1
|
Feng Q, De Chavez D, Kihlberg J, Poongavanam V. A membrane permeability database for nonpeptidic macrocycles. Sci Data 2025; 12:10. [PMID: 39753569 PMCID: PMC11698989 DOI: 10.1038/s41597-024-04302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive. In silico methods are a cost-effective alternative, enabling predictions prior to compound synthesis. Here, we present a comprehensive online database ( https://swemacrocycledb.com/ ), housing 5638 membrane permeability datapoints for 4216 nonpeptidic macrocycles, curated from the literature, patents, and bioactivity repositories. In addition, we present a new descriptor, the "amide ratio" (AR), that quantifies the peptidic nature of macrocyclic compounds, enabling the classification of peptidic, semipeptidic, and nonpeptidic macrocycles. Overall, this resource fills a gap among existing databases, offering valuable insights into the membrane permeability of nonpeptidic and semipeptidic macrocycles, and facilitating predictions for drug discovery projects.
Collapse
Affiliation(s)
- Qiushi Feng
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden
| | - Danjo De Chavez
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden.
| | | |
Collapse
|
2
|
Cogswell TJ, Lewis RJ, Sköld C, Nordqvist A, Ahlqvist M, Knerr L. The effect of gem-difluorination on the conformation and properties of a model macrocyclic system. Chem Sci 2024; 15:19770-19776. [PMID: 39568894 PMCID: PMC11575594 DOI: 10.1039/d4sc05424e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Conformational control of drug candidates to engineer improved potency and ADME properties is an ongoing area of research. Macrocyclic rings tend to offer a greater degree of rigidity than non-cyclised small molecules, and, as a result they are perfect platforms to instil conformational controls. In this study, the difluoroalkoxyphenyl moiety is examined as a tool to alter the conformation of macrocycles. A fluorinated and non-fluorinated macrocyclic matched pair is compared in terms of conformation preferences and related ADME properties. The synthesised macrocycles are found to give similar major conformations exhibiting a trans amide in the macrocyclic backbone. However, for the fluorinated macrocycle, the major trans amide conformation is in equilibrium with a cis amide minor conformation, seen by 1H NMR in a 4 : 1 ratio of trans/cis. The conformational fits for the minor fluorinated isomer demonstrate the out of plane preference of the difluoroalkoxy system encouraging the amide within the macrocycle backbone to adopt a cis conformation. The fluorinated macrocycle was less metabolically stable compared to the non-fluorinated, postulated to be a result of the interconversion of trans amide to the cis amide, which potentially could be more readily metabolised.
Collapse
Affiliation(s)
- T J Cogswell
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - R J Lewis
- Medicinal Chemistry, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - C Sköld
- Drug Design and Discovery, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574 SE751 23 Uppsala Sweden
| | - A Nordqvist
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - M Ahlqvist
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - L Knerr
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| |
Collapse
|
3
|
Desgagné M, Chartier M, Lagard C, Ferková S, Choquette M, Longpré JM, Côté J, Boudreault PL, Sarret P. Development of Macrocyclic Neurotensin Receptor Type 2 (NTS2) Opioid-Free Analgesics. Angew Chem Int Ed Engl 2024; 63:e202405941. [PMID: 39110923 DOI: 10.1002/anie.202405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/06/2024] [Indexed: 10/15/2024]
Abstract
The opioid crisis has highlighted the urgent need to develop non-opioid alternatives for managing pain, with an effective, safe, and non-addictive pharmacotherapeutic profile. Using an extensive structure-activity relationship approach, here we have identified a new series of highly selective neurotensin receptor type 2 (NTS2) macrocyclic compounds that exert potent, opioid-independent analgesia in various experimental pain models. To our knowledge, the constrained macrocycle in which the Ile12 residue of NT(7-12) was substituted by cyclopentylalanine, Pro7 and Pro10 were replaced by allyl-glycine followed by side-chain to side-chain cyclization is the most selective analog targeting NTS2 identified to date (Ki 2.9 nM), showing 30,000-fold selectivity over NTS1. Of particular importance, this macrocyclic analog is also able to potentiate the analgesic effects of morphine in a dose- and time-dependent manner. Exerting complementary analgesic actions via distinct mechanisms of nociceptive transmission, NTS2-selective macrocycles can therefore be exploited as opioid-free analgesics or as opioid-sparing therapeutics, offering superior pain relief with reduced adverse effects to pain patients.
Collapse
Affiliation(s)
- Michael Desgagné
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Magali Chartier
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Camille Lagard
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Sára Ferková
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Mathieu Choquette
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| |
Collapse
|
4
|
Jin X, Ding N, Guo HY, Hu Q. Macrocyclic-based strategy in drug design: From lab to the clinic. Eur J Med Chem 2024; 277:116733. [PMID: 39098132 DOI: 10.1016/j.ejmech.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Macrocyclic compounds have emerged as potent tools in the field of drug design, offering unique advantages for enhancing molecular recognition, improving pharmacokinetic properties, and expanding the chemical space accessible to medicinal chemists. This review delves into the evolutionary trajectory of macrocyclic-based strategies, tracing their journey from laboratory innovations to clinical applications. Beginning with an exploration of the defining structural features of macrocycles and their impact on drug-like characteristics, this discussion progresses to highlight key design principles that have facilitated the development of diverse macrocyclic drug candidates. Through a series of illustrative representative case studies from approved macrocyclic drugs and candidates spanning various therapeutic areas, particular emphasis is placed on their efficacy in targeting challenging protein-protein interactions, enzymes, and receptors. Additionally, this review thoroughly examines how macrocycles effectively address critical issues such as metabolic stability, oral bioavailability and selectivity. Valuable insights into optimization strategies employed during both approved and clinical phases underscore successful translation of promising leads into efficacious therapies while providing valuable perspectives on harnessing the full potential of macrocycles in drug discovery and development endeavors.
Collapse
Affiliation(s)
- Xin Jin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Ding
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Yu Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Waibl F, Casagrande F, Dey F, Riniker S. Validating Small-Molecule Force Fields for Macrocyclic Compounds Using NMR Data in Different Solvents. J Chem Inf Model 2024; 64:7938-7948. [PMID: 39405498 PMCID: PMC11523072 DOI: 10.1021/acs.jcim.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Macrocycles are a promising class of compounds as therapeutics for difficult drug targets due to a favorable combination of properties: They often exhibit improved binding affinity compared to their linear counterparts due to their reduced conformational flexibility, while still being able to adapt to environments of different polarity. To assist in the rational design of macrocyclic drugs, there is need for computational methods that can accurately predict conformational ensembles of macrocycles in different environments. Molecular dynamics (MD) simulations remain one of the most accurate methods to predict ensembles quantitatively, although the accuracy is governed by the underlying force field. In this work, we benchmark four different force fields for their application to macrocycles by performing replica exchange with solute tempering (REST2) simulations of 11 macrocyclic compounds and comparing the obtained conformational ensembles to nuclear Overhauser effect (NOE) upper distance bounds from NMR experiments. Especially, the modern force fields OpenFF 2.0 and XFF yield good results, outperforming force fields like GAFF2 and OPLS/AA. We conclude that REST2 in combination with modern force fields can often produce accurate ensembles of macrocyclic compounds. However, we also highlight examples for which all examined force fields fail to produce ensembles that fulfill the experimental constraints.
Collapse
Affiliation(s)
- Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Fabio Casagrande
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Fabian Dey
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Pirie R, Stanway-Gordon HA, Stewart HL, Wilson KL, Patton S, Tyerman J, Cole DJ, Fowler K, Waring MJ. An analysis of the physicochemical properties of oral drugs from 2000 to 2022. RSC Med Chem 2024; 15:3125-3132. [PMID: 39309358 PMCID: PMC11411612 DOI: 10.1039/d4md00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/20/2024] [Indexed: 09/25/2024] Open
Abstract
Calculable physicochemical descriptors are a useful guide to assist compound design in medicinal chemistry. It is well established that controlling size, lipophilicity, hydrogen bonding, flexibility and shape, guided by descriptors that approximate to these properties, can greatly increase the chances of successful drug discovery. Many therapeutic targets and new modalities are incompatible with the optimal ranges of these properties and thus there is much interest in approaches to find oral drug candidates outside of this space. These considerations have been a focus for a while and hence we analysed the physicochemical properties of oral drugs approved by the FDA from 2000 to 2022 to assess if such concepts had influenced the output of the drug-discovery community. Our findings show that it is possible to find drug molecules that lie outside of the optimal descriptor ranges and that large molecules in particular (molecular weight >500 Da) can be oral drugs. The analysis suggests that this is more likely if lipophilicity, hydrogen bonding and flexibility are controlled. Crude physicochemical descriptors are useful in that regard but more accurate and robust means of understanding substructural classes, shape and conformation are likely to be required to improve the chances of success in this space.
Collapse
Affiliation(s)
- Rachael Pirie
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Harriet A Stanway-Gordon
- Cancer Research Horizons Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Hannah L Stewart
- Cancer Research Horizons Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Kirsty L Wilson
- Cancer Research Horizons Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Summer Patton
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Jack Tyerman
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Daniel J Cole
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Katherine Fowler
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building Babraham Research Campus Cambridge CB22 3AT UK
| | - Michael J Waring
- Cancer Research Horizons Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
7
|
Das S, Pradhan TK, Samanta R. Recent Progress on Transition Metal Catalyzed Macrocyclizations Based on C-H Bond Activation at Heterocyclic Scaffolds. Chem Asian J 2024; 19:e202400397. [PMID: 38924294 DOI: 10.1002/asia.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Macrocycles are essential in protein-protein interactions and the preferential intake of bioactive scaffolds. Macrocycles are commonly synthesized by late-stage macrolactonizations, macrolactamizations, transition metal-catalyzed ring-closing metathesis, S-S bond-forming reactions, and copper-catalyzed alkyne-azide cycloaddition. Recently, transition metal-catalyzed C-H activation strategies have gained significant interest among chemists to synthesize macrocycles. This article provides a comprehensive overview of the transition metal-catalyzed macrocyclization via C-H bond functionalization of heterocycle-containing peptides, annulations, and heterocycle-ring construction through direct C-H bond functionalization. In the first part, palladium salt catalyzed coupling with indolyl C(sp3)-H and C(sp2)-H bonds for macrocyclization is reported. The second part summarizes rhodium-catalyzed macrocyclizations via site-selective C-H bond functionalization. Earth-abundant, less toxic 3d metal salt Mn-catalyzed cyclizations are reported in the latter part. This summary is expected to spark interest in emerging methods of macrocycle production among organic synthesis and chemical biology practitioners, helping to develop the discipline. We hope that this mini-review will also inspire synthetic chemists to explore new and broadly applicable C-C bond-forming strategies for macrocyclization via intramolecular C-H activation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapan Kumar Pradhan
- Department of Chemistry, Krishnath College Berhampore, Murshidabad, West Bengal, 742101
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
8
|
Tang X, Hou K, Chen X, Fan W, Wu H, Lu C, He GX. Discovery of macrocyclic covalent inhibitors for severe acute respiratory syndrome coronavirus 2 3CL protease. Bioorg Med Chem 2024; 111:117846. [PMID: 39106653 DOI: 10.1016/j.bmc.2024.117846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024]
Abstract
The coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spread worldwide for more than 3 years. Although the hospitalization rate and mortality have decreased dramatically due to wide vaccination effort and improved treatment options, the disease is still a global health issue due to constant viral mutations, causing negative impact on social and economic activities. In addition, long COVID and complications arising from COVID-19 weeks after infection have become a concern for public health experts. Therefore, better treatments for COVID-19 are still needed. Herein, we describe a class of macrocyclic peptidomimetic compounds that are potent inhibitors of SARS-Cov-2 3CL protease (3CLpro). Significantly, some of the compounds showed a higher stability against human liver microsomes (HLM t1/2 > 180 min) and may be suitable for oral administration without the need for a pharmacokinetic (PK) boosting agent such as ritonavir.
Collapse
Affiliation(s)
- Xiubo Tang
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China.
| | - Kai Hou
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China
| | - Xiaowu Chen
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China
| | - Wenyuan Fan
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China
| | - Hao Wu
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China
| | - Changliang Lu
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China
| | - Gong-Xin He
- Shanghai CureGene Pharmaceutical Co., Ltd, 2nd floor, Building C1, No. 1976 middle Gaoke Road, ZhangJiang Hitech Park, Pudong, Shanghai 201210, China
| |
Collapse
|
9
|
Thorpe MP, Smith AN, Blackwell DJ, Hopkins CR, Knollmann BC, Akers WS, Johnston JN. The backbone constitution drives passive permeability independent of side chains in depsipeptide and peptide macrocycles inspired by ent-verticilide. Chem Sci 2024; 15:d4sc02758b. [PMID: 39211739 PMCID: PMC11348715 DOI: 10.1039/d4sc02758b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
The number of peptide-like scaffolds found in late-stage drug development is increasing, but a critical unanswered question in the field is whether substituents (side chains) or the backbone drive passive permeability. The backbone is scrutinized in this study. Five series of macrocyclic peptidic compounds were prepared, and their passive permeability was determined (PAMPA, Caco-2), to delineate structure-permeability relationships. Each series was based on the cell-permeable antiarrhythmic compound ent-verticilide, a cyclic oligomeric depsipeptide (COD) containing repeating ester/N-Me amide didepsipeptide monomers. One key finding is that native lipophilic ester functionality can impart a favorable level of permeability, but ester content alone is not the final determinant - the analog with highest P app was discovered by a single ester-to-N-H amide replacement. Furthermore, the relative composition of esters and N-Me amides in a series had more nuanced permeability behavior. Overall, a systematic approach to structure-permeability correlations suggests that a combinatorial-like investigation of functionality in peptidic or peptide-like compounds could better identify leads with optimal passive permeability, perhaps prior to modification of side chains.
Collapse
Affiliation(s)
- Madelaine P Thorpe
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| | - Abigail N Smith
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center Medical Research Bldg IV, Room 1265, 2215B Garland Ave Nashville TN 37232-0575 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center Medical Research Bldg IV, Room 1265, 2215B Garland Ave Nashville TN 37232-0575 USA
| | - Wendell S Akers
- Pharmaceutical Sciences Research Center, College of Pharmacy, Lipscomb University Nashville TN 37204 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| |
Collapse
|
10
|
Singh S, Gleason CE, Fang M, Laimon YN, Khivansara V, Xie S, Durmaz YT, Sarkar A, Ngo K, Savla V, Li Y, Abu-Remaileh M, Li X, Tuladhar B, Odeh R, Hamkins-Indik F, He D, Membreno MW, Nosrati M, Gushwa NN, Leung SSF, Fraga-Walton B, Hernandez L, Baldomero MP, Lent BM, Spellmeyer D, Luna JF, Hoang D, Gritsenko Y, Chand M, DeMart MK, Metobo S, Bhatt C, Shapiro JA, Yang K, Dupper NJ, Bockus AT, Doench JG, Aggen JB, Liu LF, Levin B, Wang EW, Vendrell I, Fischer R, Kessler B, Gokhale PC, Signoretti S, Spektor A, Kreatsoulas C, Singh R, Earp DJ, Garcia PD, Nijhawan D, Oser MG. Cyclin A/B RxL Macrocyclic Inhibitors to Treat Cancers with High E2F Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605889. [PMID: 39211113 PMCID: PMC11360997 DOI: 10.1101/2024.08.01.605889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.
Collapse
|
11
|
Lohan S, Konshina AG, Tiwari RK, Efremov RG, Maslennikov I, Parang K. Broad-spectrum activity of membranolytic cationic macrocyclic peptides against multi-drug resistant bacteria and fungi. Eur J Pharm Sci 2024; 197:106776. [PMID: 38663759 DOI: 10.1016/j.ejps.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.
Collapse
Affiliation(s)
- Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA 92617, United States
| | - Anastasia G Konshina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia
| | - Rakesh K Tiwari
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR 97355, United States
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia; National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russia
| | - Innokentiy Maslennikov
- Structural Biology Research Center, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd., Irvine, CA 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States.
| |
Collapse
|
12
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
13
|
Wei J, Liu Y, Sun Y, Bai J, Gao H, Yang Z, Pan L. Continuous Synthesis of a Macrocyclic Sulfite of Polyethylene Glycol by Cascaded Continuous Stirred Tank Reactors (CSTRs). Chemistry 2024; 30:e202304319. [PMID: 38277192 DOI: 10.1002/chem.202304319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Many macrocyclic compounds are attractive drug-like molecules or intermediates due to their special properties. However, the bulk synthesis of such compounds are hindered by the necessity of using diluted solutions, in order to prevent intermolecular reactions that yields oligomer impurities, thereby resulting in a low production efficiency. Such challenge can be adequately addressed by using continuous reactors, allowing improved efficiency with smaller space footprints. In this work, we proposed a novel continuous process for the synthesis of a macrocyclic sulfite of tetraethylene glycol (PEG4-MCSi), which is a precursor to a very useful building block, PEG4-macrocyclic sulfate (PEG4-MCS). The basic reaction parameters, including stoichiometry and temperature, were first confirmed with small batch reactions, and the effectiveness of coiled reactors and continuous stirred tank reactors (CSTRs) were compared. Cascaded CSTRs were proven to be suitable, and the reaction parameters were subject to further optimization to give a robust continuous process. The process was then tested with 4 parallel runs for up to 64 h. Finally, the merits and demerits of batch and continuous reactions were also compared, demonstrating the suitability of latter in the bulk production of macrocyclic PEG-MCSi compounds.
Collapse
Affiliation(s)
- Jichang Wei
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| | - Yinli Liu
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| | - Yuchen Sun
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| | - Jun Bai
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| | - He Gao
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| | - Zhaojun Yang
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| | - Long Pan
- Institute for Advanced Pharmaceutical Materials, Asymchem Life Sciences (Tianjin) Co., Ltds., No. 265, South Avenue, TEDA West, Tianjin, 300301, P. R. China
| |
Collapse
|
14
|
Granulo N, Sosnin S, Digles D, Ecker GF. The macrocycle inhibitor landscape of SLC-transporter. Mol Inform 2024; 43:e202300287. [PMID: 38288682 PMCID: PMC11475418 DOI: 10.1002/minf.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024]
Abstract
In the past years the interest in Solute Carrier Transporters (SLC) has increased due to their potential as drug targets. At the same time, macrocycles demonstrated promising activities as therapeutic agents. However, the overall macrocycle/SLC-transporter interaction landscape has not been fully revealed yet. In this study, we present a statistical analysis of macrocycles with measured activity against SLC-transporter. Using a data mining pipeline based on KNIME retrieved in total 825 bioactivity data points of macrocycles interacting with SLC-transporter. For further analysis of the SLC inhibitor profiles we developed an interactive KNIME workflow as well as an interactive map of the chemical space coverage utilizing parametric t-SNE models. The parametric t-SNE models provide a good discrimination ability among several corresponding SLC subfamilies' targets. The KNIME workflow, the dataset, and the visualization tool are freely available to the community.
Collapse
Affiliation(s)
- Nejra Granulo
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
- Research Platform NeGeMac–Next Generation Macrocycles to Address Challenging Protein InterfacesUniversity of Vienna1090ViennaAustria
| | - Sergey Sosnin
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
| | - Daniela Digles
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
| | - Gerhard F. Ecker
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
- Research Platform NeGeMac–Next Generation Macrocycles to Address Challenging Protein InterfacesUniversity of Vienna1090ViennaAustria
| |
Collapse
|
15
|
Meng F, Liu J, Cao Z, Yu J, Steurer B, Yang Y, Wang Y, Cai X, Zhang M, Ren F, Aliper A, Ding X, Zhavoronkov A. Discovery of macrocyclic CDK2/4/6 inhibitors with improved potency and DMPK properties through a highly efficient macrocyclic drug design platform. Bioorg Chem 2024; 146:107285. [PMID: 38547721 DOI: 10.1016/j.bioorg.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.
Collapse
Affiliation(s)
- Fanye Meng
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Jinxin Liu
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Zhongying Cao
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Jiaojiao Yu
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Barbara Steurer
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong
| | - Yilin Yang
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Yazhou Wang
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China.
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd., Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong; Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates.
| |
Collapse
|
16
|
Zhang H, Xie F, Yuan XY, Dai XT, Tian YF, Sun MM, Yu SQ, Cai JY, Sun B, Zhang WC, Shan CL. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin 2024; 45:1044-1059. [PMID: 38326625 PMCID: PMC11053100 DOI: 10.1038/s41401-024-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xiao-Ya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xin-Tong Dai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yun-Feng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ming-Ming Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Si-Qi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Jia-You Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Wei-Cheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Chang-Liang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
17
|
Yang Z, Arnoux M, Hazelard D, Hughes OR, Nabarro J, Whitwood AC, Fascione MA, Spicer CD, Compain P, Unsworth WP. Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams. Org Biomol Chem 2024; 22:2985-2991. [PMID: 38526035 DOI: 10.1039/d4ob00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
New methods are described that expand the scope of the Successive Ring Expansion (SuRE) with respect to synthetically challenging lactams. A protocol has been developed for use with 'unreactive' lactams, enabling SuRE reactions to be performed on subsrates that fail under previously established conditions. Ring expansion is also demonstarted on 'reactive' lactams derived from iminosugars for the first time. The new SuRE methods were used to prepare a diverse array of medium-sized and macrocyclic lactams and lactones, which were evaluted in an anti-bacterial assay against E. coli BW25113WT.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Marion Arnoux
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Owen R Hughes
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Joe Nabarro
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Christopher D Spicer
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
18
|
Gaikwad V, Choudhury AR, Chakrabarti R. Decoding the dynamics of BCL9 triazole stapled peptide. Biophys Chem 2024; 307:107197. [PMID: 38335808 DOI: 10.1016/j.bpc.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BCL9 is a key protein in Wnt signaling pathway. It acts as a transcriptional co-activator to β-catenin, and dysregulation in this pathway leads to tumor growth. Inhibiting such a protein-protein interaction is considered as a therapeutic challenge. The interaction between β-catenin and BCL9 is facilitated by a 23-residue helical domain from BCL9 and a hydrophobic groove of β-catenin. To prevent this interaction, a peptide that mimics the alpha-helical domain of BCL9 can be designed. Stapling is considered a successful strategy in the pursuit of designing such peptides in which amino acids side are stitched together using chemical moieties. Among the various types of cross-linkers, triazole is the most rapid and effective one synthesized via click reaction. However, the underlying interactions behind maintaining the secondary structure of stapled peptides remain less explored. In the current work, we employed the molecular dynamics simulation to study the conformational behavior of the experimentally synthesized single and double triazole stapled BCL9 peptide. Upon the addition of a triazole staple, there is a significant reduction in the conformational space of BCL9. The helical character of the stapled peptide increases with an increase in separation between the triazole cross-linkers. Also, we encompassed the Replica Exchange with Solute Tempering (REST2) simulation to validate the high-temperature response of the stapled peptide. From REST2, the PCA and t-SNE show the reduction in distinct cluster formation on the addition of triazole staple. Our study infers further development of these triazole-stapled BCL9 peptides into effective inhibitors to target the interaction between β-catenin and BCL9.
Collapse
Affiliation(s)
- Vikram Gaikwad
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Asha Rani Choudhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
19
|
Arora S, Chettri S, Percha V, Kumar D, Latwal M. Artifical intelligence: a virtual chemist for natural product drug discovery. J Biomol Struct Dyn 2024; 42:3826-3835. [PMID: 37232451 DOI: 10.1080/07391102.2023.2216295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Nature is full of a bundle of medicinal substances and its product perceived as a prerogative structure to collaborate with protein drug targets. The natural product's (NPs) structure heterogeneity and eccentric characteristics inspired scientists to work on natural product-inspired medicine. To gear NP drug-finding artificial intelligence (AI) to confront and excavate unexplored opportunities. Natural product-inspired drug discoveries based on AI to act as an innovative tool for molecular design and lead discovery. Various models of machine learning produce quickly synthesizable mimetics of the natural products templates. The invention of novel natural products mimetics by computer-assisted technology provides a feasible strategy to get the natural product with defined bio-activities. AI's hit rate makes its high importance by improving trail patterns such as dose selection, trail life span, efficacy parameters, and biomarkers. Along these lines, AI methods can be a successful tool in a targeted way to formulate advanced medicinal applications for natural products. 'Prediction of future of natural product based drug discovery is not magic, actually its artificial intelligence'Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sukanya Chettri
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Versha Percha
- Department of Pharmaceutical Chemistry, Dolphin(PG) Institute of Biomedical and Natural Sciences, Dehradun, Uttarakhand, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, Dolphin(PG) Institute of Biomedical and Natural Sciences, Dehradun, Uttarakhand, India
| | - Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
20
|
Yang GZ, Wang L, Gao K, Zhu X, Lou LG, Yue JM. Design and Synthesis of Cyclolipopeptide Mimics of Dysoxylactam A and Evaluation of the Reversing Potencies against P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2024. [PMID: 38502936 DOI: 10.1021/acs.jmedchem.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Inspired by the structure of dysoxylactam A (DLA) that has been demonstrated to reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) effectively, 61 structurally simplified cyclolipopeptides were thus designed and synthesized via an effective method, and their reversing P-gp-mediated MDR potentials were evaluated, which provided a series of more potent analogues and allowed us to explore their structure-activity relationship (SAR). Among them, a well-simplified compound, 56, with only two chiral centers that all derived from amino acids dramatically reversed drug resistance in KBV200 cells at 10 μM in combination with vinorelbine (VNR), paclitaxel (PTX), and adriamycin (ADR), respectively, which is more promising than DLA. The mechanism study showed that 56 reversed the MDR of tumor cells by inhibiting the transport function of P-gp rather than reducing its expression. Notably, compound 56 effectively restored the sensitivity of MDR tumors to VNR in vivo at a dosage without obvious toxicity.
Collapse
Affiliation(s)
- Guan-Zhou Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xi Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Li-Guang Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
21
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
22
|
Ly HM, Desgagné M, Nguyen DT, Comeau C, Froehlich U, Marsault É, Boudreault PL. Insights on Structure-Passive Permeability Relationship in Pyrrole and Furan-Containing Macrocycles. J Med Chem 2024; 67:3711-3726. [PMID: 38417040 PMCID: PMC10946398 DOI: 10.1021/acs.jmedchem.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Macrocycles have recognized therapeutic potential, but their limited cellular permeability can hinder their development as oral drugs. To better understand the structure-permeability relationship of heterocycle-containing, semipeptidic macrocycles, a library was synthesized. These compounds were created by developing two novel reactions described herein: the reduction of activated oximes by LiBH4 and the aqueous reductive mono-N-alkylation of aldehydes using catalytic SmI2 and stoichiometric Zn. The permeability of the macrocycles was evaluated through a parallel artificial membrane permeability assay (PAMPA), and the results indicated that macrocycles with a furan incorporated into the structure have better passive permeability than those with a pyrrole moiety. Compounds bearing a 2,5-disubstituted pyrrole (endo orientation) were shown to be implicated in intramolecular H-bonds, enhancing their permeability. This study highlighted the impact of heterocycles moieties in semipeptides, creating highly permeable macrocycles, thus showing promising avenues for passive diffusion of drugs beyond the rule-of-five chemical space.
Collapse
Affiliation(s)
- Huy M Ly
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Michael Desgagné
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Duc Tai Nguyen
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Christian Comeau
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Ulrike Froehlich
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| |
Collapse
|
23
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
24
|
Zalessky I, Wootton JM, Tam JKF, Spurling DE, Glover-Humphreys WC, Donald JR, Orukotan WE, Duff LC, Knapper BJ, Whitwood AC, Tanner TFN, Miah AH, Lynam JM, Unsworth WP. A Modular Strategy for the Synthesis of Macrocycles and Medium-Sized Rings via Cyclization/Ring Expansion Cascade Reactions. J Am Chem Soc 2024; 146:5702-5711. [PMID: 38372651 PMCID: PMC10910531 DOI: 10.1021/jacs.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Macrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided. A modular synthetic approach has been developed to facilitate the simple assembly of the requisite linear precursors, which can then be converted into an extremely broad range of functionalized macrocycles and medium-sized rings using one of nine CRE protocols.
Collapse
Affiliation(s)
- Illya Zalessky
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jack M. Wootton
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jerry K. F. Tam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | - James R. Donald
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Will E. Orukotan
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Lee C. Duff
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Ben J. Knapper
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | | | - Jason M. Lynam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | |
Collapse
|
25
|
Acharya B, Saha D, Armstrong D, Jabali B, Hanafi M, Herrera-Rueda A, Lakkaniga NR, Frett B. Kinase inhibitor macrocycles: a perspective on limiting conformational flexibility when targeting the kinome with small molecules. RSC Med Chem 2024; 15:399-415. [PMID: 38389874 PMCID: PMC10880908 DOI: 10.1039/d3md00457k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/10/2023] [Indexed: 02/24/2024] Open
Abstract
Methods utilized for drug discovery and development within the kinome have rapidly evolved since the approval of imatinib, the first small molecule kinase inhibitor. Macrocycles have received increasing interest as a technique to improve kinase inhibitor drug properties evident by the FDA approvals of lorlatinib, pacritinib, and repotrectinib. Compared to their acyclic counterparts, macrocycles can possess improved pharmacodynamic and pharmacokinetic properties. This review highlights clinical success stories when implementing macrocycles in kinase-based drug discovery and showcases that macrocyclization is a clinically validated drug discovery strategy when targeting the kinome.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
- Conrad Prebys Centre for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute San Diego CA USA
| | - Daniel Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Baha'a Jabali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Maha Hanafi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University Cairo 11526 Egypt
| | - Alan Herrera-Rueda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
26
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
27
|
Orukotan WE, Palate KY, Pogrányi B, Bobinski P, Epton RG, Duff L, Whitwood AC, Grogan G, Lynam JM, Unsworth WP. Divergent Cascade Ring-Expansion Reactions of Acryloyl Imides. Chemistry 2024; 30:e202303270. [PMID: 37987097 DOI: 10.1002/chem.202303270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
Macrocyclic and medium-sized ring ketones, lactones and lactams can all be made from common acryloyl imide starting materials through divergent, one-pot cascade ring-expansion reactions. Following either conjugate addition with an amine or nitromethane, or osmium(VIII)-catalysed dihydoxylation, rearrangement through a four-atom ring expansion takes place spontaneously to form the ring expanded products. A second ring expansion can also be performed following a second iteration of imide formation and alkene functionalisation/ring expansion. In the dihydroxylation series, three- or four-atom ring expansion can be performed selectively, depending on whether the reaction is under kinetic or thermodynamic control.
Collapse
Affiliation(s)
- Will E Orukotan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Balázs Pogrányi
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Philipp Bobinski
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ryan G Epton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Lee Duff
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
28
|
Sharma R, Muthu SA, Agarwal M, Mehto NK, Pahuja I, Grover A, Dwivedi VP, Ahmad B, Grover S. Atosiban and Rutin exhibit anti-mycobacterial activity - An integrated computational and biophysical insight toward drug repurposing strategy against Mycobacterium tuberculosis targeting its essential enzyme HemD. Int J Biol Macromol 2023; 253:127208. [PMID: 37816464 DOI: 10.1016/j.ijbiomac.2023.127208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
With the advancements of high throughput computational screening procedures, drug repurposing became the privileged framework for drug discovery. The structure-based drug discovery is the widely used method of drug repurposing, consisting of computational screening of compounds and testing them in-vitro. This current method of repurposing leaves room for mechanistic insights into how these screened hits interact with and influence their targets. We addressed this gap in the current study by integrating highly sensitive biophysical methods into existing computational repurposing methods. We also corroborated our computational and biophysical findings on H37Rv for the anti-mycobacterial action of selected drugs in-vitro and ex-vivo conditions. Atosiban and Rutin were screened as highly interacting hits against HemD through multi-stage docking and were cross-validated in biophysical studies. The affinity of these drugs (K ~ 106 M-1) was quantified using fluorescence quenching studies. Differential Scanning Fluorimetry (DSF) and urea-based chemical denaturation studies revealed a destabilizing effect of these drugs on target which was further validated using MD simulations. Conformational rearrangements of secondary structures were established using CD spectra and intrinsic fluorescence. Furthermore, Atosiban and Rutin inhibited M.tb growth in-vitro and ex-vivo while remaining non-toxic to mice peritoneal macrophages.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Shivani A Muthu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Isha Pahuja
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Basir Ahmad
- Protein Assembly Lab, Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India.
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
30
|
Ojha AA, Votapka LW, Amaro RE. QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through milestoning simulations. Chem Sci 2023; 14:13159-13175. [PMID: 38023523 PMCID: PMC10664576 DOI: 10.1039/d3sc04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the interaction of ligands with biomolecules is an integral component of drug discovery and development. Challenges for computing thermodynamic and kinetic quantities for pharmaceutically relevant receptor-ligand complexes include the size and flexibility of the ligands, large-scale conformational rearrangements of the receptor, accurate force field parameters, simulation efficiency, and sufficient sampling associated with rare events. Our recently developed multiscale milestoning simulation approach, SEEKR2 (Simulation Enabled Estimation of Kinetic Rates v.2), has demonstrated success in predicting unbinding (koff) kinetics by employing molecular dynamics (MD) simulations in regions closer to the binding site. The MD region is further subdivided into smaller Voronoi tessellations to improve the simulation efficiency and parallelization. To date, all MD simulations are run using general molecular mechanics (MM) force fields. The accuracy of calculations can be further improved by incorporating quantum mechanical (QM) methods into generating system-specific force fields through reparameterizing ligand partial charges in the bound state. The force field reparameterization process modifies the potential energy landscape of the bimolecular complex, enabling a more accurate representation of the intermolecular interactions and polarization effects at the bound state. We present QMrebind (Quantum Mechanical force field reparameterization at the receptor-ligand binding site), an ORCA-based software that facilitates reparameterizing the potential energy function within the phase space representing the bound state in a receptor-ligand complex. With SEEKR2 koff estimates and experimentally determined kinetic rates, we compare and interpret the receptor-ligand unbinding kinetics obtained using the newly reparameterized force fields for model host-guest systems and HSP90-inhibitor complexes. This method provides an opportunity to achieve higher accuracy in predicting receptor-ligand koff rate constants.
Collapse
Affiliation(s)
- Anupam Anand Ojha
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Lane William Votapka
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Rommie Elizabeth Amaro
- Department of Molecular Biology, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
31
|
Chao Y, Subramaniam M, Namitharan K, Zhu Y, Koolma V, Hao Z, Li S, Wang Y, Hudoynazarov I, Miloserdov FM, Zuilhof H. Synthesis of Large Macrocycles with Chiral Sulfur Centers via Enantiospecific SuFEx and SuPhenEx Click Reactions. J Org Chem 2023; 88:15658-15665. [PMID: 37903243 PMCID: PMC10660663 DOI: 10.1021/acs.joc.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Here we report the first asymmetric synthesis of large chiral macrocycles with chiral sulfur atoms. Building on stereospecific SuFEx and SuPhenEx click chemistries, this approach utilizes disulfonimidoyl fluorides and disulfonimidoyl p-nitrophenolates─which are efficient building blocks with two chiral sulfur centers, and diphenols to efficiently form novel S-O bonds. Characteristic results include the enantiospecific one-step synthesis of rings consisting of 21-58 members and characterization of both enantiomers (R,R and S,S) by e.g. X-ray crystallography.
Collapse
Affiliation(s)
- Yang Chao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Muthusamy Subramaniam
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Kayambu Namitharan
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Yumei Zhu
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Victor Koolma
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Zitong Hao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shikang Li
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yaxin Wang
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ilyos Hudoynazarov
- Division
of Organic Synthesis and Applied Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Fedor M. Miloserdov
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Han Zuilhof
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
32
|
Fan L, Yu Y, Jayne C, Frost JR, Scott JD. Synthesis of DNA-Encoded Macrocyclic Peptides via Nitrile-Aminothiol Click Reaction. Org Lett 2023; 25:8038-8042. [PMID: 37889907 DOI: 10.1021/acs.orglett.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
DNA-encoded library (DEL) technology holds exciting potential for discovering novel therapeutic macrocyclic peptides (MPs). Herein, we describe the development of a DEL-compatible peptide macrocyclization method that proceeds via intramolecular click-condensation between 3-(2-cyano-4-pyridyl)-l-alanine (Cpa) and an N-terminal cysteine. Cyclization takes place spontaneously in a buffered aqueous solution and affords the cyclized products in excellent yields. The reaction exhibits a broad substrate scope and can be employed to generate MPs of variable ring size and amino acid composition.
Collapse
Affiliation(s)
- Lijun Fan
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yang Yu
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Charles Jayne
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John R Frost
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jack D Scott
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
33
|
Seidel T, Permann C, Wieder O, Kohlbacher SM, Langer T. High-Quality Conformer Generation with CONFORGE: Algorithm and Performance Assessment. J Chem Inf Model 2023; 63:5549-5570. [PMID: 37624145 PMCID: PMC10498443 DOI: 10.1021/acs.jcim.3c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 08/26/2023]
Abstract
Knowledge of the putative bound-state conformation of a molecule is an essential prerequisite for the successful application of many computer-aided drug design methods that aim to assess or predict its capability to bind to a particular target receptor. An established approach to predict bioactive conformers in the absence of receptor structure information is to sample the low-energy conformational space of the investigated molecules and derive representative conformer ensembles that can be expected to comprise members closely resembling possible bound-state ligand conformations. The high relevance of such conformer generation functionality led to the development of a wide panel of dedicated commercial and open-source software tools throughout the last decades. Several published benchmarking studies have shown that open-source tools usually lag behind their commercial competitors in many key aspects. In this work, we introduce the open-source conformer ensemble generator CONFORGE, which aims at delivering state-of-the-art performance for all types of organic molecules in drug-like chemical space. The ability of CONFORGE and several well-known commercial and open-source conformer ensemble generators to reproduce experimental 3D structures as well as their computational efficiency and robustness has been assessed thoroughly for both typical drug-like molecules and macrocyclic structures. For small molecules, CONFORGE clearly outperformed all other tested open-source conformer generators and performed at least equally well as the evaluated commercial generators in terms of both processing speed and accuracy. In the case of macrocyclic structures, CONFORGE achieved the best average accuracy among all benchmarked generators, with RDKit's generator coming close in second place.
Collapse
Affiliation(s)
- Thomas Seidel
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Christian Permann
- NeGeMac
Research Platform, Department of Pharmaceutical Sciences, Division
of Pharmaceutical Chemistry, University
of Vienna, Josef-Holaubek-Platz
2, 1090 Vienna, Austria
| | - Oliver Wieder
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Stefan M. Kohlbacher
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Thierry Langer
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- NeGeMac
Research Platform, Department of Pharmaceutical Sciences, Division
of Pharmaceutical Chemistry, University
of Vienna, Josef-Holaubek-Platz
2, 1090 Vienna, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
34
|
Fragkiadakis M, Anastasiou PK, Zingiridis M, Triantafyllou-Rundell ME, Reyes Romero A, Stoumpos CC, Neochoritis CG. Instant Macrocyclizations via Multicomponent Reactions. J Org Chem 2023; 88:12709-12715. [PMID: 37596972 DOI: 10.1021/acs.joc.3c01379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Macrocycles fascinate chemists due to both their structure and their applications. However, we still lack efficient and sustainable synthetic methods, giving us straightforward access to them. Herein, a rapid macrocyclization utilizing a two-step, one-pot approach based on orthogonal multicomponent reaction (MCR) tactics is introduced. This synthetic protocol, which is based on Ugi and Groebke-Blackburn-Bienaymé reactions with isocyanides tethered to alkyl tosylates, yields medium sized macrocycles that are otherwise difficult to achieve. Single crystal structures reveal conformational reorganization via intramolecular hydrogen bonding, and modeling studies profile the synthesized libraries.
Collapse
Affiliation(s)
| | | | - Marios Zingiridis
- Department of Chemistry, University of Crete, Voutes, 70013 Heraklion, Greece
| | | | - Atilio Reyes Romero
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, New York, New York 10065, United States
| | - Constantinos C Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, 70013 Heraklion, Greece
| | | |
Collapse
|
35
|
Garcia Jimenez D, Vallaro M, Rossi Sebastiano M, Apprato G, D’Agostini G, Rossetti P, Ermondi G, Caron G. Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally Bioavailable Beyond-Rule-of-5 Drugs. J Med Chem 2023; 66:10681-10693. [PMID: 37490408 PMCID: PMC10424176 DOI: 10.1021/acs.jmedchem.3c00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 07/27/2023]
Abstract
New chemical modalities in drug discovery include molecules belonging to the bRo5 chemical space. Because of their complex and flexible structure, bRo5 compounds often suffer from a poor solubility/permeability profile. Chameleonicity describes the capacity of a molecule to adapt to the environment through conformational changes; the design of molecular chameleons is a medicinal chemistry strategy simultaneously optimizing solubility and permeability. A default method to quantify chameleonicity in early drug discovery is still missing. Here we introduce Chamelogk, an automated, fast, and cheap chromatographic descriptor of chameleonicity. Moreover, we report measurements for 55 Ro5 and bRo5 compounds and validate our method with literature data. Then, selected case studies (macrocycles, nonmacrocyclic compounds, and PROTACs) are used to illustrate the application of Chamelogk in combination with lipophilicity (BRlogD) and polarity (Δ log kwIAM) descriptors. Overall, we show how Chamelogk deserves being included in property-based drug discovery strategies to design oral bioavailable bRo5 compounds.
Collapse
Affiliation(s)
- Diego Garcia Jimenez
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Maura Vallaro
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Apprato
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia D’Agostini
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Paolo Rossetti
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
36
|
Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. P 1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. RSC Chem Biol 2023; 4:533-547. [PMID: 37547456 PMCID: PMC10398354 DOI: 10.1039/d3cb00075c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CLpro, which play a key role in viral replication and present minimal homology with mammalian proteases. Particular focus is put on the reported development of P1 glutamine isosteres to generate potent inhibitors mimicking the natural substrate sequence at the site of recognition.'
Collapse
Affiliation(s)
- Louise A Stubbing
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Joseph Bell-Tyrer
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Alice M McSweeney
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Geena M McKenzie-Goldsmith
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Vernon K Ward
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| |
Collapse
|
37
|
Diao Y, Liu D, Ge H, Zhang R, Jiang K, Bao R, Zhu X, Bi H, Liao W, Chen Z, Zhang K, Wang R, Zhu L, Zhao Z, Hu Q, Li H. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery. Nat Commun 2023; 14:4552. [PMID: 37507402 PMCID: PMC10382584 DOI: 10.1038/s41467-023-40219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in macrocycles as potential therapeutic agents has increased rapidly. Macrocyclization of bioactive acyclic molecules provides a potential avenue to yield novel chemical scaffolds, which can contribute to the improvement of the biological activity and physicochemical properties of these molecules. In this study, we propose a computational macrocyclization method based on Transformer architecture (which we name Macformer). Leveraging deep learning, Macformer explores the vast chemical space of macrocyclic analogues of a given acyclic molecule by adding diverse linkers compatible with the acyclic molecule. Macformer can efficiently learn the implicit relationships between acyclic and macrocyclic structures represented as SMILES strings and generate plenty of macrocycles with chemical diversity and structural novelty. In data augmentation scenarios using both internal ChEMBL and external ZINC test datasets, Macformer display excellent performance and generalisability. We showcase the utility of Macformer when combined with molecular docking simulations and wet lab based experimental validation, by applying it to the prospective design of macrocyclic JAK2 inhibitors.
Collapse
Affiliation(s)
- Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Dandan Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Huan Ge
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Rongrong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Kexin Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Runhui Bao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoqian Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Hongjie Bi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Wenjie Liao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Ziqi Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Kai Zhang
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Qiaoyu Hu
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
38
|
Bhujbal SP, Hah JM. An Intriguing Purview on the Design of Macrocyclic Inhibitors for Unexplored Protein Kinases through Their Binding Site Comparison. Pharmaceuticals (Basel) 2023; 16:1009. [PMID: 37513921 PMCID: PMC10386424 DOI: 10.3390/ph16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Kinases play an important role in regulating various intracellular signaling pathways that control cell proliferation, differentiation, survival, and other cellular processes, and their deregulation causes more than 400 diseases. Consequently, macrocyclization can be considered a noteworthy approach to developing new therapeutic agents for human diseases. Macrocyclization has emerged as an effective drug discovery strategy over the past decade to improve target selectivity and potency of small molecules. Small compounds with linear structures upon macrocyclization can lead to changes in their physicochemical and biological properties by firmly reducing conformational flexibility. A number of distinct protein kinases exhibit similar binding sites. Comparison of protein binding sites provides crucial insights for drug discovery and development. Binding site similarities are helpful in understanding polypharmacology, identifying potential off-targets, and repurposing known drugs. In this review, we focused on comparing the binding sites of those kinases for which macrocyclic inhibitors are available/studied so far. Furthermore, we calculated the volume of the binding site pocket for each targeted kinase and then compared it with the binding site pocket of the kinase for which only acyclic inhibitors were designed to date. Our review and analysis of several explored kinases might be useful in targeting new protein kinases for macrocyclic drug discovery.
Collapse
Affiliation(s)
- Swapnil P Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jung-Mi Hah
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
39
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. Int J Mol Sci 2023; 24:ijms24098252. [PMID: 37175956 PMCID: PMC10179193 DOI: 10.3390/ijms24098252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The intramolecular Heck reaction is a well-established strategy for natural product total synthesis. When constructing large rings, this reaction is also referred to as Heck macrocyclization, which has proved a viable avenue to access diverse naturally occurring macrocycles. Less noticed but likewise valuable, it has created novel macrocycles of non-natural origin that neither serve as nor derive from natural products. This review presents a systematic account of the title reaction in forging this non-natural subset of large rings, thereby addressing a topic rarely covered in the literature. Walking through two complementary sections, namely (1) drug discovery research and (2) synthetic methodology development, it demonstrates that beyond the well-known domain of natural product synthesis, Heck macrocyclization also plays a remarkable role in forming synthetic macrocycles, in particular macrocyclic drugs.
Collapse
Affiliation(s)
- Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
42
|
Xie Z, Meng Z, Yang X, Duan Y, Wang Q, Liao C. Factor XIa Inhibitors in Anticoagulation Therapy: Recent Advances and Perspectives. J Med Chem 2023; 66:5332-5363. [PMID: 37037122 DOI: 10.1021/acs.jmedchem.2c02130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
43
|
Yang Z, Zalessky I, Epton RG, Whitwood AC, Lynam JM, Unsworth WP. Ring Expansion Strategies for the Synthesis of Medium Sized Ring and Macrocyclic Sulfonamides. Angew Chem Int Ed Engl 2023; 62:e202217178. [PMID: 36716014 DOI: 10.1002/anie.202217178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Two new ring expansion strategies are reported for the synthesis of medium sized ring and macrocyclic sulfonamides. Both methods can be performed without using classical protecting groups, with the key ring expansion step initiated by nitro reduction and amine conjugate addition respectively. Each method can be used to make diversely functionalised cyclic sulfonamides in good to excellent yields, in a range of ring sizes. The ring size dependency of the synthetic reactions is in good agreement with the outcomes modelled by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Illya Zalessky
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Ryan G Epton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
44
|
Chatterjee B, Mondal D, Bera S. Macrocyclization Strategies Towards the Synthesis of Amphidinolide Natural Products. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Bhaskar Chatterjee
- Department of Chemistry Nabadwip Vidyasagar College 741302 Nabadwip West Bengal India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| |
Collapse
|
45
|
Akinnusi PA, Olubode SO, Adebesin AO, Osadipe TJ, Nwankwo DO, Adebisi AD, Titilayo I BA, Alo YM, Owoloye A, Oyebola KM. Structure-based scoring of anthocyanins and molecular modeling of PfLDH, PfDHODH, and PfDHFR reveal novel potential P. falciparum inhibitors. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
46
|
Liu B, Yu X, Liu L, Wang L, Wang J, Huang Q, Xu Z, Luo C, Lou L, Huang W, Yang W. Modular Biomimetic Strategy Enabled Discovery of Simplified Pseudo-Natural Macrocyclic P-Glycoprotein Inhibitors Capable of Overcoming Multidrug Resistance. J Med Chem 2023; 66:2550-2565. [PMID: 36728755 DOI: 10.1021/acs.jmedchem.2c01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natural macrocycles have shown impressive activity to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). However, the total synthesis and structural modification of natural macrocycles are challenging, which would hamper the deeper investigations of their structure-activity relationship (SAR) and drug likeness. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring polysubstituted 1,3-diene, which efficiently inhibited P-gp and reversed MDR in cancer cells. The SAR analysis revealed that the size and linker of the macrocycles are important structural characteristics to restore activity. Particularly, 32 containing a naphthyl group and (d)-Phe moiety has higher potency with an excellent reversal fold than verapamil at a concentration of 5 μM, which induces conformational change of P-gp and inhibits its function instead of altering P-gp expression. Furthermore, 23 and 32 were identified to be attractive leads, which possess a good pharmacokinetic profile and antitumor activity in a KBV200 xenograft mouse model.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xueni Yu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Liu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qianqian Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Lou
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
48
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
49
|
Zhang B, Zheng K, Hong R. Biomimetic Synthesis of Chejuenolides A-C by a Cryptic Lactone-Based Macrocyclization: Stereochemical Implications in Biosynthesis. ACS CENTRAL SCIENCE 2023; 9:84-92. [PMID: 36712486 PMCID: PMC9881209 DOI: 10.1021/acscentsci.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/18/2023]
Abstract
A hypothetical Mannich macrocyclization in the biosynthesis of chejuenolides A-C served as the basis for the synthetic design herein. Using a lactone-based linear precursor constructed via a tactic sequence of aldol-Julia-aldol reactions on a gram scale, the biomimetic total synthesis and structural validation of chejuenolides A-C were successfully achieved for the first time. The β-oxo-δ-lactone unit in the macrocyclized adducts was fragile and readily converted to a series of C2/C18-diastereoisomers via a decarboxylation and protonation pathway. Stereochemical identification of the biosynthetic precursor (O3P2) confirmed structural adherence to the given macrocycles and previously clarified lankacidins. Moreover, the stereovariants of the linear precursor designed for the macrocyclization event highlighted the unparalleled impact of using this biomimetic approach to determine the stereoselectivity in the proposed enzymatic reaction by reviving the lost or unstable intermediate.
Collapse
Affiliation(s)
- Bingbing Zhang
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kuan Zheng
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Hong
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
50
|
Sethio D, Poongavanam V, Xiong R, Tyagi M, Duy Vo D, Lindh R, Kihlberg J. Simulation Reveals the Chameleonic Behavior of Macrocycles. J Chem Inf Model 2023; 63:138-146. [PMID: 36563083 PMCID: PMC9832480 DOI: 10.1021/acs.jcim.2c01093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conformational analysis is central to the design of bioactive molecules. It is particularly challenging for macrocycles due to noncovalent transannular interactions, steric interactions, and ring strain that are often coupled. Herein, we simulated the conformations of five macrocycles designed to express a progression of increasing complexity in environment-dependent intramolecular interactions and verified the results against NMR measurements in chloroform and dimethyl sulfoxide. Molecular dynamics using an explicit solvent model, but not the Monte Carlo method with implicit solvation, handled both solvents correctly. Refinement of conformations at the ab initio level was fundamental to reproducing the experimental observations─standard state-of-the-art molecular mechanics force fields were insufficient. Our simulations correctly predicted the intramolecular interactions between side chains and the macrocycle and revealed an unprecedented solvent-induced conformational switch of the macrocyclic ring. Our results provide a platform for the rational, prospective design of molecular chameleons that adapt to the properties of the environment.
Collapse
|