1
|
Tan JF, Kang YC, Hartwig JF. Catalytic undirected methylation of unactivated C(sp 3)-H bonds suitable for complex molecules. Nat Commun 2024; 15:8307. [PMID: 39333063 PMCID: PMC11437150 DOI: 10.1038/s41467-024-52245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
In pharmaceutical discovery, the "magic methyl" effect describes a substantial improvement in the pharmacological properties of a drug candidate with the incorporation of methyl groups. Therefore, to expedite the synthesis of methylated drug analogs, late-stage, undirected methylations of C(sp3)-H bonds in complex molecules would be valuable. However, current methods for site-selective methylations are limited to activated C(sp3)-H bonds. Here we describe a site-selective, undirected methylation of unactivated C(sp3)-H bonds, enabled by photochemically activated peroxides and a nickel(II) complex whose turnover is enhanced by an ancillary ligand. The methodology displays compatibility with a wide range of functional groups and a high selectivity for tertiary C-H bonds, making it suitable for the late-stage methylation of complex organic compounds that contain multiple alkyl C-H bonds, such as terpene natural products, peptides, and active pharmaceutical ingredients. Overall, this method provides a synthetic tool to explore the "magic methyl" effect in drug discovery.
Collapse
Affiliation(s)
- Jin-Fay Tan
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Yi Cheng Kang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Wu P, Goujon G, Pan S, Tuccio B, Pégot B, Dagousset G, Anselmi E, Magnier E, Bolm C. Cyclic Sulfoximines as Methyl and Perdeuteromethyl Transfer Agents and Their Applications in Photoredox Catalysis. Angew Chem Int Ed Engl 2024:e202412418. [PMID: 39234959 DOI: 10.1002/anie.202412418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Benzo[1,3,2]dithiazole-1,1,3-trioxides are bench-stable and easy-to-use reagents. In photoredox catalysis, they generate methyl and perdeuteromethyl radicals which can add to a variety of radical acceptors, including olefins, acrylamides, quinoxalinones, isocyanides, enol silanes, and N-Ts acrylamide. As byproduct, a salt is formed which can be regenerated to the original methylating agent. Flow chemistry provides an option for reaction scale-up further underscoring the synthetic usefulness of these methylation reagents. Mechanistic investigations suggest a single-electron transfer (SET) pathway induced by photoredox catalysis.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Gabriel Goujon
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Béatrice Tuccio
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397, Marseille Cedex 20, France
| | - Bruce Pégot
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Gallego RA, Edwards MP, Montgomery TP. An update on lipophilic efficiency as an important metric in drug design. Expert Opin Drug Discov 2024; 19:917-931. [PMID: 38919130 DOI: 10.1080/17460441.2024.2368744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Lipophilic efficiency (LipE) and lipophilic metabolic efficiency (LipMetE) are valuable tools that can be utilized as part of a multiparameter optimization process to advance a hit to a clinical quality compound. AREAS COVERED This review covers recent, effective use cases of LipE and LipMetE that have been published in the literature over the past 5 years. These use cases resulted in the delivery of high-quality molecules that were brought forward to in vivo work and/or to clinical studies. The authors discuss best-practices for using LipE and LipMetE analysis, combined with lipophilicity-focused compound design strategies, to increase the speed and effectiveness of the hit to clinical quality compound optimization process. EXPERT OPINION It has become well established that increasing LipE and LipMetE within a series of analogs facilitates the improvement of broad selectivity, clearance, solubility, and permeability and, through this optimization, also facilitates the achievement of desired pharmacokinetic properties, efficacy, and tolerability. Within this article, we discuss lipophilic efficiency-focused optimization as a tool to yield high-quality potential clinical candidates. It is suggested that LipE/LipMetE-focused optimization can facilitate and accelerate the drug-discovery process.
Collapse
|
4
|
Mohan P, Shahul Hamid F. Charting the microplastic menace: A bibliometric analysis of pollution in Malaysian mangroves and polypropylene bioaccumulation assessment in Anadara granosa. MARINE POLLUTION BULLETIN 2024; 205:116654. [PMID: 38959572 DOI: 10.1016/j.marpolbul.2024.116654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
According to a bibliometric analysis, studies on microplastic pollution in Malaysia are still incomprehensive. This study found microplastic contamination in sediment (97 particles/kg) and water (10,963 particles/m3) samples from Malaysian mangroves. Sediment from Matang and water from Kuala Selangor recorded the highest microplastic concentrations at 140 ± 5.13 particles/kg and 13,350 ± 37.95 particles/m3, respectively. Fragmented, blue, rayon and particles of <0.1 mm microplastic were the most abundant in sediment and water. In an experiment of polypropylene microplastic uptakes, Anadara granosa was found to uptake more 0.1 mm fiber particles. The uptake is strongly correlated to the presence of microplastics in sediment and water. The estimated dietary intake (EDI) indicates that a consumer could ingest 507 microplastic particles/year by consuming contaminated A. granosa. Therefore, mitigating measures are crucial to safeguard aquatic systems and humans from microplastic pollution.
Collapse
Affiliation(s)
- Priya Mohan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Center for Research in Waste Management, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
6
|
Hong CR, Liew LP, Wong WW, Dickson BD, Cheng G, Shome A, Airey R, Jaiswal J, Lipert B, Jamieson SMF, Wilson WR, Hay MP. Identification of 6-Anilino Imidazo[4,5- c]pyridin-2-ones as Selective DNA-Dependent Protein Kinase Inhibitors and Their Application as Radiosensitizers. J Med Chem 2024; 67:12366-12385. [PMID: 39007759 DOI: 10.1021/acs.jmedchem.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The dominant role of non-homologous end-joining in the repair of radiation-induced double-strand breaks identifies DNA-dependent protein kinase (DNA-PK) as an excellent target for the development of radiosensitizers. We report the discovery of a new class of imidazo[4,5-c]pyridine-2-one DNA-PK inhibitors. Structure-activity studies culminated in the identification of 78 as a nM DNA-PK inhibitor with excellent selectivity for DNA-PK compared to related phosphoinositide 3-kinase (PI3K) and PI3K-like kinase (PIKK) families and the broader kinome, and displayed DNA-PK-dependent radiosensitization of HAP1 cells. Compound 78 demonstrated robust radiosensitization of a broad range of cancer cells in vitro, displayed high oral bioavailability, and sensitized colorectal carcinoma (HCT116/54C) and head and neck squamous cell carcinoma (UT-SCC-74B) tumor xenografts to radiation. Compound 78 also provided substantial tumor growth inhibition of HCT116/54C tumor xenografts in combination with radiation. Compound 78 represents a new, potent, and selective class of DNA-PK inhibitors with significant potential as radiosensitizers for cancer treatment.
Collapse
Affiliation(s)
- Cho R Hong
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lydia P Liew
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Way W Wong
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Benjamin D Dickson
- Chemistry and Applied Physics, School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Gary Cheng
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Avik Shome
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Rebecca Airey
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Li S, Chu T. Preparation and bioevaluation of a novel 99mTc-labelled propylene amine oxime (PnAO) containing two 4-methyl-2-nitroimidazole groups as a promising tumor hypoxia imaging agent. Bioorg Med Chem Lett 2024; 106:129773. [PMID: 38677561 DOI: 10.1016/j.bmcl.2024.129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Hypoxia is a common phenomenon in solid tumors, and its presence inhibits the efficacy of tumor chemotherapy and radiotherapy. Accurate measurement of hypoxia before tumor treatment is essential. Three propylene amine oxime (PnAO) derivatives with different substituents attached to 2-nitroimidazole were synthesized in the work, they are 3,3,9,9-tetramethyl-1,11-bis(4-bromo-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Br2P2), 3,3,9,9-tetramethyl-1,11-bis(4-methyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Me2P2) and 3,3,9,9-tetramethyl-1,11-bis(4,5-dimethyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (2Me2P2). The three compounds were radiolabeled with 99mTc to give three complexes([99mTc]Tc-Br2P2, [99mTc]Tc-Me2P2 and [99mTc]Tc-2Me2P2) with good in vitro stability. [99mTc]Tc-Me2P2 with a more suitable reduction potential had the highest hypoxic cellular uptake, compared with [99mTc]Tc-2P2 that have been previously reported, [99mTc]Tc-Br2P2 and [99mTc]Tc-2Me2P2. Biodistribution results in S180 tumor-bearing mice demonstrated that [99mTc]Tc-Me2P2 had the highest tumor-to-muscle (T/M) ratio (12.37 ± 1.16) at 2 h in the four complexes. Autoradiography and immunohistochemical staining results revealed that [99mTc]Tc-Me2P2 specifically targeted tumor hypoxic regions. The SPECT/CT imaging results showed that [99mTc]Tc-Me2P2 could target the tumor site. [99mTc]Tc-Me2P2 may become a potential hypoxia imaging agent.
Collapse
Affiliation(s)
- Shuo Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Taiwei Chu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Spassov DS. Binding Affinity Determination in Drug Design: Insights from Lock and Key, Induced Fit, Conformational Selection, and Inhibitor Trapping Models. Int J Mol Sci 2024; 25:7124. [PMID: 39000229 PMCID: PMC11240957 DOI: 10.3390/ijms25137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Binding affinity is a fundamental parameter in drug design, describing the strength of the interaction between a molecule and its target protein. Accurately predicting binding affinity is crucial for the rapid development of novel therapeutics, the prioritization of promising candidates, and the optimization of their properties through rational design strategies. Binding affinity is determined by the mechanism of recognition between proteins and ligands. Various models, including the lock and key, induced fit, and conformational selection, have been proposed to explain this recognition process. However, current computational strategies to predict binding affinity, which are based on these models, have yet to produce satisfactory results. This article explores the connection between binding affinity and these protein-ligand interaction models, highlighting that they offer an incomplete picture of the mechanism governing binding affinity. Specifically, current models primarily center on the binding of the ligand and do not address its dissociation. In this context, the concept of ligand trapping is introduced, which models the mechanisms of dissociation. When combined with the current models, this concept can provide a unified theoretical framework that may allow for the accurate determination of the ligands' binding affinity.
Collapse
Affiliation(s)
- Danislav S Spassov
- Drug Design and Bioinformatics Lab, Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
9
|
Shen M, Niu C, Wang X, Huang JB, Zhao Z, Ni SF, Rong ZQ. Regio- and Enantioselective Hydromethylation of 3-Pyrrolines and Glycals Enabled by Cobalt Catalysis. JACS AU 2024; 4:2312-2322. [PMID: 38938800 PMCID: PMC11200246 DOI: 10.1021/jacsau.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Enantioenriched 3-methylpyrrolidine, with its unique chiral nitrogen-containing core skeleton, exists widely in various functional molecules, including natural products, bioactive compounds, and pharmaceuticals. Traditional methods for synthesizing these valuable methyl-substituted heterocycles often involve enzymatic processes or complex procedures with chiral auxiliaries, limiting the substrate scope and efficiency. Efficient catalytic methylation, especially in an enantioselective manner, has been a long-standing challenge in chemical synthesis. Herein, we present a novel approach for the remote and stereoselective installation of a methyl group onto N-heterocycles, leveraging a CoH-catalyzed asymmetric hydromethylation strategy. By effectively combining a commercial cobalt precursor with a modified bisoxazoline (BOX) ligand, a variety of easily accessible 3-pyrrolines can be converted to valuable enantiopure 3-(isotopic labeling)methylpyrrolidine compounds with outstanding enantioselectivity. This efficient protocol streamlines the two-step synthesis of enantioenriched 3-methylpyrrolidine, which previously required up to five or six steps under harsh conditions or expensive starting materials.
Collapse
Affiliation(s)
- Mengyang Shen
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Caoyue Niu
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xuchao Wang
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Jia-Bo Huang
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zhen Zhao
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Fei Ni
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zi-Qiang Rong
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
10
|
Meyer EA, Croxford AL, Gnerre C, Kulig P, Murphy MJ, Jacob EM, Schäfer G, Richard-Bildstein S, Aissaoui H, Bouis P, Ertel EA, de Kanter R, Keller MP, Lüthi U, Caroff E. Discovery of the Clinical Candidate IDOR-1117-2520: A Potent and Selective Antagonist of CCR6 for Autoimmune Diseases. J Med Chem 2024; 67:8077-8098. [PMID: 38727100 DOI: 10.1021/acs.jmedchem.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Migration of immune cells to sites of inflammation is a critical step in the body's response to infections but also during autoimmune flares. Chemokine receptors, members of the GPCR receptors, are instrumental in directing specific cell types to their target organs. Herein, we describe a highly potent small molecule antagonist of the chemokine receptor CCR6, which came out of fine-tuned structural elaborations from a proprietary HTS hit. Three main issues in the parent chemical series-cytotoxicity, phototoxicity, and hERG, were successfully solved. Biological characterization demonstrated that compound 45 (IDOR-1117-2520) is a selective and insurmountable antagonist of CCR6. In vivo proof-of-mechanism studies in a mouse lung inflammation model using a representative compound from the chemical class of 45 confirmed that the targeted CCR6+ cells were efficiently inhibited from migrating into the bronchoalveoli. Finally, ADMET and physicochemical properties were well balanced and the preclinical package warranted progress in the clinic.
Collapse
Affiliation(s)
- Emmanuel A Meyer
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Andrew L Croxford
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Carmela Gnerre
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Paulina Kulig
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Mark J Murphy
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Elise M Jacob
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Gabriel Schäfer
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | | | - Hamed Aissaoui
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Patrick Bouis
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Eric A Ertel
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Marcel P Keller
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Urs Lüthi
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Eva Caroff
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
11
|
Wang Y, Liu Y, Zhang Y, Zhang Z, Xu L, Wang J, Yang Y, Hu B, Yao Y, Wei M, Wang J, Tang B, Zhang K, Liu S, Yang G. Design, synthesis and evaluation of a pyrazolo[3,4-d]pyrimidine derivative as a novel and potent TGFβ1R1 inhibitor. Eur J Med Chem 2024; 271:116395. [PMID: 38626523 DOI: 10.1016/j.ejmech.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
The transforming growth factor β1 (TGFβ1)/SMAD signaling pathway regulates many vital physiological processes. The development of potent inhibitors targeting activin receptor-like kinase 5 (ALK5) would provide potential treatment reagents for various diseases. A significant number of ALK5 inhibitors have been discovered, and they are currently undergoing clinical evaluation at various stages. However, the clinical demands were far from being met. In this study, we utilized an alternative conformation-similarity-based virtual screening (CSVS) combined with a fragment-based drug designing (FBDD) strategy to efficiently discover a potent and active hit with a novel chemical scaffold. After structural optimization in the principle of group replacement, compound 57 was identified as the most promising ALK5 inhibitor. Compound 57 demonstrated significant inhibitory effects against the TGF-β1/SMAD signaling pathway. It could markedly attenuate the production of extracellular matrix (ECM) and deposition of collagen. Also, the lead compound showed adequate pharmacokinetic (PK) properties and good in vivo tolerance. Moreover, treatment with compound 57 in two different xerograph models showed significant inhibitory effects on the growth of pancreatic cancer cells. These results suggested that lead compound 57 refers as a promising ALK5 inhibitor both in vitro and in vivo, which merits further validation.
Collapse
Affiliation(s)
- Yubo Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Yulin Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Yan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Zixuan Zhang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Lei Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300050, PR China; Department of Urology, Zibo Central Hospital, Zibo, 255036, PR China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China
| | - Yijie Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Biyu Hu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Yuhong Yao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| | - Junfeng Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, PR China.
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
12
|
La-Ongthong K, Chantarojsiri T, Soorukram D, Leowanawat P, Reutrakul V, Kuhakarn C. Electro-oxidative Methylation of 2-Isocyanobiaryls Using N,N-dimethylformamide (DMF) as Carbon Source: Synthesis of 6-Methylphenanthridines. Chem Asian J 2024; 19:e202400176. [PMID: 38489229 DOI: 10.1002/asia.202400176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
A benign electrochemical method to access 6-methylphenanthridines from 2-isocyanobiaryls using N,N-dimethylformamide (DMF) as a methyl source is reported. The protocol operates at ambient temperature without the need for harmful methylating reagents. Mechanistic studies suggested that DMF delivered a methylene synthon, followed by reduction at the cathode and tautomerization. The method offers environmental benefits by avoiding metal-based reagents and harsh conditions.
Collapse
Affiliation(s)
- Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
13
|
Illuminati D, Fantinati A. Methyl-Containing Pharmaceuticals. Pharmaceuticals (Basel) 2024; 17:563. [PMID: 38794133 PMCID: PMC11124427 DOI: 10.3390/ph17050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
This Special Issue, which focused on methyl-containing pharmaceuticals, collected different papers and reviews on this topic [...].
Collapse
Affiliation(s)
- Davide Illuminati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 213/d, 41125 Modena, Italy
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences—DEPS, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Liu F, Kou Q, Li H, Cao Y, Chen M, Meng X, Zhang Y, Wang T, Wang H, Zhang D, Yang Y. Discovery of YFJ-36: Design, Synthesis, and Antibacterial Activities of Catechol-Conjugated β-Lactams against Gram-Negative Bacteria. J Med Chem 2024; 67:6705-6725. [PMID: 38596897 DOI: 10.1021/acs.jmedchem.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cefiderocol is the first approved catechol-conjugated cephalosporin against multidrug-resistant Gram-negative bacteria, while its application was limited by poor chemical stability associated with the pyrrolidinium linker, moderate potency against Klebsiella pneumoniae and Acinetobacter baumannii, intricate procedures for salt preparation, and potential hypersensitivity. To address these issues, a series of novel catechol-conjugated derivatives were designed, synthesized, and evaluated. Extensive structure-activity relationships and structure-metabolism relationships (SMR) were conducted, leading to the discovery of a promising compound 86b (Code no. YFJ-36) with a new thioether linker. 86b exhibited superior and broad-spectrum in vitro antibacterial activity, especially against A. baumannii and K. pneumoniae, compared with cefiderocol. Potent in vivo efficacy was observed in a murine systemic infection model. Furthermore, the physicochemical stability of 86b in fluid medium at pH 6-8 was enhanced. 86b also reduced potential the risk of allergy owing to the quaternary ammonium linker. The improved properties of 86b supported its further research and development.
Collapse
Affiliation(s)
- Fangjun Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Qunhuan Kou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hongyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yangzhi Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Meng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinyong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ting Wang
- Department of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, P. R. China
| | - Hui Wang
- China Pharmaceutical University, Jiangsu 211198, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
15
|
Jiang ZT, Chen Z, Xia Y. Modular Synthesis of Fully-Substituted and Configuration-Defined Alkyl Vinyl Ethers Enabled by Dual-Functional Copper Catalysis. Angew Chem Int Ed Engl 2024; 63:e202319647. [PMID: 38198183 DOI: 10.1002/anie.202319647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Here we present a modular, chemo-, regio-, and stereoselective synthesis of fully-substituted and configuration-defined alkyl vinyl ethers (AVEs) using simple chemical feedstocks. The distinctive approach involves the chemo- and regioselective functionalization of the CF2 unit in gem-difluorinated cyclopropanes with O-H and C-H nucleophiles in a specific order. The resulting highly functionalized cyclopropanyl ethers then undergo a stereoselective ring-opening process to produce fully-substituted and configuration-defined AVEs. These AVEs are rarely accessible through conventional methods and are easily transformable. Mechanistic experiments indicate that the success of this method relies on the use of dual-functional copper catalysis, which is involved in both the functionalization of the CF2 unit and the subsequent ring-opening process.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Zhengzhao Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
16
|
Ruan Q, Ding D, Diao L, Feng J, Yin G, Jiang Y, Wang Q, Han P, Jiang J, Zhang J. Synthesis and Preclinical Evaluation of Novel 99mTc-Labeled FAPI-46 Derivatives with Significant Tumor Uptake and Improved Tumor-to-Nontarget Ratios. J Med Chem 2024; 67:3190-3202. [PMID: 38320123 DOI: 10.1021/acs.jmedchem.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Fibroblast activation protein (FAP), which is expressed on the cell membranes of fibroblasts in most solid tumors, has become an important target for tumor diagnosis and treatment. However, previously reported 99mTc-labeled FAPI-04 complexes have high blood uptake, limiting their use in the clinic. In this work, six 99mTc-labeled FAPI-46 derivatives with different linkers (different amino acids, peptides, or polyethylene glycol) were prepared and evaluated. They had good in vitro stability, hydrophilicity, and good specificity for FAP. The biodistribution and MicroSPECT images revealed that they all had high specific tumor uptake for FAP, and their blood uptake was significantly decreased. Among them, [99mTc]Tc-6-1 exhibited the highest target-to-nontarget ratios (tumor/blood: 6.06 ± 1.19; tumor/muscle: 10.26 ± 0.44) and good tumor uptake (16.15 ± 0.83%ID/g), which also had significantly high affinity for FAP, good in vivo stability, and safety. Therefore, [99mTc]Tc-6-1 holds great potential as a promising molecular tracer for FAP tumor imaging.
Collapse
Affiliation(s)
- Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lina Diao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jianyong Jiang
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
17
|
Nishshankage K, Buddhinie PKC, Ezzat AO, Zhang X, Vithanage M. Antifungal efficacy of biogenic waste derived colloidal/nanobiochar against Colletotrichum gloeosporioides species complex. ENVIRONMENTAL RESEARCH 2024; 241:117621. [PMID: 37952852 DOI: 10.1016/j.envres.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Anthracnose caused by Colletotrichum spp. usually resulting in significant postharvest losses in the banana production chain. This study investigated the inhibitory effect of corn cob colloidal/nanobiochar (CCN) and Gliricidia sepium wood colloidal/nanobiochar (GCN) on the Colletotrichum gloeosporioides species complex. The CCN and GCN materials were synthesized and thoroughly characterized using various techniques, including UV-Vis and Fluorescence spectroscopy. Then after the fungal growth was examined on Potato Dextrose Agar (PDA) media supplemented with different CCN and GCN concentrations of 0.4 - 20 g/L and CCN and GCN with zeolite at various weight percentages of 10% to 50% w/w. Results from the characterization revealed that CCN exhibited a strong UV absorbance peak value of 0.630 at 203 nm, while GCN had a value of 0.305 at 204 nm. In terms of fluorescence emission, CCN displayed a strong peak intensity of 16,371 at 412 nm, whereas GCN exhibited a strong peak intensity of 32,691 at 411 nm. Both CCN and GCN, at concentrations ranging from 1 to 8 and 0.4 - 20 g/L, respectively, displayed notable reductions in mycelial densities and inhibited fungal growth compared to the control. Zeolite incorporation further enhanced the antifungal effect. To the best of our knowledge, this is the first study to demonstrate the promising potential of colloidal/nanobiochar in effectively controlling anthracnose disease. The synthesized CCN and GCN demonstrate promising antifungal potential against Colletotrichum gloeosporioides species complex, offering the potential for the development of novel and effective antifungal strategies for controlling anthracnose disease in Musa spp.
Collapse
Affiliation(s)
- Kulathi Nishshankage
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - P K C Buddhinie
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Abdelrahman O Ezzat
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The Institute of Agriculture, The University of Western Australia, Perth, Australia.
| |
Collapse
|
18
|
Fan R, Wen H, Chen Z, Xia Y, Fang W. A General Protocol toward Synthesis of 3-Methylindoles Using Acenaphthoimidazolyidene-Ligated Oxazoline Palladacycle. Org Lett 2024; 26:22-28. [PMID: 38127726 DOI: 10.1021/acs.orglett.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An efficient catalytic strategy toward the synthesis of N-substituted 3-methylindoles from inactive o-dihaloarenes and N-allylamines was developed by using a 1,3-bis(2,6-diisopropylphenyl)acenaphthoimidazol-2-ylidene (AnIPr)-ligated oxazoline palladacycle. It enabled a very broad substrate scope tolerating different functional groups, electronic properties, and steric bulkiness and afforded desired products in good to excellent yields. Importantly, it showed great potential to synthesize several bioactive compounds and key intermediates of natural products in high yields.
Collapse
Affiliation(s)
- Ruoqian Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Haili Wen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
19
|
Luu CH, Nguyen N, Ta HT. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv Healthc Mater 2024; 13:e2301039. [PMID: 37725037 PMCID: PMC11468451 DOI: 10.1002/adhm.202301039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
The use of biomaterials in implanted medical devices remains hampered by platelet adhesion and blood coagulation. Thrombus formation is a prevalent cause of failure of these blood-contacting devices. Although systemic anticoagulant can be used to support materials and devices with poor blood compatibility, its negative effects such as an increased chance of bleeding, make materials with superior hemocompatibility extremely attractive, especially for long-term applications. This review examines blood-surface interactions, the pathogenesis of clotting on blood-contacting medical devices, popular surface modification techniques, mechanisms of action of anticoagulant coatings, and discusses future directions in biomaterial research for preventing thrombosis. In addition, this paper comprehensively reviews several novel methods that either entirely prevent interaction between material surfaces and blood components or regulate the reaction of the coagulation cascade, thrombocytes, and leukocytes.
Collapse
Affiliation(s)
- Cuong Hung Luu
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Nam‐Trung Nguyen
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Hang Thu Ta
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| |
Collapse
|
20
|
Li QY, He Y, Lin YM, Gong L. Photo-Induced C-H Methylation Reactions. Chemistry 2023; 29:e202302542. [PMID: 37800464 DOI: 10.1002/chem.202302542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Collapse
Affiliation(s)
- Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuhang He
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and, Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| |
Collapse
|
21
|
Kaku K, Ravindra MP, Tong N, Choudhary S, Li X, Yu J, Karim M, Brzezinski M, O’Connor C, Hou Z, Matherly LH, Gangjee A. Discovery of Tumor-Targeted 6-Methyl Substituted Pemetrexed and Related Antifolates with Selective Loss of RFC Transport. ACS Med Chem Lett 2023; 14:1682-1691. [PMID: 38116433 PMCID: PMC10726441 DOI: 10.1021/acsmedchemlett.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.
Collapse
Affiliation(s)
- Krishna Kaku
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Manasa P. Ravindra
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Shruti Choudhary
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Xinxin Li
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jianming Yu
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mohammad Karim
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Madelyn Brzezinski
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
22
|
Bello-Vargas E, Leyva-Peralta MA, Gómez-Sandoval Z, Ordóñez M, Razo-Hernández RS. A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids. Pharmaceuticals (Basel) 2023; 16:1688. [PMID: 38139814 PMCID: PMC10747940 DOI: 10.3390/ph16121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Among the biological targets extensively investigated to improve inflammation and chronic inflammatory conditions, cyclooxygenase enzymes (COXs) occupy a prominent position. The inhibition of these enzymes, essential for mitigating inflammatory processes, is chiefly achieved through Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). In this work, we introduce a novel method-based on computational molecular docking-that could aid in the structure-based design of new compounds or the description of the anti-inflammatory activity of already-tested compounds. For this, we used eight crystal complexes (four COX-1 and COX-2 each), and each pair had a specific NSAID: Celecoxib, Meloxicam, Ibuprofen, and Indomethacin. This selection was based on the ligand selectivity towards COX-1 or COX-2 and their binding mode. An interaction profile of each NSAID was compiled to detect the residues that are key for their binding mode, highlighting the interaction made by the Me group. Furthermore, we rigorously validated our models based on structural accuracy (RMSD < 1) and (R2 > 70) using eight NSAIDs and thirteen compounds with IC50 values for each enzyme. Therefore, this model can be used for the binding mode prediction of small and structurally rigid compounds that work as COX inhibitors or the prediction of new compounds that are designed by means of a structure-based approach.
Collapse
Affiliation(s)
- Estefany Bello-Vargas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Mario Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca, Sonora 83621, Mexico;
| | - Zeferino Gómez-Sandoval
- Facultad de Ciencias Químicas, Universidad de Colima, km 9 Carretera Colima-Coquimatlán, Coquimatlán 28400, Mexico;
| | - Mario Ordóñez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Rodrigo Said Razo-Hernández
- Laboratorio de Quimioinformática y Diseño de Fármacos, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| |
Collapse
|
23
|
Shioi R, Xiao L, Chatterjee S, Kool ET. Stereoselective RNA reaction with chiral 2'-OH acylating agents. Chem Sci 2023; 14:13235-13243. [PMID: 38023505 PMCID: PMC10664579 DOI: 10.1039/d3sc03067a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
The reactivity of RNA 2'-OH groups with acylating agents has recently been investigated for high-yield conjugation of RNA strands. To date, only achiral molecules have been studied for this reaction, despite the complex chiral structure of RNA. Here we prepare a set of chiral acylimidazoles and study their stereoselectivity in RNA reactions. Reactions performed with unfolded and folded RNAs reveal that positional selectivity and reactivity vary widely with local RNA macro-chirality. We further document remarkable effects of chirality on reagent reactivity, identifying an asymmetric reagent with 1000-fold greater reactivity than prior achiral reagents. In addition, we identify a chiral compound with higher RNA structural selectivity than any previously reported RNA-mapping species. Further, azide-containing homologs of a chiral dimethylalanine reagent were synthesized and applied to local RNA labeling, displaying 92% yield and 16 : 1 diastereoselectivity. The results establish that reagent stereochemistry and chiral RNA structure are critical elements of small molecule-RNA reactions, and demonstrate new chemical strategies for selective RNA modification and probing.
Collapse
Affiliation(s)
- Ryuta Shioi
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Lu Xiao
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | | | - Eric T Kool
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Sarafan ChEM-H, Stanford University Stanford CA 94305 USA
| |
Collapse
|
24
|
Shao Z, Wang S, Liu N, Wang W, Zhu L. Interactions between sulfonamide homologues and glycosyltransferase induced metabolic disorders in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122486. [PMID: 37669699 DOI: 10.1016/j.envpol.2023.122486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
Sulfadiazine and its derivatives (sulfonamides, SAs) could induce distinct biotoxic, metabolic and physiological abnormalities, potentially due to their subtle structural differences. This study conducted an in-depth investigation on the interactions between SA homologues, i.e. sulfadiazine (SD), sulfamerazine (SD1), and sulfamethazine (SD2), and the key metabolic enzyme (glycosyltransferase, GT) in rice (Oryza sativa L.). Untargeted screening of SA metabolites revealed that GT-catalyzed glycosylation was the primary transformation pathway of SAs in rice. Molecular docking identified that the binding sites of SAs on GT (D0TZD6) were responsible for transferring sugar moiety to synthesize polysaccharides and detoxify SAs. Specifically, amino acids in the GT-binding cavity (e.g., GLY487 and CYS486) formed stable hydrogen bonds with SAs (e.g., the sulfonamide group of SD). Molecular dynamics simulations revealed that SAs induced conformational changes in GT ligand binding domain, which was supported by the significantly decreased GT activity and gene expression level. As evidenced by proteomics and metabolomics, SAs inhibited the transfer and synthesis of sugar but stimulated sugar decomposition in rice leaves, leading to the accumulation of mono- and disaccharides in rice leaves. While the differences in the increased sugar content by SD (24.3%, compared with control), SD1 (11.1%), and SD2 (6.24%) can be attributed to their number of methyl groups (0, 1, 2, respectively), which determined the steric hindrance and hydrogen bonds formation with GT. This study suggested that the disturbances on crop sugar metabolism by homologues contaminants are determined by the interaction between the contaminants and the target enzyme, and are greatly dependent on the steric hindrance effects contributed by their side chains. The results are of importance to identify priority pollutants and ensure crop quality in contaminated fields.
Collapse
Affiliation(s)
- Zexi Shao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Shuyuan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
25
|
Yano H, Chitsazi R, Lucaj C, Tran P, Hoffman AF, Baumann MH, Lupica CR, Shi L. Subtle Structural Modification of a Synthetic Cannabinoid Receptor Agonist Drastically Increases its Efficacy at the CB1 Receptor. ACS Chem Neurosci 2023; 14:3928-3940. [PMID: 37847546 PMCID: PMC10623572 DOI: 10.1021/acschemneuro.3c00530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks, including fatalities. Many SCRAs exhibit much higher efficacy and potency compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC) at the cannabinoid receptor 1 (CB1R), leading to dramatic differences in signaling levels that can be toxic. In this study, we investigated the structure-activity relationships of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer assays, we identified a few SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting β-arrestin than the reference CB1R full agonist CP55940. Importantly, the extra methyl group on the head moiety of 5F-MDMB-PICA, as compared to that of 5F-MMB-PICA, led to a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by the functional effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R models bound with both of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of the structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.
Collapse
Affiliation(s)
- Hideaki Yano
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rezvan Chitsazi
- Computational
Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Christopher Lucaj
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Phuong Tran
- Computational
Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Alexander F. Hoffman
- Electrophysiology
Research Section, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, Intramural Research Program, National Institute
on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Carl R. Lupica
- Electrophysiology
Research Section, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational
Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
26
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
27
|
Tang J, Bai JF, Zheng J, Li S, Jiang ZJ, Chen J, Gao K, Gao Z. B(C 6F 5) 3-Catalyzed Intramolecular Hydroalkoxylation Deuteration Reactions of Unactivated Alkynyl Alcohols. Org Lett 2023; 25:6891-6896. [PMID: 37735994 DOI: 10.1021/acs.orglett.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Using D2O as a deuterium source, a method for the deuteration of intra- and extra-cyclic methylene has been developed for cyclic ethers with moderate yield and excellent deuterium incorporation. This transformation features superb functional group tolerance in a wide range of alkynols. Notably, the critical factor to achieve high deuterium incorporation is determined by the hydrogen isotope exchange reaction of an unstable oxonium ion. This novel methodology provides an efficient and concise synthetic route to a number of valuable deuterated cyclic ethers that are often difficult to prepare with other methods.
Collapse
Affiliation(s)
- Jianbo Tang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jinfeng Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shuangshuang Li
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| |
Collapse
|
28
|
Husain S, Mohamed R, Abd Halim KB, Mohd Mutalip SS. Homology modeling of human BAP1 and analysis of its binding properties through molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:7158-7173. [PMID: 36039769 DOI: 10.1080/07391102.2022.2117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear-localized Ubiquitin C-terminal hydrolase (UCH) that functions as a tumour suppressor, and although BAP1 has been linked to cancer, the molecular mechanism by which BAP1 regulates cancer and its crystal structure have not been elucidated. In this study, computational approaches were used to identify the protein model of BAP1 and its potential inhibitors. The structure of the BAP1 model was constructed through homology modeling and the generated BAP1 model was observed to exhibit good quality protein model as the distribution of its amino acids in the Ramachandran's plot corresponded to 87.7% in the most favoured regions. Docking and simulating of the ubiquitin on the BAP1 model structure revealed the rearrangement of F228, F50, and H169 residues of the BAP1 and switching of BAP1's conformation into a productive state. Our screening results of potential BAP1 inhibitors against the FDA approved drugs shortlisted two potential inhibitors, which are FDA1065 and FDA755. We then performed molecular dynamics simulations and Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis on both inhibitors and found that only the BAP1-FDA755 formed a stable complex and the FDA755 ligand remained its position inside the active site of the BAP1 with a total binding energy of (-51.77 ± 3.49 kcal/mol). We speculate that the presence of methyl group in FDA755 play an important role in stabilizing the BAP1-FDA755 complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syarifuddin Husain
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Ruzianisra Mohamed
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Siti Syairah Mohd Mutalip
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
29
|
Pinheiro PDSM, Franco LS, Fraga CAM. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals (Basel) 2023; 16:1157. [PMID: 37631072 PMCID: PMC10457765 DOI: 10.3390/ph16081157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the key scientific aspects of small-molecule drug discovery and development is the analysis of the relationship between its chemical structure and biological activity. Understanding the effects that lead to significant changes in biological activity is of paramount importance for the rational design and optimization of bioactive molecules. The "methylation effect", or the "magic methyl" effect, is a factor that stands out due to the number of examples that demonstrate profound changes in either pharmacodynamic or pharmacokinetic properties. In many cases, this has been carried out rationally, but in others it has been the product of serendipitous observations. This paper summarizes recent examples that provide an overview of the current state of the art and contribute to a better understanding of the methylation effect in bioactive small-molecule drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
30
|
Hao Y, Ma J, Wang J, Yu X, Li Z, Wu S, Tian S, Ma H, He S, Zhang X. Synthesis and evaluation of dihydrofuro[2,3-b]pyridine derivatives as potent IRAK4 inhibitors. Eur J Med Chem 2023; 258:115616. [PMID: 37413880 DOI: 10.1016/j.ejmech.2023.115616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key regulator to control downstream NF-κB and MAPK signals in the innate immune response and has been proposed as a therapeutic target for the treatment of inflammatory and autoimmune diseases. Herein, a series of IRAK4 inhibitors based on a dihydrofuro[2,3-b]pyridine scaffold was developed. Structural modifications of the screening hit 16 (IC50 = 243 nM) led to IRAK4 inhibitors with improved potency but high clearance (Cl) and poor oral bioavailability, as exemplified by compound 21 (IC50 = 6.2 nM, Cl = 43 ml/min/kg, F = 1.6%, LLE = 5.4). Structure modification aimed at improving LLE and reducing clearance identified compound 38. Compound 38 showed significantly improved clearance while maintained excellent biochemical potency against IRAK4 (IC50 = 7.3 nM, Cl = 12 ml/min/kg, F = 21%, LLE = 6.0). Importantly, compound 38 had favorable in vitro safety and ADME profiles. Furthermore, compound 38 reduced the in vitro production of pro-inflammatory cytokines in both mouse iBMDMs and human PBMCs and was orally efficacious in the inhibition of serum TNF-α secretion in LPS-induced mouse model. These findings suggested that compound 38 has development potential as an IRAK4 inhibitor for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Yongjin Hao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jiawan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiaoliang Yu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, PR China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, PR China
| | - Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, PR China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, PR China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
31
|
Aberle B, Kowalczyk D, Massini S, Egler-Kemmerer AN, Gergel S, Hammer SC, Hauer B. Methylation of Unactivated Alkenes with Engineered Methyltransferases To Generate Non-natural Terpenoids. Angew Chem Int Ed Engl 2023; 62:e202301601. [PMID: 36997338 DOI: 10.1002/anie.202301601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Terpenoids are built from isoprene building blocks and have numerous biological functions. Selective late-stage modification of their carbon scaffold has the potential to optimize or transform their biological activities. However, the synthesis of terpenoids with a non-natural carbon scaffold is often a challenging endeavor because of the complexity of these molecules. Herein we report the identification and engineering of (S)-adenosyl-l-methionine-dependent sterol methyltransferases for selective C-methylation of linear terpenoids. The engineered enzyme catalyzes selective methylation of unactivated alkenes in mono-, sesqui- and diterpenoids to produce C11 , C16 and C21 derivatives. Preparative conversion and product isolation reveals that this biocatalyst performs C-C bond formation with high chemo- and regioselectivity. The alkene methylation most likely proceeds via a carbocation intermediate and regioselective deprotonation. This method opens new avenues for modifying the carbon scaffold of alkenes in general and terpenoids in particular.
Collapse
Affiliation(s)
- Benjamin Aberle
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Daniel Kowalczyk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Simon Massini
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander-N Egler-Kemmerer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sebastian Gergel
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
32
|
Gordhan HM, Miller ST, Clancy DC, Ina M, McDougal AV, Cutno DK, Brown RV, Lichorowic CL, Sturdivant JM, Vick KA, Williams SS, deLong MA, White JC, Kopczynski CC, Ellis DA. Eyes on Topical Ocular Disposition: The Considered Design of a Lead Janus Kinase (JAK) Inhibitor That Utilizes a Unique Azetidin-3-Amino Bridging Scaffold to Attenuate Off-Target Kinase Activity, While Driving Potency and Aqueous Solubility. J Med Chem 2023. [PMID: 37314941 DOI: 10.1021/acs.jmedchem.3c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition. A focused library of known 3-(4-(2-(arylamino)pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitriles was evaluated as a molecular starting point. Structure-activity relationships (SARs) revealed a ligand-efficient (LE) JAK inhibitor series, amenable to aqueous solubility. Subsequent in vitro analysis indicated the potential for off-target toxicity. A KINOMEscan selectivity profile of 5 substantiated the likelihood of widespread series affinity across the human kinome. An sp2-to-sp3 drug design strategy was undertaken to attenuate off-target kinase activity while driving JAK-STAT potency and aqueous solubility. Tactics to reduce aromatic character, increase fraction sp3 (Fsp3), and bolster molecular complexity led to the azetidin-3-amino bridging scaffold in 31.
Collapse
Affiliation(s)
- Heeren M Gordhan
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Steven T Miller
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Daphne C Clancy
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Maria Ina
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Alan V McDougal
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - D'Quan K Cutno
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Robert V Brown
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | | | | | - Kyle A Vick
- ID Business Solutions, Ltd., Boston, Massachusetts 02210, United States
| | | | | | - Jeffrey C White
- Baxter Healthcare Corp., Deerfield, Illinois 60015, United States
| | | | - David A Ellis
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| |
Collapse
|
33
|
Yano H, Chitsazi R, Lucaj C, Tran P, Hoffman AF, Baumann MH, Lupica CR, Shi L. A subtle structural modification of a synthetic cannabinoid receptor agonist drastically increases its efficacy at the CB1 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544442. [PMID: 37398099 PMCID: PMC10312643 DOI: 10.1101/2023.06.10.544442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks that include fatalities. Many SCRAs exhibit much higher efficacy and potency, compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC), at the cannabinoid receptor 1 (CB1R), a G protein-coupled receptor involved in modulating neurotransmitter release. In this study, we investigated structure activity relationships (SAR) of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer (BRET) assays, we identified a few of SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting β-arrestin than the reference CB1R full agonist CP55940. Importantly, adding a methyl group at the head moiety of 5F-MMB-PICA yielded 5F-MDMB-PICA, an agonist exhibiting a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by a functional assay of the effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R bound with either of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA, and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.
Collapse
Affiliation(s)
- Hideaki Yano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University
| | - Rezvan Chitsazi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Lucaj
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University
| | - Phuong Tran
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Alexander F Hoffman
- Electrophysiology Research Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Carl R Lupica
- Electrophysiology Research Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
34
|
Zhao H, Brånalt J, Perry M, Tyrchan C. The Role of Allylic Strain for Conformational Control in Medicinal Chemistry. J Med Chem 2023. [PMID: 37285219 DOI: 10.1021/acs.jmedchem.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is axiomatic in medicinal chemistry that optimization of the potency of a small molecule at a macromolecular target requires complementarity between the ligand and target. In order to minimize the conformational penalty on binding, both enthalpically and entropically, it is therefore preferred to have the ligand preorganized in the bound conformation. In this Perspective, we highlight the role of allylic strain in controlling conformational preferences. Allylic strain was originally described for carbon-based allylic systems, but the same principles apply to other types of structure with sp2 or pseudo-sp2 arrangements. These systems include benzylic (including heteroaryl methyl) positions, amides, N-aryl groups, aryl ethers, and nucleotides. We have derived torsion profiles from small molecule X-ray structures for these systems. Through multiple examples, we show how these effects have been applied in drug discovery and how they can be used prospectively to influence conformation in the design process.
Collapse
Affiliation(s)
- Hongtao Zhao
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Jonas Brånalt
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Matthew Perry
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| |
Collapse
|
35
|
Aarhus TI, Eickhoff J, Klebl B, Unger A, Boros J, Choidas A, Zischinsky ML, Wolowczyk C, Bjørkøy G, Sundby E, Hoff BH. A highly selective purine-based inhibitor of CSF1R potently inhibits osteoclast differentiation. Eur J Med Chem 2023; 255:115344. [PMID: 37141705 DOI: 10.1016/j.ejmech.2023.115344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) plays an important role in the regulation of many inflammatory processes, and overexpression of the kinase is implicated in several disease states. Identifying selective, small-molecule inhibitors of CSF1R may be a crucial step toward treating these disorders. Through modelling, synthesis, and a systematic structure-activity relationship study, we have identified a number of potent and highly selective purine-based inhibitors of CSF1R. The optimized 6,8-disubstituted antagonist, compound 9, has enzymatic IC50 of 0.2 nM, and displays a strong affinity toward the autoinhibited form of CSF1R, contrasting that of other previously reported inhibitors. As a result of its binding mode, the inhibitor shows excellent selectivity (Selectivity score: 0.06), evidenced by profiling towards a panel of 468 kinases. In cell-based assays, this inhibitor shows dose-dependent blockade of CSF1-mediated downstream signalling in murine bone marrow-derived macrophages (IC50 = 106 nM) as well as disruption of osteoclast differentiation at nanomolar levels. In vivo experiments, however, indicate that improve metabolic stability is needed in order to further progress this compound class.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Joanna Boros
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Mia-Lisa Zischinsky
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
36
|
Chiodi D, Ishihara Y. "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. J Med Chem 2023; 66:5305-5331. [PMID: 37014977 DOI: 10.1021/acs.jmedchem.2c02015] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chlorine is one of the most common atoms present in small-molecule drugs beyond carbon, hydrogen, nitrogen, and oxygen. There are currently more than 250 FDA-approved chlorine-containing drugs, yet the beneficial effect of the chloro substituent has not yet been reviewed. The seemingly simple substitution of a hydrogen atom (R = H) with a chlorine atom (R = Cl) can result in remarkable improvements in potency of up to 100,000-fold and can lead to profound effects on pharmacokinetic parameters including clearance, half-life, and drug exposure in vivo. Following the literature terminology of the "magic methyl effect" in drugs, the term "magic chloro effect" has been coined herein. Although reports of 500-fold or 1000-fold potency improvements are often serendipitous discoveries that can be considered "magical" rather than planned, hypotheses made to explain the magic chloro effect can lead to lessons that accelerate the cycle of drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
37
|
Song S, Cheng X, Cheng S, Lin YM, Gong L. Fe-Catalyzed Aliphatic C-H Methylation of Glycine Derivatives and Peptides. Chemistry 2023; 29:e202203404. [PMID: 36545842 DOI: 10.1002/chem.202203404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Direct and selective C-H methylation is a powerful tool with which to install methyl groups into organic molecules, and is particularly useful in pharmaceutical chemistry. However, practical methods for such modification of biologically interesting targets have been rarely developed. We here report an iron-catalyzed C(sp3 )-H methylation reaction of glycine derivatives, peptides and drug-like molecules in an alcohol in the presence of di-tert-butyl peroxide. A readily available iron catalyst plays multiple roles in the transformation, which accelerates oxidation of C-N bonds to C=N double bonds, activates imine intermediates as Lewis acids by bidentate chelation, and at the same time facilitates cleavage of the peroxide to generate methyl radicals. A variety of methylated N-aryl glycine derivatives and peptides were obtained in good yield and with excellent chemo- and site-selectivity. This reaction is scalable, easily managed, and can be completed within 1-2 h. It features an economic, bio-friendly catalyst, a green solvent and low toxic reagents, and will provide effective access to precise C-H modification of biomolecules and natural products.
Collapse
Affiliation(s)
- Silin Song
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005, Xiamen, China
| |
Collapse
|
38
|
Nietzold F, Rubner S, Labuzek B, Golik P, Surmiak E, Del Corte X, Kitel R, Protzel C, Reppich-Sacher R, Stichel J, Magiera-Mularz K, Holak TA, Berg T. Nutlin-3a-aa: Improving the Bioactivity of a p53/MDM2 Interaction Inhibitor by Introducing a Solvent-Exposed Methylene Group. Chembiochem 2023; 24:e202300006. [PMID: 36602436 DOI: 10.1002/cbic.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Nutlin-3a is a reversible inhibitor of the p53/MDM2 interaction. We have synthesized the derivative Nutlin-3a-aa bearing an additional exocyclic methylene group in the piperazinone moiety. Nutlin-3a-aa is more active than Nutlin-3a against purified wild-type MDM2, and is more effective at increasing p53 levels and releasing transcription of p53 target genes from MDM2-induced repression. X-ray analysis of wild-type MDM2-bound Nutlin-3a-aa indicated that the orientation of its modified piperazinone ring was altered in comparison to the piperazinone ring of MDM2-bound Nutlin-3a, with the exocyclic methylene group of Nutlin-3a-aa pointing away from the protein surface. Our data point to the introduction of exocyclic methylene groups as a useful approach by which to tailor the conformation of bioactive molecules for improved biological activity.
Collapse
Affiliation(s)
- Florian Nietzold
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Beata Labuzek
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Przemysław Golik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Xabier Del Corte
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.,Present address: Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados "Lucio Lascaray", Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Christoph Protzel
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Regina Reppich-Sacher
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Thorsten Berg
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
39
|
Palit K, Sepay N, Panda N. Arylative Methylation of 2,3-Dihydropyrazines and Pyrazinones Using Dimethyl Sulfoxide as a C1 Source. J Org Chem 2023. [PMID: 36786556 DOI: 10.1021/acs.joc.2c02675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Divergent synthesis of α-C-H methylated pyrazines and pyrazinones using dimethyl sulfoxide as a nonconventional methylating agent under metal-free conditions was reported. Dimethyl sulfoxide-coordinated bromine cation pools generated from the treatment of dimethyl sulfoxide and 1,2-dibromoethane undergo Pummerer-type fragmentation to afford an electrophilic methyl(methylene)sulfonium ion for reaction with a carbon nucleophile followed by aromatization to afford α-methylated pyrazines and pyrazinones.
Collapse
Affiliation(s)
- Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
40
|
Xie H, Li C, Tang H, Tandon I, Liao J, Roberts BL, Zhao Y, Tang W. Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation. J Med Chem 2023; 66:2904-2917. [PMID: 36749666 PMCID: PMC10398712 DOI: 10.1021/acs.jmedchem.2c01941] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutarimides such as thalidomide, pomalidomide, and lenalidomide are the most frequently used ligands to recruit E3 ubiquitin ligase cereblon (CRBN) for the development of proteolysis-targeting chimeras (PROTACs). Due to the rapid and spontaneous racemization of glutarimides, most CRBN-recruiting PROTACs are synthesized as a mixture of racemates or diastereomers. Since the (S)-enantiomer is primarily responsible for binding to CRBN, the existence of the largely inactive (R)-enantiomer complicates the drug development process. Herein, we report that substituted achiral phenyl dihydrouracil (PDHU) can be used as a novel class of CRBN ligands for the development of PROTACs. Although the parent PDHU has a minimal binding affinity to CRBN, we found that some substituted PDHUs had a comparable binding affinity to lenalidomide. Structural modeling provided a further understanding of the molecular interactions between PDHU ligands and CRBN. PDHUs also have greater stability than lenalidomide. Finally, potent BRD4 degraders were developed by employing trisubstituted PDHUs.
Collapse
Affiliation(s)
- Haibo Xie
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Chunrong Li
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Hua Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Ira Tandon
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Junzhuo Liao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Brett L. Roberts
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Yu Zhao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (USA)
| |
Collapse
|
41
|
Tseng PS, Ande C, Moremen KW, Crich D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew Chem Int Ed Engl 2023; 62:e202217809. [PMID: 36573850 PMCID: PMC9908843 DOI: 10.1002/anie.202217809] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 12/28/2022]
Abstract
Substrate side chain conformation impacts reactivity during glycosylation and glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases during catalysis. We show that the side chains of gluco and manno iminosugars can be restricted to predominant conformations by strategic installation of a methyl group. Glycosidase inhibition studies reveal that iminosugars with the gauche,gauche side chain conformations are 6- to 10-fold more potent than isosteric compounds with the gauche,trans conformation; a manno-configured iminosugar with the gauche,gauche conformation is a 27-fold better inhibitor than 1-deoxymannojirimycin. The results are discussed in terms of the energetic benefits of preorganization, particularly when in synergy with favorable hydrophobic interactions. The demonstration that inhibitor side chain preorganization can favorably impact glycosidase inhibition paves the way for improved inhibitor design through conformational preorganization.
Collapse
Affiliation(s)
- Po-Sen Tseng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA)
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA),Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 (USA)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
42
|
Kumar S, Rao NNS, Reddy KSSVP, Padole MC, Deshpande PA. Enzyme-substrate interactions in orotate-mimetic OPRT inhibitor complexes: a QM/MM analysis. Phys Chem Chem Phys 2023; 25:3472-3484. [PMID: 36637052 DOI: 10.1039/d2cp05406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Orotate phosphoribosyltransferase (OPRT) catalyses the reversible phosphoribosyl transfer from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to orotic acid (OA) to yield orotidine 5'-monophosphate (OMP) during the de novo synthesis of nucleotides. Numerous studies have reported the inhibition of this reaction as a strategy to check diseases like tuberculosis, malaria and cancer. Insight into the inhibition of this reaction is, therefore, of urgent interest. In this study, we implemented a QM/MM framework on OPRT derived from Saccharomyces cerevisiae to obtain insights into the competitive binding of OA and OA-mimetic inhibitors by quantifying their interactions with OPRT. 4-Hydroxy-6-methylpyridin-2(1H) one showed the best inhibiting activity among the structurally similar OA-mimetic inhibitors, as quantified from the binding energetics. Our analysis of protein-ligand interactions unveiled the association of this inhibitory ligand with a strong network of hydrogen bonds, a large contribution of hydrophobic contacts, and bridging water molecules in the binding site. The ortho-substituted CH3 group in the compound resulted in a large population of π-electrons in the aromatic ring of this inhibitor, supporting the ligand binding further.
Collapse
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - N N Subrahmanyeswara Rao
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - K S S V Prasad Reddy
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Manjusha C Padole
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Parag A Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
43
|
Chen G, Chang Z, Yuan P, Wang S, Yang Y, Liang X, Zhao D. Late-stage functionalization of 5-nitrofurans derivatives and their antibacterial activities. RSC Adv 2023; 13:3204-3209. [PMID: 36756397 PMCID: PMC9853512 DOI: 10.1039/d2ra07676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Structure modification of drugs is a reliable way to optimize lead compounds, among which the most striking and direct method is late-stage functionalization (LSF). Here, we employed the Cu-catalyzed C-H LSF to modify 5-nitrofuran drugs. A series of modifications have been carried out including hydroxylation, methylation, azidination, cyanation, arylation, etc. Antibacterial activities of all compounds in vitro were measured. The results showed that compound 1 and compound 18 were the most active among all compounds. Meanwhile, the cell cytotoxicity assays of potent compounds 1, 3, 4, 5 & 18 and the parent drug FZD were conducted.
Collapse
Affiliation(s)
- Geshuyi Chen
- The First Clinical Medical College, Lanzhou University Lanzhou China
| | - Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| | - Pei Yuan
- The First Clinical Medical College, Lanzhou University Lanzhou China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| | - Yongxiu Yang
- The First Clinical Medical College, Lanzhou University Lanzhou China .,The First Clinical Medical College, Lanzhou University. Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Lanzhou 730000 Gansu Province China .,Lead Contact China
| | - Xiaolei Liang
- The First Clinical Medical College, Lanzhou University Lanzhou China .,The First Clinical Medical College, Lanzhou University. Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Lanzhou 730000 Gansu Province China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| |
Collapse
|
44
|
Humphreys PG, Anderson NA, Bamborough P, Baxter A, Chung CW, Cookson R, Craggs PD, Dalton T, Fournier JCL, Gordon LJ, Gray HF, Gray MW, Gregory R, Hirst DJ, Jamieson C, Jones KL, Kessedjian H, Lugo D, McGonagle G, Patel VK, Patten C, Poole DL, Prinjha RK, Ramirez-Molina C, Rioja I, Seal G, Stafford KAJ, Shah RR, Tape D, Theodoulou NH, Tomlinson L, Ukuser S, Wall ID, Wellaway N, White G. Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I-BET432. J Med Chem 2022; 65:15174-15207. [DOI: 10.1021/acs.jmedchem.2c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Niall A. Anderson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rosa Cookson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Toryn Dalton
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laurie J. Gordon
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather F. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew W. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Richard Gregory
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David J. Hirst
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | | | | | - David Lugo
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L. Poole
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Inmaculada Rioja
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gail Seal
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Rishi R. Shah
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel Tape
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Sabri Ukuser
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Natalie Wellaway
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gemma White
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
45
|
Amariei DA, Pozhydaieva N, David B, Schneider P, Classen T, Gohlke H, Weiergräber OH, Pietruszka J. Enzymatic C3-Methylation of Indoles Using Methyltransferase PsmD─Crystal Structure, Catalytic Mechanism, and Preparative Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Diana A. Amariei
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Nadiia Pozhydaieva
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Benoit David
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich 52426, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) Forschungszentrum Jülich, Jülich 52426, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich 52426, Germany
- Institute for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
- Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) Forschungszentrum Jülich, Jülich 52426, Germany
| |
Collapse
|
46
|
Stockley ML, Ferdinand A, Benedetti G, Blencowe P, Boyd SM, Calder M, Charles MD, Edwardes LV, Ekwuru T, Finch H, Galbiati A, Geo L, Grande D, Grinkevich V, Holliday ND, Krajewski WW, MacDonald E, Majithiya JB, McCarron H, McWhirter CL, Patel V, Pedder C, Rajendra E, Ranzani M, Rigoreau LJM, Robinson HMR, Schaedler T, Sirina J, Smith GCM, Swarbrick ME, Turnbull AP, Willis S, Heald RA. Discovery, Characterization, and Structure-Based Optimization of Small-Molecule In Vitro and In Vivo Probes for Human DNA Polymerase Theta. J Med Chem 2022; 65:13879-13891. [PMID: 36200480 DOI: 10.1021/acs.jmedchem.2c01142] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, 22 (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, 43 (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ. The crystallographic data provides a basis for understanding the unique mechanism of inhibition of these compounds which is dependent on stabilization of a "closed" enzyme conformation. Additionally, the structural biology platform provided a basis for rational optimization based primarily on reduced ligand conformational flexibility.
Collapse
Affiliation(s)
- Martin L Stockley
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Amanda Ferdinand
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Giovanni Benedetti
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Peter Blencowe
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Susan M Boyd
- CompChem Solutions Ltd, St John's Innovation Centre, Cowley Rd, CambridgeCB4 0WS, U. K
| | - Mat Calder
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Mark D Charles
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Lucy V Edwardes
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Tennyson Ekwuru
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Harry Finch
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | | | - Lerin Geo
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Diego Grande
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Vera Grinkevich
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd., BioCity, Pennyfoot Street, NottinghamNG1 1GF, U. K
| | - Wojciech W Krajewski
- Cancer Research Horizons Therapeutic Innovation, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, U. K
| | - Ellen MacDonald
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Jayesh B Majithiya
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Hollie McCarron
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Claire L McWhirter
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Viral Patel
- Excellerate Bioscience Ltd., BioCity, Pennyfoot Street, NottinghamNG1 1GF, U. K
| | - Chris Pedder
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Eeson Rajendra
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Marco Ranzani
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Laurent J M Rigoreau
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Helen M R Robinson
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Theresia Schaedler
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Julija Sirina
- Excellerate Bioscience Ltd., BioCity, Pennyfoot Street, NottinghamNG1 1GF, U. K
| | - Graeme C M Smith
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Martin E Swarbrick
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Andrew P Turnbull
- Cancer Research Horizons Therapeutic Innovation, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, U. K
| | - Simon Willis
- Cancer Research Horizons Therapeutic Innovation, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, U. K
| | - Robert A Heald
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| |
Collapse
|
47
|
Yan M, Qian BC, Chen Y, Luo GZ, Shen GB. Theoretical Study for Evaluating and Discovering Organic Hydride Compounds as Potential Novel Methylation Reagents. ACS OMEGA 2022; 7:36579-36589. [PMID: 36278082 PMCID: PMC9583324 DOI: 10.1021/acsomega.2c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Methylation reaction is a fundamental chemical reaction that plays an important role in the modification of drug molecules, DNA, as well as proteins. This work focuses on seeking potential novel methylation reagents through a systematic investigation of the thermodynamics and reactivity of methyl-substituted organic hydride radical cations (XH•+s). In this work, 45 classical and important XH•+s were designed to investigate the relationship between their structure and reactivity, to find excellent or potential methylation reagents. The Gibbs free energy and activation free energy of XH•+ to release the methyl radical in MeCN at 298.15 and 355 K are calculated with the density functional theory (DFT) method to quantitatively measure the reactivity of XH•+ as a methylation reagent in this work. The relationships between structures and reactivities on XH•+s as methylation reagents are well examined. Since we have calculated the Gibbs free energy and activation free energy of trifluoromethyl-substituted organic hydride compound radical cations (X'H•+) releasing trifluoromethyl radicals in MeCN with the DFT method in our previous work, accordingly, the relationship of thermodynamics and reactivity between X'H•+ releasing trifluoromethyl radical and XH•+ releasing methyl radical is discussed in detail. Excitingly, 4 XH•+s (1H•+, 3H•+∼4H•+, and 44H•+) are found to be excellent methyl radical reagents, while 9 XH•+s (5H•+, 6H•+, 9H•+, 10H•+, 12H•+, 13H•+, 15H•+, 43H•+, and 45H•+) are found to be potential methyl radical reagents in chemical synthesis. The molecular library and reactivity database of novel methylation reagents could be established for synthetic chemists to query and use. Our work may offer a theoretical basis and reference experience for screening different substituted organic hydride compounds (YRHs) as alkylation reagents.
Collapse
Affiliation(s)
- Maocai Yan
- School
of Pharmacy, Jining Medical University, Rizhao, Shandong276800, P. R. China
| | - Bao-Chen Qian
- School
of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Yanpu Chen
- School
of Pharmacy, Jining Medical University, Rizhao, Shandong276800, P. R. China
| | - Guang-Ze Luo
- School
of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
48
|
SAR study of oxidative DIMs analogs targeting the Nur77-mediated apoptotic pathway of cancer cells. Bioorg Chem 2022; 129:106156. [PMID: 36179441 DOI: 10.1016/j.bioorg.2022.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Nur77, an orphan nuclear receptor, is implicated in regulating diverse cellular biological processes including apoptosis and inflammation. We previously identified BI1071 (DIM-C-pPhCF3+MeSO3-), an oxidized methanesulfonate salt of (4-CF3-Ph-C-DIM), was a direct ligand of Nur77, which could activate the Nur77-Bcl-2 apoptotic pathway. To obtain more effective compounds targeting the Nur77-mediated apoptotic pathway, we designed and synthesized a series of BI1071 analogs by introducing various substituent groups in the indolyl-rings of BI1071. Structure-activity relationship study identified A11, B5 and B15 as improved analogs with stronger binding affinity to Nur77 and enhanced apoptotic activity compared to BI1071. Nur77-binding studies demonstrated that A11, B5 and B15 bind to Nur77 with a Kd of 34 nM, 19 nM and 16 nM, respectively. Furthermore, mechanism studies showed that A11, B5 and B15 induced apoptosis through utilizing the Nur77-Bcl-2 pathway.
Collapse
|
49
|
Zhang Z, Chen X, Li XS, Wang CT, Niu ZJ, Zhang BS, Liu XY, Liang YM. Ortho C–H Hydroxyalkylation or Methylation of Aryl Iodides by Ethers and TMSI via a Catellani Strategy. Org Lett 2022; 24:6897-6902. [DOI: 10.1021/acs.orglett.2c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
50
|
Dong Y, Shin K, Mai BK, Liu P, Buchwald SL. Copper Hydride-Catalyzed Enantioselective Olefin Hydromethylation. J Am Chem Soc 2022; 144:16303-16309. [PMID: 36044255 PMCID: PMC9994624 DOI: 10.1021/jacs.2c07489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enantioselective installation of a methyl group onto a small molecule can result in the significant modification of its biological properties. While hydroalkylation of olefins represents an attractive approach to introduce alkyl substituents, asymmetric hydromethylation protocols are often hampered by the incompatibility of highly reactive methylating reagents and a lack of general applicability. Herein, we report an asymmetric olefin hydromethylation protocol enabled by CuH catalysis. This approach leverages methyl tosylate as a methyl source compatible with the reducing base-containing reaction environment, while a catalytic amount of iodide ion transforms the methyl tosylate in situ into the active reactant, methyl iodide, to promote the hydromethylation. This method tolerates a wide range of functional groups, heterocycles, and pharmaceutically relevant frameworks. Density functional theory studies suggest that after the stereoselective hydrocupration, the methylation step is stereoretentive, taking place through an SN2-type oxidative addition mechanism with methyl iodide followed by a reductive elimination.
Collapse
Affiliation(s)
- Yuyang Dong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kwangmin Shin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|