1
|
Darnotuk ES, Siniavin AE, Shastina NS, Luyksaar SI, Inshakova AM, Bondareva NE, Zolotov SA, Lubenec NL, Sheremet AB, Logunov DY, Zigangirova NA, Gushchin VA, Gintsburg AL. Synthesis and Antiviral Activity of Novel β-D-N4-Hydroxycytidine Ester Prodrugs as Potential Compounds for the Treatment of SARS-CoV-2 and Other Human Coronaviruses. Pharmaceuticals (Basel) 2023; 17:35. [PMID: 38256869 PMCID: PMC10821229 DOI: 10.3390/ph17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The spread of COVID-19 infection continues due to the emergence of multiple transmissible and immune-evasive variants of the SARS-CoV-2 virus. Although various vaccines have been developed and several drugs have been approved for the treatment of COVID-19, the development of new drugs to combat COVID-19 is still necessary. In this work, new 5'-O-ester derivatives of N4-hydroxycytidine based on carboxylic acids were developed and synthesized by Steglich esterification. The antiviral activity of the compounds was assessed in vitro-inhibiting the cytopathic effect of HCoV-229E, and three variants of SARS-CoV-2, on huh-7 and Vero E6 cells. Data have shown that most synthesized derivatives exhibit high activity against coronaviruses. In addition, the relationship between the chemical structure of the compounds and their antiviral effect has been established. The obtained results show that the most active compound was conjugate SN_22 based on 3-methyl phenoxyacetic acid. The results of this study indicate the potential advantage of the chemical strategies used to modify NHC as a promising avenue to be explored in vivo, which could lead to the development of drugs with improved pharmacological properties that potently inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Elizaveta S. Darnotuk
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
- Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Andrei E. Siniavin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natal’ya S. Shastina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
- Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Sergey I. Luyksaar
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Anna M. Inshakova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
- Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Natalia E. Bondareva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Sergey A. Zolotov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Nadezhda L. Lubenec
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Anna B. Sheremet
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Nailya A. Zigangirova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.S.D.); (N.S.S.); (S.I.L.); (A.M.I.); (N.E.B.); (S.A.Z.); (N.L.L.); (A.B.S.); (D.Y.L.); (N.A.Z.); (A.L.G.)
| |
Collapse
|
2
|
Synthesis and anti-SARS-CoV-2 evaluation of lipid prodrugs of β-D- N4-hydroxycytidine (NHC) and a 3′-fluoro-substituted analogue of NHC. Bioorg Chem 2023; 135:106527. [PMID: 37031504 PMCID: PMC10076076 DOI: 10.1016/j.bioorg.2023.106527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
β-D-N4-hydroxycytidine (NHC, EIDD-1931) is a nucleoside analogue that exhibits broad spectrum antiviral activity against a variety of RNA viruses. Herein, we report the synthesis of a series of lipid prodrugs of NHC and a novel 3′-fluoro modified NHC analogue, and evaluation of their antiviral activity against five variants of SARS-CoV-2. All lipid prodrugs showed potent antiviral activity against the tested SARS-CoV-2 variants with EC50 values in the range of 0.31–3.51 μM, which were comparable to those of NHC or higher than those of remdesivir and molnupiravir. An increase in the cytostatic activity of the lipid prodrugs was found, but prodrug 2d proved equally selective as molnupinavir. The 3′-F analogue of NHC (6) only displayed minor antiviral activity against the SARS-CoV-2 Omicron variant (EC50 = 29.91 μM), while no activity was found for other variants at the highest concentration tested. The promising antiviral data of the lipid prodrugs of NHC suggest that they deserve further investigation as new anti-SARS-CoV-2 drugs.
Collapse
|
3
|
Kim L, Lohan S, Moreno J, Zoghebi K, Tiwari RK, Parang K. Cyclic and Linear Peptides Containing Alternate WW and RR Residues as Molecular Cargo Delivery Tools. Mol Pharm 2023; 20:341-356. [PMID: 36445335 DOI: 10.1021/acs.molpharmaceut.2c00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-impermeable and negatively charged compounds' cellular uptake across the cell membranes remains challenging. Herein, the synthesis of four linear [(WWRR)2, (WWRR)3, (WWRR)4, and (WWRR)5] and four cyclic ([WWRR]2, [WWRR]3, [WWRR]4, and [WWRR]5) peptides containing alternate two tryptophan (WW) and two arginine (RR) residues and their biological evaluation as molecular transporters are reported. The peptides did not show any significant cytotoxicity in different cell lines (MDA-MB-23, SK-OV-3, and HEK 293) at a concentration of 5 μM and after 3 h of incubation time. The uptake of fluorescence-labeled cargo molecules (F'-GpYEEI, F'-siRNA, and F'-3TC) in the presence of the peptides was monitored in different cell lines (SK-OV-3 and MDA-MB-231) with fluorescence-activated cell sorting. Among all the peptides, [WWRR]5 (C4) showed the highest cellular uptake of cargo molecules, indicating it can act as effective molecular transporter. Confocal microscopy in MDA-MB-231 cells showed the cellular uptake of F'-GpYEEI in the presence of C4 and the intracellular localization of fluorescence-labeled C4 (F'-C4) in the cytosol. The F'-C4 cellular uptake was found to be concentration- and time-dependent, as shown by flow cytometry in MDA-MB-231 cells. Confocal microscopy and flow cytometry of F'-C4 in MDA-MB-231 cells were examined alone and in the presence of different endocytosis inhibitors (chlorpromazine, methyl-β-cyclodextrin, chloroquine, and nystatin). The data showed that the cellular uptake of F'-C4 in the presence of chlorpromazine, chloroquine, and methyl-β-cyclodextrin was reduced but not completely eliminated, indicating that both energy-independent and energy-dependent pathways contributed to the cellular uptake of F'-C4. Similar results were obtained using the confocal microscopy of C4 and F'-GpYEEI in the presence of endocytosis inhibitors (chlorpromazine, methyl-β-cyclodextrin, chloroquine, and nystatin). These data indicate that C4 has the potential to be used as a cell-penetrating peptide and cargo transporter.
Collapse
Affiliation(s)
- Lois Kim
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Jonathan Moreno
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 82826, Saudi Arabia
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
4
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
5
|
Qureshi A, Ouattara LA, El-Sayed NS, Verma A, Doncel GF, Choudhary MI, Siddiqui H, Parang K. Synthesis and Evaluation of Anti-HIV Activity of Mono- and Di-Substituted Phosphonamidate Conjugates of Tenofovir. Molecules 2022; 27:4447. [PMID: 35889320 PMCID: PMC9316519 DOI: 10.3390/molecules27144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97-99% inhibition) at 10-100 ng/mL but was more potent than TAF when compared at molar concentration.
Collapse
Affiliation(s)
- Aaminat Qureshi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Louise A. Ouattara
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Amita Verma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Biochemistry, King Abdul Aziz University, Jeddah 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Campus C, Surabaya 60115, Indonesia
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
| |
Collapse
|
6
|
Agarwal HK, Chhikara BS, Ye G, Bhavaraju S, Dixit A, Kumar A, Doncel GF, Parang K. Synthesis and Biological Evaluation of 5'- O-Fatty Acyl Ester Derivatives of 3'-Fluoro-2',3'-dideoxythymidine as Potential Anti-HIV Microbicides. Molecules 2022; 27:3352. [PMID: 35630829 PMCID: PMC9143043 DOI: 10.3390/molecules27103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), 5′-O-(12-azidododecanoyl) (5), 5′-O-myristoyl (6), and 5′-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 μM, 1.1 μM, and <0.2 μM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 μM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either β-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Hitesh K. Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, 709 Mall Boulevard, Savannah, GA 31406, USA
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Bhupender S. Chhikara
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Guofeng Ye
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Sitaram Bhavaraju
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Ajay Dixit
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
- ITC Life Science & Technology Center, #3, 1st Main, Peenya Industrial Area, 1st Phase, Bangalore 560058, India
| | - Anil Kumar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Salehi D, Mozaffari S, Zoghebi K, Lohan S, Mandal D, Tiwari RK, Parang K. Amphiphilic Cell-Penetrating Peptides Containing Natural and Unnatural Amino Acids as Drug Delivery Agents. Cells 2022; 11:cells11071156. [PMID: 35406720 PMCID: PMC8997995 DOI: 10.3390/cells11071156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial fibroblast uterine sarcoma cells (MES-SA). A concentration of 5–10 µM and 3 h incubation were selected in uptake studies. The cellular uptake of a fluorescent-labeled phosphopeptide, stavudine, lamivudine, emtricitabine, and siRNA was determined in the presence of peptides via flow cytometry. Among the peptides, [DipR]5 (10 µM) was found to be the most efficient transporter and significantly improved the uptake of F’-GpYEEI, i.e., by approximately 130-fold after 3 h incubation in CCRF-CEM cells. Confocal microscopy further confirmed the improved delivery of fluorescent-labeled [DipR]5 (F’-[K(DipR)5]) alone and F’-GpYEEI in the presence of [DipR]5 in MDA-MB-231 cells. The uptake of fluorescent-labeled siRNA (F’-siRNA) in the presence of [DipR]5 with N/P ratios of 10 and 20 was found to be 30- and 50-fold higher, respectively, compared with the cells exposed to F’-siRNA alone. The presence of endocytosis inhibitors, i.e., nystatin, chlorpromazine, chloroquine, and methyl β-cyclodextrin, did not completely inhibit the cellular uptake of F’-[K(DipR)5] alone or F’-GpYEEI in the presence of [DipR]5, suggesting that a combination of mechanisms contributes to uptake. Circular dichroism was utilized to determine the secondary structure, while transmission electron microscopy was used to evaluate the particle sizes and morphology of the peptides. The data suggest the remarkable membrane transporter property of [DipR]5 for improving the delivery of various small molecules and cell-impermeable negatively charged molecules (e.g., siRNA and phosphopeptide).
Collapse
Affiliation(s)
- David Salehi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| |
Collapse
|
8
|
El-Sayed NS, Jureka AS, Edwards MR, Lohan S, Williams CG, Keiser PT, Davey RA, Totonchy J, Tiwari RK, Basler CF, Parang K. Synthesis and antiviral activity of fatty acyl conjugates of remdesivir against severe acute respiratory syndrome coronavirus 2 and Ebola virus. Eur J Med Chem 2021; 226:113862. [PMID: 34583312 PMCID: PMC8454092 DOI: 10.1016/j.ejmech.2021.113862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 01/18/2023]
Abstract
We report here the synthesis, purification, and characterization of mono- and di-fatty acyl conjugates of remdesivir (RDV) and their in vitro antiviral activity against SAR-CoV-2, an Ebola virus transcription- and replication-competent virus-like particle (trVLP) system, and infectious Ebola virus. The most potent monofatty acyl conjugate was 4b, containing a 4-oxatetradecanolyl at the 3' position. Monofatty acyl conjugates, 3'-O-tetradecanoyl (4a) (IC50(VeroE6) = 2.3 μM; IC50(Calu3) = 0.24 μM), 3'-O-4-oxatetradodecanoyl (4b) (IC50(VeroE6) = 2.0 μM; IC50(Calu3) = 0.18 μM), and 3'-O-(12-ethylthiododecanoyl) (4e) (IC50(VeroE6) = 2.4 μM; IC50(Calu3) = 0.25 μM) derivatives exhibited less activity than RDV (IC50(VeroE6) = 0.85 μM; IC50(Calu3) = 0.06 μM) in both VeroE6 and Calu3 cells. Difatty acylation led to a significant reduction in the antiviral activity of RDV (as shown in conjugates 5a and 5b) against SARS-CoV-2 when compared with monofatty acylation (3a-e and 4a-e). About 77.9% of 4c remained intact after 4 h incubation with human plasma while only 47% of parent RDV was observed at the 2 h time point. The results clearly indicate the effectiveness of fatty acylation to improve the half-life of RDV. The antiviral activities of a number of monofatty acyl conjugates of RDV, such as 3b, 3e, and 4b, were comparable with RDV against the Ebola trVLP system. Meanwhile, the corresponding physical mixtures of RDV and fatty acids 6a and 6b showed 1.6 to 2.2 times less antiviral activity than the corresponding conjugates, 4a and 4c, respectively, against SARS-CoV-2 in VeroE6 cells. A significant reduction in viral RNA synthesis was observed for selected compounds 3a and 4b consistent with the IC50 results. These studies indicate the potential of these compounds as long-acting antiviral agents or prodrugs of RDV.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA; Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. former (El-Tahrir St.), Dokki, Giza P.O. Box, 12622, Egypt
| | - Alexander S Jureka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA
| | - Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA
| | | | - Robert A Davey
- NEIDL, 620 Albany St, Boston University, Boston, MA, 02118, USA
| | - Jennifer Totonchy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA.
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA.
| |
Collapse
|
9
|
Khayyatnejad Shoushtari S, Zoghebi K, Sajid MI, Tiwari RK, Parang K. Hybrid Cyclic-Linear Cell-Penetrating Peptides Containing Alternative Positively Charged and Hydrophobic Residues as Molecular Transporters. Mol Pharm 2021; 18:3909-3919. [PMID: 34491768 DOI: 10.1021/acs.molpharmaceut.1c00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell membrane properties create a significant obstacle in intracellular delivery of cell-impermeable and negatively charged molecules. Herein, we report the synthesis and biological evaluation of a novel series of hybrid cyclic-linear peptides containing alternative positive and hydrophobic amino acids on the ring and side chain [(RW)5]K(RW)X (X = 1-5) to compare their molecular transporter efficiency. The peptides were synthesized through Fmoc solid-phase peptide synthesis. In vitro cytotoxicity of the peptides showed that the peptides did not exhibit any significant cytotoxicity at the concentration of 10 μM in human leukemia carcinoma cell line (CCRF-CEM), human ovarian adenocarcinoma cells (SK-OV-3), human epithelial embryonic kidney healthy (HEK-293), and human epithelial mammary gland adenocarcinoma cells (MDA-MB-231) after 3 h incubation. The cellular uptake of a fluorescence-labeled phosphopeptide (F'-GpYEEI) and anti-human immunodeficiency virus (HIV) drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), Stavudine (F'-d4T)), where F' is carboxyfluorescein, was measured in the presence of the peptides in CCRF-CEM and SK-OV-3 cells. Among all peptides, [(RW)5K](RW)5 (10 μM) was the most efficient transporter that improved the cellular uptake of F'-GpYEEI (2 μM) by 18- and 11-fold in CCRF-CEM and SK-OV-3, respectively, compared with F'-GpYEEI alone. Fluorescence-activated cell sorting (FACS) analysis results indicated that the cellular uptake of fluorescence-labeled peptide (F'-[(RW)5K](RW)5) was only partially inhibited by chlorpromazine as an endocytosis inhibitor after 3 h incubation in MDA-MB-231 cells. These data suggest the potential of this series of hybrid cyclic-linear peptides as cell-penetrating peptides and molecular transporters.
Collapse
Affiliation(s)
- Sorour Khayyatnejad Shoushtari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
10
|
Mohammed EHM, Mandal D, Mozaffari S, Abdel-Hamied Zahran M, Mostafa Osman A, Kumar Tiwari R, Parang K. Comparative Molecular Transporter Properties of Cyclic Peptides Containing Tryptophan and Arginine Residues Formed through Disulfide Cyclization. Molecules 2020; 25:2581. [PMID: 32498339 PMCID: PMC7321319 DOI: 10.3390/molecules25112581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4-5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast carcinoma (MDA-MB-231), and normal kidney (LLCPK) cells after 24 and 72 h incubation. Both cyclic [C(WR)5C] and linear (C(WR)5C) demonstrated comparable molecular transporter properties versus [WR]5 in the delivery of a phosphopeptide (F'-GpYEEI) in CCRF-CEM cells. The uptake of F'-GpYEEI in the presence of 1,4-dithiothreitol (DTT) as the reducing agent was significantly improved in case of l(C(WR)5C), while it was not changed by [C(WR)5C]. Fluorescence microscopy also demonstrated a significant uptake of F'-GpYEEI in the presence of l(C(WR)5C). Cyclic [C(WR)5C] improved the uptake of the fluorescent-labeled anti-HIV drugs F'-d4T, F'-3TC, and F'-FTC by 3.0-4.9-fold. These data indicate that both [C(WR)5C] and linear (C(WR)5C) peptides can act as molecular transporters.
Collapse
Affiliation(s)
- Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
- Chemistry Department, Faculty of Science, Chemistry department, Menoufia University, Shebin El-Koam 51132, Egypt; (M.A.-H.Z.); (A.M.O.)
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| | - Magdy Abdel-Hamied Zahran
- Chemistry Department, Faculty of Science, Chemistry department, Menoufia University, Shebin El-Koam 51132, Egypt; (M.A.-H.Z.); (A.M.O.)
| | - Amany Mostafa Osman
- Chemistry Department, Faculty of Science, Chemistry department, Menoufia University, Shebin El-Koam 51132, Egypt; (M.A.-H.Z.); (A.M.O.)
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| |
Collapse
|
11
|
Parang K, El-Sayed NS, Kazeminy AJ, Tiwari RK. Comparative Antiviral Activity of Remdesivir and Anti-HIV Nucleoside Analogs Against Human Coronavirus 229E (HCoV-229E). Molecules 2020; 25:2343. [PMID: 32429580 PMCID: PMC7287735 DOI: 10.3390/molecules25102343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Remdesivir is a nucleotide prodrug that is currently undergoing extensive clinical trials for the treatment of COVID-19. The prodrug is metabolized to its active triphosphate form and interferes with the action of RNA-dependent RNA polymerase of SARS-COV-2. Herein, we report the antiviral activity of remdesivir against human coronavirus 229E (HCoV-229E) compared to known anti-HIV agents. These agents included tenofovir (TFV), 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC), known as nucleoside reverse-transcriptase inhibitors (NRTIs), and a number of 5'-O-fatty acylated anti-HIV nucleoside conjugates. The anti-HIV nucleosides interfere with HIV RNA-dependent DNA polymerase and/or act as chain terminators. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. The study revealed that remdesivir exhibited an EC50 value of 0.07 µM against HCoV-229E with TC50 of > 2.00 µM against MRC-5 cells. Parent NRTIs were found to be inactive against (HCoV-229E) at tested concentrations. Among all the NRTIs and 5'-O-fatty acyl conjugates of NRTIs, 5'-O-tetradecanoyl ester conjugate of FTC showed modest activity with EC50 and TC50 values of 72.8 µM and 87.5 µM, respectively. These data can be used for the design of potential compounds against other coronaviruses.
Collapse
Affiliation(s)
- Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.J.K.)
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.J.K.)
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. former (El-Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Assad J. Kazeminy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.J.K.)
- AJK Biopharmaceutical LLC, 5270 California Ave, Irvine, CA 92697, USA
| | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.J.K.)
| |
Collapse
|
12
|
Takalani F, Kumar P, Kondiah PPD, Choonara YE, Pillay V. Lipid-drug conjugates and associated carrier strategies for enhanced antiretroviral drug delivery. Pharm Dev Technol 2019; 25:267-280. [PMID: 31744408 DOI: 10.1080/10837450.2019.1694037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mortality rate of patients infected with HIV-1 has been significantly reduced by using HAART. However, the virus to date has not been eradicated. Transmission of HIV-1 infection through sexual intercourse remains an ongoing challenge, with increased risk of infection occurring in women. Interestingly, ARV drugs can be chemically linked with lipids to produce lipid-drug conjugates (LDCs). This alters pharmacokinetic properties of ARV drugs and thereby resulting in improved effectiveness. Although LDCs can be administered without a delivery carrier, they are usually incorporated into suitable delivery systems such as lipid nanoparticles, polymeric nanoparticles, micelles, liposomes, emulsions, and carbon nanotubes. Given that LDCs have the potential to improve oral bioavailability, lipophilicity, toxicity, and drug targeting, it is of our great interest to review strategies of lipid-drug conjugation together with their delivery systems for enhanced antiretroviral efficacy.
Collapse
Affiliation(s)
- Funanani Takalani
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Smith N, Bade AN, Soni D, Gautam N, Alnouti Y, Herskovitz J, Ibrahim IM, Wojtkiewicz MS, Dyavar Shetty BL, McMillan J, Gendelman HE, Edagwa B. A long acting nanoformulated lamivudine ProTide. Biomaterials 2019; 223:119476. [PMID: 31525692 DOI: 10.1016/j.biomaterials.2019.119476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ibrahim M Ibrahim
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melinda S Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Hanna S, Mozaffari S, Tiwari RK, Parang K. Comparative Molecular Transporter Efficiency of Cyclic Peptides Containing Tryptophan and Arginine Residues. ACS OMEGA 2018; 3:16281-16291. [PMID: 31458264 PMCID: PMC6643651 DOI: 10.1021/acsomega.8b02589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/14/2018] [Indexed: 06/10/2023]
Abstract
Cyclic peptides containing tryptophan (W) and arginine (R) residues, [WR]5, [WR]6, [WR]7, [WR]8, and [WR]9, were synthesized through Fmoc solid-phase chemistry to compare their molecular transporter efficiency. The in vitro cytotoxicity of the peptides was evaluated using human leukemia carcinoma cell line (CCRF-CEM) and normal kidney cell line (LLC-PK1). [WR]6, [WR]7, [WR]8, and [WR]9 were not significantly cytotoxic to LLC-PK1cells at a concentration of 10 μM after 3 h incubation. Among all the peptides, [WR]9 was found to be a more efficient transporter than [WR]5, [WR]6, [WR]7, and [WR]8 in CCRF-CEM cells for delivery of a cell-impermeable fluorescence-labeled negatively charged phosphopeptide (F'-GpYEEI). [WR]9 (10 μM) improved the cellular uptake of F'-GpYEEI (2 μM) by 20-fold. The cellular uptake of a fluorescent conjugate of [WR]9, F'-[W9R8K], was increased in a concentration- and time-dependent pattern in CCRF-CEM cells. The uptake of F'-[W9R8K] was slightly reduced in CCRF-CEM cells in the presence of different endocytic inhibitors, such as nystatin, 5-(N-ethyl-N-isopropyl)amiloride, chlorpromazine, chloroquine, and methyl β-cyclodextrin. Furthermore, the uptake of F'-[W9R8K] was shown to be temperature-dependent and slightly adenosine 5'-triphosphate-dependent. The intracellular/cellular localization (in the nucleus and cytoplasm) of F'-[W9R8K] was confirmed by fluorescent microscopy in CCRF-CEM cells. These studies suggest that large cyclic peptides containing arginine and tryptophan can be used as a molecular transporter of specific compounds.
Collapse
|
15
|
Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, Gorantla S, McMillan J, Gautam N, Mosley RL, Alnouti Y, Edagwa B, Gendelman HE. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 2017; 151:53-65. [PMID: 29059541 PMCID: PMC5926202 DOI: 10.1016/j.biomaterials.2017.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/24/2023]
Abstract
Long-acting parenteral (LAP) antiretroviral drugs have generated considerable interest for treatment and prevention of HIV-1 infection. One new LAP is cabotegravir (CAB), a highly potent integrase inhibitor, with a half-life of up to 54 days, allowing for every other month parenteral administrations. Despite this excellent profile, high volume dosing, injection site reactions and low body fluid drug concentrations affect broad use for virus infected and susceptible people. To improve the drug delivery profile, we created a myristoylated CAB prodrug (MCAB). MCAB formed crystals that were formulated into nanoparticles (NMCAB) of stable size and shape facilitating avid monocyte-macrophage entry, retention and reticuloendothelial system depot formulation. Drug release kinetics paralleled sustained protection against HIV-1 challenge. After a single 45 mg/kg intramuscular injection to BALB/cJ mice, the NMCAB pharmacokinetic profiles was 4-times greater than that recorded for CAB LAP. These observations paralleled replicate measurements in rhesus macaques. The results coupled with improved viral restriction in human adult lymphocyte reconstituted NOD/SCID/IL2Rγc-/- mice led us to conclude that NMCAB can improve biodistribution and viral clearance profiles upon current CAB LAP formulations.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam Szlachetka
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; Nebraska Nanomedicine Production Plant, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
16
|
Akhtar R, Yousaf M, Zahoor AF, Naqvi SAR, Abbas N. Synthesis of lamivudine (3TC) and its derivatives. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1321648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yousaf
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Najum Abbas
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
17
|
Abstract
Supplemental Digital Content is Available in the Text. Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release.
Collapse
|
18
|
Agarwal HK, Chhikara BS, Doncel GF, Parang K. Synthesis and anti-HIV activities of unsymmetrical long chain dicarboxylate esters of dinucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2017; 27:1934-1937. [PMID: 28351588 DOI: 10.1016/j.bmcl.2017.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/28/2022]
Abstract
A series of 11 unsymmetrical dicarboxylate conjugates of dinucleoside reverse transcriptase inhibitors were synthesized. Three dicarboxylic acids, succinic acid, suberic acid and 1,14-tetradecandioc acid, were diesterified with either 3'-azido-2',3'-dideoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine (FLT), 2',3'-dideoxy-3'-thiacytidine (3TC), or 5-fluoro-2',3'-dideoxy-3'-thiacytidine (FTC). The anti-HIV activity of synthesized compounds was evaluated against HIV-1 X4 (IIIB) and R5 (BaL) viral strains in single-round infection assays. Results indicated that the tetradecandioate esters of nucleosides were more active against HIV than the corresponding parent nucleosides and nucleoside conjugates. The tetradecandioate conjugate of FLT and FTC (5) was found to be the most potent compounds with EC50 values of 47 and 75nM against X4 and R5 HIV-1 strains, respectively, while the EC50 values for the parent analogs, FLT and FTC, ranged from 700 to 3300nM.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- School of Pharmacy, South University, 10 Science Court, Columbia, SC 29203, United States
| | - Bhupender S Chhikara
- Department of Chemistry, University of Delhi, Aditi Mahavidyalaya, Bawana, Delhi 110039, India
| | - Gustavo F Doncel
- CONRAD, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Irvine, CA 92618, United States.
| |
Collapse
|
19
|
Laskar K, Alam P, Khan RH, Rauf A. Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): A combined multi-spectroscopic and molecular docking study. Eur J Med Chem 2016; 122:72-78. [DOI: 10.1016/j.ejmech.2016.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
|
20
|
Singh D, McMillan J, Hilaire J, Gautam N, Palandri D, Alnouti Y, Gendelman HE, Edagwa B. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine (Lond) 2016; 11:1913-27. [PMID: 27456759 DOI: 10.2217/nnm-2016-0164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A myristoylated abacavir (ABC) prodrug was synthesized to extend drug half-life and bioavailability. METHODS Myristoylated ABC (MABC) was made by esterifying myristic acid to the drug's 5-hydroxy-cyclopentene group. Chemical composition, antiretroviral activity, cell uptake and retention and cellular trafficking of free MABC and poloxamer nanoformulations of MABC were assessed by proton nuclear magnetic resonance and tested in human monocyte-derived macrophages. Pharmacokinetics of ABC and nanoformulated MABC were evaluated after intramuscular injection into mice. RESULTS MABC antiretroviral activity in monocyte-derived macrophages was comparable to native drug. Encasement of MABC into poloxamer nanoparticles extended drug bioavailability for 2 weeks. CONCLUSION MABC synthesis and encasement in polymeric nanoformulations improved intracellular drug accumulation and demonstrate translational potential as part of a long-acting antiretroviral regimen.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Pemmaraju BP, Malekar S, Agarwal HK, Tiwari RK, Oh D, Doncel GF, Worthen DR, Parang K. Design, synthesis, antiviral activity, and pre-formulation development of poly-L-arginine-fatty acyl derivatives of nucleoside reverse transcriptase inhibitors. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:1-15. [PMID: 25513860 DOI: 10.1080/15257770.2014.945649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this work was to design conjugates of anti-HIV nucleosides conjugated with fatty acids and cell-penetrating poly-L-arginine (polyArg) peptides. Three conjugates of polyArg cell-penetrating peptides with fatty acyl derivatives of alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC) were synthesized. In general, the compounds exhibited anti-HIV activity against X4 and R5 cell-free virus with EC50 values of 1.5-16.6 μM. FLT-CO-(CH2)12-CO-(Arg)7 exhibited EC50 values of 2.9 μM and 3.1 μM against X4 and R5 cell-free virus, respectively. The FLT conjugate was selected for further preformulation studies by determination of solution state degradation and lipid solubility. The compound was found to be stable in neutral and oxidative conditions and moderately stable in heated conditions.
Collapse
Affiliation(s)
- Bhanu P Pemmaraju
- a Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , University of Rhode Island , Kingston , RI , United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kokosza K, Balzarini J, Piotrowska DG. Novel 5-arylcarbamoyl-2-methylisoxazolidin-3-yl-3-phosphonates as nucleotide analogues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:552-82. [PMID: 25009989 DOI: 10.1080/15257770.2014.909046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of 5-substituted 3-phosphonylated isoxazolidines have been obtained via cycloaddition of N-methyl-C-(diethoxyphosphoryl)nitrone with N-heteroaromatic acrylamides. Good trans/cis diastereoselectivities (d.e. 58-76%) of isomeric (3-diethoxyphosphoryl)isoxazolidines were observed. cis- and trans-Isoxazolidine phosphonates were evaluated for their antiviral activity against a broad range of DNA and RNA viruses but were found inactive. Their cytostatic activity toward L1210, CEM, and HeLa cells was also established, and compounds cis-12r and trans-11r having a 2,2-difluorobenzo[d][1,3]dioxole moiety slightly inhibited proliferation of HeLa cells at IC50 values of 186 and 179 μM, respectively.
Collapse
Affiliation(s)
- Kamil Kokosza
- a Bioorganic Chemistry Laboratory, Faculty of Pharmacy , Medical University of Łódź , Łódź , Muszyńskiego , Poland
| | | | | |
Collapse
|
23
|
Chhikara BS, Rao MS, Rao VK, Kumar A, Buckheit KW, Buckheit Jr. RW, Parang K. Carbocyclodipeptides as modified nucleosides: synthesis and anti-HIV activities. CAN J CHEM 2014; 92:1145-1149. [DOI: 10.1139/cjc-2014-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
A new class of nucleoside analogues were synthesized using cyclic dipeptides and modified 2′-deoxyfuranoribose sugars to introduce flexibility by peptides in place of common nucleoside bases and to determine their biological properties. The synthesis was carried out by coupling of a protected ribose sugar with synthesized dipeptides in the presence of hexamethyldisilazane and trimethylsilyltriflate. The final products were characterized by NMR and high-resolution MS-TOF spectroscopy. The compounds were evaluated for anti-HIV activities. 1-(4-Azido-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3,6-diisopropylpiperazine-2,5-dione (compound 14) containing 3- and 6-isopropyl groups in the base and 3′-azide (EC50 = 1.96 μmol/L) was the most potent compound among all of the synthesized analogs.
Collapse
Affiliation(s)
- Bhupender S. Chhikara
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - M. Sudershan Rao
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031 Rajasthan, India
| | - V. Kameshwara Rao
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031 Rajasthan, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031 Rajasthan, India
| | - Karen W. Buckheit
- ImQuest BioSciences Inc., 7340 Executive Way, Suite R, Frederick, MD 21704, USA
| | | | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031 Rajasthan, India
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| |
Collapse
|
24
|
Cho JH, Bondana L, Detorio MA, Montero C, Bassit LC, Amblard F, Coats SJ, Schinazi RF. Synthesis and antiviral evaluation of 2-amino-6-carbamoylpurine dioxolane nucleoside derivatives and their phosphoramidates prodrugs. Bioorg Med Chem 2014; 22:6665-6671. [PMID: 25458500 DOI: 10.1016/j.bmc.2014.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
Abstract
The synthesis of 9-(β-d-1,3-dioxolan-4-yl)2,6-diaminopurine nucleoside phosphoramidate prodrugs as well as various 2-amino-6-carbamoylpurine dioxolane derivatives and their phosphoramidates prodrugs is reported. Their ability to block HIV and HBV replication along with their cytotoxicity toward HepG2, human lymphocyte, CEM and Vero cells was also assessed.
Collapse
Affiliation(s)
- Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| | - Lavanya Bondana
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| | - Mervi A Detorio
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| | - Cathy Montero
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| | - Leda C Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| | - Steven J Coats
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, 1670 Haygood Drive, NE, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Pemmaraju B, Agarwal HK, Oh D, Buckheit KW, Buckheit RW, Tiwari R, Parang K. Synthesis and Biological Evaluation of 5'- O-Dicarboxylic Fatty Acyl Monoester Derivatives of Anti-HIV Nucleoside Reverse Transcriptase Inhibitors. Tetrahedron Lett 2014; 55:1983-1986. [PMID: 24791029 PMCID: PMC4001930 DOI: 10.1016/j.tetlet.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of 5'-O-dicarboxylic fatty acyl monoester derivatives of 3'-azido-3'-deoxythymidine (zidovudine, AZT), 2',3'-didehydro-2',3'-dideoxythymidine (stavudine, d4T), and 3'-fluoro-3'-deoxythymidine (alovudine, FLT) were synthesized to improve the lipophilicity and potentially the cellular delivery of parent polar 2', 3'-dideoxynucleoside (ddN) analogues. The compounds were evaluated for their anti-HIV activity. Three different fatty acids with varying chain length of suberic acid (octanedioic acid), sebacic acid (decanedioic acid), and dodecanedioic acid were used for the conjugation with the nucleosides. The compounds were evaluated for anti-HIV activity and cytotoxicity. All dicarboxylic ester conjugates of nucleosides exhibited significantly higher anti-HIV activity than that of the corresponding parent nucleoside analogs. Among all the tested conjugates, 5'-O-suberate derivative of AZT (EC50 = 0.10 nM) was found to be the most potent compound and showed 80-fold higher anti-HIV activity than AZT without any significant toxicity (TC50 > 500 nM).
Collapse
Affiliation(s)
- Bhanu Pemmaraju
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Donghoon Oh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Karen W. Buckheit
- ImQuest BioSciences Inc. 7340 Executive Way, Suite R, Frederick, MD, 21704, United States
| | - Robert W. Buckheit
- ImQuest BioSciences Inc. 7340 Executive Way, Suite R, Frederick, MD, 21704, United States
| | - Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
- School of Pharmacy, Chapman University, Orange, CA, 92618, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
- School of Pharmacy, Chapman University, Orange, CA, 92618, United States
| |
Collapse
|
26
|
Shirazi AN, Oh D, Tiwari RK, Sullivan B, Gupta A, Bothun GD, Parang K. Peptide amphiphile containing arginine and fatty acyl chains as molecular transporters. Mol Pharm 2013; 10:4717-27. [PMID: 24215132 PMCID: PMC3873380 DOI: 10.1021/mp400539r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide amphiphiles (PAs) are promising tools for the intracellular delivery of numerous drugs. PAs are known to be biodegradable systems. Here, four PA derivatives containing arginine and lysine conjugated with fatty acyl groups with different chain lengths, namely, PA1: R-K(C14)-R, PA2: R-K(C16)-R, PA3: K(C14)-R-K(C14), and PA4: K(C16)-R-K(C16), where C16 = palmitic acid and C14 = myristic acid, were synthesized through Fmoc chemistry. Flow cytometry studies showed that, among all synthesized PAs, only K(C16)-R-K(C16), PA4 was able to enhance the cellular uptake of a fluorescence-labeled anti-HIV drug 2',3'-dideoxy-3'-thiacythidine (F'-3TC, F' = fluorescein) and a biologically important phosphopeptide (F'-PEpYLGLD) in human leukemia cells (CCRF-CEM) after 2 h incubation. For example, the cellular uptake of F'-3TC and F'-PEpYLGLD was enhanced approximately 7.1- and 12.6-fold in the presence of the PA4 compared to those of the drugs alone. Confocal microscopy of F'-3TC and F'-PEpYLGLD loaded PA4 in live cells showed significantly higher intracellular localization than the drug alone in human ovarian cells (SK-OV-3) after 2 h incubation. The high-performance liquid chromatography (HPLC) results showed that loading of Dox by the peptide amphiphile was 56% after 24 h. The loaded Dox was released (34%) within 48 h intracellularly. The circular dichrosim (CD) results exhibited that the secondary structure of the peptide was changed upon interactions with Dox. Mechanistic studies revealed that endocytosis is the major pathway of the internalization. These studies suggest that PAs containing the appropriate sequence of amino acids, chain length, charge, and hydrophobicity can be used as cellular delivery tools for transporting drugs and biomolecules.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| | - Donghoon Oh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rakesh Kumar Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| | - Brian Sullivan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Anju Gupta
- Department of Biology and Chemistry, Department of Engineering, College of Arts and Sciences, Texas A&M International University, Laredo, Texas 78041, United States
| | - Geoffrey D. Bothun
- Department of Chemical Engineering, College of Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| |
Collapse
|
27
|
Nasrolahi Shirazi A, Tiwari RK, Oh D, Sullivan B, McCaffrey K, Mandal D, Parang K. Surface decorated gold nanoparticles by linear and cyclic peptides as molecular transporters. Mol Pharm 2013; 10:3137-51. [PMID: 23834324 DOI: 10.1021/mp400199e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gold nanoparticles (AuNPs) were synthesized in situ in a green and rapid method from the reaction of reducing linear and cyclic peptides containing tryptophan and lysine residues, (KW)5 and cyclic [KW]5, with an aqueous solution of HAuCl4 and were evaluated as cellular nanodrug delivery systems. The cyclic or linear nature of the peptide was found to determine the morphology and size of the formed peptide-AuNPs and their in vitro molecular transporting efficiency. While cyclic [KW]5-AuNPs formed sponge-like agglomerates, linear (KW)5-AuNPs demonstrated ball-shaped structures. A comparative flow cytometry study showed that the cellular uptake of fluorescence-labeled anti-HIV drugs (emtricitabine (FTC) and lamivudine (3TC)) in human leukemia (CCRF-CEM) cells, and a negatively charged cell-impermeable phosphopeptide (GpYEEI) in human ovarian adecarcinoma (SK-OV-3) cells was significantly higher in the presence of cyclic [KW]5-AuNPs than that of linear (KW)5-AuNPs, parent cyclic [KW]5, and linear (KW)5 peptides. For example, the cellular uptake of F'-GpYEEI was enhanced 12.8-fold by c[KW]5-AuNPs. Confocal microscopy revealed the localization of fluorescence-labeled-3TC in the presence of c[KW]5-AuNPs mostly in nucleus in SK-OV-3 cells after 1 h. On the other hand, l(KW)5-AuNPs delivered fluorescence-labeled-3TC in cytoplasm. These data suggest that noncell penetrating peptides can be converted to efficient molecular transporters through peptide-capped AuNPs formation.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Nasrolahi Shirazi A, Mandal D, Tiwari RK, Guo L, Lu W, Parang K. Cyclic Peptide-Capped Gold Nanoparticles as Drug Delivery Systems. Mol Pharm 2012; 10:500-11. [PMID: 22998473 DOI: 10.1021/mp300448k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, 7 Greenhouse Road,
Kingston, Rhode Island 02881, United States
| | - Dindyal Mandal
- Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, 7 Greenhouse Road,
Kingston, Rhode Island 02881, United States
| | - Rakesh K. Tiwari
- Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, 7 Greenhouse Road,
Kingston, Rhode Island 02881, United States
| | - Liangran Guo
- Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, 7 Greenhouse Road,
Kingston, Rhode Island 02881, United States
| | - Wei Lu
- Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, 7 Greenhouse Road,
Kingston, Rhode Island 02881, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, 7 Greenhouse Road,
Kingston, Rhode Island 02881, United States
| |
Collapse
|
29
|
Agarwal HK, Chhikara BS, Bhavaraju S, Mandal D, Doncel GF, Parang K. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake. Mol Pharm 2012; 10:467-76. [PMID: 22917277 DOI: 10.1021/mp300361a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three fatty acyl conjugates of (-)-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC, emtricitabine) were synthesized and evaluated against HIV-1 cell-free and cell-associated virus and compared with the corresponding parent nucleoside and physical mixtures of FTC and fatty acids. Among all the compounds, the myristoylated conjugate of FTC (5, EC(50) = 0.07-3.7 μM) displayed the highest potency. Compound 5 exhibited 10-24 and 3-13-times higher anti-HIV activity than FTC alone (EC(50) = 0.7-88.6 μM) and the corresponding physical mixtures of FTC and myristic acid (14, EC(50) = 0.2-20 μM), respectively. Cellular uptake studies confirmed that compound 5 accumulated intracellularly after 1 h of incubation and underwent intracellular hydrolysis in CCRF-CEM cells. Alternative studies were conducted using the carboxyfluorescein conjugated with FTC though β-alanine (12) and 12-aminododecanoic acid (13). Acylation of FTC with a long-chain fatty acid in 13 improved its cellular uptake by 8.5-20 fold in comparison to 12 with a short-chain β-alanine. Compound 5 (IC(90) = 15.7-16.1 nM) showed 6.6- and 35.2 times higher activity than FTC (IC(90) = 103-567 nM) against multidrug resistant viruses B-NNRTI and B-K65R, indicating that FTC conjugation with myristic acid generates a more potent analogue with a better resistance profile than its parent compound.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | | | | | | | | |
Collapse
|
30
|
Agarwal HK, Buckheit KW, Buckheit RW, Parang K. Synthesis and anti-HIV activities of symmetrical dicarboxylate esters of dinucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2012; 22:5451-4. [PMID: 22858097 DOI: 10.1016/j.bmcl.2012.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
31
|
Chhikara BS, Tiwari R, Parang K. N-Myristoylglutamic Acid Derivative of 3'-Fluoro-3'-Deoxythymidine as an Organogel. Tetrahedron Lett 2012; 53:5335-5337. [PMID: 23175585 DOI: 10.1016/j.tetlet.2012.07.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Designing microbicidal gels of anti-HIV drugs for local application to prevent HIV infection is a subject of major interest. 3'-Fluoro-3'-deoxythymidine (FLT), a nucleoside reverse transcriptase inhibitor (NRTI), was conjugated with a N-myristoyl glutamate scaffold. The conjugate showed gelation at 1% (w/w) in different organic solvents, such as toluene, dichloromethane, and chloroform. The gels were opaque and stable at room temperature. The results indicate that myristoyl glutamate derivative of FLT can form an organogel. The gel could have potential application as a topical anti-HIV microbicidal agent.
Collapse
Affiliation(s)
- Bhupender S Chhikara
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA
| | | | | |
Collapse
|