, N'Diaye EN, Ding N, Liu Y, Tran JC, Ye Z. Using a peptide-based mass spectrometry approach to quantitate proteolysis of an intact heterogeneous procollagen substrate by BMP1 for antagonistic antibody screening. Anal Bioanal Chem 2022; 414:6601-6610. [PMID: 35821276 DOI: 10.1007/s00216-022-04220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/01/2022]
Abstract
Proteases are critical proteins involved in cleaving substrates that may impact biological pathways, cellular processes, or disease progression. In the biopharmaceutical industry, modulating the levels of protease activity is an important strategy for mitigating many types of diseases. While a variety of analytical tools exist for characterizing substrate cleavages, in vitro functional screening for antibody inhibitors of protease activity using physiologically relevant intact protein substrates remains challenging. In addition, detecting such large protein substrates with high heterogeneity using high-throughput mass spectrometry screening has rarely been reported in the literature with concerns for assay robustness and sensitivity. In this study, we established a peptide-based in vitro functional screening assay for antibody inhibitors of mouse bone morphogenic protein 1 (mBMP1) metalloprotease using a heterogeneous recombinant 66-kDa mouse Procollagen I alpha 1 chain (mProcollagen) substrate. We compared several analytical tools including capillary gel electrophoresis Western blot (CE-Western blot), as well as both intact protein and peptide-based mass spectrometry (MS) to quantitate the mBMP1 proteolytic activity and its inhibition by antibodies using this heterogeneous mProcollagen substrate. We concluded that the peptide-based mass spectrometry screening assay was the most suitable approach in terms of throughput, sensitivity, and assay robustness. We then optimized our mBMP1 proteolysis reaction after characterizing the enzyme kinetics using the peptide-based MS assay. This assay resulted in Z' values ranging from 0.6 to 0.8 from the screening campaign. Among over 1200 antibodies screened, IC50 characterization was performed on the top candidate hits, which showed partial or complete inhibitory activities against mBMP1.
Collapse
Affiliation(s)
- Cong Wu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA.
| | - Ryan Cook
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Ping Wu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | | | - Elin Chee
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - William S Sawyer
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Hua Wang
- Morphic Therapeutic, Waltham, MA, USA
| | - Meredith Hazen
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Isidro Hotzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | | | - John C Tran
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
10
|
Ma HY, N'Diaye EN, Caplazi P, Huang Z, Arlantico A, Jeet S, Wong A, Brightbill HD, Li Q, Wong WR, Sandoval W, Tam L, Newman R, Roose-Girma M, Ding N. BMP1 is not required for lung fibrosis in mice. Sci Rep 2022; 12:5466. [PMID: 35361882 PMCID: PMC8971496 DOI: 10.1038/s41598-022-09557-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic protein 1 (BMP1) belongs to the astacin/BMP1/tolloid-like family of zinc metalloproteinases, which play a fundamental role in the development and formation of extracellular matrix (ECM). BMP1 mediates the cleavage of carboxyl terminal (C-term) propeptides from procollagens, a crucial step in fibrillar collagen fiber formation. Blocking BMP1 by small molecule or antibody inhibitors has been linked to anti-fibrotic activity in the preclinical models of skin, kidney and liver fibrosis. Therefore, we reason that BMP1 may be important for the pathogenesis of lung fibrosis and BMP1 could be a potential therapeutic target for progressive fibrotic disease such as idiopathic pulmonary fibrosis (IPF). Here, we observed the increased expression of BMP1 in both human IPF lungs and mouse fibrotic lungs induced by bleomycin. Furthermore, we developed an inducible Bmp1 conditional knockout (cKO) mouse strain. We found that Bmp1 deletion does not protect mice from lung fibrosis triggered by bleomycin. Moreover, we found no significant impact of BMP1 deficiency upon C-term propeptide of type I procollagen (CICP) production in the fibrotic mouse lungs. Based on these results, we propose that BMP1 is not required for lung fibrosis in mice and BMP1 may not be considered a candidate therapeutic target for IPF.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Qingling Li
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Weng Ruth Wong
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Robert Newman
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
11
|
Coentro JQ, Di Nubila A, May U, Prince S, Zwaagstra J, Järvinen TAH, Zeugolis D. Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomed Mater 2022; 17. [PMID: 35176732 DOI: 10.1088/1748-605x/ac5673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Single molecule drug delivery systems have failed to yield functional therapeutic outcomes, triggering investigations into multi-molecular drug delivery vehicles. In the context of skin fibrosis, although multi-drug systems have been assessed, no system has assessed molecular combinations that directly and specifically reduce cell proliferation, collagen synthesis and transforming growth factor β1 (TGFβ1) expression. Herein, a core-shell collagen type I hydrogel system was developed for the dual delivery of a TGFβ trap, a soluble recombinant protein that inhibits TGFβ signalling, and Trichostatin A (TSA), a small molecule inhibitor of histone deacetylases. The antifibrotic potential of the dual delivery system was assessed in an in vitro skin fibrosis model induced by macromolecular crowding (MMC) and TGFβ1. SDS-PAGE and HPLC analyses revealed that ~ 50 % of the TGFβ trap and ~ 30 % of the TSA were released from the core and shell compartments, respectively, of the hydrogel system after 10 days (longest time point assessed) in culture. As a direct consequence of this slow release, the core (TGFβ trap) / shell (TSA) hydrogel system induced significantly (p < 0.05) lower than the control group (MMC and TGFβ1) collagen type I deposition (assessed via SDS-PAGE and immunocytochemistry), α smooth muscle actin (αSMA) expression (assessed via immunocytochemistry) and cellular proliferation (assessed via DNA quantification) and viability (assessed via calcein AM and ethidium homodimer-I staining) after 10 days in culture. On the other hand, direct TSA-TGFβ supplementation induced the lowest (p < 0.05) collagen type I deposition, αSMA expression and cellular proliferation and viability after 10 days in culture. Our results illustrate the potential of core-shell collagen hydrogel systems for sustained delivery of antifibrotic molecules.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - Stuart Prince
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - John Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, K1A 0R6, CANADA
| | - Tero A H Järvinen
- Faculty of Medicine & Health Technology, Tampere University, Faculty of Medicine & Health Technology, Tampere, 33014, FINLAND
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, University College Dublin, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, Dublin, 4, IRELAND
| |
Collapse
|
12
|
Bardiot D, Vangeel L, Koukni M, Arzel P, Zwaagstra M, Lyoo H, Wanningen P, Ahmad S, Zhang L, Sun X, Delpal A, Eydoux C, Guillemot JC, Lescrinier E, Klaassen H, Leyssen P, Jochmans D, Castermans K, Hilgenfeld R, Robinson C, Decroly E, Canard B, Snijder EJ, van Hemert MJ, van Kuppeveld F, Chaltin P, Neyts J, De Jonghe S, Marchand A. Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs As Inhibitors of SARS-CoV-2 Replication. Molecules 2022; 27:molecules27031052. [PMID: 35164317 PMCID: PMC8840742 DOI: 10.3390/molecules27031052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure–activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.
Collapse
Affiliation(s)
- Dorothée Bardiot
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Mohamed Koukni
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Philippe Arzel
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Marleen Zwaagstra
- Virology Section, Infectious Disease and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.Z.); (H.L.); (F.v.K.)
| | - Heyrhyoung Lyoo
- Virology Section, Infectious Disease and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.Z.); (H.L.); (F.v.K.)
| | - Patrick Wanningen
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.W.); (E.J.S.); (M.J.v.H.)
| | - Shamshad Ahmad
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DDI 5EH, UK; (S.A.); (C.R.)
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany; (L.Z.); (X.S.); (R.H.)
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany; (L.Z.); (X.S.); (R.H.)
| | - Adrien Delpal
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Cecilia Eydoux
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Jean-Claude Guillemot
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Hugo Klaassen
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Karolien Castermans
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany; (L.Z.); (X.S.); (R.H.)
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Colin Robinson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DDI 5EH, UK; (S.A.); (C.R.)
| | - Etienne Decroly
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Bruno Canard
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Eric J. Snijder
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.W.); (E.J.S.); (M.J.v.H.)
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.W.); (E.J.S.); (M.J.v.H.)
| | - Frank van Kuppeveld
- Virology Section, Infectious Disease and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.Z.); (H.L.); (F.v.K.)
| | - Patrick Chaltin
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
- Center for Drug Design and Development (CD3), KU Leuven R&D, Waaistraat 6, 3000 Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
- Correspondence: (S.D.J.); (A.M.)
| | - Arnaud Marchand
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
- Correspondence: (S.D.J.); (A.M.)
| |
Collapse
|
13
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
14
|
He Y, Zheng Z, Yang J, Zhang X, Fan X. Recent advances in the functionalization of saturated cyclic amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00171j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functionalized cyclic amines are the essential structural moieties of numerous biologically active compounds. This review summarized the most recent advances in the C–H, C–N and C–C bond functionalization of saturated cyclic amines.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Zhi Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| |
Collapse
|
15
|
N'Diaye EN, Cook R, Wang H, Wu P, LaCanna R, Wu C, Ye Z, Seshasayee D, Hazen M, Lin W, Tyagi T, Hotzel I, Tam L, Newman R, Roose-Girma M, Wolters PJ, Ding N. Extracellular BMP1 is the major proteinase for COOH-terminal proteolysis of type I procollagen in lung fibroblasts. Am J Physiol Cell Physiol 2020; 320:C162-C174. [PMID: 33206546 DOI: 10.1152/ajpcell.00012.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteolytic processing of procollagens is a central step during collagen fibril formation. Bone morphogenic protein 1 (BMP1) is a metalloprotease that plays an important role in the cleavage of carboxy-terminal (COOH-terminal) propeptides from procollagens. Although the removal of propeptides is required to generate mature collagen fibrils, the contribution of BMP1 to this proteolytic process and its action site remain to be fully determined. In this study, using postnatal lung fibroblasts as a model system, we showed that genetic ablation of Bmp1 in primary murine lung fibroblasts abrogated COOH-terminal cleavage from type I procollagen as measured by COOH-terminal propeptide of type I procollagen (CICP) production. We also showed that inhibition of BMP1 by siRNA-mediated knockdown or small-molecule inhibitor reduced the vast majority of CICP production and collagen deposition in primary human lung fibroblasts. Furthermore, we discovered and characterized two antibody inhibitors for BMP1. In both postnatal lung fibroblast and organoid cultures, BMP1 blockade prevented CICP production. Together, these findings reveal a nonredundant role of extracellular BMP1 to process CICP in lung fibroblasts and suggest that development of antibody inhibitors is a viable pharmacological approach to target BMP1 proteinase activity in fibrotic diseases.
Collapse
Affiliation(s)
- Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, California
| | - Ryan Cook
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | - Hua Wang
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Ping Wu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, California
| | - Cong Wu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Meredith Hazen
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - WeiYu Lin
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Tulika Tyagi
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Isidro Hotzel
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Robert Newman
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, California
| | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, California
| |
Collapse
|
16
|
He Y, Yang J, Liu Q, Zhang X, Fan X. Synthesis of β-Methylsulfonylated N-Heterocycles from Saturated Cyclic Amines with the Insertion of Sulfur Dioxide. J Org Chem 2020; 85:15600-15609. [DOI: 10.1021/acs.joc.0c02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Bai M, Lei J, Wang S, Ding D, Yu X, Guo Y, Chen S, Du Y, Li D, Zhang Y, Huang S, Jia Z, Zhang A. BMP1 inhibitor UK383,367 attenuates renal fibrosis and inflammation in CKD. Am J Physiol Renal Physiol 2019; 317:F1430-F1438. [PMID: 31545926 DOI: 10.1152/ajprenal.00230.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Renal fibrosis is a key pathological phenomenon of chronic kidney disease (CKD) contributing to the progressive loss of renal function. UK383,367 is a procollagen C proteinase inhibitor that has been selected as a candidate for dermal antiscarring agents, whereas its role in renal fibrosis is unclear. In the present study, UK383,367 was applied to a CKD mouse model of unilateral ureteral obstruction (UUO) and cell lines of renal tubular epithelial cells (mouse proximal tubular cells) and renal fibroblast cells (NRK-49F cells) challenged by transforming growth factor-β1. In vivo, bone morphogenetic protein 1, the target of UK383,367, was significantly enhanced in UUO mouse kidneys and renal biopsies from patients with CKD. Strikingly, UK383,367 administration ameliorated tubulointerstitial fibrosis as shown by Masson’s trichrome staining in line with the blocked expression of collagen type I/III, fibronectin, and α-smooth muscle actin in the kidneys from UUO mice. Similarly, the enhanced inflammatory factors in obstructed kidneys were also blunted. In vitro, UK383,367 pretreatment inhibited the induction of collagen type I/III, fibronectin, and α-smooth muscle actin in both mouse proximal tubular cells and NRK-49F cells treated with transforming growth factor-β1. Taken together, these findings indicate that the bone morphogenetic protein 1 inhibitor UK383,367 could serve as a potential drug in antagonizing CKD renal fibrosis by acting on the maturation and deposition of collagen and the subsequent profibrotic response and inflammation.
Collapse
Affiliation(s)
- Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Lab of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuqin Wang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Dan Ding
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xiaowen Yu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Lab of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Lab of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Du
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Deyi Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Lab of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Lab of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Banerjee S, Andrew RJ, Duff CJ, Fisher K, Jackson CD, Lawrence CB, Maeda N, Greenspan DS, Kellett KAB, Hooper NM. Proteolysis of the low density lipoprotein receptor by bone morphogenetic protein-1 regulates cellular cholesterol uptake. Sci Rep 2019; 9:11416. [PMID: 31388055 PMCID: PMC6684651 DOI: 10.1038/s41598-019-47814-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The development of cardiovascular disease is intimately linked to elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. Hepatic LDL receptor (LDLR) levels regulate the amount of plasma LDL. We identified the secreted zinc metalloproteinase, bone morphogenetic protein 1 (BMP1), as responsible for the cleavage of human LDLR within its extracellular ligand-binding repeats at Gly171↓Asp172. The resulting 120 kDa membrane-bound C-terminal fragment (CTF) of LDLR had reduced capacity to bind LDL and when expressed in LDLR null cells had compromised LDL uptake as compared to the full length receptor. Pharmacological inhibition of BMP1 or siRNA-mediated knockdown prevented the generation of the 120 kDa CTF and resulted in an increase in LDL uptake into cells. The 120 kDa CTF was detected in the livers from humans and mice expressing human LDLR. Collectively, these results identify that BMP1 regulates cellular LDL uptake and may provide a target to modulate plasma LDL cholesterol.
Collapse
Affiliation(s)
- Sreemoti Banerjee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences, Manchester, M13 9PT, UK.,Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, YO10 5DD, UK
| | - Robert J Andrew
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences, Manchester, M13 9PT, UK.,Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Christopher J Duff
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,Department of Clinical Biochemistry, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, ST4 6QG, UK
| | - Kate Fisher
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences, Manchester, M13 9PT, UK
| | - Carolyn D Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Catherine B Lawrence
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences, Manchester, M13 9PT, UK
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Katherine A B Kellett
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences, Manchester, M13 9PT, UK.
| | - Nigel M Hooper
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
Good RB, Eley JD, Gower E, Butt G, Blanchard AD, Fisher AJ, Nanthakumar CB. A high content, phenotypic 'scar-in-a-jar' assay for rapid quantification of collagen fibrillogenesis using disease-derived pulmonary fibroblasts. BMC Biomed Eng 2019; 1:14. [PMID: 32903343 PMCID: PMC7422573 DOI: 10.1186/s42490-019-0014-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Excessive extracellular matrix (ECM) deposition is a hallmark feature in fibrosis and tissue remodelling diseases. Typically, mesenchymal cells will produce collagens under standard 2D cell culture conditions, however these do not assemble into fibrils. Existing assays for measuring ECM production are often low throughput and not disease relevant. Here we describe a robust, high content, pseudo-3D phenotypic assay to quantify mature fibrillar collagen deposition which is both physiologically relevant and amenable to high throughput compound screening. Using pulmonary fibroblasts derived from patients with idiopathic pulmonary fibrosis (IPF), we developed the 'scar-in-a-jar' assay into a medium-throughput phenotypic assay to robustly quantify collagen type I deposition and other extracellular matrix (ECM) proteins over 72 h. RESULTS This assay utilises macromolecular crowding to induce an excluded volume effect and enhance enzyme activity, which in combination with TGF-β1 stimulation significantly accelerates ECM production. Collagen type I is upregulated approximately 5-fold with a negligible effect on cell number. We demonstrate the robustness of the assay achieving a Z prime of approximately 0.5, and % coefficient of variance (CV) of < 5 for the assay controls SB-525334 (ALK5 inhibitor) and CZ415 (mTOR inhibitor). This assay has been used to confirm the potency of a number of potential anti-fibrotic agents. Active compounds from the 'scar-in-a-jar' assay can be further validated for other markers of ECM deposition and fibroblast activation such as collagen type IV and α-smooth muscle actin exhibiting a 4-fold and 3-fold assay window respectively. CONCLUSION In conclusion, we have developed 'scar -in-a-jar is' into a robust disease-relevant medium-throughput in vitro assay to accurately quantify ECM deposition. This assay may enable iterative compound profiling for IPF and other fibroproliferative and tissue remodelling diseases.
Collapse
Affiliation(s)
- Robert B. Good
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Jessica D. Eley
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Elaine Gower
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Genevieve Butt
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Andrew D. Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Andrew J. Fisher
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust and Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Carmel B. Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| |
Collapse
|
20
|
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019; 146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/08/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Geoffrey Hanley
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|
21
|
Talantikite M, Lécorché P, Beau F, Damour O, Becker-Pauly C, Ho WB, Dive V, Vadon-Le Goff S, Moali C. Inhibitors of BMP-1/tolloid-like proteinases: efficacy, selectivity and cellular toxicity. FEBS Open Bio 2018; 8:2011-2021. [PMID: 30524951 PMCID: PMC6275283 DOI: 10.1002/2211-5463.12540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
BMP‐1/tolloid‐like proteinases belong to the astacin family of human metalloproteinases, together with meprins and ovastacin. They represent promising targets to treat or prevent a wide range of diseases such as fibrotic disorders or cancer. However, the study of their pathophysiological roles is still impaired by the lack of well‐characterized inhibitors and the questions that remain regarding their selectivity and in vivo efficiency. As a first step towards the identification of suitable tools to be used in functional studies, we have undertaken a systematic comparison of seven molecules known to affect the proteolytic activity of human astacins including three hydroxamates (FG‐2575, UK383,367, S33A), the protein sizzled, a new phosphinic inhibitor (RXP‐1001) and broad‐spectrum protease inhibitors (GM6001, actinonin). Their efficacy in vitro, their cellular toxicity and efficacy in cell cultures were thoroughly characterized. We found that these molecules display very different potency and selectivity profiles, with hydroxamate FG‐2575 and the protein sizzled being very powerful and selective inhibitors of BMP‐1, whereas phosphinic peptide RXP‐1001 behaves as a broad‐spectrum inhibitor of astacins. Their use should therefore be carefully considered in agreement with the aim of the study to avoid result misinterpretation.
Collapse
Affiliation(s)
- Maya Talantikite
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| | - Pascaline Lécorché
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Fabrice Beau
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Odile Damour
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France.,Banque de Tissus et Cellules Hospices Civils de Lyon France
| | - Christoph Becker-Pauly
- Institute of Biochemistry Unit for Degradomics of the Protease Web Christian-Albrechts-University Kiel Germany
| | | | - Vincent Dive
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| |
Collapse
|
22
|
Kallander LS, Washburn D, Hilfiker MA, Eidam HS, Lawhorn BG, Prendergast J, Fox R, Dowdell S, Manns S, Hoang T, Zhao S, Ye G, Hammond M, Holt DA, Roethke T, Hong X, Reid RA, Gampe R, Zhang H, Diaz E, Rendina AR, Quinn AM, Willette B. Reverse Hydroxamate Inhibitors of Bone Morphogenetic Protein 1. ACS Med Chem Lett 2018; 9:736-740. [PMID: 30034610 DOI: 10.1021/acsmedchemlett.8b00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022] Open
Abstract
Bone Morphogenetic Protein 1 (BMP1) inhibition is a potential method for treating fibrosis because BMP1, a member of the zinc metalloprotease family, is required to convert pro-collagen to collagen. A novel class of reverse hydroxamate BMP1 inhibitors was discovered, and cocrystal structures with BMP1 were obtained. The observed binding mode is unique in that the small molecule occupies the nonprime side of the metalloprotease pocket providing an opportunity to build in metalloprotease selectivity. Structure-guided modification of the initial hit led to the identification of an oral in vivo tool compound with selectivity over other metalloproteases. Due to irreversible inhibition of cytochrome P450 3A4 for this chemical class, the risk of potential drug-drug interactions was managed by optimizing the series for subcutaneous injection.
Collapse
|
23
|
Yin XJ, Zhu LG. Syntheses, Structures, and Properties of Two Coordination Polymers Based on 2-Pyrimidineamidoxime. RUSS J COORD CHEM+ 2018. [DOI: 10.1134/s1070328418070059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Upregulation of bone morphogenetic protein 1 is associated with poor prognosis of late-stage gastric Cancer patients. BMC Cancer 2018; 18:508. [PMID: 29720137 PMCID: PMC5930761 DOI: 10.1186/s12885-018-4383-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/17/2018] [Indexed: 01/02/2023] Open
Abstract
Background Gastric cancer is the eighth most common cancer in Taiwan, with a 40% 5-year survival rate. Approximately 40% of patients are refractory to chemotherapy. Currently, the anti-HER2 therapy is the only clinically employed targeted therapy. However, only 7% patients in Taiwan are HER2-positive. Identifying candidate target genes will facilitate the development of adjuvant targeted therapy to increase the efficacy of gastric cancer treatment. Methods Clinical specimens were analyzed by targeted RNA sequencing to assess the expression levels of target genes. Statistical significance of differential expression and correlation between specimens was evaluated. The correlation with patient survival was analyzed as well. In vitro cell mobility was determined using wound-healing and transwell mobility assays. Results Expression of BMP1, COL1A1, STAT3, SOX2, FOXA2, and GATA6 was progressively dysregulated through the stages of gastric oncogenesis. The expression profile of these six genes forms an ubiquitously biomarker signature that is sufficient to differentiate cancer from non-cancerous specimens. High expression status of BMP1 correlates with poor long-term survival of late-stage patients. In vitro, suppression of BMP1 inhibits the mobility of the gastric cancer cell lines, indicating a role of BMP1 in metastasis. Conclusions BMP1 is upregulated in gastric cancer and is correlated with poor patient survival. Suppression of BMP1 reduced gastric cancer mobility in vitro. Our finding suggests that anti-BMP1 therapy will likely augment the efficacy of standard chemotherapy and improve the treatment outcome.
Collapse
|
25
|
Barnes LA, Marshall CD, Leavitt T, Hu MS, Moore AL, Gonzalez JG, Longaker MT, Gurtner GC. Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. Adv Wound Care (New Rochelle) 2018; 7:47-56. [PMID: 29392093 PMCID: PMC5792236 DOI: 10.1089/wound.2016.0709] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/15/2016] [Indexed: 12/25/2022] Open
Abstract
Significance: Excessive scarring is major clinical and financial burden in the United States. Improved therapies are necessary to reduce scarring, especially in patients affected by hypertrophic and keloid scars. Recent Advances: Advances in our understanding of mechanical forces in the wound environment enable us to target mechanical forces to minimize scar formation. Fetal wounds experience much lower resting stress when compared with adult wounds, and they heal without scars. Therapies that modulate mechanical forces in the wound environment are able to reduce scar size. Critical Issues: Increased mechanical stresses in the wound environment induce hypertrophic scarring via activation of mechanotransduction pathways. Mechanical stimulation modulates integrin, Wingless-type, protein kinase B, and focal adhesion kinase, resulting in cell proliferation and, ultimately, fibrosis. Therefore, the development of therapies that reduce mechanical forces in the wound environment would decrease the risk of developing excessive scars. Future Directions: The development of novel mechanotherapies is necessary to minimize scar formation and advance adult wound healing toward the scarless ideal. Mechanotransduction pathways are potential targets to reduce excessive scar formation, and thus, continued studies on therapies that utilize mechanical offloading and mechanomodulation are needed.
Collapse
Affiliation(s)
- Leandra A. Barnes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clement D. Marshall
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Tripp Leavitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael S. Hu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Department of Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | | | - Jennifer G. Gonzalez
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
26
|
Tarasenko M, Duderin N, Sharonova T, Baykov S, Shetnev A, Smirnov AV. Room-temperature synthesis of pharmaceutically important carboxylic acids bearing the 1,2,4-oxadiazole moiety. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays. Bioorg Med Chem 2016; 24:4291-4309. [DOI: 10.1016/j.bmc.2016.07.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/28/2022]
|
28
|
Bekhouche M, Leduc C, Dupont L, Janssen L, Delolme F, Vadon-Le Goff S, Smargiasso N, Baiwir D, Mazzucchelli G, Zanella-Cleon I, Dubail J, De Pauw E, Nusgens B, Hulmes DJS, Moali C, Colige A. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets. FASEB J 2016; 30:1741-56. [PMID: 26740262 DOI: 10.1096/fj.15-279869] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023]
Abstract
A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2, 3, and 14 are collectively named procollagen N-proteinases (pNPs) because of their specific ability to cleave the aminopropeptide of fibrillar procollagens. Several reports also indicate that they could be involved in other biological processes, such as blood coagulation, development, and male fertility, but the potential substrates associated with these activities remain unknown. Using the recently described N-terminal amine isotopic labeling of substrate approach, we analyzed the secretomes of human fibroblasts and identified 8, 17, and 22 candidate substrates for ADAMTS2, 3, and 14, respectively. Among these newly identified substrates, many are components of the extracellular matrix and/or proteins related to cell signaling such as latent TGF-β binding protein 1, TGF-β RIII, and dickkopf-related protein 3. Candidate substrates for the 3 ADAMTS have been biochemically validated in different contexts, and the implication of ADAMTS2 in the control of TGF-β activity has been further demonstrated in human fibroblasts. Finally, the cleavage site specificity was assessed showing a clear and unique preference for nonpolar or slightly hydrophobic amino acids. This work shows that the activities of the pNPs extend far beyond the classically reported processing of the aminopropeptide of fibrillar collagens and that they should now be considered as multilevel regulators of matrix deposition and remodeling.-Bekhouche, M., Leduc, C., Dupont, L., Janssen, L., Delolme, F., Vadon-Le Goff, S., Smargiasso, N., Baiwir, D., Mazzucchelli, G., Zanella-Cleon, I., Dubail, J., De Pauw, E., Nusgens, B., Hulmes, D. J. S., Moali, C., Colige, A. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets.
Collapse
Affiliation(s)
- Mourad Bekhouche
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium;
| | - Cedric Leduc
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Lauriane Janssen
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Frederic Delolme
- Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France; and Protein Science Facility, Institute for the Biology and Chemistry of Proteins, Unité Mixte de Service 3444, Lyon, France
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France; and
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA Proteomics, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, GIGA Proteomics, University of Liège, Liège, Belgium
| | - Isabelle Zanella-Cleon
- Protein Science Facility, Institute for the Biology and Chemistry of Proteins, Unité Mixte de Service 3444, Lyon, France
| | - Johanne Dubail
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA Proteomics, University of Liège, Liège, Belgium
| | - Betty Nusgens
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France; and
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France; and
| | - Alain Colige
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium;
| |
Collapse
|
29
|
Li B, Clemons TD, Agarwal V, Kretzmann J, Bradshaw M, Toshniwal P, Smith NM, Li S, Fear M, Wood FM, Swaminathan Iyer K. Regulation of collagen expression using nanoparticle mediated inhibition of TGF-β activation. NEW J CHEM 2016. [DOI: 10.1039/c5nj03115j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polymeric nanoparticle for delivery of an effective anti-fibrotic agent in an in vitro model of scarring.
Collapse
|
30
|
Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials 2016; 74:217-30. [DOI: 10.1016/j.biomaterials.2015.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
|
31
|
France DJ, Stepek G, Houston DR, Williams L, McCormack G, Walkinshaw MD, Page AP. Identification and activity of inhibitors of the essential nematode-specific metalloprotease DPY-31. Bioorg Med Chem Lett 2015; 25:5752-5. [PMID: 26546217 PMCID: PMC4658336 DOI: 10.1016/j.bmcl.2015.10.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/26/2022]
Abstract
Infection by parasitic nematodes is widespread in the developing world causing extensive morbidity and mortality. Furthermore, infection of animals is a global problem, with a substantial impact on food production. Here we identify small molecule inhibitors of a nematode-specific metalloprotease, DPY-31, using both known metalloprotease inhibitors and virtual screening. This strategy successfully identified several μM inhibitors of DPY-31 from both the human filarial nematode Brugia malayi, and the parasitic gastrointestinal nematode of sheep Teladorsagia circumcincta. Further studies using both free living and parasitic nematodes show that these inhibitors elicit the severe body morphology defect 'Dumpy' (Dpy; shorter and fatter), a predominantly non-viable phenotype consistent with mutants lacking the DPY-31 gene. Taken together, these results represent a start point in developing DPY-31 inhibition as a totally novel mechanism for treating infection by parasitic nematodes in humans and animals.
Collapse
Affiliation(s)
- David J France
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Gillian Stepek
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Douglas R Houston
- Institute of Structural & Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lewis Williams
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Gillian McCormack
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Malcolm D Walkinshaw
- Institute of Structural & Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Antony P Page
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
32
|
Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov 2015; 14:693-720. [PMID: 26338155 DOI: 10.1038/nrd4592] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis, which leads to progressive loss of tissue function and eventual organ failure, has been estimated to contribute to ~45% of deaths in the developed world, and so new therapeutics to modulate fibrosis are urgently needed. Major advances in our understanding of the mechanisms underlying pathological fibrosis are supporting the search for such therapeutics, and the recent approval of two anti-fibrotic drugs for idiopathic pulmonary fibrosis has demonstrated the tractability of this area for drug discovery. This Review examines the pharmacology and structural information for small molecules being evaluated for lung, liver, kidney and skin fibrosis. In particular, we discuss the insights gained from the use of these pharmacological tools, and how these entities can inform, and probe, emerging insights into disease mechanisms, including the potential for future drug combinations.
Collapse
|
33
|
Rathi AK, Gawande MB, Zboril R, Varma RS. Microwave-assisted synthesis – Catalytic applications in aqueous media. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.01.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
A highly conserved, inhibitable astacin metalloprotease from Teladorsagia circumcincta is required for cuticle formation and nematode development. Int J Parasitol 2015; 45:345-55. [PMID: 25736599 PMCID: PMC4406453 DOI: 10.1016/j.ijpara.2015.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 11/21/2022]
Abstract
Astacin metalloprotease, DPY-31, is conserved throughout the nematode phylum. DPY-31 is crucial to Teladorsagia circumcincta cuticle formation. Matrix metalloprotease inhibitors are efficacious against recombinant DPY-31. Novel hydroxamate inhibitors caused Dumpy and Moult defects in nematodes. DPY-31 is a potential target for future nematode control.
Parasitic nematodes cause chronic, debilitating infections in both livestock and humans worldwide, and many have developed multiple resistance to the currently available anthelmintics. The protective collagenous cuticle of these parasites is required for nematode survival and its synthesis has been studied extensively in the free-living nematode, Caenorhabditis elegans. The collagen synthesis pathway is a complex, multi-step process involving numerous key enzymes, including the astacin metalloproteases. Nematode astacinsare crucial for C. elegans development, having specific roles in hatching, moulting and cuticle synthesis. NAS-35 (also called DPY-31) is a homologue of a vertebrate procollagen C-proteinase and performs a central role in cuticle formation of C. elegans as its mutation causes temperature-sensitive lethality and cuticle defects. The characterisation of DPY-31 from the ovine gastrointestinal nematode Teladorsagia circumcincta and its ability to rescue the C. elegans mutant is described. Compounds with a hydroxamate functional group have previously been shown to be potent inhibitors of procollagen C-proteinases and were therefore examined for inhibitory activity against the T. circumcincta enzyme. Phenotypic screening against T. circumcincta, Haemonchus contortus and C. elegans larval stages identified compounds that caused body morphology phenotypes consistent with the inhibition of proteases involved in cuticle collagen synthesis. These compounds correspondingly inhibited the activity of recombinant T. circumcincta DPY-31, supporting the hypothesis that this enzyme may represent a potentially novel anthelmintic drug target.
Collapse
|
35
|
Fershtat LL, Ananyev IV, Makhova NN. Efficient assembly of mono- and bis(1,2,4-oxadiazol-3-yl)furoxan scaffolds via tandem reactions of furoxanylamidoximes. RSC Adv 2015. [DOI: 10.1039/c5ra07295f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tandem protocols for the synthesis of new types of hybrid molecules – (1,2,4-oxadiazol-3-yl)furoxans based on the furoxanylamidoximes heterocyclization have been developed.
Collapse
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|
36
|
Turtle E, Chow N, Yang C, Sosa S, Bauer U, Brenner M, Solow-Cordero D, Ho WB. Design and synthesis of procollagen C-proteinase inhibitors. Bioorg Med Chem Lett 2012; 22:7397-401. [DOI: 10.1016/j.bmcl.2012.10.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 11/16/2022]
|
37
|
Allam BK, Singh KN. Highly efficient one-pot synthesis of primary amides catalyzed by scandium(III) triflate under controlled MW. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.08.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Abstract
The use of Quantitative Structure-Activity Relationship models to address problems in drug discovery has a mixed history, generally resulting from the misapplication of QSAR models that were either poorly constructed or used outside of their domains of applicability. This situation has motivated the development of a variety of model performance metrics (r(2), PRESS r(2), F-tests, etc.) designed to increase user confidence in the validity of QSAR predictions. In a typical workflow scenario, QSAR models are created and validated on training sets of molecules using metrics such as Leave-One-Out or many-fold cross-validation methods that attempt to assess their internal consistency. However, few current validation methods are designed to directly address the stability of QSAR predictions in response to changes in the information content of the training set. Since the main purpose of QSAR is to quickly and accurately estimate a property of interest for an untested set of molecules, it makes sense to have a means at hand to correctly set user expectations of model performance. In fact, the numerical value of a molecular prediction is often less important to the end user than knowing the rank order of that set of molecules according to their predicted end point values. Consequently, a means for characterizing the stability of predicted rank order is an important component of predictive QSAR. Unfortunately, none of the many validation metrics currently available directly measure the stability of rank order prediction, making the development of an additional metric that can quantify model stability a high priority. To address this need, this work examines the stabilities of QSAR rank order models created from representative data sets, descriptor sets, and modeling methods that were then assessed using Kendall Tau as a rank order metric, upon which the Shannon entropy was evaluated as a means of quantifying rank-order stability. Random removal of data from the training set, also known as Data Truncation Analysis (DTA), was used as a means for systematically reducing the information content of each training set while examining both rank order performance and rank order stability in the face of training set data loss. The premise for DTA ROE model evaluation is that the response of a model to incremental loss of training information will be indicative of the quality and sufficiency of its training set, learning method, and descriptor types to cover a particular domain of applicability. This process is termed a "rank order entropy" evaluation or ROE. By analogy with information theory, an unstable rank order model displays a high level of implicit entropy, while a QSAR rank order model which remains nearly unchanged during training set reductions would show low entropy. In this work, the ROE metric was applied to 71 data sets of different sizes and was found to reveal more information about the behavior of the models than traditional metrics alone. Stable, or consistently performing models, did not necessarily predict rank order well. Models that performed well in rank order did not necessarily perform well in traditional metrics. In the end, it was shown that ROE metrics suggested that some QSAR models that are typically used should be discarded. ROE evaluation helps to discern which combinations of data set, descriptor set, and modeling methods lead to usable models in prioritization schemes and provides confidence in the use of a particular model within a specific domain of applicability.
Collapse
|
39
|
Pinter T, Jana S, Courtemanche RJM, Hof F. Recognition properties of carboxylic acid bioisosteres: anion binding by tetrazoles, aryl sulfonamides, and acyl sulfonamides on a calix[4]arene scaffold. J Org Chem 2011; 76:3733-41. [PMID: 21462934 DOI: 10.1021/jo200031u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrazoles and acyl sulfonamides are functional groups that are common in medicinal chemistry but virtually unexplored as recognition elements in supramolecular chemistry. We report here on the anion binding properties of these highly acidic N-H functional groups. We have prepared two new calixarene-based tetrazole-containing hosts, as well as new acetyl sulfonamide and benzoyl sulfonamide hosts. We also report on analogous hosts bearing the better-known aryl sulfonamide functional group as a point of comparison. We find that these hosts are competent anion binders and that the recognition of anions by these groups is highly dependent on their conformational preferences. We also report in detail on the preferred molecular shape of each acid bioisostere as determined by calculations and structural database surveys, and discuss how these shapes impact binding in the context of the reported hosts.
Collapse
Affiliation(s)
- Thomas Pinter
- Department of Chemistry, University of Victoria , Victoria, Canada V8W 3V6
| | | | | | | |
Collapse
|
40
|
Abdel-Hamid IA, Anis T. Peyronie's disease: perspectives on therapeutic targets. Expert Opin Ther Targets 2011; 15:913-29. [PMID: 21492024 DOI: 10.1517/14728222.2011.577419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Peyronie's disease (PD) is an acquired benign connective tissue disorder of the penis, characterized by the development of fibrotic plaques, that can cause different degrees of bending, narrowing or shortening. Medical treatment for PD remains a major challenge. Impressive progress in our understanding of the molecular mechanisms of PD pathogenesis has uncovered several promising molecular targets for antifibrotic treatments. AREAS COVERED This review covers the literature pertaining to the exploration of therapeutic targets for PD. The search included: i) a MEDLINE search from 1941 to January 2011, limited to English-language medical literature, ii) relevant abstracts from 2009 and 2010, iii) relevant textbooks and iv) a pipeline search for therapeutics in development. EXPERT OPINION Rapid translational research depends on our ability to develop rational therapies targeted to penile tunical fibrosis, which necessitate a sound knowledge of the biology, biochemistry and the physiological role of fibroblasts, myofibroblasts and stem cells in PD. Much remains to be learned about the pathogenesis of PD. Although there are many interesting therapeutic targets, we are confronted with some questions when identifying new targets, or when validating potential therapeutic options.
Collapse
|
41
|
Koszytkowska-Stawińska M, Mironiuk-Puchalska E, Sas W. Synthesis of 1-pyrroline 1-oxides analogous to pseudouridine. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
A new palladium(II)-catalyzed [3,3] aza-Claisen rearrangement of 3-allyloxy-5-aryl-1,2,4-oxadiazoles. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Nishiwaki N, Kobiro K, Hirao S, Sawayama J, Saigo K, Ise Y, Okajima Y, Ariga M. Inverse electron-demand 1,3-dipolar cycloaddition of nitrile oxide with common nitriles leading to 3-functionalized 1,2,4-oxadiazoles. Org Biomol Chem 2011; 9:6750-4. [DOI: 10.1039/c1ob05682d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
An GY, Ji CM, Cui AL, Kou HZ. Pyrazine-2-amidoxime Ni(II) Complexes: From Ferromagnetic Cluster to Antiferromagnetic Layer. Inorg Chem 2010; 50:1079-83. [DOI: 10.1021/ic1022714] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guang-Yu An
- Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Cong-Min Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Ai-Li Cui
- Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
45
|
Abele E, Abele R, Lukevics E. Oximes of six-membered heterocyclic compounds with two or three hetero-atoms: I. Synthesis and structure (review). Chem Heterocycl Compd (N Y) 2010. [DOI: 10.1007/s10593-010-0446-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Gole B, Chakrabarty R, Mukherjee S, Song Y, Mukherjee PS. Use of 2-pyrimidineamidoxime to generate polynuclear homo-/heterometallic assemblies: synthesis, crystal structures and magnetic study with theoretical investigations on the exchange mechanism. Dalton Trans 2010; 39:9766-78. [DOI: 10.1039/c0dt00353k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Terenzi A, Barone G, Palumbo Piccionello A, Giorgi G, Guarcello A, Portanova P, Calvaruso G, Buscemi S, Vivona N, Pace A. Synthesis, characterization, cellular uptake and interaction with native DNA of a bis(pyridyl)-1,2,4-oxadiazole copper(ii) complex. Dalton Trans 2010; 39:9140-5. [DOI: 10.1039/c0dt00266f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Chen CZ, Raghunath M. Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art. FIBROGENESIS & TISSUE REPAIR 2009; 2:7. [PMID: 20003476 PMCID: PMC2805599 DOI: 10.1186/1755-1536-2-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/15/2009] [Indexed: 02/06/2023]
Abstract
Fibrosis represents a major global disease burden, yet a potent antifibrotic compound is still not in sight. Part of the explanation for this situation is the difficulties that both academic laboratories and research and development departments in the pharmaceutical industry have been facing in re-enacting the fibrotic process in vitro for screening procedures prior to animal testing. Effective in vitro characterization of antifibrotic compounds has been hampered by cell culture settings that are lacking crucial cofactors or are not holistic representations of the biosynthetic and depositional pathway leading to the formation of an insoluble pericellular collagen matrix. In order to appreciate the task which in vitro screening of antifibrotics is up against, we will first review the fibrotic process by categorizing it into events that are upstream of collagen biosynthesis and the actual biosynthetic and depositional cascade of collagen I. We point out oversights such as the omission of vitamin C, a vital cofactor for the production of stable procollagen molecules, as well as the little known in vitro tardy procollagen processing by collagen C-proteinase/BMP-1, another reason for minimal collagen deposition in cell culture. We review current methods of cell culture and collagen quantitation vis-à-vis the high content options and requirements for normalization against cell number for meaningful data retrieval. Only when collagen has formed a fibrillar matrix that becomes cross-linked, invested with ligands, and can be remodelled and resorbed, the complete picture of fibrogenesis can be reflected in vitro. We show here how this can be achieved. A well thought-out in vitro fibrogenesis system represents the missing link between brute force chemical library screens and rational animal experimentation, thus providing both cost-effectiveness and streamlined procedures towards the development of better antifibrotic drugs.
Collapse
Affiliation(s)
- Clarice Zc Chen
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, DSO Building (Kent Ridge), Medical Drive, Singapore
| | | |
Collapse
|
49
|
Chen CZC, Peng YX, Wang ZB, Fish PV, Kaar JL, Koepsel RR, Russell AJ, Lareu RR, Raghunath M. The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol 2009; 158:1196-209. [PMID: 19785660 DOI: 10.1111/j.1476-5381.2009.00387.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Fibrosis, a pathological accumulation of collagen in tissues, represents a major global disease burden. Effective characterization of potential antifibrotic drugs has been constrained by poor formation of the extracellular matrix in vitro, due to tardy procollagen processing by collagen C-proteinase/BMP-1, and difficulties in relating this matrix to cell numbers in experimental samples. EXPERIMENTAL APPROACH The Scar-in-a-Jar model provided, in vitro, the complete biosynthetic cascade of collagen matrix formation including complete conversion of procollagen by C-proteinase/BMP-1, its subsequent extracellular deposition and lysyl oxidase-mediated cross-linking, achieved by applying the biophysical principle of macromolecular 'crowding'. Collagen matrix deposition, velocity and morphology can be controlled using negatively charged 'crowders' in a rapid (2 days) mode or a mixture of neutral 'crowders' in an accelerated (6 days) mode. Combined with quantitative optical bioimaging, this novel system allows for in situ assessment of the area of deposited collagen(s) per cell. KEY RESULTS Optical evaluation of known and novel antifibrotic compounds effective at the epigenetic, post-transcriptional/translational/secretional level correlated excellently with corresponding biochemical analyses. Focusing on quantitation of deposited collagen, the Scar-in-a-Jar was most effective in assessing novel inhibitors that may have multiple targets, such as microRNA29c, found to be a promising antifibrotic agent. CONCLUSIONS AND IMPLICATIONS This novel screening system supersedes current in vitro fibroplasia models, as a fast, quantitative and non-destructive technique. This method distinguishes a reduction in collagen I deposition, excluding collagen cross-linking, and allows full evaluation of inhibitors of C-proteinase/BMP-1 and other matrix metalloproteinases.
Collapse
Affiliation(s)
- C Z C Chen
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bailey S, Fish PV, Billotte S, Bordner J, Greiling D, James K, McElroy A, Mills JE, Reed C, Webster R. Succinyl hydroxamates as potent and selective non-peptidic inhibitors of procollagen C-proteinase: Design, synthesis, and evaluation as topically applied, dermal anti-scarring agents. Bioorg Med Chem Lett 2008; 18:6562-7. [DOI: 10.1016/j.bmcl.2008.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/25/2022]
|