1
|
Wang K, Luo J, Wang H, Wang X. Polymer-based vaccines for substance use disorders: Targeting ketamine and methamphetamine with protein-free hyperbranched polyethyleneimine carriers. Eur J Med Chem 2025; 285:117274. [PMID: 39818013 DOI: 10.1016/j.ejmech.2025.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses. Our results demonstrated that vaccines produced specific antibodies capable of effectively neutralizing ketamine- and methamphetamine-induced effects, such as conditioned place preference (CPP) and ketamine-induced analgesia. Notably, the immune response persisted for 95-112 days, demonstrating the vaccines' long-lasting efficacy. In contrast, no antibodies were generated when the adjuvant 1V209 was physically combined with the hapten, underscoring the importance of synergistic vaccine components. Additionally, the polymer-based approach exhibited excellent biocompatibility, without generating non-specific antibodies or causing adverse health effects. These findings highlight the potential of Hb-PEI-based vaccines as a promising platform for treating SUDs, offering a new pathway for clinical applications in combating drug addiction.
Collapse
Affiliation(s)
- Kaixuan Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Luo
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Hosztafi S, Galambos AR, Köteles I, Karádi DÁ, Fürst S, Al-Khrasani M. Opioid-Based Haptens: Development of Immunotherapy. Int J Mol Sci 2024; 25:7781. [PMID: 39063024 PMCID: PMC11277321 DOI: 10.3390/ijms25147781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.
Collapse
Affiliation(s)
- Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Dávid Á Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78., H-1082 Budapest, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| |
Collapse
|
3
|
Yin XG, Chen XZ, Qiu JL, Yu ZK, Chen LY, Huang SQ, Huang WN, Luo X, Zhu KW. A conjugate vaccine strategy that induces protective immunity against arecoline. Eur J Med Chem 2024; 268:116229. [PMID: 38430852 DOI: 10.1016/j.ejmech.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Betel-quid chewing addiction is the leading cause of oral submucous fibrosis and oral cancer, resulting in significant socio-economic burdens. Vaccination may serve as a promising potential remedy to mitigate the abuse and combat accidental overdose of betel nut. Hapten design is the crucial factor to the development of arecoline vaccine that determines the efficacy of a candidate vaccine. Herein, we reported that two kinds of novel arecoline-based haptens were synthesized and conjugated to Bovine Serum Albumin (BSA) to generate immunogens, which generated antibodies with high affinity for arecoline but reduced binding for guvacoline and no affinity for arecaidine or guvacine. Notably, vaccination with Arec-N-BSA, which via the N-position on the tetrahydropyridine ring (tertiary amine group), led to a higher antibody affinity compared to Arec-CONH-BSA, blunted analgesia and attenuated hypothermia for arecoline.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Jia-Ling Qiu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Kai Yu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Li-Yuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Si-Qi Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Wen-Na Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Ke-Wu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
4
|
Shafieichaharberoud F, Lang S, Whalen C, Rivera Quiles C, Purcell L, Talbot C, Wang P, Norton EB, Mazei-Robison M, Sulima A, Jacobson AE, Rice KC, Matyas GR, Huang X. Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles. Bioconjug Chem 2024; 35:164-173. [PMID: 38113481 PMCID: PMC11259974 DOI: 10.1021/acs.bioconjchem.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qβ (mQβ), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQβ-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQβ-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQβ-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.
Collapse
Affiliation(s)
- Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cristina Rivera Quiles
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lillie Purcell
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Cameron Talbot
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Michelle Mazei-Robison
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Lu T, Li X, Zheng W, Kuang C, Wu B, Liu X, Xue Y, Shi J, Lu L, Han Y. Vaccines to Treat Substance Use Disorders: Current Status and Future Directions. Pharmaceutics 2024; 16:84. [PMID: 38258095 PMCID: PMC10820210 DOI: 10.3390/pharmaceutics16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances.
Collapse
Affiliation(s)
- Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Bingyi Wu
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China;
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| |
Collapse
|
6
|
Bogen IL, Boix F, Andersen JM, Steinsland S, Nerem E, Mørland J. Heroin metabolism in human blood and its impact for the design of an immunotherapeutic approach against heroin effects. Basic Clin Pharmacol Toxicol 2023; 133:418-427. [PMID: 37452619 DOI: 10.1111/bcpt.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Immunotherapeutic interventions that block drug effects by binding drug molecules to specific antibodies in the bloodstream have shown promising effects in animal studies. For heroin, which effects are mainly mediated by the metabolites 6-acetylmorphine (6-AM; also known as 6-monoacetylmorphine or 6-MAM) and morphine, the optimal antibody specificity has been discussed. In rodents, 6-AM specific antibodies have been recommended based on the rapid metabolism of heroin to 6-AM in the bloodstream. Since the metabolic rate of heroin in blood is unsettled in humans, we examined heroin metabolism with state-of-the-art analytical methodology (UHPLC-MS/MS) in freshly drawn human whole blood incubated with a wide range of heroin concentrations (1-500 μM). The half-life of heroin was highly concentration dependent, ranging from 1.2-1.7 min for concentrations at or above 25 μM, and gradually increasing to approximately 20 min for 1 μM heroin. At concentrations that can be attained in the bloodstream shortly after an i.v. injection, approximately 70% was transformed into 6-AM within 3 min, similar to previous observations in vivo. Our results indicate that blood enzymes play a more important role for the rapid metabolism of heroin in humans than previously assumed. This points to 6-AM as an important target for an efficient immunotherapeutic approach to block heroin effects in humans.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Nerem
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jørg Mørland
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Lee J, Eubanks LM, Zhou B, Janda KD. Development of an Effective Monoclonal Antibody against Heroin and Its Metabolites Reveals Therapies Have Mistargeted 6-Monoacetylmorphine and Morphine over Heroin. ACS CENTRAL SCIENCE 2022; 8:1464-1470. [PMID: 36313156 PMCID: PMC9615117 DOI: 10.1021/acscentsci.2c00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 05/29/2023]
Abstract
The opioid epidemic is a global public health crisis that has failed to abate with current pharmaceutical treatments. Moreover, these FDA-approved drugs possess numerous problems such as adverse side effects, short half-lives, abuse potential, and recidivism after discontinued use. An alternative treatment model for opioid use disorders is immunopharmacotherapy, where antibodies are produced to inhibit illicit substances by sequestering the drug in the periphery. Immunopharmacotherapeutics against heroin have engaged both active and passive vaccines targeting heroin's metabolites, 6-monoacetylmorphine (6-AM) and morphine, since decades of research have stated that heroin's psychoactive and lethal effects are mainly attributed to these compounds. However, concerted efforts to develop effective immunopharmacotherapies against heroin abuse have faced little clinical advancement, suggesting a need for reassessing drug target selection. To address this issue, four unique monoclonal antibodies were procured with distinct affinity to either heroin, 6-AM, or morphine. Examination of these antibodies through in vitro and in vivo tests revealed monoclonal antibody 11D12 as the optimal therapeutic and provided crucial insights into the key chemical species to target for blunting heroin's psychoactive and lethal effects. These findings offer clarification into the problematic attempts of therapeutics targeting heroin's metabolites and provide a path forward for future heroin immunopharmacotherapy development.
Collapse
|
8
|
Hossain MK, Davidson M, Kypreos E, Feehan J, Muir JA, Nurgali K, Apostolopoulos V. Immunotherapies for the Treatment of Drug Addiction. Vaccines (Basel) 2022; 10:vaccines10111778. [PMID: 36366287 PMCID: PMC9697687 DOI: 10.3390/vaccines10111778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Substance use disorders (SUD) are a serious public health concern globally. Existing treatment platforms suffer from a lack of effectiveness. The development of immunotherapies against these substances of abuse for both prophylactic and therapeutic use has gained tremendous importance as an alternative and/or supplementary to existing therapies. Significant development has been made in this area over the last few decades. Herein, we highlight the vaccine and other biologics development strategies, preclinical, clinical updates along with challenges and future directions. Articles were searched in PubMed, ClinicalTrial.gov, and google electronic databases relevant to development, preclinical, clinical trials of nicotine, cocaine, methamphetamine, and opioid vaccines. Various new emerging vaccine development strategies for SUD were also identified through this search and discussed. A good number of vaccine candidates demonstrated promising results in preclinical and clinical phases and support the concept of developing a vaccine for SUD. However, there have been no ultimate success as yet, and there remain some challenges with a massive push to take more candidates to clinical trials for further evaluation to break the bottleneck.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Erica Kypreos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Joshua Alexander Muir
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
9
|
Abucayon E, Whalen C, Torres OB, Duval AJ, Sulima A, Antoline JFG, Oertel T, Barrientos RC, Jacobson AE, Rice KC, Matyas GR. A Rapid Method for Direct Quantification of Antibody Binding-Site Concentration in Serum. ACS OMEGA 2022; 7:26812-26823. [PMID: 35936462 PMCID: PMC9352236 DOI: 10.1021/acsomega.2c03237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The quantitation of the available antibody binding-site concentration of polyclonal antibodies in serum is critical in defining the efficacy of vaccines against substances of abuse. We have conceptualized an equilibrium dialysis (ED)-based approach coupled with fluorimetry (ED-fluorimetry) to measure the antibody binding-site concentration to the ligand in an aqueous environment. The measured binding-site concentrations in monoclonal antibody (mAb) and sera samples from TT-6-AmHap-immunized rats by ED-fluorimetry are in agreement with those determined by a more established equilibrium dialysis coupled with ultraperformance liquid chromatography tandem mass spectrometry (ED-UPLC-MS/MS). Importantly, we have shown that the measured antibody binding-site concentrations to the ligand by ED-fluorimetry were not influenced by the sample serum matrix; thus, this method is valid for determining the binding-site concentration of polyclonal antibodies in sera samples. Further, we have demonstrated that under appropriate analytical conditions, this method resolved the total binding-site concentrations on a nanomolar scale with good accuracy and repeatability within the microliter sample volumes. This simple, rapid, and sample preparation-free approach has the potential to reliably perform quantitative antibody binding-site screening in serum and other more complex biological fluids.
Collapse
Affiliation(s)
- Erwin
G. Abucayon
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Alexander J. Duval
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Joshua F. G. Antoline
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Therese Oertel
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Rodell C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C. Rice
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
10
|
da Silva Neto L, da Silva Maia AF, Godin AM, de Almeida Augusto PS, Pereira RLG, Caligiorne SM, Alves RB, Fernandes SOA, Cardoso VN, Goulart GAC, Martins FT, das Neves MDCL, Garcia FD, de Fátima Â. Calix[ n]arene-based immunogens: A new non-proteic strategy for anti-cocaine vaccine. J Adv Res 2022; 38:285-298. [PMID: 35572397 PMCID: PMC9091763 DOI: 10.1016/j.jare.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Leonardo da Silva Neto
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Angélica Faleiros da Silva Maia
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana Martins Godin
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | | | - Sordaini Maria Caligiorne
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Rosemeire Brondi Alves
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Felipe Terra Martins
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, MG, Brazil
| | | | - Frederico Duarte Garcia
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ângelo de Fátima
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
11
|
Crouse B, Zhang L, Robinson C, Ban Y, Vigliaturo JR, Roy S, Pravetoni M. Housing conditions and microbial environment do not affect the efficacy of vaccines for treatment of opioid use disorders in mice and rats. Hum Vaccin Immunother 2021; 17:4383-4392. [PMID: 34411500 PMCID: PMC8828096 DOI: 10.1080/21645515.2021.1954442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
Vaccines offer a promising prophylactic and therapeutic intervention to counteract opioid use disorders (OUD) and fatal overdoses. Vaccines generate opioid-specific antibodies that bind the target opioid, reducing drug distribution to the brain and preventing drug-induced behavioral and pharmacological effects. Due to their selectivity, anti-opioid vaccines can be administered in combination with FDA-approved medications. Because patients with OUD or other substance use disorders may be affected by other multifactorial co-morbidities, such as infection or depression, it is important to test whether vaccine efficacy is modified by factors that may impact individual innate or adaptive immunity. To that end, this study tested whether housing conditions would affect the efficacy of two lead vaccine formulations targeting oxycodone and fentanyl in male mice and rats, and further analyzed whether differences in the gastrointestinal (GI) microbiome would be correlated with either vaccine efficacy or housing conditions. Results showed that housing mice and rats in either conventional (non-controlled) or specific pathogen-free (SPF, sterile barrier maintained) environment did not affect vaccine-induced antibody responses against oxycodone and fentanyl, nor their efficacy against oxycodone- and fentanyl-induced antinociception, respiratory depression, and bradycardia. Differences in the GI microbiome detected via 16S rRNA gene sequencing were related to the housing environment. This study supports use of anti-opioid vaccines in clinical populations that may display deficits in microbiome function.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Li Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sabita Roy
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Center for Immunology, Minneapolis, MN, USA
| |
Collapse
|
12
|
Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. Synergistic immune and antinociceptive effects induced from the combination of two different vaccines against morphine/heroin in mouse. Hum Vaccin Immunother 2021; 17:3515-3528. [PMID: 34170784 PMCID: PMC8437472 DOI: 10.1080/21645515.2021.1935171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022] Open
Abstract
Animal studies have reported the use of different opioid-vaccine formulations with relative success These studies have suggested that new opioid-vaccine formulations are required, which are capable of triggering a robust humoral response. One strategy that has been used is the co-administration of two or more vaccines with different but complementary properties, which are capable of generating a robust immune response. We have developed two formulations of opioid-vaccine, the M6-TT, and M3-TT, which generate a robust immune response capable of recognizing heroin and morphine. In this work, we evaluate the combination of two vaccine formulations, which we call the M3/6-TT vaccine, to elicit a robust immune response and protection against heroin and morphine. Balb/c mice were immunized simultaneously with M6-TT vaccine and with M3-TT vaccine. A solid-phase antibody-capture ELISA was used for monitoring antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick and hot-plate testing to evaluate the antinociceptive effects induced by heroin or morphine. Immunization with M3-TT and M6-TT vaccine elicits a robust immune response with an antibody titer of 1: 590 000 able to recognize heroin and morphine. These antibodies are capable of reducing the antinociceptive effects induced by doses of up to 40 mg/Kg. of morphine or 10 mg/kg of heroin. This suggests that the combination of two vaccine formulations that generate antibodies with different but complementary characteristics would be a new therapeutic strategy aimed at reducing drug relapses.
Collapse
Affiliation(s)
- Susana Barbosa-Mendez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Maura Matus-Ortega
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Ricardo Hernandez-Miramontes
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| |
Collapse
|
13
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
14
|
The M3-TT Vaccine Decreases the Antinociceptive Effects of Morphine and Heroin in Mice. Int J Ment Health Addict 2021. [DOI: 10.1007/s11469-021-00621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Park H, Lee JC, Eubanks LM, Ellis B, Zhou B, Janda KD. Improvements on a chemically contiguous hapten for a vaccine to address fentanyl-contaminated heroin. Bioorg Med Chem 2021; 41:116225. [PMID: 34034147 DOI: 10.1016/j.bmc.2021.116225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
Unintentional overdose deaths related to opioids and psychostimulants have increased in prevalence due to the adulteration of these drugs with fentanyl. Synergistic effects between illicit compounds and fentanyl cause aggravated respiratory depression, leading to inadvertent fatalities. Traditional small-molecule therapies implemented in the expanding opioid epidemic present numerous problems since they interact with the same opioid receptors in the brain as the abused drugs. In this study, we report an optimized dual hapten for use as an immunopharmacotherapeutic tool in order to develop antibodies capable of binding to fentanyl-contaminated heroin in the periphery, thus impeding the drugs' psychoactive effects on the central nervous system. This vaccine produced antibodies with nanomolar affinities and effectively blocked opioid analgesic effects elicited by adulterated heroin. These findings provide further insight into the development of chemically contiguous haptens for broad-spectrum immunopharmacotherapies against opioid use disorders.
Collapse
Affiliation(s)
- Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
16
|
Barbosa-Méndez S, Matus-Ortega M, Hernández-Miramontes R, Salazar-Juárez A. The morphine/heroin vaccine decreased the heroin-induced antinociceptive and reinforcing effects in three inbred strains mouse. Int Immunopharmacol 2021; 98:107887. [PMID: 34186279 DOI: 10.1016/j.intimp.2021.107887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Clinical trials have indicated that a vaccine must be immunogenic in genetically diverse human populations and that immunogenicity and protective efficacy in animal models are two key indices required for the approval of a new vaccine. Additionally, the immune response (immunogenicity) and immunoprotection are dependent on the mouse strain. Therefore, the objective of the present study was to determine the immune response (immunogenicity) and the protective efficacy (behavioral response) in three inbred mouse strains immunized with the M6TT vaccine. Female BALB/c, C57Bl/6, and DBA/2 inbred mice were immunized with the M6-TT vaccine. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick testing to evaluate the antinociceptive effects induced by heroin. Additionally, heroin-induced locomotor activity and place preference were evaluated. The M6-TT vaccine was able to generate a specific antibody titer in the three inbred mouse strains evaluated. The antibodies reduced the antinociceptive effect of different doses of heroin. In addition, they decreased the heroin-induced locomotor activity and place preference. These findings suggest that the M6-TT vaccine generates a powerful immunogenic response capable of reducing the antinociceptive and reinforcing effects of heroin in different inbred mouse strains, which supports its possible future use in clinical trials in genetically diverse human populations.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Maura Matus-Ortega
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Ricardo Hernández-Miramontes
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico.
| |
Collapse
|
17
|
Pharmacological mechanisms underlying the efficacy of antibodies generated by a vaccine to treat oxycodone use disorder. Neuropharmacology 2021; 195:108653. [PMID: 34126123 DOI: 10.1016/j.neuropharm.2021.108653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022]
Abstract
Therapeutic vaccines offer a viable strategy to treat opioid use disorders (OUD) complementary to current pharmacotherapies. The candidate Oxy(Gly)4-sKLH vaccine targeting oxycodone displayed pre-clinical proof of efficacy, selectivity and safety, and it is now undergoing clinical evaluation. To further support its implementation in the clinic, this study tested critical in vivo neuropsychopharmacological properties of the Oxy(Gly)4-sKLH vaccine in rats. While repeated immunizations with Oxy(Gly)4-sKLH were necessary to maintain the antibody response overtime, exposure to free oxycodone did not boost oxycodone-specific antibody levels in vaccinated rats, limiting concerns of immune-related side effects. Immunization with Oxy(Gly)4-sKLH achieved sustained antibody titers over a period of five months following initial vaccination, supporting its potential for providing long-lasting protection. In vivo studies of selectivity showed that vaccination prevented oxycodone-induced but not methadone-induced antinociception, while still preserving the opioid antagonist naloxone's pharmacological effects. Vaccination did not interfere with fentanyl-induced antinociception or fentanyl distribution to the brain. These in vivo data confirm the previously reported in vitro selectivity profile of Oxy(Gly)4-sKLH. Vaccination extended oxycodone's half-life up to 25 h compared to control. While vaccination reduced the reinforcing efficacy of oxycodone in an intravenous self-administration model, signs of toxicity were not observed. These rodent studies confirm that active immunization with Oxy(Gly)4-sKLH induces highly specific and long-lasting antibodies which are effective in decreasing the reinforcing effects of oxycodone while preserving the efficacy of medications used to treat OUD and overdose.
Collapse
|
18
|
Gutman ES, Irvin TC, Morgan JB, Barrientos RC, Torres OB, Beck Z, Matyas GR, Jacobson AE, Rice KC. Synthesis and immunological effects of C14-linked 4,5-epoxymorphinan analogues as novel heroin vaccine haptens. RSC Chem Biol 2021; 2:835-842. [PMID: 34179783 PMCID: PMC8190897 DOI: 10.1039/d1cb00029b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Active immunization is being explored as a potential therapeutic to combat accidental overdose and to mitigate the abuse potential of opioids. Hapten design is one of the crucial factors that determines the efficacy of a candidate vaccine to substance abuse and remains one of the most active areas of research in vaccine development. Herein we report for the first time the synthesis of three novel opiate surrogates with the linker attachment site at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) as novel heroin haptens. The compounds 1, 2, and 3 are analogues with different substituents at C6: an acetamide, a hydroxyl moiety, and an acetate, respectively. All three haptens had a phenolic hydroxyl group at C3. The haptens were conjugated to the tetanus toxoid carrier protein, adjuvanted with liposomal monophosphoryl lipid A/aluminum hydroxide and were tested in mice in terms of immunogenicity and efficacy. Immunization of mice resulted in antibody endpoint titers of >105 against all the haptens. Neither of the conjugates of 1, 2, and 3 had induced antibodies with selectivity broad enough to recognize and bind heroin, 6-AM, and morphine resulting in little to no protection against the antinociceptive effects of heroin in vivo. Only the mice immunized with conjugate 3 were partially protected against heroin-induced antinociception. These results contribute to the growing body of knowledge that the linker position and the subtle structural differences in the hapten scaffold impact the selectivity of the induced antibodies. Together, these highlight the importance of rational hapten design for heroin vaccine development. Three novel opiate surrogates with the linker at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) were conjugated to tetanus toxoid (TT) and tested as heroin vaccines. The C3 and C6 moieties are crucial in antibody selectivity.![]()
Collapse
Affiliation(s)
- Eugene S Gutman
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Thomas C Irvin
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - J Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Oscar B Torres
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| |
Collapse
|
19
|
Méndez SB, Matus-Ortega M, Miramontes RH, Salazar-Juárez A. Effect of the morphine/heroin vaccine on opioid and non-opioid drug-induced antinociception in mice. Eur J Pharmacol 2021; 891:173718. [PMID: 33171151 DOI: 10.1016/j.ejphar.2020.173718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Pain is a common symptom in patients with opioid use disorder (OUD), which increases synthetic and illicit synthetic opioid abuse and even fatalities due to opioid overdose. Many FDA-approved drugs are available for the treatment of OUD, however, the use of these medications is limited, mainly due to the development of various side effects. Active vaccination is a new therapeutic approach but the resulting antibodies may compromise the use and efficiency of opioid and non-opioid drugs. In this study, we evaluated whether the antibodies produced by the morphine/heroin vaccine (M-TT) would alter the antinociceptive effects of opioid and non-opioid drugs. Female Balb-c mice were immunized with the M-TT vaccine. A solid-phase antibody-capture ELISA was used for monitoring antibody titer responses after each booster dose in vaccinated animals, followed by tail-flick testing. This study found that the M-TT vaccine did not affect the antinociception induced by different doses of morphine or the ability of non-opioid and synthetic opioid drugs to decrease thermal pain. Moreover, the combination of vaccination and naloxone increased the time-course of morphine antagonism relative to either vaccination or naloxone alone. These results suggest that the antibody titers generated by the M-TT vaccine 1) are capable of reducing morphine-induced antinociception and 2) are selective enough not to alter antinociception induced by non-opioid or synthetic drugs. These characteristics support its potential as a treatment agent for patients with symptoms of pain comorbid to OUD.
Collapse
|
20
|
Townsend EA, Bremer PT, Jacob NT, Negus SS, Janda KD, Banks ML. A synthetic opioid vaccine attenuates fentanyl-vs-food choice in male and female rhesus monkeys. Drug Alcohol Depend 2021; 218:108348. [PMID: 33268227 PMCID: PMC8224470 DOI: 10.1016/j.drugalcdep.2020.108348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
AIM Opioid-targeted vaccines are under consideration as candidate Opioid Use Disorder medications. We recently reported that a fentanyl-targeted vaccine produced a robust and long-lasting attenuation of fentanyl-vs-food choice in rats. In the current study, we evaluated an optimized fentanyl-targeted vaccine in rhesus monkeys to determine whether vaccine effectiveness to attenuate fentanyl choice translated to a species with greater phylogenetic similarity to humans. METHODS Adult male (2) and female (3) rhesus monkeys were trained to respond under a concurrent schedule of food (1 g pellets) and intravenous fentanyl (0, 0.032-1 μg/kg/injection) reinforcement during daily 2 h sessions. Fentanyl choice dose-effect functions were determined daily and 7-day buprenorphine treatments (0.0032-0.032 mg/kg/h IV; n = 4-5) were determined for comparison to vaccine effects. Subsequently, a fentanyl-CRM197 conjugate vaccine was administered at week 0, 3, 8, 15 over a 29-week experimental period during which fentanyl choice dose-effect functions continued to be determined daily. RESULTS Buprenorphine significantly decreased fentanyl choice and reciprocally increased food choice. Vaccination eliminated fentanyl choice and increased food choice in four-of-the-five monkeys. A transient and less robust vaccine effect was observed in the fifth monkey. Fentanyl-specific antibody concentrations peaked after the third vaccination to approximately 50 μg/mL while anti-fentanyl antibody affinity increased to a sustained low nanomolar level. CONCLUSION These results translate fentanyl vaccine effectiveness from rats to rhesus monkeys to decrease fentanyl-vs-food choice, albeit with greater individual differences observed in monkeys. These results support the potential and further clinical evaluation of this fentanyl-targeted vaccine as a candidate Opioid Use Disorder medication.
Collapse
Affiliation(s)
- E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA, corresponding author: (EAT) or (KDJ)
| | - Paul T. Bremer
- Cessation Therapeutics, San Jose, CA 95128, USA,Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA., corresponding author: (EAT) or (KDJ)
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
21
|
Robinson C, Gradinati V, Hamid F, Baehr C, Crouse B, Averick S, Kovaliov M, Harris D, Runyon S, Baruffaldi F, LeSage M, Comer S, Pravetoni M. Therapeutic and Prophylactic Vaccines to Counteract Fentanyl Use Disorders and Toxicity. J Med Chem 2020; 63:14647-14667. [PMID: 33215913 DOI: 10.1021/acs.jmedchem.0c01042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of fatal overdoses has increased worldwide due to the widespread access to illicit fentanyl and its potent analogues. Vaccines offer a promising strategy to reduce the prevalence of opioid use disorders (OUDs) and to prevent toxicity from accidental and deliberate exposure to fentanyl and its derivatives. This study describes the development and characterization of vaccine formulations consisting of novel fentanyl-based haptens conjugated to carrier proteins. Vaccine efficacy was tested against opioid-induced behavior and toxicity in mice and rats challenged with fentanyl and its analogues. Prophylactic vaccination reduced fentanyl- and sufentanil-induced antinociception, respiratory depression, and bradycardia in mice and rats. Therapeutic vaccination also reduced fentanyl intravenous self-administration in rats. Because of their selectivity, vaccines did not interfere with the pharmacological effects of commonly used anesthetics nor with methadone, naloxone, oxycodone, or heroin. These preclinical data support the translation of vaccines as a viable strategy to counteract fentanyl use disorders and toxicity.
Collapse
Affiliation(s)
- Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Fatima Hamid
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Saadyah Averick
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Marina Kovaliov
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Danni Harris
- RTI International, Raleigh, North Carolina 27616, United States
| | - Scott Runyon
- RTI International, Raleigh, North Carolina 27616, United States
| | - Federico Baruffaldi
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Mark LeSage
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Sandra Comer
- Department of Psychiatry, Columbia University Irving Medical Center, and the New York State Psychiatric Institute, New York, New York 10027-6902, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
23
|
Synthesis of Potential Haptens with Morphine Skeleton and Determination of Protonation Constants. Molecules 2020; 25:molecules25174009. [PMID: 32887468 PMCID: PMC7504778 DOI: 10.3390/molecules25174009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccination could be a promising alternative warfare against drug addiction and abuse. For this purpose, so-called haptens can be used. These molecules alone do not induce the activation of the immune system, this occurs only when they are attached to an immunogenic carrier protein. Hence obtaining a free amino or carboxylic group during the structural transformation is an important part of the synthesis. Namely, these groups can be used to form the requisite peptide bond between the hapten and the carrier protein. Focusing on this basic principle, six nor-morphine compounds were treated with ethyl acrylate and ethyl bromoacetate, while the prepared esters were hydrolyzed to obtain the N-carboxymethyl- and N-carboxyethyl-normorphine derivatives which are considered as potential haptens. The next step was the coupling phase with glycine ethyl ester, but the reactions did not work or the work-up process was not accomplishable. As an alternative route, the normorphine-compounds were N-alkylated with N-(chloroacetyl)glycine ethyl ester. These products were hydrolyzed in alkaline media and after the work-up process all of the derivatives contained the free carboxylic group of the glycine side chain. The acid-base properties of these molecules are characterized in detail. In the N-carboxyalkyl derivatives, the basicity of the amino and phenolate site is within an order of magnitude. In the glycine derivatives the basicity of the amino group is significantly decreased compared to the parent compounds (i.e., morphine, oxymorphone) because of the electron withdrawing amide group. The protonation state of the carboxylate group significantly influences the basicity of the amino group. All of the glycine ester and the glycine carboxylic acid derivatives are currently under biological tests.
Collapse
|
24
|
Natori Y, Janda KD. Synthesis of Drug Vaccine against Heroin Contaminated with Fentanyl and Their Biological Evaluation. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Kim D. Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute
| |
Collapse
|
25
|
Belz TF, Bremer PT, Zhou B, Blake S, Ellis B, Eubanks LM, Janda KD. Sulfonate-isosteric replacement examined within heroin-hapten vaccine design. Bioorg Med Chem Lett 2020; 30:127388. [PMID: 32738981 PMCID: PMC7398700 DOI: 10.1016/j.bmcl.2020.127388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Heroin overdose and addiction remain significant health and economic burdens in the world today costing billions of dollars annually. Moreover, only limited pharmacotherapeutic options are available for treatment of heroin addiction. In our efforts to combat the public health threat posed by heroin addiction, we have developed vaccines against heroin. To expand upon our existing heroin-vaccine arsenal, we synthesized new aryl and alkyl sulfonate ester haptens; namely aryl-mono-sulfonate (HMsAc) and Aryl/alkyl-di-sulfonate (H(Ds)2) as carboxyl-isosteres of heroin then compared them to our model heroin-hapten (HAc) through vaccination studies. Heroin haptens were conjugated to the carrier protein CRM197 and the resulting CRM-immunoconjugates were used to vaccinate Swiss Webster mice following an established immunization protocol. Binding studies revealed that the highest affinity anti-heroin antibodies were generated by the HMsAc vaccine followed by the HAc and H(Ds)2 vaccines, respectively (HMsAc > HAc≫HDs2). However, neither the HMsAc nor H(Ds)2 vaccines were able to generate high affinity antibodies to the psychoactive metabolite 6-acetyl morphine (6-AM), in comparison to the HAc vaccine. Blood brain bio-distribution studies supported these binding results with vaccine efficiency following the trend HAc > HMsAc ≫ H(Ds)2 The work described herein provides insight into the use of hapten-isosteric replacement in vaccine drug design.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Paul T Bremer
- Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, CA 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Steven Blake
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
26
|
Belz TF, Bremer PT, Zhou B, Ellis B, Eubanks LM, Janda KD. Enhancement of a Heroin Vaccine through Hapten Deuteration. J Am Chem Soc 2020; 142:13294-13298. [PMID: 32700530 DOI: 10.1021/jacs.0c05219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The United States is in the midst of an unprecedented epidemic of opioid substance use disorder, and while pharmacotherapies including opioid agonists and antagonists have shown success, they can be inadequate and frequently result in high recidivism. With these challenges facing opioid use disorder treatments immunopharmacotherapy is being explored as an alternative therapy option and is based upon antibody-opioid sequestering to block brain entry. Development of a heroin vaccine has become a major research focal point; however, producing an efficient vaccine against heroin has been particularly challenging because of the need to generate not only a potent immune response but one against heroin and its multiple psychoactive molecules. In this study, we explored the consequence of regioselective deuteration of a heroin hapten and its impact upon the immune response against heroin and its psychoactive metabolites. Deuterium (HdAc) and cognate protium heroin (HAc) haptens were compared head to head in an inclusive vaccine study. Strikingly the HdAc vaccine granted greater efficacy in blunting heroin analgesia in murine behavioral models compared to the HAc vaccine. Binding studies confirmed that the HdAc vaccine elicited both greater quantities and equivalent or higher affinity antibodies toward heroin and 6-AM. Blood-brain biodistribution experiments corroborated these affinity tests. These findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T Bremer
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, California 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Raleigh MD, Accetturo C, Pravetoni M. Combining a Candidate Vaccine for Opioid Use Disorders with Extended-Release Naltrexone Increases Protection against Oxycodone-Induced Behavioral Effects and Toxicity. J Pharmacol Exp Ther 2020; 374:392-403. [PMID: 32586850 DOI: 10.1124/jpet.120.000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Opioid use disorders (OUDs) and opioid-related fatal overdoses are a significant public health concern in the United States and worldwide. To offer more effective medical interventions to treat or prevent OUD, antiopioid vaccines are in development that reduce the distribution of the targeted opioids to brain and subsequently reduce the associated behavioral and toxic effects. It is of critical importance that antiopioid vaccines do not interfere with medications that treat OUD. Hence, this study tested the preclinical proof of concept of combining a candidate oxycodone vaccine [oxycodone-keyhole limpet hemocyanin (OXY-KLH)] with an FDA-approved extended-release naltrexone (XR-NTX) depot formulation in rats. The effects of XR-NTX on oxycodone-induced motor activity and antinociception were first assessed in nonvaccinated naïve rats to establish a baseline for subsequent studies. Next, OXY-KLH and XR-NTX were coadministered to determine whether the combination would affect the efficacy of each individual treatment, and it was found that the combination of OXY-KLH and XR-NTX offered greater efficacy in reducing oxycodone-induced motor activity, thigmotaxis, antinociception, and respiratory depression over a range of repeated or escalating oxycodone doses in rats. These data support the feasibility of combining antibody-based therapies with opioid receptor antagonists to provide greater or prolonged protection against opioid-related toxicity or overdose. Combining antiopioid vaccines with XR-NTX may provide prophylactic measures to subjects at risk of relapse and accidental or deliberate exposure. Combination therapy may extend to other biologics (e.g., monoclonal antibodies) and medications against substance use disorders. SIGNIFICANCE STATEMENT: Opioid use disorders (OUDs) remain a major problem worldwide, and new therapies are needed. This study reports on the combination of an oxycodone vaccine [oxycodone-keyhole limpet hemocyanin (OXY-KLH)] with a currently approved OUD therapy, extended-release naltrexone (XR-NTX). Results demonstrated that XR-NTX did not interfere with OXY-KLH efficacy, and combination of low doses of XR-NTX with vaccine was more effective than each individual treatment alone to reduce behavioral and toxic effects of oxycodone, suggesting that combining OXY-KLH with XR-NTX may improve OUD outcomes.
Collapse
Affiliation(s)
- Michael D Raleigh
- Departments of Pharmacology (M.D.R., M.P.) and Medicine (M.P.), Center for Immunology (M.P.), Medical School, University of Minnesota, Minneapolis, Minnesota; Universita' degli Studi di Milano, Socrates Program, Milano, Italy (C.A.); and Hennepin Healthcare Research Institute, Minneapolis, Minnesota (M.P.)
| | - Claudia Accetturo
- Departments of Pharmacology (M.D.R., M.P.) and Medicine (M.P.), Center for Immunology (M.P.), Medical School, University of Minnesota, Minneapolis, Minnesota; Universita' degli Studi di Milano, Socrates Program, Milano, Italy (C.A.); and Hennepin Healthcare Research Institute, Minneapolis, Minnesota (M.P.)
| | - Marco Pravetoni
- Departments of Pharmacology (M.D.R., M.P.) and Medicine (M.P.), Center for Immunology (M.P.), Medical School, University of Minnesota, Minneapolis, Minnesota; Universita' degli Studi di Milano, Socrates Program, Milano, Italy (C.A.); and Hennepin Healthcare Research Institute, Minneapolis, Minnesota (M.P.)
| |
Collapse
|
28
|
Gradinati V, Baruffaldi F, Abbaraju S, Laudenbach M, Amin R, Gilger B, Velagaleti P, Pravetoni M. Polymer-mediated delivery of vaccines to treat opioid use disorders and to reduce opioid-induced toxicity. Vaccine 2020; 38:4704-4712. [PMID: 32439214 DOI: 10.1016/j.vaccine.2020.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022]
Abstract
Vaccines offer a potential strategy to treat opioid use disorders (OUD) and to reduce the incidence of opioid-related overdoses. Vaccines induce opioid-specific polyclonal antibodies that selectively and effectively bind the target opioid and prevent its distribution across the blood-brain barrier. Because antibody-mediated reduction of drug distribution to the brain reduces drug-induced behavior and toxicity, vaccine efficacy depends on the quantity and quality of the antibody response. This study tested whether polymer-mediated delivery could improve vaccine efficacy against opioids as well as eliminate the need for booster injections normally required for a successful immunization. A series of novel biodegradable biocompatible thermogelling pentablock co-polymers were used to formulate a candidate vaccine against oxycodone in mice and rats. Polymer-based delivery of the anti-oxycodone vaccine was equally or more effective than administration in aluminum adjuvant in generating oxycodone-specific antibodies and in reducing oxycodone-induced effects and oxycodone distribution to the brain in mice and rats. The composition and release kinetics of the polymer formulations determined vaccine efficacy. Specifically, a formulation consisting of three simultaneous injections of the anti-oxycodone vaccine formulated in three different polymers with slow, intermediate, and fast release kinetics was more effective than an immunization regimen consisting of three sequential injections with the vaccine adsorbed on aluminum. The novel three-phased polymer vaccine formulation was effective in blocking oxycodone-induced antinociception, respiratory depression and bradycardia in rats.
Collapse
Affiliation(s)
- Valeria Gradinati
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States
| | | | | | - Megan Laudenbach
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Rasidul Amin
- Symmetry Biosciences, Raleigh, NC, United States
| | - Brian Gilger
- North Carolina State University, NC, United States
| | | | - Marco Pravetoni
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States; University of Minnesota, Center for Immunology, Minneapolis, MN, United States.
| |
Collapse
|
29
|
Townsend EA, Bremer PT, Faunce KE, Negus SS, Jaster AM, Robinson HL, Janda KD, Banks ML. Evaluation of a Dual Fentanyl/Heroin Vaccine on the Antinociceptive and Reinforcing Effects of a Fentanyl/Heroin Mixture in Male and Female Rats. ACS Chem Neurosci 2020; 11:1300-1310. [PMID: 32271538 DOI: 10.1021/acschemneuro.0c00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Opioid-targeted vaccines represent an emerging treatment strategy for opioid use disorder. To determine whether concurrent vaccination against two commonly abused opioids (fentanyl and heroin) would confer broader spectrum opioid coverage, the current study evaluated dual fentanyl/heroin conjugate vaccine effectiveness using a warm water tail-withdrawal and a fentanyl/heroin-vs-food choice procedure in male and female rats across a 105-day observation period. Vaccine administration generated titers of high-affinity antibodies to both fentanyl and heroin sufficient to decrease the antinociceptive potency of fentanyl (25-fold), heroin (4.6-fold), and a 1:27 fentanyl/heroin mixture (7.5-fold). Vaccination did not alter the antinociceptive potency of the structurally dissimilar opioid agonist methadone. For comparison, continuous treatment with a naltrexone dose (0.032 mg/kg/h) shown previously to produce clinically relevant plasma-naltrexone levels decreased the antinociceptive potency of fentanyl, heroin, and the 1:27 fentanyl/heroin mixture by approximately 20-fold. Naltrexone treatment also shifted the potency of 1:27 fentanyl/heroin mixture in a drug-vs-food choice self-administration procedure 4.3-fold. In contrast, vaccination did not attenuate 1:27 fentanyl/heroin mixture self-administration in the drug-vs-food choice procedure. These data demonstrate that a vaccine can simultaneously attenuate the thermal antinociceptive effects of two structurally dissimilar opioids. However, the vaccine did not attenuate fentanyl/heroin mixture self-administration, suggesting a greater magnitude of vaccine responsiveness is required to decrease opioid reinforcement relative to antinociception.
Collapse
Affiliation(s)
- E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Paul T. Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kaycee E. Faunce
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Alaina M. Jaster
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Hannah L. Robinson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
30
|
Townsend EA, Banks ML. Preclinical Evaluation of Vaccines to Treat Opioid Use Disorders: How Close are We to a Clinically Viable Therapeutic? CNS Drugs 2020; 34:449-461. [PMID: 32248427 PMCID: PMC7223115 DOI: 10.1007/s40263-020-00722-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ongoing opioid crisis, now into its second decade, represents a global public health challenge. Moreover, the opioid crisis has manifested despite clinical access to three approved opioid use disorder medications: the full opioid agonist methadone, the partial opioid agonist buprenorphine, and the opioid antagonist naltrexone. Although current opioid use disorder medications are underutilized, the ongoing opioid crisis has also identified the need for basic research to develop both safer and more effective opioid use disorder medications. Emerging preclinical evidence suggests that opioid-targeted vaccines or immunopharmacotherapies may be promising opioid use disorder therapeutics. One premise for this article is to critically examine whether vaccine effectiveness evaluated using preclinical antinociceptive endpoints is predictive of vaccine effectiveness on abuse-related endpoints such as drug self-administration, drug discrimination, and conditioned place preference. A second premise is to apply decades of knowledge in the preclinical evaluation of candidate small-molecule therapeutics for opioid use disorder to the preclinical evaluation of candidate opioid use disorder immunopharmacotherapies. We conclude with preclinical experimental design attributes to enhance preclinical-to-clinical translatability and potential future directions for immunopharmacotherapies to address the dynamic illicit opioid environment.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA.
| |
Collapse
|
31
|
Xiaoshan T, Junjie Y, Wenqing W, Yunong Z, Jiaping L, Shanshan L, Kutty Selva N, Kui C. Immunotherapy for treating methamphetamine, heroin and cocaine use disorders. Drug Discov Today 2020; 25:610-619. [DOI: 10.1016/j.drudis.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
|
32
|
Schwienteck KL, Blake S, Bremer PT, Poklis JL, Townsend EA, Negus SS, Banks ML. Effectiveness and selectivity of a heroin conjugate vaccine to attenuate heroin, 6-acetylmorphine, and morphine antinociception in rats: Comparison with naltrexone. Drug Alcohol Depend 2019; 204:107501. [PMID: 31479865 PMCID: PMC6878171 DOI: 10.1016/j.drugalcdep.2019.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND One emerging strategy to address the opioid crisis includes opioid-targeted immunopharmacotherapies. This study compared effectiveness of a heroin-tetanus toxoid (TT) conjugate vaccine to antagonize heroin, 6-acetylmorphine (6-AM), morphine, and fentanyl antinociception in rats. METHODS Adult male and female Sprague Dawley rats received three doses of active or control vaccine at weeks 0, 2, and 4. Vaccine pharmacological selectivity was assessed by comparing opioid dose-effect curves in 50 °C warm-water tail-withdrawal procedure before and after active or control heroin-TT vaccine. Route of heroin administration [subcutaneous (SC) vs. intravenous [IV)] was also examined as a determinant of vaccine effectiveness. Continuous naltrexone treatment (0.0032-0.032 mg/kg/h) effects on heroin, 6-AM, and morphine antinociceptive potency were also determined as a benchmark for minimal vaccine effectiveness. RESULTS The heroin-TT vaccine decreased potency of SC heroin (5-fold), IV heroin (3-fold), and IV 6-AM (3-fold) for several weeks without affecting IV morphine or SC and IV fentanyl potency. The control vaccine did not alter potency of any opioid. Naltrexone dose-dependently decreased antinociceptive potency of SC heroin, and treatment with 0.01 mg/kg/h naltrexone produced similar, approximate 8-fold decreases in potencies of SC and IV heroin, IV 6-AM, and IV morphine. The combination of naltrexone and active vaccine was more effective than naltrexone alone to antagonize SC heroin but not IV heroin. CONCLUSIONS The heroin-TT vaccine formulation examined is less effective, but more selective, than chronic naltrexone to attenuate heroin antinociception in rats. Furthermore, these results provide an empirical framework for future preclinical opioid vaccine research to benchmark effectiveness against naltrexone.
Collapse
Affiliation(s)
- Kathryn L. Schwienteck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Steven Blake
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul T. Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
33
|
Townsend EA, Blake S, Faunce KE, Hwang CS, Natori Y, Zhou B, Bremer PT, Janda KD, Banks ML. Conjugate vaccine produces long-lasting attenuation of fentanyl vs. food choice and blocks expression of opioid withdrawal-induced increases in fentanyl choice in rats. Neuropsychopharmacology 2019; 44:1681-1689. [PMID: 31043682 PMCID: PMC6784909 DOI: 10.1038/s41386-019-0385-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The current opioid crisis remains a significant public health issue and there is a critical need for biomedical research to develop effective and easily deployable candidate treatments. One emerging treatment strategy for opioid use disorder includes immunopharmacotherapies or opioid-targeted vaccines. The present study determined the effectiveness of a fentanyl-tetanus toxoid conjugate vaccine to alter fentanyl self-administration using a fentanyl-vs.-food choice procedure in male and female rats under three experimental conditions. For comparison, continuous 7-day naltrexone (0.01-0.1 mg/kg/h) and 7-day clonidine (3.2-10 μg/kg/h) treatment effects were also determined on fentanyl-vs.-food choice. Male and female rats responded for concurrently available 18% diluted Ensure® (liquid food) and fentanyl (0-10 μg/kg/infusion) infusions during daily sessions. Under baseline and saline treatment conditions, fentanyl maintained a dose-dependent increase in fentanyl-vs.-food choice. First, fentanyl vaccine administration significantly blunted fentanyl reinforcement and increased food reinforcement for 15 weeks in non-opioid dependent rats. Second, surmountability experiments by increasing the unit fentanyl dose available during the self-administration session 10-fold empirically determined that the fentanyl vaccine produced an approximate 22-fold potency shift in fentanyl-vs.-food choice that was as effective as the clinically approved treatment naltrexone. Clonidine treatment significantly increased fentanyl-vs.-food choice. Lastly, fentanyl vaccine administration prevented the expression of withdrawal-associated increases in fentanyl-vs.-food choice following introduction of extended 12 h fentanyl access sessions. Overall, these results support the potential and further consideration of immunopharmacotherapies as candidate treatments to address the current opioid crisis.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Steven Blake
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kaycee E Faunce
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Candy S Hwang
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry, Southern Connecticut State University, 501 Crescent St, New Haven, CT, 06515, USA
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Bin Zhou
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Paul T Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim D Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
34
|
Ozgen MH, Blume S. The continuing search for an addiction vaccine. Vaccine 2019; 37:5485-5490. [PMID: 31266675 DOI: 10.1016/j.vaccine.2019.06.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/27/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
Inspired by advances in immunology, in the 1970s scientists began to study the possibilities of mobilizing the human immune system against intruders other than pathogenic viruses and bacteria. In 1972 the suggestion was first made that it might be possible to provoke immunity to narcotic dependence. Because molecules of narcotics such as heroin and cocaine are too small to stimulate an immune response, researchers sought ways of coupling them to immunogenic proteins. The substances they developed soon became known as addiction vaccines. However, despite fifty years of research, and despite the growing problem of addiction, no vaccine against heroin, cocaine, methamphetamine or nicotine addiction has yet been licensed for clinical use. This paper reviews the history of addiction vaccinology, seeks to explain the unique appeal of a vaccinological approach to addiction, and argues for broad discussion of how such vaccines should ultimately be used.
Collapse
Affiliation(s)
- M Heval Ozgen
- Parnassia Psychiatric Institute and Addiction Research Center (PARC), Interculturel Psychiatry (i-psy), Parnassia Academy, The Hague, the Netherlands.
| | - Stuart Blume
- Department of Anthropology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Pravetoni M, Comer SD. Development of vaccines to treat opioid use disorders and reduce incidence of overdose. Neuropharmacology 2019; 158:107662. [PMID: 31173759 DOI: 10.1016/j.neuropharm.2019.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Vaccines offer a promising therapeutic strategy to treat substance use disorders (SUD). Vaccines have shown extensive preclinical proof of selectivity, safety, and efficacy against opioids, nicotine, cocaine, methamphetamine, and designer drugs. Despite clinical evaluation of vaccines targeting nicotine and cocaine showing proof of concept for this approach, no vaccine for SUD has yet reached the market. This review first discusses how vaccines for treatment of opioid use disorders (OUD) and reduction of opioid-induced fatal overdoses fit within the current medication assisted treatment (MAT) portfolio, and then summarizes ongoing efforts toward translation of vaccines targeting heroin, oxycodone, fentanyl, and other opioids. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Marco Pravetoni
- University of Minnesota Medical School, Departments of Pharmacology and Medicine, Minneapolis, MN, USA; Hennepin Healthcare Research Institute, Minneapolis, MN, USA.
| | - Sandra D Comer
- Columbia University Irving Medical Center, Department of Psychiatry, The New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
36
|
Natori Y, Hwang CS, Lin L, Smith LC, Zhou B, Janda KD. A chemically contiguous hapten approach for a heroin-fentanyl vaccine. Beilstein J Org Chem 2019; 15:1020-1031. [PMID: 31164940 DOI: 10.3762/bjoc.15.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Increased death due to the opioid epidemic in the United States has necessitated the development of new strategies to treat addiction. Monoclonal antibodies and antidrug vaccines provide a tool that both aids addiction management and reduces the potential for overdose. Dual drug vaccines formulated by successive conjugation or by mixture have certain drawbacks. The current study examines an approach for combatting the dangers of fentanyl-laced heroin, by using a hapten with one epitope that has domains for both fentanyl and heroin. Results: We evaluated a series of nine vaccines developed from chemically contiguous haptens composed of both heroin- and fentanyl-like domains. Analysis of the results obtained by SPR and ELISA revealed trends in antibody affinity and titers for heroin and fentanyl based on epitope size and linker location. In antinociception studies, the best performing vaccines offered comparable protection against heroin as our benchmark heroin vaccine, but exhibited attenuated protection against fentanyl compared to our fentanyl vaccine. Conclusion: After thorough investigation of this strategy, we have identified key considerations for the development of a chemically contiguous heroin-fentanyl vaccine. Importantly, this is the first report of such a strategy in the opioid-drug-vaccine field.
Collapse
Affiliation(s)
- Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Candy S Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Department of Chemistry, Southern Connecticut State University, 501 Crescent St, New Haven, CT, 06515, USA
| | - Lucy Lin
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Lauren C Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Kim D Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| |
Collapse
|
37
|
Olson ME, Eubanks LM, Janda KD. Chemical Interventions for the Opioid Crisis: Key Advances and Remaining Challenges. J Am Chem Soc 2019; 141:1798-1806. [PMID: 30532973 PMCID: PMC10681095 DOI: 10.1021/jacs.8b09756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present United States opioid crisis requires urgent and innovative scientific intervention. This perspective highlights a role for the chemical sciences by expounding upon three key research areas identified as priorities by the National Institute on Drug Abuse (NIDA). Specifically, important advances in chemical interventions for overdose reversal, strategies for opioid use disorder (OUD) treatment, including immunopharmacotherapies, and next-generation alternatives for pain management will be discussed. Ultimately, progress made will be presented in light of remaining challenges for the field.
Collapse
Affiliation(s)
- Margaret E. Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Raleigh MD, Baruffaldi F, Peterson SJ, Le Naour M, Harmon TM, Vigliaturo JR, Pentel PR, Pravetoni M. A Fentanyl Vaccine Alters Fentanyl Distribution and Protects against Fentanyl-Induced Effects in Mice and Rats. J Pharmacol Exp Ther 2019; 368:282-291. [PMID: 30409833 PMCID: PMC6346379 DOI: 10.1124/jpet.118.253674] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022] Open
Abstract
Fentanyl is an extremely potent synthetic opioid that has been increasingly used to adulterate heroin, cocaine, and counterfeit prescription pills, leading to an increase in opioid-induced fatal overdoses in the United States, Canada, and Europe. A vaccine targeting fentanyl could offer protection against the toxic effects of fentanyl in both recreational drug users and others in professions at risk of accidental exposure. This study focuses on the development of a vaccine consisting of a fentanyl-based hapten (F) conjugated to keyhole limpet hemocyanin (KLH) carrier protein or to GMP-grade subunit KLH (sKLH). Immunization with F-KLH in mice and rats reduced fentanyl-induced hotplate antinociception, and in rats reduced fentanyl distribution to the brain compared with controls. F-KLH did not reduce the antinociceptive effects of equianalgesic doses of heroin or oxycodone in rats. To assess the vaccine effect on fentanyl toxicity, rats immunized with F-sKLH or unconjugated sKLH were exposed to increasing subcutaneous doses of fentanyl. Vaccination with F-sKLH shifted the dose-response curves to the right for both fentanyl-induced antinociception and respiratory depression. Naloxone reversed fentanyl effects in both groups, showing that its ability to reverse respiratory depression was preserved. These data demonstrate preclinical selectivity and efficacy of a fentanyl vaccine and suggest that vaccines may offer a therapeutic option in reducing fentanyl-induced side effects.
Collapse
Affiliation(s)
- Michael D Raleigh
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Federico Baruffaldi
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Samantha J Peterson
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Morgan Le Naour
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Theresa M Harmon
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jennifer R Vigliaturo
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Paul R Pentel
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| | - Marco Pravetoni
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, Minnesota (M.D.R., F.B., S.J.P., T.M.H., J.R.V., P.R.P., M.P.); Department of Medicinal Chemistry, University of Minnesota College of Pharmacy Minneapolis, Minnesota (M.L.N.); MLN BioPharma Consulting LLC (M.L.N.) Minneapolis, Minnesota; and Departments of Pharmacology (M.P.) and Medicine (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
39
|
Hwang CS, Ellis B, Zhou B, Janda KD. Heat shock proteins: A dual carrier-adjuvant for an anti-drug vaccine against heroin. Bioorg Med Chem 2019; 27:125-132. [PMID: 30497790 PMCID: PMC6442938 DOI: 10.1016/j.bmc.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Heroin is a highly abused opioid that has reached epidemic status within the United States. Yet, existing therapies to treat addiction are inadequate and frequently result into rates of high recidivism. Vaccination against heroin offers a promising alternative therapeutic option but requires further development to enhance the vaccine's performance. Hsp70 is a conserved protein with known immunomodulatory properties and is considered an excellent immunodominant antigen. Within an antidrug vaccine context, we envisioned Hsp70 as a potential dual carrier-adjuvant, wherein immunogenicity would be increased by co-localization of adjuvant and antigenic drug hapten. Recombinant Mycobacterium tuberculosis Hsp70 was appended with heroin haptens and the resulting immunoconjugate granted anti-heroin antibody production and blunted heroin-induced antinociception. Moreover, Hsp70 as a carrier protein surpassed our benchmark Her-KLH cocktail through antibody-mediated blockade of 6-acetylmorphine, the main mediator of heroin's psychoactivity. The work presents a new avenue for exploration in the use of hapten-Hsp70 conjugates to elicit anti-drug immune responses.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beverly Ellis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Zhou
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim D Janda
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Myagkova MA, Morozova VS. Vaccines for substance abuse treatment: new approaches in the immunotherapy of addictions. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Hwang C, Smith LC, Natori Y, Ellis B, Zhou B, Janda KD. Improved Admixture Vaccine of Fentanyl and Heroin Hapten Immunoconjugates: Antinociceptive Evaluation of Fentanyl-Contaminated Heroin. ACS OMEGA 2018; 3:11537-11543. [PMID: 30288464 PMCID: PMC6166218 DOI: 10.1021/acsomega.8b01478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/07/2018] [Indexed: 05/25/2023]
Abstract
Fentanyl and its derivatives have become pervasive contaminants in the U.S. heroin supply. Previously, we reported a proof-of-concept vaccine designed to combat against heroin contaminated with fentanyl. Herein, we optimized the admixture vaccine and found that it surpassed the individual vaccines in every antinociceptive test, including a 10% fentanyl to heroin formulation. It is anticipated that other co-occurring drug abuse disorders may also be examined with admixture vaccines.
Collapse
Affiliation(s)
- Candy
S. Hwang
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Lauren C. Smith
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Yoshihiro Natori
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Beverly Ellis
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Bin Zhou
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Kim D. Janda
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| |
Collapse
|
42
|
Nguyen JD, Hwang CS, Grant Y, Janda KD, Taffe MA. Prophylactic vaccination protects against the development of oxycodone self-administration. Neuropharmacology 2018; 138:292-303. [PMID: 29936242 DOI: 10.1016/j.neuropharm.2018.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/22/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Abstract
Abuse of prescription opioids is a growing public health crisis in the United States, with drug overdose deaths increasing dramatically over the past 15 years. Few preclinical studies exist on the reinforcing effects of oxycodone or on the development of therapies for oxycodone abuse. This study was conducted to determine if immunopharmacotherapy directed against oxycodone would be capable of altering oxycodone-induced antinociception and intravenous self-administration. Male Wistar rats were administered a small-molecule immunoconjugate vaccine (Oxy-TT) or the control carrier protein, tetanus toxoid (TT), and trained to intravenously self-administer oxycodone (0.06 or 0.15 mg/kg/infusion). Brain oxycodone concentrations were 50% lower in Oxy-TT rats compared to TT rats 30 min after injection (1 mg/kg, s.c.) whereas plasma oxycodone was 15-fold higher from drug sequestration by circulating antibodies. Oxy-TT rats were also less sensitive to 1-2 mg/kg, s.c. oxycodone on a hot water nociception assay. Half of the Oxy-TT rats failed to acquire intravenous self-administration under the 0.06 mg/kg/infusion training dose. Oxycodone self-administration of Oxy-TT rats trained on 0.15 mg/kg/infusion was higher than controls; however under progressive ratio (PR) conditions the Oxy-TT rats decreased their oxycodone intake, unlike TT controls. These data demonstrate that active vaccination provides protection against the reinforcing effects of oxycodone. Anti-oxycodone vaccines may entirely prevent repeated use in some individuals who otherwise would become addicted. Vaccination may also reduce dependence in those who become addicted and therefore facilitate the effects of other therapeutic interventions which either increase the difficulty of drug use or incentivize other behaviors.
Collapse
Affiliation(s)
- Jacques D Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Candy S Hwang
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
43
|
A rapid solution-based method for determining the affinity of heroin hapten-induced antibodies to heroin, its metabolites, and other opioids. Anal Bioanal Chem 2018; 410:3885-3903. [PMID: 29675707 PMCID: PMC5956019 DOI: 10.1007/s00216-018-1060-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022]
Abstract
We describe for the first time a method that utilizes microscale thermophoresis (MST) technology to determine polyclonal antibody affinities to small molecules. Using a novel type of heterologous MST, we have accurately measured a solution-based binding affinity of serum antibodies to heroin which was previously impossible with other currently available methods. Moreover, this mismatch approach (i.e., using a cross-reactive hapten tracer) has never been reported in the literature. When compared with equilibrium dialysis combined with ultra-performance liquid chromatography/tandem mass spectrometry (ED-UPLC/MS/MS), this novel MST method yields similar binding affinity values for polyclonal antibodies to the major heroin metabolites 6-AM and morphine. Additionally, we herein report the method of synthesis of this novel cross-reactive hapten, MorHap-acetamide—a useful analog for the study of heroin hapten–antibody interactions. Using heterologous MST, we were able to determine the affinities, down to nanomolar accuracies, of polyclonal antibodies to various abused opioids. While optimizing this method, we further discovered that heroin is protected from serum esterase degradation by the presence of these antibodies in a concentration-dependent manner. Lastly, using affinity data for a number of structurally different opioids, we were able to dissect the moieties that are crucial to antibody binding. The novel MST method that is presented herein can be extended to the analysis of any ligand that is prone to degradation and can be applied not only to the development of vaccines to substances of abuse but also to the analysis of small molecule/protein interactions in the presence of serum. Strategy for the determination of hapten-induced antibody affinities using Microscale thermophoresis ![]()
Collapse
|
44
|
Raleigh MD, Laudenbach M, Baruffaldi F, Peterson SJ, Roslawski MJ, Birnbaum AK, Carroll FI, Runyon SP, Winston S, Pentel PR, Pravetoni M. Opioid Dose- and Route-Dependent Efficacy of Oxycodone and Heroin Vaccines in Rats. J Pharmacol Exp Ther 2018. [PMID: 29535156 DOI: 10.1124/jpet.117.247049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heroin and oxycodone abuse occurs over a wide range of drug doses and by various routes of administration characterized by differing rates of drug absorption. The current study addressed the efficacy of a heroin vaccine [morphine hapten conjugated to keyhole limpet hemocyanin (M-KLH)] or oxycodone vaccine [oxycodone hapten conjugated to keyhole limpet hemocyanin (OXY-KLH)] for reducing drug distribution to brain after intravenous heroin or oxycodone, or subcutaneous oxycodone. Rats immunized with M-KLH or keyhole limpet hemocyanin (KLH) control received an intravenous bolus dose of 0.26 or 2.6 mg/kg heroin. Vaccination with M-KLH increased retention of heroin and its active metabolites 6-acetylmorphine (6-AM) and morphine in plasma compared with KLH controls, and reduced total opioid (heroin + 6-AM + morphine) distribution to brain but only at the lower heroin dose. Immunization also protected against respiratory depression at the lower heroin dose. Rats immunized with OXY-KLH or KLH control received 0.22 or 2.2 mg/kg oxycodone intravenously, the molar equivalent of the heroin doses. Immunization with OXY-KLH significantly reduced oxycodone distribution to brain after either oxycodone dose, although the magnitude of effect of immunization at the higher oxycodone dose was small (12%). By contrast, vaccination with OXY-KLH was more effective when oxycodone was administered subcutaneously rather than intravenously, reducing oxycodone distribution to brain by 44% after an oxycodone dose of 2.3 mg/kg. Vaccination also reduced oxycodone-induced antinociception. These data suggest that the efficacy of OXY-KLH and M-KLH opioid vaccines is highly dependent upon opioid dose and route of administration.
Collapse
Affiliation(s)
- Michael D Raleigh
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Megan Laudenbach
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Federico Baruffaldi
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Samantha J Peterson
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Michaela J Roslawski
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Angela K Birnbaum
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - F Ivy Carroll
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Scott P Runyon
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Scott Winston
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Paul R Pentel
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| | - Marco Pravetoni
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota (M.D.R., M.L., F.B., S.J.P., P.R.P., M.P.); University of Minnesota College of Pharmacy, Minneapolis, Minnesota (M.J.R., A.K.B.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C., S.P.R.); Winston Biopharmaceutical Consulting, Boulder, Colorado (S.W.); and University of Minnesota Medical School (P.R.P., M.P.), and Center for Immunology (M.P.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
45
|
Hwang CS, Bremer PT, Wenthur CJ, Ho SO, Chiang S, Ellis B, Zhou B, Fujii G, Janda KD. Enhancing Efficacy and Stability of an Antiheroin Vaccine: Examination of Antinociception, Opioid Binding Profile, and Lethality. Mol Pharm 2018; 15:1062-1072. [PMID: 29420901 DOI: 10.1021/acs.molpharmaceut.7b00933] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, drug conjugate vaccines have shown promise as therapeutics for substance use disorder. As a means to improve the efficacy of a heroin conjugate vaccine, we systematically explored 20 vaccine formulations with varying combinations of carrier proteins and adjuvants. In regard to adjuvants, we explored a Toll-like receptor 9 (TLR9) agonist and a TLR3 agonist in the presence of alum. The TLR9 agonist was cytosine-guanine oligodeoxynucleotide 1826 (CpG ODN 1826), while the TLR3 agonist was virus-derived genomic doubled-stranded RNA (dsRNA). The vaccine formulations containing TLR3 or TLR9 agonist alone elicited strong antiheroin antibody titers and blockade of heroin-induced antinociception when formulated with alum; however, a combination of TLR3 and TLR9 adjuvants did not result in improved efficacy. Investigation of month-long stability of the two lead formulations revealed that the TLR9 but not the TLR3 formulation was stable when stored as a lyophilized solid or as a liquid over 30 days. Furthermore, mice immunized with the TLR9 + alum heroin vaccine gained significant protection from lethal heroin doses, suggesting that this vaccine formulation is suitable for mitigating the harmful effects of heroin, even following month-long storage at room temperature.
Collapse
Affiliation(s)
- Candy S Hwang
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Paul T Bremer
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Cody J Wenthur
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Sam On Ho
- Molecular Express, Inc., Rancho Dominguez , California 90220 , United States
| | - SuMing Chiang
- Molecular Express, Inc., Rancho Dominguez , California 90220 , United States
| | - Beverly Ellis
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Bin Zhou
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Gary Fujii
- Molecular Express, Inc., Rancho Dominguez , California 90220 , United States
| | - Kim D Janda
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
46
|
Morozova VS, Petrochenko SN, Myagkova MA. Synthetic immunogen for the anti-relapse treatment of opioid dependence. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1967-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Sulima A, Jalah R, Antoline JFG, Torres OB, Imler GH, Deschamps JR, Beck Z, Alving CR, Jacobson AE, Rice KC, Matyas GR. A Stable Heroin Analogue That Can Serve as a Vaccine Hapten to Induce Antibodies That Block the Effects of Heroin and Its Metabolites in Rodents and That Cross-React Immunologically with Related Drugs of Abuse. J Med Chem 2017; 61:329-343. [PMID: 29236495 PMCID: PMC5767880 DOI: 10.1021/acs.jmedchem.7b01427] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
An
improved synthesis of a haptenic heroin surrogate 1 (6-AmHap)
is reported. The intermediate needed for the preparation
of 1 was described in the route in the synthesis of 2 (DiAmHap). A scalable procedure was developed to install
the C-3 amido group. Using the Boc protectng group in 18 allowed preparation of 1 in an overall yield of 53%
from 4 and eliminated the necessity of preparing the
diamide 13. Hapten 1 was conjugated to tetanus
toxoid and mixed with liposomes containing monophosphoryl lipid A
as an adjuvant. The 1 vaccine induced high anti-1 IgG levels that reduced heroin-induced antinociception and
locomotive behavioral changes following repeated subcutaneous and
intravenous heroin challenges in mice and rats. Vaccinated mice had
reduced heroin-induced hyperlocomotion following a 50 mg/kg heroin
challenge. The 1 vaccine-induced antibodies bound to
heroin and other abused opioids, including hydrocodone, oxycodone,
hydromorphone, oxymorphone, and codeine.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Rashmi Jalah
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Joshua F G Antoline
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Oscar B Torres
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Gregory H Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory , Washington D.C. 20375, United States
| | - Jeffrey R Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory , Washington D.C. 20375, United States
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Carl R Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
48
|
Abstract
Substance use disorder, especially in relation to opioids such as heroin and fentanyl, is a significant public health issue and has intensified in recent years. As a result, substantial interest exists in developing therapeutics to counteract the effects of abused drugs. A promising universal strategy for antagonizing the pharmacology of virtually any drug involves the development of a conjugate vaccine, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. When formulated with adjuvants and immunized, the immunoconjugate should elicit serum IgG antibodies with the ability to sequester the target drug to prevent its entry to the brain, thereby acting as an immunoantagonist. Despite the failures of first-generation conjugate vaccines against cocaine and nicotine in clinical trials, second-generation vaccines have shown dramatically improved performance in preclinical models, thus renewing the potential clinical utility of conjugate vaccines in curbing substance use disorder. This review explores the critical design elements of drug conjugate vaccines such as hapten structure, adjuvant formulation, bioconjugate chemistry, and carrier protein selection. Methods for evaluating these vaccines are discussed, and recent progress in vaccine development for each drug is summarized.
Collapse
Affiliation(s)
- Paul T Bremer
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
49
|
Heekin RD, Shorter D, Kosten TR. Current status and future prospects for the development of substance abuse vaccines. Expert Rev Vaccines 2017; 16:1067-1077. [PMID: 28918668 DOI: 10.1080/14760584.2017.1378577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Substance use disorders (SUD) are a significant threat to both individual and public health. To date, SUD pharmacotherapy has focused primarily on agonist medications (i.e. nicotine replacement therapy for tobacco use disorder; methadone and buprenorphine for opioid use disorder), antagonist medications (i.e. naltrexone for opioid use disorder), and aversive therapy (i.e. disulfiram for alcohol use disorder). Pharmacotherapeutic approaches utilizing an immunological framework for medication development represent an important focus of study for treatment of these illnesses. Areas covered: This review discusses vaccines for treatment of substance use disorders. Using PubMed ( https://www.ncbi.nlm.nih.gov/pubmed/ ), we searched both preclinical and human clinical trials of vaccines for treatment of nicotine, cocaine, methamphetamine, and opioid use disorders. In addition, we searched for recently developed strategies for enhancement of the immunologic response through alteration of conjugate molecules and adjuvants. Expert commentary: Despite challenges in human clinical trials of SUD vaccines, a number of strategies have been introduced which may ultimately improve efficacy. These challenges, as well as their implications for vaccine development, are discussed. Additionally, the optimal conditions for research study and treatment are considered.
Collapse
Affiliation(s)
- R David Heekin
- a Menninger Department of Psychiatry and Behavioral Sciences , Baylor College of Medicine , Houston , TX , USA
| | - Daryl Shorter
- a Menninger Department of Psychiatry and Behavioral Sciences , Baylor College of Medicine , Houston , TX , USA.,b Research Service Line, Michael E. DeBakey VA Medical Center , Houston , TX , USA
| | - Thomas R Kosten
- a Menninger Department of Psychiatry and Behavioral Sciences , Baylor College of Medicine , Houston , TX , USA.,b Research Service Line, Michael E. DeBakey VA Medical Center , Houston , TX , USA
| |
Collapse
|
50
|
Bremer PT, Schlosburg JE, Banks ML, Steele FF, Zhou B, Poklis JL, Janda KD. Development of a Clinically Viable Heroin Vaccine. J Am Chem Soc 2017; 139:8601-8611. [PMID: 28574716 PMCID: PMC5612493 DOI: 10.1021/jacs.7b03334] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heroin is a highly abused opioid and incurs a significant detriment to society worldwide. In an effort to expand the limited pharmacotherapy options for opioid use disorders, a heroin conjugate vaccine was developed through comprehensive evaluation of hapten structure, carrier protein, adjuvant and dosing. Immunization of mice with an optimized heroin-tetanus toxoid (TT) conjugate formulated with adjuvants alum and CpG oligodeoxynucleotide (ODN) generated heroin "immunoantagonism", reducing heroin potency by >15-fold. Moreover, the vaccine effects proved to be durable, persisting for over eight months. The lead vaccine was effective in rhesus monkeys, generating significant and sustained antidrug IgG titers in each subject. Characterization of both mouse and monkey antiheroin antibodies by surface plasmon resonance (SPR) revealed low nanomolar antiserum affinity for the key heroin metabolite, 6-acetylmorphine (6AM), with minimal cross reactivity to clinically used opioids. Following a series of heroin challenges over six months in vaccinated monkeys, drug-sequestering antibodies caused marked attenuation of heroin potency (>4-fold) in a schedule-controlled responding (SCR) behavioral assay. Overall, these preclinical results provide an empirical foundation supporting the further evaluation and potential clinical utility of an effective heroin vaccine in treating opioid use disorders.
Collapse
Affiliation(s)
- Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 N Torrey Pines Roadd, La Jolla, CA 92037, USA
| | - Joel E. Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Floyd. F. Steele
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 N Torrey Pines Roadd, La Jolla, CA 92037, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 N Torrey Pines Roadd, La Jolla, CA 92037, USA
| |
Collapse
|