1
|
Kushnir J, Gumpper RH. Molecular Glues: A New Approach to Modulating GPCR Signaling Bias. Biochemistry 2025. [PMID: 39900337 DOI: 10.1021/acs.biochem.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
G-protein-coupled receptors (GPCRs) transmit an extracellular chemical/biological signal across the cell membrane, stimulating an array of intracellular signaling cascades. Canonically, these extracellular signaling molecules bind to the endogenous ligand pocket (orthosteric pocket), which stabilizes either an active or inactive conformational ensemble of the receptor. However, recent structural evidence indicates that small molecules can mediate the protein-protein interactions between the GPCR and their intracellular transducers. These small molecules are reminiscent of molecular glues and can be powerful tools for modulating GPCR signaling bias. In this Perspective, we will investigate the current structural information available on molecular glues and how they modulate GPCR signaling bias. We also examine the prospects of molecular glues and GPCR drug/probe design.
Collapse
Affiliation(s)
- Jamie Kushnir
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7365, United States
| | - Ryan H Gumpper
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7365, United States
| |
Collapse
|
2
|
Borah MP, Trakroo D, Soni N, Kumari P, Baidya M. Exploring Bias in GPCR Signaling and its Implication in Drug Development: A One-Sided Affair. Biochemistry 2024. [PMID: 39613476 DOI: 10.1021/acs.biochem.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in regulating numerous physiological processes through their interactions with two key effectors: G proteins and β-arrestins (βarrs). This makes them crucial targets for therapeutic drug development. Interestingly, the evolving concept of biased signaling where ligands selectively activate either the G proteins or the βarrs has not only refined our understanding of segregation of physiological responses downstream of GPCRs but has also revolutionized drug discovery, offering the potential for treatments with enhanced efficacy and minimal side effects. This Review explores the mechanisms behind biased agonism, exploring it through various lenses, including ligand, receptor, cellular systems, location, and tissue-specific biases. It also offers structural insights into both orthosteric and allosteric ligand-binding pockets, structural rearrangements associated with the loops, and how ligand-engineering can contribute to biased signaling. Moreover, we also discuss the unique conformational signature in an intrinsically biased GPCR, which currently remains relatively less explored and adds a new dimension in biased signaling. Lastly, we address the translational challenges and practical considerations in characterizing bias, emphasizing its therapeutic potential and the latest advancements in drug development. By designing ligands that target specific signaling pathways, biased signaling presents a transformative approach to creating safer and more effective therapies. This Review focuses on our current understanding of GPCR-biased signaling, discussing potential mechanisms that lead to bias, the effect of bias on GPCR structures at a molecular level, recent advancements, and its profound potential to drive innovation in drug discovery.
Collapse
Affiliation(s)
- Madhurjya Protim Borah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| | - Deepika Trakroo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| | - Neeraj Soni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| | - Punita Kumari
- Indian Institute of Science Education and Research Bhopal (IISERB), Department of Biological Sciences, Bhopal, Madhya Pradesh 462066, India
| | - Mithu Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| |
Collapse
|
3
|
Roth BL, Krumm BE. Molecular glues as potential GPCR therapeutics. Biochem Pharmacol 2024; 228:116402. [PMID: 38945274 DOI: 10.1016/j.bcp.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
"Molecular Glues" are defined as small molecules that can either be endogenous or synthetic which promote interactions between proteins at their interface. Allosteric modulators, specifically GPCR allosteric modulators, can promote both the association and the dissociation of a given receptor's transducer but accomplishes this "at a distance" from the interface. However, recent structures of GPCR G protein complexes in the presence of allosteric modulators indicate that some GPCR allosteric modulators can act as "molecular glues" interacting with both the receptor and the transducer at the interface biasing transducer signaling in both a positive and negative manner depending on the transducer. Given these phenomena we discuss the implications for this class of allosteric modulators to be used as molecular tools and for future drug development.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Kee TR, Khan SA, Neidhart MB, Masters BM, Zhao VK, Kim YK, McGill Percy KC, Woo JAA. The multifaceted functions of β-arrestins and their therapeutic potential in neurodegenerative diseases. Exp Mol Med 2024; 56:129-141. [PMID: 38212557 PMCID: PMC10834518 DOI: 10.1038/s12276-023-01144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2024] Open
Abstract
Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that β-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). β-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, β-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, β-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the β2AR regulates SNCA gene expression. In this review, we aim to provide an overview of β-arrestin1 and β-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of β-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, 33613, USA
| | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Maya B Neidhart
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna M Masters
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Victoria K Zhao
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Yenna K Kim
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jung-A A Woo
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Hetzler B, Donthamsetti P, Peitsinis Z, Stanley C, Trauner D, Isacoff EY. Optical Control of Dopamine D2-like Receptors with Cell-Specific Fast-Relaxing Photoswitches. J Am Chem Soc 2023; 145:18778-18788. [PMID: 37586061 PMCID: PMC10472511 DOI: 10.1021/jacs.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.
Collapse
Affiliation(s)
- Belinda
E. Hetzler
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Prashant Donthamsetti
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zisis Peitsinis
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Cherise Stanley
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry and Department of Systems Pharmacology and Translational
Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ehud Y. Isacoff
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- Helen
Wills Neuroscience Institute, University
of California, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Liu R, Qi J, Wang H, Fan L, Zhang P, Yu J, Tan L, Wang S, Cheng J. Transformation of a Dopamine D 2 Receptor Agonist to Partial Agonists as Novel Antipsychotic Agents. J Med Chem 2023; 66:6274-6287. [PMID: 37130037 DOI: 10.1021/acs.jmedchem.3c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Designed ligands of G protein-coupled receptors can exert a spectrum of modulating effects, varying from full agonists and partial agonists to antagonists and inverse agonists. For the dopamine D2 receptor (D2R), partial agonist activity is the pharmacological feature of the third-generation antipsychotics, including aripiprazole, brexpiprazole, and cariprazine. Started from a benzofuran-derived D2R full agonist O4LE6 (4), which was identified using a structure-based method by us in previous studies, a series of D2R partial agonists were designed and synthesized by introducing different tail groups. Among them, compound 10b showed excellent activity in D2R pharmacological assays. Further optimizations using a structural rigidification approach led to the discovery of brain-penetrant compounds 29c and 29d, which exhibited potent antipsychotic effects in the mouse hyperlocomotion model. Compound 29c also showed excellent drug-like pharmacokinetic properties in rats and qualifies as an antipsychotic agent that is worth further evaluations.
Collapse
Affiliation(s)
- Ruiquan Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jianzhong Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Luyu Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Pei Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Yu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liang Tan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
7
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
8
|
Wenk D, Khan S, Ignatchenko V, Hübner H, Gmeiner P, Weikert D, Pischetsrieder M, Kislinger T. Phosphoproteomic Analysis of Dopamine D2 Receptor Signaling Reveals Interplay of G Protein- and β-Arrestin-Mediated Effects. J Proteome Res 2023; 22:259-271. [PMID: 36508580 PMCID: PMC9831068 DOI: 10.1021/acs.jproteome.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leveraging biased signaling of G protein-coupled receptors has been proposed as a promising strategy for the development of drugs with higher specificity. However, the consequences of selectively targeting G protein- or β-arrestin-mediated signaling on cellular functions are not comprehensively understood. In this study, we utilized phosphoproteomics to gain a systematic overview of signaling induced by the four biased and balanced dopamine D2 receptor (D2R) ligands MS308, BM138, quinpirole, and sulpiride in an in vitro D2R transfection model. Quantification of 14,160 phosphosites revealed a low impact of the partial G protein agonist MS308 on cellular protein phosphorylation, as well as surprising similarities between the balanced agonist quinpirole and the inverse agonist sulpiride. Analysis of the temporal profiles of ligand-induced phosphorylation events showed a transient impact of the G protein-selective agonist MS308, whereas the β-arrestin-preferring agonist BM138 elicited a delayed, but more pronounced response. Functional enrichment analysis of ligand-impacted phosphoproteins and treatment-linked kinases confirmed multiple known functions of D2R signaling while also revealing novel effects, for example of MS308 on sterol regulatory element-binding protein-related gene expression. All raw data were deposited in MassIVE (MSV000089457).
Collapse
Affiliation(s)
- Deborah Wenk
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Shahbaz Khan
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Harald Hübner
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Monika Pischetsrieder
- Food
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Thomas Kislinger
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada,Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada,
| |
Collapse
|
9
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Qi Y, Xue B, Chen S, Wang W, Zhou H, Chen H. Synthesis, biological evaluation, and molecular docking of novel hydroxyzine derivatives as potential AR antagonists. Front Chem 2022; 10:1053675. [DOI: 10.3389/fchem.2022.1053675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is a malignant tumor with a higher mortality rate in the male reproductive system. In this study, the hydroxyazine derivatives were synthesized with different structure from traditional anti-prostate cancer drugs. In the evaluation of in vitro cytotoxicity and antagonistic activity of PC-3, LNCaP, DU145 and androgen receptor, it was found that the mono-substituted derivatives on the phenyl group (4, 6, 7, and 9) displayed strong cytotoxic activities, and compounds 11–16 showed relatively strong antagonistic potency against AR (Inhibition% >55). Docking analysis showed that compounds 11 and 12 mainly bind to AR receptor through hydrogen bonds and hydrophobic bonds, and the structure-activity relationship was discussed based on activity data. These results suggested that these compounds may have instructive implications for drug structural modification in prostate cancer.
Collapse
|
11
|
Qi Y, Chen H, Chen S, Shen J, Li J. Synthesis, bioactivity, and molecular docking of novel arylpiperazine derivatives as potential AR antagonists. Front Chem 2022; 10:947065. [PMID: 36046733 PMCID: PMC9420858 DOI: 10.3389/fchem.2022.947065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is one of the malignant tumors and the second most common malignant tumor in men. Clinically used androgen receptor (AR)–targeted drugs can antagonize androgen and inhibit tumor growth, but these drugs can cause serious resistance problems. To develop novel AR antagonists, 22 kinds of arylpiperazine derivatives were designed and synthesized, and the derivatives 5, 8, 12, 19, 21, 22, 25, and 26 not only showed strong antagonistic potency (>55% inhibition) and binding affinities (IC50 <3 μM) to AR, but also showed stronger inhibitory activity to LNCaP cells versus PC-3 cells. Among them, derivative 21 exhibited the highest binding affinity for AR (IC50 = 0.65 μM) and the highest antagonistic potency (76.2% inhibition). Docking studies suggested that the derivative 21 is primarily bound to the AR-LBP site by the hydrophobic interactions. Overall, those results provided experimental methods for developing novel arylpiperazine derivatives as potent AR antagonists.
Collapse
Affiliation(s)
- Yueheng Qi
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Hong Chen, ; Jianliang Shen, ; Jingguo Li,
| | - Shijin Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Hong Chen, ; Jianliang Shen, ; Jingguo Li,
| | - Jingguo Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Hong Chen, ; Jianliang Shen, ; Jingguo Li,
| |
Collapse
|
12
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron-Catalyzed Intramolecular Arene C(sp 2 )-H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202204874. [PMID: 35511087 PMCID: PMC9401578 DOI: 10.1002/anie.202204874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 02/06/2023]
Abstract
In a ball mill, FeBr3 -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yongliang Tu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Deshen Kong
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Wu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ding Ma
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
13
|
Identification of Novel Dopamine D2 Receptor Ligands—A Combined In Silico/In Vitro Approach. Molecules 2022; 27:molecules27144435. [PMID: 35889317 PMCID: PMC9318694 DOI: 10.3390/molecules27144435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.
Collapse
|
14
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron‐Catalyzed Intramolecular Arene C(sp
2
)−H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Deshen Kong
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Wu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
15
|
Selective Signal Capture from Multidimensional GPCR Outputs with Biased Agonists: Progress Towards Novel Drug Development. Mol Diagn Ther 2022; 26:383-396. [PMID: 35595932 PMCID: PMC9276727 DOI: 10.1007/s40291-022-00592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
G protein coupled receptors (GPCRs) are a superfamily of transmembrane-spanning receptors that are activated by multiple endogenous ligands and are the most common target for agonist or antagonist therapeutics across a broad spectrum of diseases. Initial characterization within the superfamily suggested that a receptor activated a single intracellular pathway, depending on the G protein to which it coupled. However, it has become apparent that a given receptor can activate multiple different pathways, some being therapeutically desirable, while others are neutral or promote deleterious signaling. The activation of pathways that limit effectiveness of a primary pathway or promote unwanted signals has led to abandonment of some GPCRs as drug targets. However, it is now recognized that the conformation of the receptor in its ligand-bound state can be altered by the structure of the agonist or antagonist to achieve pathway selectivity, a property termed biased signaling. Biased ligands could dramatically expand the number of novel drugs acting at GPCRs for new indications. However, the field struggles with the complexity and uncertainty of these structure-functions relationships. In this review we define the theoretical underpinnings of the biased effect, discuss the methods for measuring bias, and the pitfalls that can lead to incorrect assignments of bias. Using the recent elucidation of a β2-adrenergic receptor agonist that is biased in favor of Gs coupling over β-arrestin binding, we provide an example of how large libraries of compounds that are impartial to preconceived notions of agonist binding can be utilized to discover pathway-specific agonists. In this case, an agonist that lacks tachyphylaxis for the treatment of obstructive lung diseases was uncovered, with a structure that was distinctly different from other agonists. We show how biased characteristics were ascertained analytically, and how molecular modeling and simulations provide a structural basis for a restricted signaling repertoire.
Collapse
|
16
|
Chen Z, Fan L, Wang H, Yu J, Lu D, Qi J, Nie F, Luo Z, Liu Z, Cheng J, Wang S. Structure-based design of a novel third-generation antipsychotic drug lead with potential antidepressant properties. Nat Neurosci 2021; 25:39-49. [PMID: 34887590 DOI: 10.1038/s41593-021-00971-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Partial agonist activity at the dopamine D2 receptor (DRD2) is a key feature of third-generation antipsychotics (TGAs). However, TGAs also act as antagonists or weak partial agonists to the serotonin (5-hydroxytryptamine; 5-HT) 2A receptor (5-HT2AR). Here we present the crystal structures of aripiprazole- and cariprazine-bound human 5-HT2AR. Both TGAs adopt an unexpected 'upside-down' pose in the 5-HT2AR binding pocket, with secondary pharmacophores inserted in a similar way to a 'bolt'. This insight into the binding modes of TGAs offered a structural mechanism underlying their varied partial efficacies at 5-HT2AR and DRD2. These structures enabled the design of a partial agonist at DRD2/3 and 5-HT1AR with negligible 5-HT2AR binding that displayed potent antipsychotic-like activity without motor side effects in mice. This TGA lead also had antidepressant-like effects and improved cognitive performance in mouse models via 5-HT1AR. This work indicates that 5-HT2AR affinity is a dispensable contributor to the therapeutic actions of TGAs.
Collapse
Affiliation(s)
- Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luyu Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dengyu Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technolog, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fen Nie
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technolog, Chinese Academy of Sciences, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
New D2R partial agonist candidates: an in silico approach from statistical models, molecular docking, and ADME/Tox properties. Struct Chem 2021. [DOI: 10.1007/s11224-021-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D 2 3,4-dihydroquinolin-2(1 H)-one Derivatives Related to Aripiprazole. Biomolecules 2021; 11:biom11091262. [PMID: 34572475 PMCID: PMC8464836 DOI: 10.3390/biom11091262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.
Collapse
|
19
|
Sanchez JE, Kc GB, Franco J, Allen WJ, Garcia JD, Sirimulla S. BiasNet: A Model to Predict Ligand Bias Toward GPCR Signaling. J Chem Inf Model 2021; 61:4190-4199. [PMID: 34397210 DOI: 10.1021/acs.jcim.1c00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signaling bias is a feature of many G protein-coupled receptor (GPCR) targeting drugs with potential clinical implications. Whether it is therapeutically advantageous for a drug to be G protein biased or β-arrestin biased depends on the context of the signaling pathway. Here, we explored GPCR ligands that exhibit biased signaling to gain insights into scaffolds and pharmacophores that lead to bias. More specifically, we considered BiasDB, a database containing information about GPCR biased ligands, and focused our analysis on ligands which show either a G protein or β-arrestin bias. Five different machine learning models were trained on these ligands using 15 different sets of features. Molecular fragments which were important for training the models were analyzed. Two of these fragments (number of secondary amines and number of aromatic amines) were more prevalent in β-arrestin biased ligands. After training a random forest model on HierS scaffolds, we found five scaffolds, which demonstrated G protein or β-arrestin bias. We also conducted t-SNE clustering, observing correspondence between unsupervised and supervised machine learning methods. To increase the applicability of our work, we developed a web implementation of our models, which can predict bias based on user-provided SMILES, drug names, or PubChem CID. Our web implementation is available at: drugdiscovery.utep.edu/biasnet.
Collapse
Affiliation(s)
- Jason E Sanchez
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Govinda B Kc
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Julian Franco
- Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - William J Allen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Jesus David Garcia
- Computer Science, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Suman Sirimulla
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States.,Computer Science, The University of Texas at El Paso, El Paso, Texas 79968, United States.,Department of Pharmaceutical Science, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
20
|
Mallo-Abreu A, Reyes-Resina I, Azuaje J, Franco R, García-Rey A, Majellaro M, Miranda-Pastoriza D, García-Mera X, Jespers W, Gutiérrez-de-Terán H, Navarro G, Sotelo E. Potent and Subtype-Selective Dopamine D 2 Receptor Biased Partial Agonists Discovered via an Ugi-Based Approach. J Med Chem 2021; 64:8710-8726. [PMID: 34110150 PMCID: PMC8552448 DOI: 10.1021/acs.jmedchem.1c00704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Using
a previously unexplored, efficient, and versatile multicomponent
method, we herein report the rapid generation of novel potent and
subtype-selective DRD2 biased partial agonists. This strategy
exemplifies the search for diverse and previously unexplored moieties
for the secondary/allosteric pharmacophore of the common phenyl-piperazine
scaffold. The pharmacological characterization of the new compound
series led to the identification of several ligands with excellent
DRD2 affinity and subtype selectivity and remarkable functional
selectivity for either the cAMP (22a and 24d) or the β-arrestin (27a and 29c)
signaling pathways. These results were further interpreted on the
basis of molecular models of these ligands in complex with the recent
DRD2 crystal structures, highlighting the critical role
of the secondary/allosteric pharmacophore in modulating the functional
selectivity profile.
Collapse
Affiliation(s)
- Ana Mallo-Abreu
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jhonny Azuaje
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rafael Franco
- Faculty of Chemistry, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Aitor García-Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Darío Miranda-Pastoriza
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xerardo García-Mera
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-75124, Sweden
| | | | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Sun W, Ling CH, Au CM, Yu WY. Ruthenium-Catalyzed Intramolecular Arene C(sp 2)-H Amidation for Synthesis of 3,4-Dihydroquinolin-2(1 H)-ones. Org Lett 2021; 23:3310-3314. [PMID: 33900093 DOI: 10.1021/acs.orglett.1c00781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the [Ru(p-cymene)(l-proline)Cl] ([Ru1])-catalyzed cyclization of 1,4,2-dioxazol-5-ones to form dihydroquinoline-2-ones in excellent yields with excellent regioselectivity via a formal intramolecular arene C(sp2)-H amidation. The reactions of the 2- and 4-substituted aryl dioxazolones proceeds initially through spirolactamization via electrophilic amidation at the arene site, which is para or ortho to the substituent. A Hammett correlation study showed that the spirolactamization is likely to occur by electrophilic nitrenoid attack at the arene, which is characterized by a negative ρ value of -0.73.
Collapse
Affiliation(s)
- Wenlong Sun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Cho-Hon Ling
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
22
|
Chirality of Novel Bitopic Agonists Determines Unique Pharmacology at the Dopamine D3 Receptor. Biomolecules 2021; 11:biom11040570. [PMID: 33924613 PMCID: PMC8069330 DOI: 10.3390/biom11040570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The dopamine D2/D3 receptor (D2R/D3R) agonists are used as therapeutics for Parkinson's disease (PD) and other motor disorders. Selective targeting of D3R over D2R is attractive because of D3R's restricted tissue distribution with potentially fewer side-effects and its putative neuroprotective effect. However, the high sequence homology between the D2R and D3R poses a challenge in the development of D3R selective agonists. To address the ligand selectivity, bitopic ligands were designed and synthesized previously based on a potent D3R-preferential agonist PF592,379 as the primary pharmacophore (PP). This PP was attached to various secondary pharmacophores (SPs) using chemically different linkers. Here, we characterize some of these novel bitopic ligands at both D3R and D2R using BRET-based functional assays. The bitopic ligands showed varying differences in potencies and efficacies. In addition, the chirality of the PP was key to conferring improved D3R potency, selectivity, and G protein signaling bias. In particular, compound AB04-88 exhibited significant D3R over D2R selectivity, and G protein bias at D3R. This bias was consistently observed at various time-points ranging from 8 to 46 min. Together, the structure-activity relationships derived from these functional studies reveal unique pharmacology at D3R and support further evaluation of functionally biased D3R agonists for their therapeutic potential.
Collapse
|
23
|
Wenk D, Ignatchenko V, Macklin A, Hübner H, Gmeiner P, Weikert D, Pischetsrieder M, Kislinger T. Functionally selective activation of the dopamine receptor D 2 is mirrored by the protein expression profiles. Sci Rep 2021; 11:3501. [PMID: 33568753 PMCID: PMC7875989 DOI: 10.1038/s41598-021-83038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The development of functionally selective or biased ligands is a promising approach towards drugs with less side effects. Biased ligands for G protein-coupled receptors can selectively induce G protein activation or β-arrestin recruitment. The consequences of this selective action on cellular functions, however, are not fully understood. Here, we investigated the impact of five biased and balanced dopamine D2 receptor agonists and antagonists on the global protein expression in HEK293T cells by untargeted nanoscale liquid chromatography-tandem mass spectrometry. The proteome analysis detected 5290 protein groups. Hierarchical clustering and principal component analysis based on the expression levels of 1462 differential proteins led to a separation of antagonists and balanced agonist from the control treatment, while the biased ligands demonstrated larger similarities to the control. Functional analysis of affected proteins revealed that the antagonists haloperidol and sulpiride regulated exocytosis and peroxisome function. The balanced agonist quinpirole, but not the functionally selective agonists induced a downregulation of proteins involved in synaptic signaling. The β-arrestin-preferring agonist BM138, however, regulated several proteins related to neuron function and the dopamine receptor-mediated signaling pathway itself. The G protein-selective partial agonist MS308 influenced rather broad functional terms such as DNA processing and mitochondrial translation.
Collapse
Affiliation(s)
- Deborah Wenk
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Dorothée Weikert
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
24
|
Drd2 biased agonist prevents neurodegeneration against NLRP3 inflammasome in Parkinson's disease model via a β-arrestin2-biased mechanism. Brain Behav Immun 2020; 90:259-271. [PMID: 32861720 DOI: 10.1016/j.bbi.2020.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/14/2023] Open
Abstract
Activated astrocytes secrete inflammatory cytokines such as interleukin-1β (IL-1β) into the extracellular milieu, damaging surrounding neurons and involving in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Dopamine receptor D2 (Drd2) expresses both in neurons and astrocytes, and neuronal Drd2 is a significant target in therapy of PD. Our previous study reveals that astrocytic Drd2 exerts anti-inflammatory effect via non-classical β-arrestin2 signaling in PD model. Therefore, seeking new biased ligands of Drd2 with better efficacy and fewer side effects to treat PD is desirable and meaningful. In the present study, we evaluated the effects of UNC9995, a novel biased Drd2 agonist on astrocyte-derived neuroinflammation and dopaminergic (DA) neuron degenerationin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We showed that UNC9995 rescued the TH+ neurons loss and inhibited glial cells activation in mouse substantia nigra in a Drd2 dependent manner. Focusing on astrocytes, we found UNC9995 shows a relatively safe concentration range and significantly suppresses astrocytic NLRP3 inflammasome activation induced by lipopolysaccharide plus ATP. Further study revealed that the anti-inflammatory effect of UNC9995 is independent of Drd2 / Gαi protein pathway. It activates β-arrestin2 by recruiting it to cell membrane. Critically, UNC9995 enhances β-arrestin2 interacting with NLRP3 to interfere inflammasome assembly, which consequently reduces IL-1β production. On the other hand, UNC9995 inhibits IL-1β-induced inflammatory pathway activation in DA neurons and rescues subsequent apoptosis via β-arrestin2 interacting with protein kinases, such as JNK and suppressing their phosphorylation. Furthermore, β-arrestin2 knockout abolishes the anti-inflammatory and neuroprotective effects of UNC9995 in PD mouse model, supporting that UNC9995 is a β-arrestin2-biased Drd2 agonist and revealing its novel function in PD treatment. Collectively, this work illustrates that Drd2 agonist UNC9995 prevents DA neuron degeneration in PD and provides a new strategy for developing the β-arrestin2-biased ligands in the therapy of NDDs.
Collapse
|
25
|
Egyed A, Domány-Kovács K, Koványi B, Horti F, Kurkó D, Kiss DJ, Pándy-Szekeres G, Greiner I, Keserű GM. Controlling receptor function from the extracellular vestibule of G-protein coupled receptors. Chem Commun (Camb) 2020; 56:14167-14170. [PMID: 33079104 DOI: 10.1039/d0cc05532h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Receptor function is traditionally controlled from the orthosteric binding site of G-protein coupled receptors. Here, we show that the functional activity and signalling of human dopamine D2 and D3 receptor ligands can be fine-tuned from the extracellular secondary binding pocket (SBP) located far from the signalling interface suggesting optimization of the SBP binding part of bitopic ligands might be a useful strategy to develop GPCR ligands with designed functional and signalling profile.
Collapse
Affiliation(s)
- Attila Egyed
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, Magyar Tudósok krt. 2, Budapest, H-1117, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol Psychiatry 2020; 25:2086-2100. [PMID: 30120413 PMCID: PMC6378141 DOI: 10.1038/s41380-018-0212-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023]
Abstract
The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics.
Collapse
|
27
|
Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020; 177:978-991. [PMID: 31877233 DOI: 10.1111/bph.14953] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
In recent years, several novel aspects of GPCR pharmacology have been described, which are thought to play a role in determining the in vivo efficacy of a compound. Fluorescent ligands have been used to study many of these, which have also required the development of new experimental approaches. Fluorescent ligands offer the potential to use the same fluorescent probe to perform a broad range of experiments, from single-molecule microscopy to in vivo BRET. This review provides an overview of the in vitro use of fluorescent ligands in further understanding emerging pharmacological paradigms within the GPCR field, including ligand-binding kinetics, allosterism and intracellular signalling, along with the use of fluorescent ligands to study physiologically relevant therapeutic agents.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
28
|
Hoare SRJ, Tewson PH, Quinn AM, Hughes TE. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Sci Rep 2020; 10:1766. [PMID: 32019973 PMCID: PMC7000712 DOI: 10.1038/s41598-020-58421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The kinetics/dynamics of signaling are of increasing value for G-protein-coupled receptor therapeutic development, including spatiotemporal signaling and the kinetic context of biased agonism. Effective application of signaling kinetics to developing new therapeutics requires reliable kinetic assays and an analysis framework to extract kinetic pharmacological parameters. Here we describe a platform for measuring arrestin recruitment kinetics to GPCRs using a high quantum yield, genetically encoded fluorescent biosensor, and a data analysis framework to quantify the recruitment kinetics. The sensor enabled high temporal resolution measurement of arrestin recruitment to the angiotensin AT1 and vasopressin V2 receptors. The analysis quantified the initial rate of arrestin recruitment (kτ), a biologically-meaningful kinetic drug efficacy parameter, by fitting time course data using routine curve-fitting methods. Biased agonism was assessed by comparing kτ values for arrestin recruitment with those for Gq signaling via the AT1 receptor. The kτ ratio values were in good agreement with bias estimates from existing methods. This platform potentially improves and simplifies assessment of biased agonism because the same assay modality is used to compare pathways (potentially in the same cells), the analysis method is parsimonious and intuitive, and kinetic context is factored into the bias measurement.
Collapse
Affiliation(s)
- Sam R J Hoare
- Pharmechanics LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA.
| | - Paul H Tewson
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Anne Marie Quinn
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Thomas E Hughes
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA.
| |
Collapse
|
29
|
Chen H, Qian Y, Jia H, Yu Y, Zhang H, Shen J, Zhao S. Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety. Pharmacol Rep 2020; 72:1058-1068. [PMID: 32048266 DOI: 10.1007/s43440-019-00041-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy in men and in the absence of any effective treatments available. METHODS For the development of potential anticancer agents, 24 kinds of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety were synthesized and characterized by using spectroscopic methods. Their pharmacological activities were evaluated against human PCa cell lines (PC-3 and LNCaP) and a1-adrenergic receptors (a1-ARs; α1a, α1b, and α1d-ARs). The structure-activity relationship of these designed arylpiperazine derivatives was rationally explored and discussed. RESULTS Among these derivatives, 3c, 3d, 3h, 3k, 3o, and 3s exhibited the most potent activity against the tested cancer cells, and some derivatives with potent anticancer activities exhibited better a1-AR subtype selectivity than others did (selectivity ratio > 10). CONCLUSION This work provided a potential lead compound for the further development of anticancer agents for PCa therapy.
Collapse
Affiliation(s)
- Hong Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Yuna Qian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.,Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325001, China
| | - Huixia Jia
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Yuzhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haibo Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China. .,Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325001, China.
| | - Shanchao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Martini ML, Ray C, Yu X, Liu J, Pogorelov VM, Wetsel WC, Huang XP, McCorvy JD, Caron MG, Jin J. Designing Functionally Selective Noncatechol Dopamine D 1 Receptor Agonists with Potent In Vivo Antiparkinsonian Activity. ACS Chem Neurosci 2019; 10:4160-4182. [PMID: 31387346 DOI: 10.1021/acschemneuro.9b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine receptors are important G protein-coupled receptors (GPCRs) with therapeutic opportunities for treating Parkinson's Disease (PD) motor and cognitive deficits. Biased D1 dopamine ligands that differentially activate G protein over β-arrestin recruitment pathways are valuable chemical tools for dissecting positive versus negative effects in drugs for PD. Here, we reveal an iterative approach toward modification of a D1-selective noncatechol scaffold critical for G protein-biased agonism. This approach provided enhanced understanding of the structural components critical for activity and signaling bias and led to the discovery of several novel compounds with useful pharmacological properties, including three highly GS-biased partial agonists. Administration of a potent, balanced, and brain-penetrant lead compound from this series results in robust antiparkinsonian effects in a rodent model of PD. This study suggests that the noncatechol ligands developed through this approach are valuable tools for probing D1 receptor signaling biology and biased agonism in models of neurologic disease.
Collapse
Affiliation(s)
- Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Caroline Ray
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Vladimir M. Pogorelov
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - William C. Wetsel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Xi-Ping Huang
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
31
|
Chen H, Zhang J, Hu P, Qian Y, Li J, Shen J. Synthesis, biological evaluation and molecular docking of 4-Amino-2H-benzo[h]chromen-2-one (ABO) analogs containing the piperazine moiety. Bioorg Med Chem 2019; 27:115081. [PMID: 31493989 DOI: 10.1016/j.bmc.2019.115081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023]
Abstract
Prostate cancer (PCa) is a major cause of cancer-related male death in worldwide. To develop of potential anti-prostate cancer agents, 22 kinds of 4-Amino-2H-benzo[h]chromen-2-one analogs were designed and synthesized as potent androgen receptor (AR) antagonist through rational drug modification leading to the discovery of a series of novel antiproliferative compounds. Analogs (3, 4, 5, 7, 8, 10, 11, 12, 16, 18, 21, 23, and 24) exhibited potent antagonistic potency against AR (inhibition >50%), and exhibited potent AR binding affinities as well as displayed the higher activities than finasteride toward LNCaP cells (AR-rich) versus PC-3 cells (AR-deficient). Moreover, the docking study suggested that the most potent antagonist 23 mainly bind to AR ligand binding pocket (LBP) site through Van der Waals' force interactions. The structure-activity relationship (SAR) of these designed 4-Amino-2H-benzo[h]chromen-2-one analogs was rationally explored and discussed. Collectively, this work provides a potential lead compound for anticancer agent development related to prostate cancer therapy, and took a step forward towards the development of novel and improved AR antagonists.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingxiao Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Peixin Hu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yuna Qian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, China.
| |
Collapse
|
32
|
Battiti FO, Cemaj SL, Guerrero AM, Shaik AB, Lam J, Rais R, Slusher BS, Deschamps JR, Imler GH, Newman AH, Bonifazi A. The Significance of Chirality in Drug Design and Synthesis of Bitopic Ligands as D 3 Receptor (D 3R) Selective Agonists. J Med Chem 2019; 62:6287-6314. [PMID: 31257877 DOI: 10.1021/acs.jmedchem.9b00702] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. Previous work has exemplified the use of bitopic ligands as a powerful strategy in achieving subtype selectivity for agonists and antagonists alike. Inspired by the potential for chemical modification of the D3 preferential agonists (+)-PD128,907 (1) and PF592,379 (2), we synthesized bitopic structures to further improve their D3R selectivity. We found that the (2S,5S) conformation of scaffold 2 resulted in a privileged architecture with increased affinity and selectivity for the D3R. In addition, a cyclopropyl moiety incorporated into the linker and full resolution of the chiral centers resulted in lead compound 53 and eutomer 53a that demonstrate significantly higher D3R binding selectivities than the reference compounds. Moreover, the favorable metabolic stability in rat liver microsomes supports future studies in in vivo models of dopamine system dysregulation.
Collapse
Affiliation(s)
- Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Sophie L Cemaj
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Adrian M Guerrero
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Jenny Lam
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States.,Johns Hopkins Drug Discovery Program , Johns Hopkins School of Medicine , 855 N. Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Rana Rais
- Johns Hopkins Drug Discovery Program , Johns Hopkins School of Medicine , 855 N. Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery Program , Johns Hopkins School of Medicine , 855 N. Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Jeffery R Deschamps
- Naval Research Laboratory , Code 6910, 4555 Overlook Avenue , Washington, DC 20375 , United States
| | - Greg H Imler
- Naval Research Laboratory , Code 6910, 4555 Overlook Avenue , Washington, DC 20375 , United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| |
Collapse
|
33
|
Shen Y, McCorvy JD, Martini ML, Rodriguiz RM, Pogorelov VM, Ward KM, Wetsel WC, Liu J, Roth BL, Jin J. D 2 Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. J Med Chem 2019; 62:4755-4771. [PMID: 30964661 PMCID: PMC6509010 DOI: 10.1021/acs.jmedchem.9b00508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionally selective G protein-coupled receptor ligands are valuable tools for deciphering the roles of downstream signaling pathways that potentially contribute to therapeutic effects versus side effects. Recently, we discovered both Gi/o-biased and β-arrestin2-biased D2 receptor agonists based on the Food and Drug Administration (FDA)-approved drug aripiprazole. In this work, based on another FDA-approved drug, cariprazine, we conducted a structure-functional selectivity relationship study and discovered compound 38 (MS1768) as a potent partial agonist that selectively activates the Gi/o pathway over β-arrestin2. Unlike the dual D2R/D3R partial agonist cariprazine, compound 38 showed selective agonist activity for D2R over D3R. In fact, compound 38 exhibited potent antagonism of dopamine-stimulated β-arrestin2 recruitment. In our docking studies, compound 38 directly interacts with S1935.42 on TM5 but has no interactions with extracellular loop 2, which appears to be in contrast to the binding poses of D2R β-arrestin2-biased ligands. In in vivo studies, compound 38 showed high D2R receptor occupancy in mice and effectively inhibited phencyclidine-induced hyperlocomotion.
Collapse
Affiliation(s)
- Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - John D. McCorvy
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ramona M. Rodriguiz
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Vladimir M. Pogorelov
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Karen M. Ward
- Worldwide Research and Development, Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts 02139, United States
| | - William C. Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Bryan L. Roth
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
34
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
35
|
|
36
|
Bricker BA, Peprah K, Kang HJ, Ablordeppey SY. Evaluation of SYA16263 as a new potential antipsychotic agent without catalepsy. Pharmacol Biochem Behav 2019; 179:55-62. [PMID: 30768942 DOI: 10.1016/j.pbb.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
SYA16263 exhibited moderate radioligand binding affinity at the D2 receptor and produced inhibition of apomorphine-induced climbing behavior in mice with an ED50 value of 3.88 mg/kg IP, predicting potential antipsychotic effects in humans. Analysis of plasma and brains from rats injected IP with SYA16263 over the course of 24 h revealed a log [brain]/[plasma] (log BB) at Cmax observed equal to 1.08, indicating that SYA16263 enters the brain and is predicted to cross the blood brain barrier (BBB) readily. When tested in animal behavior tests for catalepsy, SYA16263 did not produce catalepsy at doses up to 19 times the apomorphine ED50 value predicting little or no extra-pyramidal (EPS) side effects in humans. This is similar to aripiprazole, which is associated with a low incidence of EPS in humans, but unlike haloperidol which is known to cause severe EPS in humans. Functional activities for SYA16263 show that it acts as a D2 agonist at both the Gi and β-arrestin pathways, similar to, but better than aripiprazole, which could account for the absence of the catalepsy observed. Taken together, the receptor binding profile, the functional status, the animal behavioral tests and the log BB value, all provide evidence for further pre-clinical testing of SYA16263 as a potential antipsychotic agent with an interesting profile and a unique mechanism of action resulting in no EPS even up to 19 times the ED50 value.
Collapse
Affiliation(s)
- Barbara A Bricker
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Kwame Peprah
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Hye J Kang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - S Y Ablordeppey
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA.
| |
Collapse
|
37
|
Bonifazi A, Yano H, Guerrero AM, Kumar V, Hoffman AF, Lupica CR, Shi L, Newman AH. Novel and Potent Dopamine D 2 Receptor Go-Protein Biased Agonists. ACS Pharmacol Transl Sci 2019; 2:52-65. [PMID: 30775693 PMCID: PMC6371206 DOI: 10.1021/acsptsci.8b00060] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/18/2022]
Abstract
![]()
The
discovery of functionally biased and physiologically beneficial
ligands directed toward G-protein coupled receptors (GPCRs) has provided
the impetus to design dopamine D2 receptor (D2R) targeted molecules that may be therapeutically advantageous for
the treatment of certain neuropsychiatric or basal ganglia related
disorders. Here we describe the synthesis of a novel series of D2R agonists linking the D2R unbiased agonist sumanirole
with privileged secondary molecular fragments. The resulting ligands
demonstrate improved D2R affinity and selectivity over
sumanirole. Extensive in vitro functional studies
and bias factor analysis led to the identification of a novel class
of highly potent Go-protein biased full D2R agonists with
more than 10-fold and 1000-fold bias selectivity toward activation
of specific G-protein subtypes and β-arrestin, respectively.
Intracellular electrophysiological recordings from midbrain dopamine
neurons demonstrated that Go-protein selective agonists can elicit
prolonged ligand-induced GIRK activity via D2Rs, which
may be beneficial in the treatment of dyskinesias associated with
dopamine system dysfunction.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Adrian M Guerrero
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vivek Kumar
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
38
|
Synthesis and biological evaluation of arylpiperazine derivatives as potential anti-prostate cancer agents. Bioorg Med Chem 2019; 27:133-143. [DOI: 10.1016/j.bmc.2018.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/28/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
|
39
|
Montgomery D, Campbell A, Sullivan HJ, Wu C. Molecular dynamics simulation of biased agonists at the dopamine D2 receptor suggests the mechanism of receptor functional selectivity. J Biomol Struct Dyn 2018; 37:3206-3225. [PMID: 30124143 DOI: 10.1080/07391102.2018.1513378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson's disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein-ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Montgomery
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Alexandra Campbell
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Holli-Joi Sullivan
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Chun Wu
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| |
Collapse
|
40
|
Tyagi R, Singh H, Singh J, Arora H, Yelmeli V, Jain M, Girigani S, Kumar P. Identification, Synthesis, and Control of Process-Related Impurities in the Antipsychotic Drug Substance Brexpiprazole. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Tyagi
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Harnam Singh
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Jagat Singh
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Himanshu Arora
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Vijayalaxmi Yelmeli
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Mohit Jain
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Sathyanarayana Girigani
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| | - Pramod Kumar
- Chemical Research Department, API-R&D Centre, Micro Labs Ltd., Bommasandra-Jigini Link Road, KIADB Industrial Area, Bommasandra, Bangalore 560 105, Karnataka, India
| |
Collapse
|
41
|
Berg KA, Clarke WP. Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity. Int J Neuropsychopharmacol 2018; 21:962-977. [PMID: 30085126 PMCID: PMC6165953 DOI: 10.1093/ijnp/pyy071] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display "constitutive" activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured. Thus, a drug can be simultaneously an agonist, an antagonist, and an inverse agonist acting at the same receptor. This means that drugs have an additional level of selectivity (signaling selectivity or "functional selectivity") beyond the traditional receptor selectivity. Both inverse agonism and functional selectivity need to be considered when drugs are used as medicines or as research tools.
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, University of Texas Health, San Antonio, Texas
| | - William P Clarke
- Department of Pharmacology, University of Texas Health, San Antonio, Texas,Correspondence: William P. Clarke, PhD, Department of Pharmacology, Mail Stop 7764, UT Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 ()
| |
Collapse
|
42
|
Tan L, Yan W, McCorvy JD, Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J Med Chem 2018; 61:9841-9878. [PMID: 29939744 DOI: 10.1021/acs.jmedchem.8b00435] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) signal through both G-protein-dependent and G-protein-independent pathways, and β-arrestin recruitment is the most recognized one of the latter. Biased ligands selective for either pathway are expected to regulate biological functions of GPCRs in a more precise way, therefore providing new drug molecules with superior efficacy and/or reduced side effects. During the past decade, biased ligands have been discovered and developed for many GPCRs, such as the μ opioid receptor, the angiotensin II receptor type 1, the dopamine D2 receptor, and many others. In this Perspective, recent advances in this field are reviewed by discussing the structure-functional selectivity relationships (SFSRs) of GPCR biased ligands and the therapeutic potential of these molecules. Further understanding of the biological functions associated with each signaling pathway and structural basis for biased signaling will facilitate future drug design in this field.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - Wenzhong Yan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy , Medical College of Wisconsin , 8701 W. Watertown Plank Road , Milwaukee , Wisconsin 53226 , United States
| | - Jianjun Cheng
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| |
Collapse
|
43
|
Chen H, Liang X, Sun T, Qiao X, Zhan Z, Li Z, He C, Ya H, Yuan M. Synthesis and biological evaluation of estrone 3-O-ether derivatives containing the piperazine moiety. Steroids 2018; 134:101-109. [PMID: 29476759 DOI: 10.1016/j.steroids.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/29/2022]
Abstract
A series of new estrone derivatives were designed and synthesized, and their structures were confirmed by spectroscopic methods. All new estrone derivatives were investigated for their in vitro cytotoxic efficacies against a panel of three human prostate cancer cell lines (PC-3, LNCaP, and DU145). The derivatives 6, 7, 10, 15, 16, 20, 21, 22, 24 and 26 showed important cytotoxic actions against individual carcinoma cell line collections. Moreover, antagonistic activities of compounds (7, 15, 16 and 21) towards a1-ARs (α1A, α1B, and α1D) were further evaluated using dual-luciferase reporter assays, and the compounds 16 and 21 exhibited better a1-ARs subtype selectivity. The structure-activity relationship (SAR) suggested that the substitute's type and position on the phenyl group leads to the interesting variations within pharmacological effects of resultant molecular systems.
Collapse
Affiliation(s)
- Hong Chen
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Xue Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621# Gangwan Road, Guangzhou 510700, Guangdong Province, China
| | - Tao Sun
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Xiaoguang Qiao
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Zhou Zhan
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Ziyong Li
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Chaojun He
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China.
| | - Mu Yuan
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 511436, Guangdong Province, China.
| |
Collapse
|
44
|
Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK, Wolfgang MC, Glish GL, Tarran R. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol 2018; 16:e2003904. [PMID: 29584716 PMCID: PMC5870948 DOI: 10.1371/journal.pbio.2003904] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography-mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition.
Collapse
Affiliation(s)
- M. Flori Sassano
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric S. Davis
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E. Keating
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan T. Zorn
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tavleen K. Kochar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- * E-mail:
| |
Collapse
|
45
|
Chun LS, Vekariya RH, Free RB, Li Y, Lin DT, Su P, Liu F, Namkung Y, Laporte SA, Moritz AE, Aubé J, Frankowski KJ, Sibley DR. Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D 2 Dopamine Receptor. Front Synaptic Neurosci 2018. [PMID: 29515433 PMCID: PMC5826336 DOI: 10.3389/fnsyn.2018.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is known to elicit effects through activating two major signaling pathways mediated by either G proteins (Gi/o) or β-arrestins. However, the specific role of each pathway in physiological or therapeutic activities is not known with certainty. One approach to the dissection of these pathways is through the use of drugs that can selectively modulate one pathway vs. the other through a mechanism known as functional selectivity or biased signaling. Our laboratory has previously described a G protein signaling-biased agonist, MLS1547, for the D2R using a variety of in vitro functional assays. To further evaluate the biased signaling activity of this compound, we investigated its ability to promote D2R internalization, a process known to be mediated by β-arrestin. Using multiple cellular systems and techniques, we found that MLS1547 promotes little D2R internalization, which is consistent with its inability to recruit β-arrestin. Importantly, we validated these results in primary striatal neurons where the D2R is most highly expressed suggesting that MLS1547 will exhibit biased signaling activity in vivo. In an effort to optimize and further explore structure-activity relationships (SAR) for this scaffold, we conducted an iterative chemistry campaign to synthesize and characterize novel analogs of MLS1547. The resulting analysis confirmed previously described SAR requirements for G protein-biased agonist activity and, importantly, elucidated new structural features that are critical for agonist efficacy and signaling bias of the MLS1547 scaffold. One of the most important determinants for G protein-biased signaling is the interaction of a hydrophobic moiety of the compound with a defined pocket formed by residues within transmembrane five and extracellular loop two of the D2R. These results shed new light on the mechanism of biased signaling of the D2R and may lead to improved functionally-selective molecules.
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Rakesh H Vekariya
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yun Li
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Da-Ting Lin
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Ping Su
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Yoon Namkung
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Stephane A Laporte
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Aubé
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - Kevin J Frankowski
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Chen H, Jia HX, Xu QT. Crystal structure of 1-(4-((benzo[ d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C 26H 28Cl 2N 2O 3. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H28Cl2N2O3, monoclinic, P21/c (no. 14), a = 13.422(3) Å, b = 7.0011(14) Å, c = 26.249(5) Å, β = 101.06(3)°, V = 2420.8(9) Å3, Z = 4, R
gt(F) = 0.0516, wR
ref(F
2) = 0.1370, T = 296 K.
Collapse
Affiliation(s)
- Hong Chen
- College of Food and Drug , Luoyang Normal University , Luoyang, Henan 471934 , P. R. China
| | - Hui-Xia Jia
- College of Food and Drug , Luoyang Normal University , Luoyang, Henan 471934 , P. R. China
| | - Qi-Tai Xu
- College of Food and Drug , Luoyang Normal University , Luoyang, Henan 471934 , P. R. China
| |
Collapse
|
47
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
48
|
Mouillac B, Mendre C. Pharmacological Chaperones as Potential Therapeutic Strategies for Misfolded Mutant Vasopressin Receptors. Handb Exp Pharmacol 2018; 245:63-83. [PMID: 28939971 DOI: 10.1007/164_2017_50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pharmacological chaperones recently opened new possibilities in G protein-coupled receptor drug discovery. Even more interestingly, some unique ligands combine pharmacological chaperoning and biased agonism properties, boosting their therapeutic interest in many human diseases resulting from G protein-coupled receptor mutation and misfolding. These compounds displaying dual characteristics would constitute a perfect treatment for congenital Nephrogenic Diabetes Insipidus, a typical conformational disease. This X-linked genetic pathology is mostly associated with inactivating mutations of the renal arginine-vasopressin V2 receptor leading to misfolding and intracellular retention of the receptor, causing the inability of patients to concentrate their urine in response to the antidiuretic hormone. Cell-permeable pharmacological chaperones have been successfully challenged to restore plasma membrane localization of many V2 receptor mutants. In addition, different classes of specific ligands such as antagonists, agonists as well as biased agonists of the V2 receptor have proven their usefulness in rescuing mutant receptor function. This is particularly relevant for small-molecule biased agonists which only trigger Gs protein activation and cyclic adenosine monophosphate production, the V2-induced signaling pathway responsible for water reabsorption. In parallel, high-throughput screening assays based on receptor trafficking rescue approaches have been developed to discover novel V2 pharmacological chaperone molecules from different chemical libraries. These new hit compounds, which still need to be pharmacologically characterized and functionally tested in vivo, represent promising candidates for the treatment of congenital Nephrogenic Diabetes Insipidus.
Collapse
Affiliation(s)
- Bernard Mouillac
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 141 rue de la cardonille, 34094, Montpellier Cedex 05, France.
| | - Christiane Mendre
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 141 rue de la cardonille, 34094, Montpellier Cedex 05, France
| |
Collapse
|
49
|
Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat Chem Biol 2017; 14:126-134. [PMID: 29227473 PMCID: PMC5771956 DOI: 10.1038/nchembio.2527] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
Abstract
Development of biased ligands targeting G protein-coupled receptors (GPCRs) is a promising approach for current drug discovery. Although structure-based drug design of biased agonists remains challenging even with an abundance of GPCR crystal structures, we present an approach for translating GPCR structural data into β-arrestin-biased ligands for aminergic GPCRs. We identified specific amino acid-ligand contacts at transmembrane helix 5 (TM5) and extracellular loop 2 (EL2) responsible for Gi/o and β-arrestin signaling, respectively, and targeted those residues to develop biased ligands. For these ligands, we found that bias is conserved at other aminergic GPCRs that retain similar residues at TM5 and EL2. Our approach provides a template for generating arrestin-biased ligands by modifying predicted ligand interactions that block TM5 interactions and promote EL2 interactions. This strategy could facilitate the structure-guided design of arrestin-biased ligands at other GPCRs, including polypharmacological biased ligands.
Collapse
|
50
|
Männel B, Jaiteh M, Zeifman A, Randakova A, Möller D, Hübner H, Gmeiner P, Carlsson J. Structure-Guided Screening for Functionally Selective D 2 Dopamine Receptor Ligands from a Virtual Chemical Library. ACS Chem Biol 2017; 12:2652-2661. [PMID: 28846380 DOI: 10.1021/acschembio.7b00493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Functionally selective ligands stabilize conformations of G protein-coupled receptors (GPCRs) that induce a preference for signaling via a subset of the intracellular pathways activated by the endogenous agonists. The possibility to fine-tune the functional activity of a receptor provides opportunities to develop drugs that selectively signal via pathways associated with a therapeutic effect and avoid those causing side effects. Animal studies have indicated that ligands displaying functional selectivity at the D2 dopamine receptor (D2R) could be safer and more efficacious drugs against neuropsychiatric diseases. In this work, computational design of functionally selective D2R ligands was explored using structure-based virtual screening. Molecular docking of known functionally selective ligands to a D2R homology model indicated that such compounds were anchored by interactions with the orthosteric site and extended into a common secondary pocket. A tailored virtual library with close to 13 000 compounds bearing 2,3-dichlorophenylpiperazine, a privileged orthosteric scaffold, connected to diverse chemical moieties via a linker was docked to the D2R model. Eighteen top-ranked compounds that occupied both the orthosteric and allosteric site were synthesized, leading to the discovery of 16 partial agonists. A majority of the ligands had comparable maximum effects in the G protein and β-arrestin recruitment assays, but a subset displayed preference for a single pathway. In particular, compound 4 stimulated β-arrestin recruitment (EC50 = 320 nM, Emax = 16%) but had no detectable G protein signaling. The use of structure-based screening and virtual libraries to discover GPCR ligands with tailored functional properties will be discussed.
Collapse
Affiliation(s)
- Barbara Männel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Mariama Jaiteh
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | - Alexey Zeifman
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | - Alena Randakova
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Dorothee Möller
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jens Carlsson
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|