1
|
Kumar S, Mitra R, Ayyannan SR. Design, synthesis and evaluation of benzothiazole-derived phenyl thioacetamides as dual inhibitors of monoamine oxidases and cholinesterases. Mol Divers 2024:10.1007/s11030-024-11031-3. [PMID: 39520616 DOI: 10.1007/s11030-024-11031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A series of rationally designed benzothiazole-derived thioacetamides was synthesized and investigated for monoamine oxidases (MAO-A and MAO-B) and cholinesterases (AChE and BChE) inhibition properties. The tested compounds 18-31 inhibited MAO-A and MAO-B in the micromolar to nanomolar range and AChE in the submicromolar range. Compound 28 was identified as the most potent MAO-A inhibitor with an IC50 = 0.030 ± 0.008 µM, whereas compound 30 showed the highest potency towards MAO-B and AChE with IC50 values of 0.015 ± 0.007 µM and 0.114 ± 0.003 µM, respectively. Further, compound 30 inhibited BChE at an IC50 value of 4.125 ± 0.143 µM. Among all screened molecules, compound 30 emerged as the lead dual MAO-B and AChE inhibitor that blocked these enzymes in a competitive-reversible and mixed-reversible mode, respectively. Selected compounds have displayed iron-chelation and antioxidant properties. Further, computational assessment of ligand binding affinity and pharmacokinetic parameters of all new compounds and molecular dynamic simulation of compound 30 with MAO-B and AChE were carried out to understand ligand efficiency, pharmacokinetic, and virtual molecular interaction profile, respectively. The in silico ADMET prediction studies revealed a few undesired pharmacokinetic attributes of our compounds. The attempted virtual lead-based library synthesis and subsequent biological investigation produced a new benzothiazole-bearing dual MAO-B and AChE inhibitor as a prospective MTDL candidate for treating neurological disorders.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
2
|
Zarrilli B, Giacomet C, Cossa F, Federici M, Berretta N, Mercuri NB. Functional efficacy of the MAO-B inhibitor safinamide in murine substantia nigra pars compacta dopaminergic neurons in vitro: A comparative study with tranylcypromine. Parkinsonism Relat Disord 2024; 128:107158. [PMID: 39326285 DOI: 10.1016/j.parkreldis.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Safinamide (SAF) is currently used to treat Parkinson's disease (PD) symptoms based on its theoretical ability to potentiate the dopamine (DA) signal, blocking monoamine oxidase (MAO) B. The present work aims to highlight the functional relevance of SAF as an enhancer of the DA signal, by evaluating its ability to prolong recovery from DA-mediated firing inhibition of DAergic neurons of the substantia nigra pars compacta (SNpc), compared to another MAO antagonist, tranylcypromine (TCP). Using multielectrode array (MEA) and single electrode extracellular recordings of spontaneous spikes from presumed SNpc DAergic cells in vitro, we show that SAF (30 μM) mildly prolongs the DA-mediated firing inhibition, as opposed to the profound effect of TCP (10 μM). In patch-clamp recordings, we found that SAF (30 μM) significantly reduced the number of spikes evoked by depolarizing currents in SNpc DAergic neurons, in a sulpiride (1 μM) independent manner. According to our results, SAF marginally potentiates the DA signal in SNpc DAergic neurons, while exerting an inhibitory effect on the postsynaptic excitability acting on membrane conductances. Thus, we propose that the therapeutic effects of SAF in PD patients partially depends on MAO inhibition, while other MAO-independent sites of action could be more relevant.
Collapse
Affiliation(s)
- Beatrice Zarrilli
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cecilia Giacomet
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Francesca Cossa
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Mauro Federici
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Nicola Berretta
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
3
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Meleddu R, Fais A, Era B, Floris S, Distinto S, Lupia A, Cottiglia F, Onali A, Sanna E, Secci D, Atzeni G, Demuru L, Caboni P, Valenti D, Maccioni E. Exploring the 1-(4-Nitrophenyl)-3-arylprop-2-en-1-one Scaffold for the Selective Inhibition of Monoamine Oxidase B. ACS Med Chem Lett 2024; 15:1685-1691. [PMID: 39411531 PMCID: PMC11472546 DOI: 10.1021/acsmedchemlett.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
A small library of 1-(4-nitrophenyl)-3-arylprop-2-en-1-one derivatives was synthesized to identify new human monoamine oxidase B selective inhibitors. Their inhibitory activity toward MAO-A and MAO-B isoforms was evaluated to determine their potency and selectivity. All newly synthesized compounds were nanomolar inhibitors of the B isoform with IC50 concentrations ranging from 120 to 2.2 nM. Conversely, their activity toward the A isozyme was only observed at micromolar concentrations. Our results bear out the hypothesis that the 1,3-diarylpropenone scaffold could represent a valuable starting point for designing efficient and selective MAO-B inhibitors.
Collapse
Affiliation(s)
- Rita Meleddu
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Antonella Fais
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Benedetta Era
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Sonia Floris
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Simona Distinto
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Antonio Lupia
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
- Net4Science
Srl, University “Magna Græcia”, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro Italy
| | - Filippo Cottiglia
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Alessia Onali
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Erica Sanna
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Daniela Secci
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Giulia Atzeni
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Laura Demuru
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Pierluigi Caboni
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Donatella Valenti
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Elias Maccioni
- Department
of Life and Environmental Sciences, University
of Cagliari, University Campus, S.P. 8 km 0.700, 09042 Monserrato, Italy
| |
Collapse
|
5
|
Kashyap K, Bhati G, Ahmed S, Siddiqi MI. Deep convolutional neural network-based identification and biological evaluation of MAO-B inhibitors. Int J Biol Macromol 2024; 281:136438. [PMID: 39389489 DOI: 10.1016/j.ijbiomac.2024.136438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is one of the most prominent motor disorder of adult-onset dementia connected to memory and other cognitive abilities. Individuals with this vicious neurodegenerative condition tend to have an elevated expression of Monoamine Oxidase-B (MAO-B) that catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. This oxidative stress damages mitochondrial DNA and contributes to the progression of PD. To address this, we have developed a deep learning (DL)-based virtual screening protocol for the identification of promising MAO-B inhibitors using Convolutional neural network (ConvNet) based image classification technique by dealing with two unique kinds of image datasets associated with MACCS fingerprints. Following model building and prediction on the Maybridge library, our approach shortlisted the top 11 compounds at the end of molecular docking protocol. Further, the biological validation of the hits identified 4 compounds as promising MAO-B inhibitors. Among these, the compound RF02426 was found to have >50 % inhibition at 10 μM. Additionally, the study also underscored the utility of scaffold analysis as an effective way for evaluating the significance of structurally diverse compounds in data-driven investigations. We believe that our models are able to pick up diverse chemotype and this can be a starting scaffold for further structural optimization with medicinal chemistry efforts in order to improve their inhibition efficacy and be established as novel MAO-B inhibitors in the furture.
Collapse
Affiliation(s)
- Kushagra Kashyap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Girdhar Bhati
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Gajda Z, Hawrylak M, Handzlik J, Kuder KJ. Perry Disease: Current Outlook and Advances in Drug Discovery Approach to Symptomatic Treatment. Int J Mol Sci 2024; 25:10652. [PMID: 39408987 PMCID: PMC11476970 DOI: 10.3390/ijms251910652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 10/20/2024] Open
Abstract
Perry disease (PeD) is a rare, neurodegenerative, genetic disorder inherited in an autosomal dominant manner. The disease manifests as parkinsonism, with psychiatric symptoms on top, such as depression or sleep disorders, accompanied by unexpected weight loss, central hypoventilation, and aggregation of DNA-binding protein (TDP-43) in the brain. Due to the genetic cause, no causal treatment for PeD is currently available. The only way to improve the quality of life of patients is through symptomatic therapy. This work aims to review the latest data on potential PeD treatment, specifically from the medicinal chemistry and computer-aided drug design (CADD) points of view. We select proteins that might represent therapeutic targets for symptomatic treatment of the disease: monoamine oxidase B (MAO-B), serotonin transporter (SERT), dopamine D2 (D2R), and serotonin 5-HT1A (5-HT1AR) receptors. We report on compounds that may be potential hits to develop symptomatic therapies for PeD and related neurodegenerative diseases and relieve its symptoms. We use Phase pharmacophore modeling software (version 2023.08) implemented in Schrödinger Maestro as a ligand selection tool. For each of the chosen targets, based on the resolved protein-ligand structures deposited in the Protein Data Bank (PDB) database, pharmacophore models are proposed. We review novel, active compounds that might serve as either hits for further optimization or candidates for further phases of studies, leading to potential use in the treatment of PeD.
Collapse
Affiliation(s)
| | | | | | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Krakow, Poland; (Z.G.); (M.H.); (J.H.)
| |
Collapse
|
7
|
Dias I, Bon L, Banas A, Chavarria D, Borges F, Guerreiro-Oliveira C, Cardoso SM, Sanna D, Garribba E, Chaves S, Santos MA. Exploiting the potential of rivastigmine-melatonin derivatives as multitarget metal-modulating drugs for neurodegenerative diseases. J Inorg Biochem 2024; 262:112734. [PMID: 39378762 DOI: 10.1016/j.jinorgbio.2024.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-β (Aβ) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles (5a2 and 5a3) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Angelika Banas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Catarina Guerreiro-Oliveira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chimica e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Mateev E, Karatchobanov V, Dedja M, Diamantakos K, Mateeva A, Muhammed MT, Irfan A, Kondeva-Burdina M, Valkova I, Georgieva M, Zlatkov A. Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer's Disease: Microwave-Assisted Synthesis, In Silico Studies and Biological Evaluation. Pharmaceuticals (Basel) 2024; 17:1171. [PMID: 39338334 PMCID: PMC11435393 DOI: 10.3390/ph17091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 μM; IC50eeAChE-4.145 μM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Valentin Karatchobanov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Marjano Dedja
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Konstantinos Diamantakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Türkiye;
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Iva Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| |
Collapse
|
9
|
Ipe R, Oh JM, Kumar S, Ahmad I, Nath LR, Bindra S, Patel H, Kolachi KY, Prabhakaran P, Gahtori P, Syed A, Elgorbanh AM, Kim H, Mathew B. Inhibition of monoamine oxidases and neuroprotective effects: chalcones vs. chromones. Mol Divers 2024:10.1007/s11030-024-10959-w. [PMID: 39145880 DOI: 10.1007/s11030-024-10959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Eighteen compounds derived from two sub-series, (HC1-HC9) and (HF1-HF9), were synthesized and evaluated for their inhibitory activities against monoamine oxidase (MAO). HC (chalcone) series showed higher inhibitory activity against MAO-B than against MAO-A, whereas the HF (chromone) series showed reversed inhibitory activity. Compound HC4 most potently inhibited MAO-B with an IC50 value of 0.040 μM, followed by HC3 (IC50 = 0.049 μM), while compound HF4 most potently inhibited MAO-A (IC50 = 0.046 μM), followed by HF2 (IC50 = 0.075 μM). The selectivity index (SI) values of HC4 and HF4 were 50.40 and 0.59, respectively. Structurally, HC4 (4-OC2H5 in B-ring) showed higher MAO-B inhibition than other derivatives, suggesting that the -OC2H5 substitution of the 4-position in the B-ring contributes to the increase of MAO-B inhibition, especially -OC2H5 (HC4) > -OCH3 (HC3) > -F (HC7) > -CH3 (HC2) > -Br (HC8) > -H (HC1) in order. In MAO-A inhibition, the substituent 4-OC2H5 in the B-ring of HF4 contributed to an increase in inhibitory activity, followed by -CH3 (HF2), -F (HF7), -Br (HF8), -OCH3 (HF3), and-H (HF1). In the enzyme kinetics and reversibility study, the Ki value of HC4 for MAO-B was 0.035 ± 0.005 μM, and that of HF4 for MAO-A was 0.035 ± 0.005 μM, and both were reversible competitive inhibitors. We confirmed that HC4 and HF4 significantly ameliorated rotenone-induced neurotoxicity, as evidenced by the reactive oxygen species and superoxide dismutase assays. This study also supports the significant effect of HC4 and HF4 on mitochondrial membrane potential in rotenone-induced toxicity. A lead molecule was used for molecular docking and dynamic simulation studies. These results show that HC4 is a potent selective MAO-B inhibitor and HF4 is a potent MAO-A inhibitor, suggesting that both compounds can be used as treatment agents for neurological disorders.
Collapse
Affiliation(s)
- Reshma Ipe
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Maharashtra, 424002, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sandeep Bindra
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Krishna Yallappa Kolachi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorbanh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
10
|
Lv Y, Fan M, He J, Song X, Guo J, Gao B, Zhang J, Zhang C, Xie Y. Discovery of novel benzimidazole derivatives as selective and reversible monoamine oxidase B inhibitors for Parkinson's disease treatment. Eur J Med Chem 2024; 274:116566. [PMID: 38838545 DOI: 10.1016/j.ejmech.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - YuanYuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
11
|
Oh JM, Zenni YN, Özdemir Z, Kumar S, Kılıç S, Akdağ M, Özçelik AB, Kim H, Mathew B. Inhibition of Monoamine Oxidases by Pyridazinobenzylpiperidine Derivatives. Molecules 2024; 29:3097. [PMID: 38999047 PMCID: PMC11243598 DOI: 10.3390/molecules29133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Monoamine oxidase inhibitors (MAOIs) have been crucial in the search for anti-neurodegenerative medications and continued to be a vital source of molecular and mechanistic diversity. Therefore, the search for selective MAOIs is one of the main areas of current drug development. To increase the effectiveness and safety of treating Parkinson's disease, new scaffolds for reversible MAO-B inhibitors are being developed. A total of 24 pyridazinobenzylpiperidine derivatives were synthesized and evaluated for MAO. Most of the compounds showed a higher inhibition of MAO-B than of MAO-A. Compound S5 most potently inhibited MAO-B with an IC50 value of 0.203 μM, followed by S16 (IC50 = 0.979 μM). In contrast, all compounds showed weak MAO-A inhibition. Among them, S15 most potently inhibited MAO-A with an IC50 value of 3.691 μM, followed by S5 (IC50 = 3.857 μM). Compound S5 had the highest selectivity index (SI) value of 19.04 for MAO-B compared with MAO-A. Compound S5 (3-Cl) showed greater MAO-B inhibition than the other derivatives with substituents of -Cl > -OCH3 > -F > -CN > -CH3 > -Br at the 3-position. However, the 2- and 4-position showed low MAO-B inhibition, except S16 (2-CN). In addition, compounds containing two or more substituents exhibited low MAO-B inhibition. In the kinetic study, the Ki values of S5 and S16 for MAO-B were 0.155 ± 0.050 and 0.721 ± 0.074 μM, respectively, with competitive reversible-type inhibition. Additionally, in the PAMPA, both lead compounds demonstrated blood-brain barrier penetration. Furthermore, stability was demonstrated by the 2V5Z-S5 complex by pi-pi stacking with Tyr398 and Tyr326. These results suggest that S5 and S16 are potent, reversible, selective MAO-B inhibitors that can be used as potential agents for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yaren Nur Zenni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya 44210, Türkiye
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya 44210, Türkiye
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Semanur Kılıç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya 44210, Türkiye
| | - Mevlüt Akdağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye
| | - Azime Berna Özçelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06100, Türkiye
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| |
Collapse
|
12
|
Eddahmi M, La Spada G, Domingo LR, Vergoten G, Bailly C, Catto M, Bouissane L. Synthesis, Molecular Electron Density Theory Study, Molecular Docking, and Pharmacological Evaluation of New Coumarin-Sulfonamide-Nitroindazolyl-Triazole Hybrids as Monoamine Oxidase Inhibitors. Int J Mol Sci 2024; 25:6803. [PMID: 38928509 PMCID: PMC11203676 DOI: 10.3390/ijms25126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin-sulfonamide-nitroindazolyl-triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14a-c as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases.
Collapse
Affiliation(s)
- Mohammed Eddahmi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco;
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (G.L.S.); (M.C.)
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Gérard Vergoten
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| | - Christian Bailly
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (G.L.S.); (M.C.)
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco;
| |
Collapse
|
13
|
Fayyaz A, Ejaz SA, Alsfouk BA, Ejaz SR. Investigation of 3-Phenylcoumarin Derivatives as Potential Multi-target Inhibitors for Human Cholinesterases and Monoamine oxidases: A Computational Approach. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04996-2. [PMID: 38874841 DOI: 10.1007/s12010-024-04996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease (AD) is the predominant etiology of dementia, impacting a global population of approximately 50 million individuals. In the field of medicinal chemistry, there have been notable advancements in the utilization of monoamine oxidase (MAO) and cholinesterase (ChE) inhibitors for the purpose of addressing the neurotransmitter shortage associated with Alzheimer's disease (AD). A selection of previously synthesized 3-Phenylcoumarin derivatives (5a-m) were selected for examination in the pursuit of potential multi-targeting inhibitors of MAO-A, MAO-B, AChE, and BChE. The stability and reactivity of the compounds were investigated through the utilization of density functional theory (DFT) simulations. Subsequently, a CoMFA technique, grounded in 3D-QSAR principles, was employed to construct a model and predict the inhibitory properties of analogues belonging to the class of 3-phenylcoumarin derivatives. Through the application of molecular docking methodologies, we have employed predictive analyses to determine the potential binding interactions and stability of the drugs under investigation. The results obtained from the present investigation indicate that the 3-phenylcoumarin derivatives possess a reactive electronic characteristic that is crucial for their anti-cholinesterase activity. Compound 5a demonstrated a noteworthy binding score with AChE, BChE, MAO-A and MAO-B, respectively, indicating a robust binding affinity.
Collapse
Affiliation(s)
- Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Syeda Rabia Ejaz
- Department of Physics, The Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| |
Collapse
|
14
|
Sun D, Wang B, Jiang Y, Kong Z, Mu M, Yang C, Tan J, Hu Y. Benzodioxane Carboxamide Derivatives As Novel Monoamine Oxidase B Inhibitors with Antineuroinflammatory Activity. ACS Med Chem Lett 2024; 15:798-805. [PMID: 38894921 PMCID: PMC11181489 DOI: 10.1021/acsmedchemlett.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, a series of N-phenyl-2,3-dihydrobenzo[b][1,4]dioxine-6-carboxamide derivatives were designed, synthesized, and evaluated for their inhibitory activities against human MAO-B (hMAO-B). The structure-activity relationship (SAR) was investigated and summarized. Compound 1l (N-(3,4-dichlorophenyl)-2,3-dihydrobenzo[b][1,4]dioxine-6-carboxamide) showed the most potent inhibitory activity with an IC50 value of 0.0083 μM and the selectivity index (IC50 (hMAO-A)/IC50 (hMAO-B)) was >4819. Kinetics and reversibility studies confirmed that compound 1l acted as a competitive and reversible inhibitor of hMAO-B. Molecular docking studies revealed the enzyme-inhibitor interactions, and the rationale was provided. Additionally, compound 1l could effectively inhibit the release of NO, TNF-α, and IL-1β in both LPS- and Aβ1-42-stimulated BV2 cells and attenuate the cytotoxicity induced by Aβ1-42. Since compound 1l exhibited low neurotoxicity, we believe that the hit compound with dual activities of inhibiting MAO-B and antineuroinflammation could be further investigated as a novel potential lead for future studies in vivo.
Collapse
Affiliation(s)
| | | | - Yanmei Jiang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Zuo Kong
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Mengxue Mu
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Changhuan Yang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Jingbo Tan
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Yun Hu
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| |
Collapse
|
15
|
Pereira AMG, de Oliveira VM, da Rocha MN, Roberto CHA, Cajazeiras FFM, Guedes JM, Marinho MM, Teixeira AMR, Marinho ES, de Lima-Neto P, Dos Santos HS. Structure and Ligand Based Virtual Screening and MPO Topological Analysis of Triazolo Thiadiazepine-fused Coumarin Derivatives as Anti-Parkinson Drug Candidates. Mol Biotechnol 2024:10.1007/s12033-024-01200-y. [PMID: 38834896 DOI: 10.1007/s12033-024-01200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating condition that can cause locomotor problems in affected patients, such as tremors and body rigidity. PD therapy often includes the use of monoamine oxidase B (MAOB) inhibitors, particularly phenylhalogen compounds and coumarin-based semi-synthetic compounds. The objective of this study was to analyze the structural, pharmacokinetic, and pharmacodynamic profile of a series of Triazolo Thiadiazepine-fused Coumarin Derivatives (TDCDs) against MAOB, in comparison with the inhibitor safinamide. To achieve this goal, we utilized structure-based virtual screening techniques, including target prediction and absorption, distribution, metabolism, and excretion (ADME) prediction based on multi-parameter optimization (MPO) topological analysis, as well as ligand-based virtual screening techniques, such as docking and molecular dynamics. The findings indicate that the TDCDs exhibit structural similarity to other bioactive compounds containing coumarin and MAOB-binding azoles, which are present in the ChEMBL database. The topological analyses suggest that TDCD3 has the best ADME profile, particularly due to the alignment between low lipophilicity and high polarity. The coumarin and triazole portions make a strong contribution to this profile, resulting in a permeability with Papp estimated at 2.15 × 10-5 cm/s, indicating high cell viability. The substance is predicted to be metabolically stable. It is important to note that this is an objective evaluation based on the available data. Molecular docking simulations showed that the ligand has an affinity energy of - 8.075 kcal/mol with MAOB and interacts with biological substrate residues such as Pro102 and Phe103. The results suggest that the compound has a safe profile in relation to the MAOB model, making it a promising active ingredient for the treatment of PD.
Collapse
Affiliation(s)
- Antônio Mateus Gomes Pereira
- Doctoral Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil
- Center of Molecular Bioprospecting and Applied Experimentation, University Center INTA - UNINTA, Sobral, CE, Brazil
| | | | - Matheus Nunes da Rocha
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jesyka Macêdo Guedes
- Center of Exact Sciences and Technology, State University Vale Do Acaraú, Sobral, CE, Brazil
| | - Márcia Machado Marinho
- Center of Exact Sciences and Technology, State University Vale Do Acaraú, Sobral, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Pedro de Lima-Neto
- Department of Analytical Chemistry and Phisicochemistry, Federal University of Ceará, Campus Do Pici, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center of Exact Sciences and Technology, State University Vale Do Acaraú, Sobral, CE, Brazil.
| |
Collapse
|
16
|
Shamim T, Asif HM, Abida Ejaz S, Hussain Z, Wani TA, Sumreen L, Abdullah M, Ahmed Z, Iqbal J, Kim SJ, Shah MK. Investigations of Limeum Indicum Plant for Diabetes Mellitus and Alzheimer's Disease Dual Therapy: Phytochemical, GC-MS Chemical Profiling, Enzyme Inhibition, Molecular Docking and In-Vivo Studies. Chem Biodivers 2024; 21:e202301858. [PMID: 38608202 DOI: 10.1002/cbdv.202301858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Type 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, β-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05 μg/mL), methanol extract against β-glucosidase (IC50=91.12±0.07 μg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02 μg/mL), ethanol extract against BChE (28.41±0.01 μg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31 μg/mL) and methanol extract for MAO-B (IC50=75.95±0.13 μg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40 mg/dl) after 21 days treatment at dose level of 250 and 500 mg/Kg. Histopathological findings further supported the in-vivo studies.
Collapse
Affiliation(s)
- Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2452, 11451, Riyadh, Saudi Arabia
| | - Laila Sumreen
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zubair Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Song Ja Kim
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, 32588, Gongju, South Korea
| | - Muhammad Kamal Shah
- Faculty of Veterinary and Animal Sciences, Gomal University, 29220, Dera Ismail Khan, Pakistan
| |
Collapse
|
17
|
Shetnev A, Kotov A, Kunichkina A, Proskurina I, Baykov S, Korsakov M, Petzer A, Petzer JP. Monoamine oxidase inhibition properties of 2,1-benzisoxazole derivatives. Mol Divers 2024; 28:1009-1021. [PMID: 36934384 PMCID: PMC11269473 DOI: 10.1007/s11030-023-10628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
Monoamine oxidase (MAO) are flavoenzymes that metabolize neurotransmitter, dietary and xenobiotic amines to their corresponding aldehydes with the production of hydrogen peroxide. Two isoforms, MAO-A and MAO-B, are expressed in humans and mammals, and display different substrate and inhibitor specificities as well as different physiological roles. MAO inhibitors are of much therapeutic value and are used for the treatment of neuropsychiatric and neurodegenerative disorders such as depression, anxiety disorders, and Parkinson's disease. To discover MAO inhibitors with good potencies and interesting isoform specificities, the present study synthesized a series of 2,1-benzisoxazole (anthranil) derivatives and evaluated them as in vitro inhibitors of human MAO. The compounds were in most instances specific inhibitors of MAO-B with the most potent MAO-B inhibition observed for 7a (IC50 = 0.017 µM) and 7b (IC50 = 0.098 µM). The most potent MAO-A inhibition was observed for 3l (IC50 = 5.35 µM) and 5 (IC50 = 3.29 µM). It is interesting to note that 3-(2-aminoethoxy)-1,2-benzisoxazole derivatives, the 1,2-benzisoxazole, zonisamide, as well as the isoxazole compound, leflunomide, have been described as MAO inhibitors. This is however the first report of MAO inhibition by derivatives of the 2,1-benzisoxazole structural isomer.
Collapse
Affiliation(s)
- Anton Shetnev
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Alexandr Kotov
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Anna Kunichkina
- Department of Organic Chemistry, Kosygin Russian State University, 115035, Moscow, Russia
| | - Irina Proskurina
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Sergey Baykov
- Institute of ChemistryDepartment of Organic Chemistry, Kosygin Russian State University, 115035, Moscow, Russia, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation
| | - Mikhail Korsakov
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Anél Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
18
|
Zaib S, Khan I, Ali HS, Younas MT, Ibrar A, Al-Odayni AB, Al-Kahtani AA. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases. Int J Biol Macromol 2024; 272:132748. [PMID: 38821306 DOI: 10.1016/j.ijbiomac.2024.132748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neurodegenerative diseases with progressive cellular loss of the central nervous system and elusive disease etiology provide a continuous impetus to explore drug discovery programmes aiming at identifying robust and effective inhibitors of cholinesterase and monoamine oxidase enzymes. We herein present a concise library of anthranilamide derivatives involving a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction to install the diverse structural diversity required for the desired biological action. Using Ellman's method, cholinesterase inhibitory activity was performed against AChE and BuChE enzymes. In vitro assay results demonstrated that anthranilamides are potent inhibitors with remarkable potency. Compound 6k emerged as the lead candidate and dual inhibitor of both enzymes with IC50 values of 0.12 ± 0.01 and 0.49 ± 0.02 μM against AChE and BuChE, respectively. Several other compounds were found as highly potent and selective inhibitors. Anthranilamide derivatives were also tested against monoamine oxidase (A and B) enzymes using fluorometric method. In vitro data revealed compound 6h as the most potent inhibitor against MAO-A, showing an IC50 value of 0.44 ± 0.02 μM, whereas, compound 6k emerged as the top inhibitor of MAO-B with an IC50 value of 0.06 ± 0.01 μM. All the lead inhibitors were analyzed for the identification of their mechanism of action using Michaelis-Menten kinetics experiments. Compound 6k and 6h depicted a competitive mode of action against AChE and MAO-A, whereas, a non-competitive and mixed-type of inhibition was observed against BuChE and MAO-B by compounds 6k. Molecular docking analysis revealed remarkable binding affinities of the potent inhibitors with specific residues inside the active site of receptors. Furthermore, molecular dynamics simulations were performed to explore the ability of potent compounds to form energetically stable complexes with the target protein. Finally, in silico ADME calculations also demonstrated that the potent compounds exhibit promising pharmacokinetic profile, satisfying the essential criteria for drug-likeness. Altogether, the findings reported in the current work clearly suggest that the identified anthranilamide derivatives have the potential to serve as effective drug candidates for future investigations.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry, the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, KPK 22620, Pakistan.
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Abdullah A Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Kumar S, Jaiswal S, Gupta SK, Ayyannan SR. Benzimidazole-derived carbohydrazones as dual monoamine oxidases and acetylcholinesterase inhibitors: design, synthesis, and evaluation. J Biomol Struct Dyn 2024; 42:4710-4729. [PMID: 37345530 DOI: 10.1080/07391102.2023.2224887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
A series of novel benzimidazole-derived carbohydrazones was designed, synthesized and evaluated for their dual inhibition potential against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) using multitarget-directed ligand approach (MTDL). The investigated compounds have exhibited moderate to excellent in vitro MAOs/AChE inhibitory activity at micromolar to nanomolar concentrations. Compound 12, 2-(1H-Benzo[d]imidazol-1-yl)-N'-[1-(4-hydroxyphenyl) ethylidene]acetohydrazide has emerged as a lead dual MAO-AChE inhibitor by exhibiting superior multi-target activity profile against MAO-A (IC50 = 0.067 ± 0.018 µM), MAO-B (IC50 = 0.029 ± 0.005 µM) and AChE (IC50 = 1.37 ± 0.026 µM). SAR studies suggest that the site A (hydrophobic ring) and site C (semicarbazone linker) modifications attempted on the semicarbazone-based MTDL resulted in a significant enhancement in the MAO-A/B inhibitory potential and a drastic decrease in the AChE inhibitory activity. Further, molecular docking and dynamics simulation experiments disclosed the possible molecular interactions of inhibitors inside the active site of respective enzymes. Also, computational prediction of drug-likeness and ADME parameters of test compounds revealed their drug-like characteristics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
20
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Karagiannis TC, Ververis K, Liang JJ, Pitsillou E, Liu S, Bresnehan SM, Xu V, Wijoyo SJ, Duan X, Ng K, Hung A, Goebel E, El-Osta A. Identification and Evaluation of Olive Phenolics in the Context of Amine Oxidase Enzyme Inhibition and Depression: In Silico Modelling and In Vitro Validation. Molecules 2024; 29:2446. [PMID: 38893322 PMCID: PMC11173677 DOI: 10.3390/molecules29112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.
Collapse
Affiliation(s)
- Tom C. Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia J. Liang
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Siyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah M. Bresnehan
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
| | - Vivian Xu
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
| | - Stevano J. Wijoyo
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Xiaofei Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Erik Goebel
- Occhem Labs, LLC, 3510 Hopkins Place North, Oakdale, MN 55128, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 1799 Copenhagen V, Denmark
| |
Collapse
|
22
|
Cieślak M, Danel T, Krzysztyńska-Kuleta O, Kalinowska-Tłuścik J. Machine learning accelerates pharmacophore-based virtual screening of MAO inhibitors. Sci Rep 2024; 14:8228. [PMID: 38589405 PMCID: PMC11369158 DOI: 10.1038/s41598-024-58122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, especially when performed on large and chemically diverse databases. Virtual screening methods, like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers of compounds and to learn from scarce data, respectively. In this study, we introduce a universal methodology that uses a machine learning-based approach to predict docking scores without the need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times faster binding energy predictions than classical docking-based screening. The proposed predictive model learns from docking results, allowing users to choose their preferred docking software without relying on insufficient and incoherent experimental activity data. The methodology described employs multiple types of molecular fingerprints and descriptors to construct an ensemble model that further reduces prediction errors and is capable of delivering highly precise docking score values for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested concentration. The approach presented here can be successfully applied to other biological targets as target-specific knowledge is not incorporated at the screening phase.
Collapse
Affiliation(s)
- Marcin Cieślak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Małopolska, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348, Kraków, Małopolska, Poland.
- Computational Chemistry Department, Selvita, Bobrzynskiego 14, 30-348, Kraków, Małopolska, Poland.
| | - Tomasz Danel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Małopolska, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Prof. S. Łojasiewicza 6, 30-348, Kraków, Małopolska, Poland
| | - Olga Krzysztyńska-Kuleta
- Cell and Molecular Biology Department, Selvita, Bobrzynskiego 14, 30-348, Kraków, Małopolska, Poland
| | | |
Collapse
|
23
|
Fan Y, Wang J, Jian J, Wen Y, Li J, Tian H, Crommen J, Bi W, Zhang T, Jiang Z. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm Sin B 2024; 14:1772-1786. [PMID: 38572096 PMCID: PMC10985270 DOI: 10.1016/j.apsb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 04/05/2024] Open
Abstract
Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 μmol/L) and neocnidilide (EC50 = 1.161 μmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 μmol/L) and safinamide (EC50 = 1.079 μmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.
Collapse
Affiliation(s)
- Yu Fan
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
- KU Leuven-University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, Leuven 3000, Belgium
| | - Yalei Wen
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiahao Li
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Wei Bi
- Department of Neurology, the First Affiliated Hospital of Jinan University/Clinical Neuroscience Institute, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
25
|
Dutra LL, Borges RJ, Maltarollo VG, Mendes TAO, Bressan GC, Leite JPV. In silico evaluation of pharmacokinetics properties of withanolides and simulation of their biological activities against Alzheimer's disease. J Biomol Struct Dyn 2024; 42:2616-2631. [PMID: 37166375 DOI: 10.1080/07391102.2023.2206909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
The withanolides are naturally occurring steroidal lactones found mainly in plants of the Solanaceae family. The subtribe Withaninae includes species like Withania sominifera, which are a source of many bioactive withanolides. In this work, we selected and evaluate the ADMET-related properties of 91 withanolides found in species of the subtribe Withaninae computationally, to predict the relationship between their structures and their pharmacokinetic profiles. We also evaluated the interaction of these withanolides with known targets of Alzheimer's disease (AD) through molecular docking and molecular dynamics. Withanolides presented favorable pharmacokinetic properties, like high gastrointestinal absorption, lipophilicity (logP ≤ 5), good distribution and excretion parameters, and a favorable toxicity profile. The specie Withania aristata stood out as an interesting source of the promising withanolides classified as 5-ene with 16-ene or 17-ene. These withanolides presented a favourable pharmacokinetic profile and were also highlighted as the best candidates for inhibition of AD-related targets. Our results also suggest that withanolides are likely to act as cholinesterase inhibitors by interacting with the catalytic pocket in an energy favorable and stable way.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Luana L Dutra
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Rafael J Borges
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Vinícius G Maltarollo
- Pharmaceutical Products Department- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gustavo C Bressan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - João Paulo V Leite
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Boulaamane Y, Kandpal P, Chandra A, Britel MR, Maurady A. Chemical library design, QSAR modeling and molecular dynamics simulations of naturally occurring coumarins as dual inhibitors of MAO-B and AChE. J Biomol Struct Dyn 2024; 42:1629-1646. [PMID: 37199265 DOI: 10.1080/07391102.2023.2209650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Coumarins are a highly privileged scaffold in medicinal chemistry. It is present in many natural products and is reported to display various pharmacological properties. A large plethora of compounds based on the coumarin ring system have been synthesized and were found to possess biological activities such as anticonvulsant, antiviral, anti-inflammatory, antibacterial, antioxidant as well as neuroprotective properties. Despite the wide activity spectrum of coumarins, its naturally occurring derivatives are yet to be investigated in detail. In the current study, a chemical library was created to assemble all chemical information related to naturally occurring coumarins from the literature. Additionally, a multi-stage virtual screening combining QSAR modeling, molecular docking, and ADMET prediction was conducted against monoamine oxidase B and acetylcholinesterase, two relevant targets known for their neuroprotective properties and 'disease-modifying' potential in Parkinson's and Alzheimer's disease. Our findings revealed ten coumarin derivatives that may act as dual-target drugs against MAO-B and AChE. Two coumarin candidates were selected from the molecular docking study: CDB0738 and CDB0046 displayed favorable interactions for both proteins as well as suitable ADMET profiles. The stability of the selected coumarins was assessed through 100 ns molecular dynamics simulations which revealed promising stability through key molecular interactions for CDB0738 to act as dual inhibitor of MAO-B and AChE. However, experimental studies are necessary to evaluate the bioactivity of the proposed candidate. The current results may generate an increasing interest in bioprospecting naturally occurring coumarins as potential candidates against relevant macromolecular targets by encouraging virtual screening studies against our chemical library.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | | | | | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
27
|
El-Halaby LO, El-Husseiny WM, El-Messery SM, Goda FE. Synthesis, in vitro, and in silico studies of new derivatives of diphenylpiperazine scaffold: A key substructure for MAO inhibition. Bioorg Chem 2024; 143:107011. [PMID: 38061181 DOI: 10.1016/j.bioorg.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024]
Abstract
Fifteen new diphenylpiperazine hybrids were designed, synthesized and in vitro biologically evaluated against hMAOs enzymes via fluorometric method. All of our new compounds displayed strong inhibitory activities against both two isoforms of hMAOs with IC50 range of 0.091-16.32 µM. According to selectivity index values, all hybrids showed higher selectivity against hMAO-A over hMAO-B. Compound 8 exhibited the best hMAO-A inhibition activity (IC50 value = 91 nM, SI = 19.55). With a selectivity index of 31.02 folds over MAO-B, compound 7 was revealed to be the most effective hMAO-A inhibitor. In silico prediction of physicochemical parameters and BBB permeability proved that all of the newly synthesized compounds have favorable pharmacokinetic profiles and acceptable ADME properties and can pass BBB. For clarification and explanation of the biological activity of compounds 7 and 8, molecular docking simulations were carried out. In light of this, 1,4-diphenylpiperazine analogues can be seen as an encouraging lead to develop safe and effective new drugs for treatment of many disorders such as anxiety and depression by inhibition of hMAO-A enzyme.
Collapse
Affiliation(s)
- Lamiaa O El-Halaby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
28
|
Zaki MEA, AL-Hussain SA, Al-Mutairi AA, Samad A, Masand VH, Ingle RG, Rathod VD, Gaikwad NM, Rashid S, Khatale PN, Burakale PV, Jawarkar RD. Application of in-silico drug discovery techniques to discover a novel hit for target-specific inhibition of SARS-CoV-2 Mpro's revealed allosteric binding with MAO-B receptor: A theoretical study to find a cure for post-covid neurological disorder. PLoS One 2024; 19:e0286848. [PMID: 38227609 PMCID: PMC10790994 DOI: 10.1371/journal.pone.0286848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 01/18/2024] Open
Abstract
Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800-793, Q2LOO = 0.734-0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit's docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2's main protease. Based on post-covid neurodegenerative episodes in Alzheimer's and Parkinson's-like disorders and MAO-B's role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2's primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR's COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.
Collapse
Affiliation(s)
- Magdi E. A. Zaki
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A. AL-Hussain
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A. Al-Mutairi
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharti Mahavidyalaya, Amravati, Maharashtra, India
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, DMIHER Deemed University, Wardha, India
| | - Vivek Digamber Rathod
- Department of Chemical Technology, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravin N. Khatale
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| | - Pramod V. Burakale
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| | - Rahul D. Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| |
Collapse
|
29
|
Kumar S, Oh JM, Prabhakaran P, Awasti A, Kim H, Mathew B. Isatin-tethered halogen-containing acylhydrazone derivatives as monoamine oxidase inhibitor with neuroprotective effect. Sci Rep 2024; 14:1264. [PMID: 38218887 PMCID: PMC10787790 DOI: 10.1038/s41598-024-51728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Sixteen isatin-based hydrazone derivatives (IS1-IS16) were synthesized and assessed for their ability to inhibit monoamine oxidases (MAOs). All the molecules showed improved inhibitory MAO-B activity compared to MAO-A. Compound IS7 most potently inhibited MAO-B with an IC50 value of 0.082 μM, followed by IS13 and IS6 (IC50 = 0.104 and 0.124 μM, respectively). Compound IS15 most potently inhibited MAO-A with an IC50 value of 1.852 μM, followed by IS3 (IC50 = 2.385 μM). Compound IS6 had the highest selectivity index (SI) value of 263.80, followed by IS7 and IS13 (233.85 and 212.57, respectively). In the kinetic study, the Ki values of IS6, IS7, and IS13 for MAO-B were 0.068 ± 0.022, 0.044 ± 0.002, and 0.061 ± 0.001 μM, respectively, and that of IS15 for MAO-A was 1.004 ± 0.171 μM, and the compounds were reversible-type inhibitors. The lead compounds were central nervous system (CNS) permeable, as per parallel artificial membrane permeability assay (PAMPA) test results. The lead compounds were examined for their cytotoxicity and potential neuroprotective benefits in hazardous lipopolysaccharide (LPS)-exposed SH-SY5Y neuroblastoma cells. Pre-treatment with lead compounds enhanced anti-oxidant levels (SOD, CAT, GSH, and GPx) and decreased ROS and pro-inflammatory cytokine (IL-6, TNF-alpha, and NF-kB) production in LPS-intoxicated SH-SY5Y cells. To confirm the promising effects of the compound, molecular docking, dynamics, and MM-GBSA binding energy were used to examine the molecular basis of the IS7-MAO-B interaction. Our findings indicate that lead compounds are potential therapeutic agents to treat neurological illnesses, such as Parkinson's disease.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Abhimanyu Awasti
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India.
| |
Collapse
|
30
|
Mi P, Tan Y, Ye S, Lang JJ, Lv Y, Jiang J, Chen L, Luo J, Lin Y, Yuan Z, Zheng X, Lin YW. Discovery of C-3 isoxazole substituted thiochromone S,S-dioxide derivatives as potent and selective inhibitors for monoamine oxidase B (MAO-B). Eur J Med Chem 2024; 263:115956. [PMID: 37992521 DOI: 10.1016/j.ejmech.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Developing new scaffolds for highly potent and selective inhibitors of human Monoamine Oxidase B (hMAO-B) is a crucial objective in enhancing the efficacy and safety in the clinical treatment of neurodegenerative diseases. In this study, we have identified a series of C-3 isoxazole-substituted thiochromone S,S-dioxide derivatives that exhibit strong inhibitory activity against hMAO-B. The strategy of oxidizing thiochromone to thiochromone S,S-dioxide solves the key defect of extreme insolubility observed for thiochromone analogues. In addition, the sulfone group contributes extra hydrogen(H)-bonding interactions with Tyr435, which significantly increases the activity of thiochromone S,S-dioxide derivatives against hMAO-B. Furthermore, the presence of isoxazole group provides potential H-bonding interaction and electrostatic interaction with the residue of Tyr326, while the rigid aryl ring introduces a potential steric conflict with Phe208 of hMAO-A to improve both potency and selectivity. In our investigations, several compounds (9c, 10c, 10e, 10g, 10l and 10m) demonstrate remarkable single-digit nanomolar potency. These compounds exhibit favorable cytotoxicity profiles in both differentiated SH-SY5Y and HVSMC cells, without apparent cardiotoxic effects. Moreover, compounds 10e and 10h do not lead to an increase in ROS levels in differentiated SH-SY5Y cells, further demonstrating their potential as safe and effective hMAO-B inhibitors. These findings indicate that the C-3 isoxazole substituted thiochromone S,S-dioxide analogues are potential leading compounds for the development of selective inhibitors with high potency.
Collapse
Affiliation(s)
- Pengbing Mi
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| | - Yan Tan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Shiying Ye
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Jinhuan Jiang
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Limei Chen
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jianxiong Luo
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqing Lin
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Zhonghua Yuan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
31
|
Sarfraz M, Ibrahim MK, Ejaz SA, Attaullah HM, Aziz M, Arafat M, Shamim T, Elhadi M, Ruby T, Mahmood HK. An Integrated Computational Approaches for Designing of Potential Piperidine based Inhibitors of Alzheimer Disease by Targeting Cholinesterase and Monoamine Oxidases Isoenzymes. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04815-0. [PMID: 38165591 DOI: 10.1007/s12010-023-04815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
The study aimed to evaluate the potential of piperidine-based 2H chromen-2-one derivatives against targeted enzymes, i.e., cholinesterase's and monoamine oxidase enzymes. The compounds were divided into three groups, i.e., 4a-m ((3,4-dimethyl-7-((1-methylpiperidin-4-yl)oxy)-2H-chromen-2-one derivatives), 5a-e (3,4-dimethyl-7-((1-methypipridin-3-yl)methoxy)-2H-chromen-2-one derivatives), and 7a-b (7-(3-(3,4-dihydroisoquinolin-2(1H)-yl)propoxy)-3,4-dimethyl-2H-chromen-2-one derivatives) with slight difference in the basic structure. The comprehensive computational investigations were conducted including density functional theories studies (DFTs), 2D-QSAR studies, molecular docking, and molecular dynamics simulations. The QSAR equation revealed that the activity of selected chromen-2-one-based piperidine derivatives is being affected by the six descriptors, i.e., Nitrogens Count, SdssCcount, SssOE-Index, T-2-2-7, ChiV6chain, and SssCH2E-Index. These descriptor values were further used for the preparation of chromen-2-one based piperidine derivatives. Based on this, 83 new derivatives were created from 7 selected parent compounds. The QSAR model predicted their IC50 values, with compound 4 k and 4kk as the most potent multi-targeted derivative. Molecular docking results exhibited these compounds as the best inhibitors; however, 4kk exhibited greater activity than the parent compounds. The results were further validated by molecular dynamic simulation studies along with the suitable physicochemical properties. These results prove to be an essential guide for the further design and development of new piperidine based chromen-2-one derivatives having better activity against neurodegenerative disorder.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, 64141, Al Ain, United Arab Emirates.
- AU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates.
| | | | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, 64141, Al Ain, United Arab Emirates
| | - Tahira Shamim
- Faculty of Medicine and Allied Health Sciences, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muawya Elhadi
- Department of Physics, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, P.O.Box 1040, Shaqra, Saudi Arabia
| | - Tahira Ruby
- Institute of Zoology, Bahaudin Zakariya University Multan, Multan, 60800, Pakistan
| | - Hafiz Kashif Mahmood
- Institute of Zoology, Bahaudin Zakariya University Multan, Multan, 60800, Pakistan
| |
Collapse
|
32
|
Kaur P, Rangra NK. Recent Advancements and SAR Studies of Synthetic Coumarins as MAO-B Inhibitors: An Updated Review. Mini Rev Med Chem 2024; 24:1834-1846. [PMID: 38778598 DOI: 10.2174/0113895575290599240503080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The oxidative deamination of a wide range of endogenous and exogenous amines is catalyzed by a family of enzymes known as monoamine oxidases (MAOs), which are reliant on flavin-adenine dinucleotides. Numerous neurological conditions, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are significantly correlated with changes in the amounts of biogenic amines in the brain caused by MAO. Hydrogen peroxide, reactive oxygen species, and ammonia, among other toxic consequences of this oxidative breakdown, can harm brain cells' mitochondria and cause oxidative damage. OBJECTIVE The prime objective of this review article was to highlight and conclude the recent advancements in structure-activity relationships of synthetic derivatives of coumarins for MAO-B inhibition, published in the last five years' research articles. METHODS The literature (between 2019 and 2023) was searched from platforms like Science Direct, Google Scholar, PubMed, etc. After going through the literature, we have found a number of coumarin derivatives being synthesized by researchers for the inhibition of MAO-B for the management of diseases associated with the enzyme such as Alzheimer's Disease and Parkinson's Disease. The effect of these coumarin derivatives on the enzyme depends on the substitutions associated with the structure. The structure-activity relationships of the synthetic coumarin derivatives that are popular nowadays have been described and summarized in the current study. RESULTS The results revealed the updated review on SAR studies of synthetic coumarins as MAO-B inhibitors, specifically for Alzheimer's Disease and Parkinson's Disease. The patents reported on coumarin derivatives as MAO-B inhibitors were also highlighted. CONCLUSION Recently, coumarins, a large class of chemicals with both natural and synthetic sources, have drawn a lot of attention because of the vast range of biological actions they have that are linked to neurological problems. Numerous studies have demonstrated that chemically produced and naturally occurring coumarin analogs both exhibited strong MAO-B inhibitory action. Coumarins bind to MAO-B reversibly thereby preventing the breakdown of neurotransmitters like dopamine leading to the inhibition of the enzyme A number of MAO-B blockers have been proven to be efficient therapies for treating neurological diseases like Alzheimer's Disease and Parkinson's Disease. To combat these illnesses, there is still an urgent need to find effective treatment compounds.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| |
Collapse
|
33
|
Mathew B, Oh JM, Parambi DGT, Sudevan ST, Kumar S, Kim H. Enzyme Inhibition Assays for Monoamine Oxidase. Methods Mol Biol 2024; 2761:329-336. [PMID: 38427248 DOI: 10.1007/978-1-0716-3662-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
| |
Collapse
|
34
|
Jangid K, Devi B, Sahoo A, Kumar V, Dwivedi AR, Thareja S, Kumar R, Kumar V. Virtual screening and molecular dynamics simulation approach for the identification of potential multi-target directed ligands for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2024; 42:509-527. [PMID: 37114423 DOI: 10.1080/07391102.2023.2201838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder characterized by memory loss and cognitive impairment. The currently available single-targeting drugs have miserably failed in the treatment of AD, and multi-target directed ligands (MTDLs) are being explored as an alternative treatment strategy. Cholinesterase and monoamine oxidase enzymes are reported to play a crucial role in the pathology of AD, and multipotent ligands targeting these two enzymes simultaneously are under various phases of design and development. Recent studies have revealed that computational approaches are robust and trusted tools for identifying novel therapeutics. The current research work is focused on the development of potential multi-target directed ligands that simultaneously inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B) enzymes employing a structure-based virtual screening (SBVS) approach. The ASINEX database was screened after applying pan assay interference and drug-likeness filter to identify novel molecules using three docking precision criteria; High Throughput Virtual Screening (HTVS), Standard Precision (SP), and Extra Precision (XP). Additionally, binding free energy calculations, ADME, and molecular dynamic simulations were employed to get structural insights into the mechanism of protein-ligand binding and pharmacokinetic properties. Three lead molecules viz. AOP19078710, BAS00314308 and BDD26909696 were successfully identified with binding scores of -10.565, -10.543 & -8.066 kcal/mol against AChE and -11.019, -12.357 & -10.068 kcal/mol against MAO-B, better score as compared to the standard inhibitors. In the near future, these molecules will be synthesized and evaluated through in vitro and in vivo assays for their inhibition potential against AChE and MAO-B enzymes.
Collapse
Affiliation(s)
- Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Ashrulochan Sahoo
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, Gitam School of Pharmacy Hyderabad, Hyderabad, Telangana, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
35
|
Suárez-González E, Sandoval-Ramírez J, Flores-Hernández J, Carrasco-Carballo A. Ginkgo biloba: Antioxidant Activity and In Silico Central Nervous System Potential. Curr Issues Mol Biol 2023; 45:9674-9691. [PMID: 38132450 PMCID: PMC10742658 DOI: 10.3390/cimb45120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
Ginkgo biloba (GB) extracts have been used in clinical studies as an alternative therapy for Alzheimer's disease (AD), but the exact bioaction mechanism has not yet been elucidated. In this work, an in silico study on GB metabolites was carried out using SwissTargetPrediction to determine the proteins associated with AD. The resulting proteins, AChE, MAO-A, MAO-B, β-secretase and γ-secretase, were studied by molecular docking, resulting in the finding that kaempferol, quercetin, and luteolin have multitarget potential against AD. These compounds also exhibit antioxidant activity towards reactive oxygen species (ROS), so antioxidant tests were performed on the extracts using the DPPH and ABTS techniques. The ethanol and ethyl acetate GB extracts showed an important inhibition percentage, higher than 80%, at a dose of 0.01 mg/mL. The effect of GB extracts on AD resulted in multitarget action through two pathways: firstly, inhibiting enzymes responsible for degrading neurotransmitters and forming amyloid plaques; secondly, decreasing ROS in the central nervous system (CNS), reducing its deterioration, and promoting the formation of amyloid plaques. The results of this work demonstrate the great potential of GB as a medicinal plant.
Collapse
Affiliation(s)
- Eduardo Suárez-González
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico;
- Laboratorio de Neuromodulación, Instituto de Fisiología, BUAP, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Síntesis y Modificación de Productos Naturales, FCQ-BUAP, Puebla 72570, Mexico;
| | | | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico;
| |
Collapse
|
36
|
Zhang C, Zhang Y, Lv Y, Guo J, Gao B, Lu Y, Zang A, Zhu X, Zhou T, Xie Y. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:100-117. [PMID: 36519319 PMCID: PMC9762789 DOI: 10.1080/14756366.2022.2134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China,Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,CONTACT Yuanyuan X. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, P. R. China
| |
Collapse
|
37
|
Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers 2023; 27:2465-2489. [PMID: 36355337 DOI: 10.1007/s11030-022-10564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
A library of piperonylic acid-derived hydrazones possessing variable aryl moiety was synthesized and investigated for their multifunctional properties against cholinesterases (ChEs) and monoamine oxidases (MAOs). The in vitro enzymatic assay results revealed that the tested hydrazones have exhibited excellent cholinesterase inhibition profile. Compound 4i, (E)-N'-(2,3-dichlorobenzylidene)benzo[d][1,3]dioxole-5-carbohydrazide showed promising dual inhibitory profile against AChE (0.048 ± 0.007 μM), BChE (0.89 ± 0.018 μM), and MAO-B (0.95 ± 0.12 μM) enzymes. SAR exploration revealed that the truncation of the linker connecting both the aryl binding sites of the semicarbazone scaffold, by one atom, has relatively suppressed the AChE inhibitory potential. Kinetic studies disclosed that the compound 4i reversibly inhibited AChE enzyme in a competitive manner (Ki = 8.0 ± 0.076 nM), while it displayed a non-competitive and reversible inhibition profile against MAO-B (Ki = 9.6 ± 0.021 µM). Moreover, molecular docking studies of synthesized compounds against ChEs and MAOs provided the crucial molecular features that enable their close association and interaction with the target enzymes. All atomistic simulation studies confirmed the stable association of compound 4i within the active sites of AChE and MAO-B. In addition, theoretical ADMET prediction studies demonstrated the acceptable pharmacokinetic profile of the dual inhibitors. In summary, the attempted lead simplification study afforded a potent dual ChE-MAO-B inhibitor compound that merits further investigation.
Collapse
Affiliation(s)
- V Pavan Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - M S Vishnu
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| |
Collapse
|
38
|
Benny F, Oh JM, Kumar S, Abdelgawad MA, Ghoneim MM, Abdel-Bakky MS, Kukerti N, Jose J, Kim H, Mathew B. Isatin-based benzyloxybenzene derivatives as monoamine oxidase inhibitors with neuroprotective effect targeting neurogenerative disease treatment. RSC Adv 2023; 13:35240-35250. [PMID: 38053684 PMCID: PMC10694828 DOI: 10.1039/d3ra07035b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Eighteen isatin-based benzyloxybenzaldehyde derivatives from three subseries, ISB, ISFB, and ISBB, were synthesized and their ability to inhibit monoamine oxidase (MAO) was evaluated. The inhibitory activity of all synthesized compounds was found to be more profound against MAO-B than MAO-A. Compound ISB1 most potently inhibited MAO-B with an IC50 of 0.124 ± 0.007 μM, ensued by ISFB1 (IC50 = 0.135 ± 0.002 μM). Compound ISFB1 most potently inhibited MAO-A with an IC50 of 0.678 ± 0.006 μM, ensued by ISBB3 (IC50 = 0.731 ± 0.028 μM), and had the highest selectivity index (SI) value (55.03). The three sub-parental compounds, ISB1, ISFB1, and ISBB1, had higher MAO-B inhibition than the other derivatives, indicating that the substitutions of the 5-H in the A-ring of isatin diminished the inhibition of MAO-A and MAO-B. Among these, ISB1 (para-benzyloxy group in the B-ring) displayed more significant MAO-B inhibition when compared to ISBB1 (meta-benzyloxy group in the B-ring). ISB1 and ISFB1 were identified to be competitive and reversible MAO-B inhibitors, having Ki values of 0.055 ± 0.010, and 0.069 ± 0.025 μM, respectively. Furthermore, in the parallel artificial membrane penetration assay, ISB1 and ISFB1 traversed the blood-brain barrier in the in vitro condition. Additionally, the current study found that ISB1 decreased rotenone-induced cell death in SH-SY5Y neuroblastoma cells. In docking and simulation studies, the hydrogen bonding formed by the imino nitrogen in ISB1 and the pi-pi stacking interaction of the phenyl ring in isatin significantly aided in the protein-ligand complex's stability, effectively inhibiting MAO-B. According to these observations, the MAO-B inhibitors ISB1 and ISFB1 were potent, selective, and reversible, making them conceivable therapies for neurological diseases.
Collapse
Affiliation(s)
- Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72341 Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University Ad Diriyah 13713 Saudi Arabia
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University Buraydah 51452 Saudi Arabia
| | - Neelima Kukerti
- School of Pharmacy, Graphic Era Hill University Dehradun Uttarakhand 248002 India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE University Mangalore Karnataka 575018 India
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| |
Collapse
|
39
|
Berrino E, Carradori S, Carta F, Melfi F, Gallorini M, Poli G, Tuccinardi T, Fernández-Bolaños JG, López Ó, Petzer JP, Petzer A, Guglielmi P, Secci D, Supuran CT. A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration. Antioxidants (Basel) 2023; 12:2044. [PMID: 38136164 PMCID: PMC10740956 DOI: 10.3390/antiox12122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Francesco Melfi
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| |
Collapse
|
40
|
Prinsloo IF, Petzer JP, Cloete TT, Petzer A. The evaluation of isatin analogues as inhibitors of monoamine oxidase. Chem Biol Drug Des 2023; 102:1067-1074. [PMID: 37500571 DOI: 10.1111/cbdd.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The small molecule, isatin, is a well-known reversible inhibitor of the monoamine oxidase (MAO) enzymes with IC50 values of 12.3 and 4.86 μM for MAO-A and MAO-B, respectively. While the interaction of isatin with MAO-B has been characterized, only a few studies have explored structure-activity relationships (SARs) of MAO inhibition by isatin analogues. The current study therefore evaluated a series of 14 isatin analogues as in vitro inhibitors of human MAO-A and MAO-B. The results indicated good potency MAO inhibition for some isatin analogues with five compounds exhibiting IC50 < 1 μM. 4-Chloroisatin (1b) and 5-bromoisatin (1f) were the most potent inhibitors with IC50 values of 0.812 and 0.125 μM for MAO-A and MAO-B, respectively. These compounds were also found to be competitive inhibitors of MAO-A and MAO-B with Ki values of 0.311 and 0.033 μM, respectively. Among the SARs, it was interesting to note that C5-substitution was particularly beneficial for MAO-B inhibition. MAO inhibitors are established drugs for the treatment of neuropsychiatric and neurodegenerative disorders, while potential new roles in prostate cancer and cardiovascular disease are being investigated.
Collapse
Affiliation(s)
- Izak F Prinsloo
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Theunis T Cloete
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
41
|
Mathew B, Ravichandran V, Raghuraman S, Rangarajan TM, Abdelgawad MA, Ahmad I, Patel HM, Kim H. Two dimensional-QSAR and molecular dynamics studies of a selected class of aldoxime- and hydroxy-functionalized chalcones as monoamine oxidase-B inhibitors. J Biomol Struct Dyn 2023; 41:9256-9266. [PMID: 36411738 DOI: 10.1080/07391102.2022.2146198] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022]
Abstract
Candidates generated from unsaturated ketone (chalcone) demonstrated as strong, reversible and specific monoamine oxidase-B (MAO-B) inhibitory activity. For the research on MAO-B inhibition, our team has synthesized and evaluated a panel of aldoxime-chalcone ethers (ACE) and hydroxylchalcones (HC). The MAO-B inhibitory activity of several candidates is in the micro- to nanomolar range in these series. The purpose of this research was to develop predictive QSAR models and look into the relation between MAO-B inhibition by aldoxime and hydroxyl-functionalized chalcones. It was shown that the molecular descriptors ETA Shape P, MDEO-12, ETA dBetaP, SpMax1 Bhi and ETA EtaP B are significant in the inhibitory action of the MAO-B target. Using the current 2D QSAR models, potential chalcone-based MAO-B inhibitors might be created. The lead molecules were further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Seenivasan Raghuraman
- Department of Pharmaceutical Chemistry, Unity College of Pharmacy, Bhongir, Telangana, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun M Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
42
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
43
|
Tananta VL, Costa EV, Mary YS, Mary YS, S Al-Otaibi J, Costa RA. DFT, ADME studies and evaluation of the binding with HSA and MAO-B inhibitory potential of protoberberine alkaloids from Guatteria friesiana: theoretical insights of promising candidates for the treatment of Parkinson's disease. J Mol Model 2023; 29:353. [PMID: 37907772 DOI: 10.1007/s00894-023-05756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
CONTEXT Parkinson's disease is a chronic neurodegenerative condition that has no cure, characterized by the progressive degeneration of specific brain cells responsible for producing dopamine, a crucial neurotransmitter for controlling movement and muscle coordination. Parkinson's disease is estimated to affect around 1% of the world's population over the age of 60, but it can be diagnosed at younger ages. One of the treatment strategies for Parkinson's disease involves the use of drugs that aim to increase dopamine levels or simulate the action of dopamine in the brain. A class of commonly prescribed drugs are the so-called monoamine oxidase B (MAO-B) inhibitors due to the fact that this enzyme is responsible for metabolizing dopamine, thus reducing its levels in the brain. Studies have shown that berberine-derived alkaloids have the ability to selectively inhibit MAO-B activity, resulting in increased dopamine availability in the brain. In this context, berberine derivatives 13-hydroxy-discretinine and 7,8-dihydro-8-hydroxypalmatine, isolated from Guatteria friesiana, were evaluated via density functional theory followed by ADME studies, docking and molecular dynamic simulations with MAO-B, aiming to evaluate their anti-Parkinson potential, which have not been reported yet. Docking simulations with HSA were carried out aiming to evaluate the transport of these molecules through the circulatory system. METHODS The 3D structures of the berberine-derived alkaloids were modeled via the DFT approach at B3LYP-D3(BJ)/6-311 + + G(2df, 2pd) theory level using Gaussian 09 software. Solvation free energies were determined through Truhlar's solvation model. MEP and ALIE maps were generated with Multiwfn software. Autodock Vina software was used for molecular docking simulations and analysis of the interactions in the binding sites. The 3D structure of MAO-B was obtained from the Protein Data Bank website under PDB code 2V5Z. For the interaction of studied alkaloids with human serum albumin (HSA) drug sites, 3D structures with PDB codes 2BXD, 2BXG, and 4L9K were used. Molecular dynamics simulations were carried out using GROMACS 2019.4 software, with the GROMOS 53A6 force field at 100 ns simulation time. The estimation of the ligand's binding free energies was obtained via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method.
Collapse
Affiliation(s)
- Victor L Tananta
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | | | | | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 8442811671, Riyadh, Saudi Arabia
| | - Renyer A Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil.
| |
Collapse
|
44
|
El-Damasy AK, Oh JM, Kim HJ, Mun SK, Al-Karmalawy AA, Alnajjar R, Choi YJ, Kim JJ, Nam G, Kim H, Keum G. Novel coumarin benzamides as potent and reversible monoamine oxidase-B inhibitors: Design, synthesis, and neuroprotective effects. Bioorg Chem 2023; 142:106939. [PMID: 39492365 DOI: 10.1016/j.bioorg.2023.106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
A series of new 6-amidocoumarin derivatives, 3a-j, was synthesized and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase. All compounds, except 3 g, showed higher inhibitory activity towards MAO-B than MAO-A. Compound 3i most potently inhibited MAO-B with an IC50 value of 0.095 μM, followed by 3j (0.150 μM), 3b (0.190 μM), and 3c (0.204 μM). Compound 3i demonstrated the highest selectivity index (>421.05) for MAO-B. The remarkable MAO-B inhibitory activity of compounds 3i, 3j, 3b, and 3c highlighted the substantial role of the substituents at the 3,4-position of the terminal phenyl group in achieving optimal MAO-B inhibition, especially 3-Cl (3i) > 3-CF3 (3b). In the kinetic study, the Ki value of 3i for MAO-B was 0.046 ± 0.010 μM with a competitive reversible mode. Moreover, compounds 3i and 3j were nontoxic to normal (MDCK), cancer (HL-60), and neuroblastoma (SH-SY5Y) cells and showed protective effects against damage induced by reactive oxygen species in SH-SY5Y neuroblastoma cells. Moreover, molecular docking and molecular dynamics simulations highlighted the tight interactions of 3i with Tyr398 at the binding site of MAO-B. These findings suggest that 3i is a potent, reversible, and selective MAO-B inhibitor that could potentially treat neurological disorders.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Ji Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya; PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya; Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ghilsoo Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
45
|
Jayan J, Chandran N, Thekkantavida AC, Abdelgawad MA, Ghoneim MM, Shaker ME, Uniyal P, Benny F, Zachariah SM, Kumar S, Kim H, Mathew B. Piperidine: A Versatile Heterocyclic Ring for Developing Monoamine Oxidase Inhibitors. ACS OMEGA 2023; 8:37731-37751. [PMID: 37867639 PMCID: PMC10586023 DOI: 10.1021/acsomega.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.
Collapse
Affiliation(s)
- Jayalakshmi Jayan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Namitha Chandran
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Amrutha Chandran Thekkantavida
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni Suef University, Beni Suef 2722165, Egypt
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka 72341, Aljouf Saudi Arabia
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Prerna Uniyal
- School
of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Feba Benny
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Subin Mary Zachariah
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Hoon Kim
- Department
of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| |
Collapse
|
46
|
Hernández-Ayala LF, Guzmán-López EG, Galano A. Quinoline Derivatives: Promising Antioxidants with Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1853. [PMID: 37891932 PMCID: PMC10604020 DOI: 10.3390/antiox12101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Quinoline has been proposed as a privileged molecular framework in medicinal chemistry. Although by itself it has very few applications, its derivatives have diverse biological activities. In this work, 8536 quinoline derivatives, strategically designed using the CADMA-Chem protocol, are presented. This large chemical space was sampled, analyzed and reduced using selection and elimination scores that combine their properties of bioavailability, toxicity and manufacturability. After applying several filters, 25 derivatives were selected to investigate their acid-base, antioxidant and neuroprotective properties. The antioxidant activity was predicted based on the ionization potential and bond dissociation energies, parameters directly related to the transfer of hydrogen atoms and of a single electron, respectively. These two mechanisms are typically involved in the radical scavenging processes. The antioxidant efficiency was compared with reference compounds, and the most promising antioxidants were found to be more efficient than Trolox but less efficient than ascorbate. In addition, based on molecular docking simulations, some derivatives are expected to act as inhibitors of catechol-O methyltransferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase type B (MAO-B) enzymes. Some structural insights about the compounds were found to enhance or decrease the neuroprotection activity. Based on the results, four quinoline derivatives are proposed as candidates to act as multifunctional antioxidants against Alzheimer's (AD) and Parkinson's (PD) diseases.
Collapse
Affiliation(s)
| | | | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, México City 09310, Mexico; (L.F.H.-A.); (E.G.G.-L.)
| |
Collapse
|
47
|
Boulaamane Y, Touati I, Goyal N, Chandra A, Kori L, Ibrahim MAA, Britel MR, Maurady A. Exploring natural products as multi-target-directed drugs for Parkinson's disease: an in-silico approach integrating QSAR, pharmacophore modeling, and molecular dynamics simulations. J Biomol Struct Dyn 2023; 42:11167-11184. [PMID: 37753798 DOI: 10.1080/07391102.2023.2260879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain. Current treatments provide limited symptomatic relief without halting disease progression. A multi-targeting approach has shown potential benefits in treating neurodegenerative diseases. In this study, we employed in silico approaches to explore the COCONUT natural products database and identify novel drug candidates with multi-target potential against relevant Parkinson's disease targets. QSAR models were developed to screen for potential bioactive molecules, followed by a hybrid virtual screening approach involving pharmacophore modeling and molecular docking against MAO-B, AA2AR, and NMDAR. ADME evaluation was performed to assess drug-like properties. Our findings revealed 22 candidates that exhibited the desired pharmacophoric features. Particularly, two compounds: CNP0121426 and CNP0242698 exhibited remarkable binding affinities, with energies lower than -10 kcal/mol and promising interaction profiles with the chosen targets. Furthermore, all the ligands displayed desirable pharmacokinetic properties for brain-targeted drugs. Lastly, molecular dynamics simulations were conducted on the lead candidates, belonging to the dihydrochalcone and curcuminoid class, to evaluate their stability over a 100 ns timeframe and compare their dynamics with reference complexes. Our findings revealed the curcuminoid CNP0242698 to have an overall better stability with the three targets compared to the dihydrochalcone, despite the high ligand RMSD, the curcuminoid CNP0242698 showed better protein stability, implying ligand exploration of different orientations. Similarly, AA2AR exhibited higher stability with CNP0242698 compared to the reference complex, despite the high initial ligand RMSD due to the bulkier active site. In NMDAR, CNP0242698 displayed good stability and less fluctuations implying a more restricted conformation within the smaller active site of NMDAR. These results may serve as lead compounds for the development and optimization of natural products as multi-target disease-modifying natural remedies for Parkinson's disease patients. However, experimental assays remain necessary to validate these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nainee Goyal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Anshuman Chandra
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Lokesh Kori
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Computational Chemistry Laboratory, Minia University, Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
48
|
Ipe RS, Kumar S, Benny F, Jayan J, Manoharan A, Sudevan ST, George G, Gahtori P, Kim H, Mathew B. A Concise Review of the Recent Structural Explorations of Chromones as MAO-B Inhibitors: Update from 2017 to 2023. Pharmaceuticals (Basel) 2023; 16:1310. [PMID: 37765118 PMCID: PMC10534638 DOI: 10.3390/ph16091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that catalyze the oxidative deamination of a wide range of endogenous and exogenous amines. Multiple neurological conditions, including Parkinson's disease (PD) and Alzheimer's disease (AD), are closely correlated with altered biogenic amine concentrations in the brain caused by MAO. Toxic byproducts of this oxidative breakdown, including hydrogen peroxide, reactive oxygen species, and ammonia, can cause oxidative damage and mitochondrial dysfunction in brain cells. Certain MAO-B blockers have been recognized as effective treatment options for managing neurological conditions, including AD and PD. There is still a pressing need to find potent therapeutic molecules to fight these disorders. However, the focus of neurodegeneration studies has recently increased, and certain compounds are now in clinical trials. Chromones are promising structures for developing therapeutic compounds, especially in neuronal degeneration. This review focuses on the MAO-B inhibitory potential of several synthesized chromones and their structural activity relationships. Concerning the discovery of a novel class of effective chromone-based selective MAO-B-inhibiting agents, this review offers readers a better understanding of the most recent additions to the literature.
Collapse
Affiliation(s)
- Reshma Susan Ipe
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Amritha Manoharan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Sachitra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| |
Collapse
|
49
|
Nordio G, Piazzola F, Cozza G, Rossetto M, Cervelli M, Minarini A, Basagni F, Tassinari E, Dalla Via L, Milelli A, Di Paolo ML. From Monoamine Oxidase Inhibition to Antiproliferative Activity: New Biological Perspectives for Polyamine Analogs. Molecules 2023; 28:6329. [PMID: 37687158 PMCID: PMC10490032 DOI: 10.3390/molecules28176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 μM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 μM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.
Collapse
Affiliation(s)
- Giulia Nordio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesco Piazzola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| |
Collapse
|
50
|
Singh AK, Kim SM, Oh JM, Abdelgawad MA, Ghoneim MM, Rangarajan TM, Kumar S, Sudevan ST, Trisciuzzi D, Nicolotti O, Kim H, Mathew B. Exploration of a new class of monoamine oxidase B inhibitors by assembling benzyloxy pharmacophore on halogenated chalcones. Chem Biol Drug Des 2023; 102:271-284. [PMID: 37011915 DOI: 10.1111/cbdd.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Eight derivatives of benzyloxy-derived halogenated chalcones (BB1-BB8) were synthesized and tested for their ability to inhibit monoamine oxidases (MAOs). MAO-A was less efficiently inhibited by all compounds than MAO-B. Additionally, the majority of the compounds displayed significant MAO-B inhibitory activities at 1 μM with residual activities of less than 50%. With an IC50 value of 0.062 μM, compound BB4 was the most effective in inhibiting MAO-B, followed by compound BB2 (IC50 = 0.093 μM). The lead molecules showed good activity than the reference MAO-B inhibitors (Lazabemide IC50 = 0.11 μM and Pargyline Pargyline IC50 = 0.14). The high selectivity index (SI) values for MAO-B were observed in compounds BB2 and BB4 (430.108 and 645.161, respectively). Kinetics and reversibility experiments revealed that BB2 and BB4 were reversible competitive MAO-B inhibitors with Ki values of 0.030 ± 0.014 and 0.011 ± 0.005 μM, respectively. Swiss target prediction confirmed the high probability in the targets of MAO-B for both compounds. Hypothetical binding mode revealed that the BB2 or BB4 is similarly oriented to the binding cavity of MAO-B. Based on the modelling results, BB4 showed a stable confirmation during the dynamic simulation. From these results, it was concluded that BB2 and BB4 were potent selective reversible MAO-B inhibitors and they can be considered drug candidates for treating related neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Seong-Min Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|