1
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
2
|
Paudel Y, Valiente PA, Kim J, Kim PM. A High-Throughput Method for Screening Peptide Activators of G-Protein-Coupled Receptors. ACS OMEGA 2024; 9:48471-48479. [PMID: 39676964 PMCID: PMC11635519 DOI: 10.1021/acsomega.4c07071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Here, we describe an innovative and efficient method for screening peptide activators of G-protein-coupled receptors (GPCRs) utilizing a protein-protein interaction (PPI) approach. We designed a library of 92,918 peptides fused with transmembrane domains of glycosylphosphatidylinositol-anchored proteins (GPI-APs). We employed a pooled lentiviral system to promote the expression of these proteins at the cellular membrane and evaluate their ability to activate GPCRs. We then used fluorescence-activated cell sorting (FACS) to screen the GPI-AP-peptide library and identify novel peptide activators of the glucagon-like peptide-1 receptor (GLP-1R). We discovered one peptide PepA3 derived from the Frizzled-like (FZ) domain of human Carboxypeptidase Z (CPZ), a regulated secreted metallocarboxypeptidase. Notably, PepA3 and its two related variants, PepA and PepA2, activated the GLP-1R receptor with less potency but comparable efficacy to that of GLP-1. We then hypothesized that all of these peptides will bind differently to the GLP-1R than the normal ligand. Our technology could identify novel GPCR-activating peptides for structure-function or drug discovery research.
Collapse
Affiliation(s)
- Yagya
Prasad Paudel
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pedro A. Valiente
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jisun Kim
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Philip M. Kim
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department
of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
3
|
Phan HAT, Chang Y, Eaton SA, Petersson EJ. Thioamide-based fluorescent sensors for dipeptidyl peptidase 4. Chem Commun (Camb) 2024; 60:13075-13078. [PMID: 39439401 PMCID: PMC11497070 DOI: 10.1039/d4cc03309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Dipeptidyl peptidase 4 (DPP-4) is a promising biomarker for cancer and metabolic diseases. We demonstrate the design of novel fluorescent DPP-4 probes based on the protease's native substrates using a thioamide as a quencher for measuring in vitro kinetics, inhibition with sitagliptin, and DPP-4 activity in saliva samples.
Collapse
Affiliation(s)
- Hoang Anh T Phan
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | - Yanan Chang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | - Samuel A Eaton
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | - E James Petersson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
6
|
Puszkarska AM, Taddese B, Revell J, Davies G, Field J, Hornigold DC, Buchanan A, Vaughan TJ, Colwell LJ. Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency. Nat Chem 2024; 16:1436-1444. [PMID: 38755312 PMCID: PMC11374683 DOI: 10.1038/s41557-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Several peptide dual agonists of the human glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R) are in development for the treatment of type 2 diabetes, obesity and their associated complications. Candidates must have high potency at both receptors, but it is unclear whether the limited experimental data available can be used to train models that accurately predict the activity at both receptors of new peptide variants. Here we use peptide sequence data labelled with in vitro potency at human GCGR and GLP-1R to train several models, including a deep multi-task neural-network model using multiple loss optimization. Model-guided sequence optimization was used to design three groups of peptide variants, with distinct ranges of predicted dual activity. We found that three of the model-designed sequences are potent dual agonists with superior biological activity. With our designs we were able to achieve up to sevenfold potency improvement at both receptors simultaneously compared to the best dual-agonist in the training set.
Collapse
Affiliation(s)
- Anna M Puszkarska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Bruck Taddese
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Biologics Center (NBC) at the Novartis Institute for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Graeme Davies
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joss Field
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David C Hornigold
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Buchanan
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tristan J Vaughan
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
- Immunocore Ltd., Abingdon, UK
| | - Lucy J Colwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Google DeepMind, Cambridge, MA, USA.
| |
Collapse
|
7
|
Baharian A, Ishida H, Sillner C, Vogel HJ. Split intein-mediated backbone cyclization enhances the stability and activity of staphylokinase, a potent fibrin-selective plasminogen activator. Int J Biol Macromol 2024; 275:133448. [PMID: 38945328 DOI: 10.1016/j.ijbiomac.2024.133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Staphylokinase (Sak), a small 15 kDa globular protein that is secreted by certain strains of Staphylococcus aureus, shows a potent fibrin-selective thrombolytic activity. Earlier work has shown that Sak could potentially become a low-cost alternative to currently used thrombolytic agents, such as tissue plasminogen activator (tPA). In attempts to improve its potential for clinical applications, numerous modifications of Sak have already been investigated. Here, we have characterized a novel Sak modification, cyclized Sak (cyc-Sak), which was prepared through split-intein mediated protein backbone cyclization. We have characterized the structure, stability and the activity of cyc-Sak using biophysical techniques, limited proteolysis studies and plasminogen (PG)-activation assays. Our results show that cyc-Sak possesses an identical structure, enhanced stability, resistance to proteolysis by exoproteases and improved PG-activation properties compared to its linear counterpart. It can be over-expressed with high yield in the cytoplasm of Escherichia coli and is easily purified in a two-step process. The intein-mediated cyclization occurs spontaneously in vivo during protein expression and does not necessitate further modification steps after purification of the protein. Furthermore, covalent Sak cyclization could be readily combined with other Sak modifications previously proposed, to generate an effective thrombolytic agent with lower immunogenicity and improved stability and activity.
Collapse
Affiliation(s)
- Azin Baharian
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Cassandra Sillner
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
8
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
9
|
Nielsen JC, Hjo Rringgaard C, Nygaard MMR, Wester A, Elster L, Porsgaard T, Mikkelsen RB, Rasmussen S, Madsen AN, Schlein M, Vrang N, Rigbolt K, Dalbo Ge LS. Machine-Learning-Guided Peptide Drug Discovery: Development of GLP-1 Receptor Agonists with Improved Drug Properties. J Med Chem 2024; 67:11814-11826. [PMID: 38977267 DOI: 10.1021/acs.jmedchem.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment of diabetes and obesity. Machine learning (ML)-enabled quantitative structure-activity relationship (QSAR) approaches have shown great promise in small molecule drug discovery but have been less successful in peptide drug discovery due to limited data availability. We have developed a peptide drug discovery platform called streaMLine, enabling rigorous design, synthesis, screening, and ML-driven analysis of large peptide libraries. Using streaMLine, this study systematically explored secretin as a peptide backbone to generate potent, selective, and long-acting GLP-1R agonists with improved physicochemical properties. We synthesized and screened a total of 2688 peptides and applied ML-guided QSAR to identify multiple options for designing stable and potent GLP-1R agonists. One candidate, GUB021794, was profiled in vivo (S.C., 10 nmol/kg QD) and showed potent body weight loss in diet-induced obese mice and a half-life compatible with once-weekly dosing.
Collapse
Affiliation(s)
| | | | | | - Anita Wester
- Gubra, Ho̷rsholm Kongevej 11B, Ho̷rsholm 2970, Denmark
| | | | | | | | | | | | | | - Niels Vrang
- Gubra, Ho̷rsholm Kongevej 11B, Ho̷rsholm 2970, Denmark
| | | | | |
Collapse
|
10
|
Dave BP, Chorawala MR, Shah IV, Shah NN, Bhagat SU, Prajapati BG, Thakkar PC. From diabetes to diverse domains: the multifaceted roles of GLP-1 receptor agonists. Mol Biol Rep 2024; 51:835. [PMID: 39042283 DOI: 10.1007/s11033-024-09793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mellitus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ishika V Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Shivam U Bhagat
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Pratik C Thakkar
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Mānawa - The Centre for Heart Research, University of Auckland, 85 Park Road, Auckland, 1142, New Zealand.
| |
Collapse
|
11
|
Ünsal Ö, Bacaksiz ZS, Khamraev V, Montanari V, Beinborn M, Kumar K. Prolonged Activation of the GLP-1 Receptor via Covalent Capture. ACS Chem Biol 2024; 19:1453-1465. [PMID: 38935975 DOI: 10.1021/acschembio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The incretin gut hormone glucagon-like peptide-1 (GLP-1) has become a household name because of its ability to induce glucose-dependent insulin release with accompanying weight loss in patients. Indeed, derivatives of the peptide exert numerous pleiotropic actions that favorably affect other metabolic functions, and consequently, such compounds are being considered as treatments for a variety of ailments. The ability of native GLP-1 to function as a clinical drug is severely limited because of its short half-life in vivo. All of the beneficial effects of GLP-1 come from its agonism at the cognate receptor, GLP-1R. In our quest for long-lived activation of the receptor, we hypothesized that an agonist that had the ability to covalently cross-link with GLP-1R would prove useful. We here report the structure-guided design of peptide analogues containing an electrophilic warhead that could be covalently captured by a resident native nucleophile on the receptor. The compounds were evaluated using washout experiments, and resistance to such washing serves as an index of prolonged activation and covalent capture, which we use to tabulate longevity and robust long-lived GLP-1R agonism. The addition of SulF (cross-linkable warhead), an N-terminal trifluoroethyl group (for protease protection), and a C18 diacid lipid (protractor) all contributed to the increased wash resistance of GLP-1. The most effective compound based on the wash resistance metric, C2K26DAC18_K34SulF, has all three elements outlined and may serve as a blueprint and a proof-of-concept scaffold for the design of clinically useful molecules.
Collapse
Affiliation(s)
- Özge Ünsal
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Z Selin Bacaksiz
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vladislav Khamraev
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular Pharmacology Research Center, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
12
|
Reddiar SB, Abdallah M, Styles IK, Müllertz OO, Trevaskis NL. Lymphatic uptake of the lipidated and non-lipidated GLP-1 agonists liraglutide and exenatide is similar in rats. Eur J Pharm Biopharm 2024; 200:114339. [PMID: 38789061 DOI: 10.1016/j.ejpb.2024.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Peptides, despite their therapeutic potential, face challenges with undesirable pharmacokinetic (PK) properties and biodistribution, including poor oral absorption and cellular uptake, and short plasma elimination half-lives. Lipidation of peptides is a common strategy to improve their physicochemical and PK properties, making them viable drug candidates. For example, the plasma half-life of peptides has been extended via conjugation to lipids that are proposed to promote binding to serum albumin and thus protect against rapid clearance. Recent work has shown that lipid conjugation to oligodeoxynucleotides, polymers and small molecule drugs results in association not only with albumin, but also with lipoproteins, resulting in half-life prolongation and transport from administration sites via the lymphatics. Enhancing delivery into the lymph increases the efficacy of vaccines and therapeutics with lymphatic targets such as immunotherapies. In this study, the plasma PK, lymphatic uptake, and bioavailability of the glucagon-like peptide-1 (GLP-1) receptor agonist peptides, liraglutide (lipidated) and exenatide (non-lipidated), were investigated following subcutaneous (SC) administration to rats. As expected, liraglutide displayed an apparent prolonged plasma half-life (9.1 versus 1 h), delayed peak plasma concentrations and lower bioavailability (∼10 % versus ∼100 %) compared to exenatide after SC administration. The lymphatic uptake of both peptides was relatively low (<0.5 % of the dose) although lymph to plasma concentration ratios were greater than one for several early timepoints suggesting some direct uptake into lymph. The low lymphatic uptake may be due to the nature of the conjugated lipid (a single-chain C16 palmitic acid in liraglutide) but suggests that other peptides with similar lipid conjugations may also have relatively modest lymphatic uptake. If delivery to the lymph is desired, conjugation to more lipophilic moieties with higher albumin and/or lipoprotein binding efficiencies, such as diacylglycerols, may be appropriate.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Olivia O Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
13
|
Niu H, Zhou M, Ji A, Zogona D, Wu T, Xu X. Molecular Mechanism of Pasteurized Akkermansia muciniphila in Alleviating Type 2 Diabetes Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13083-13098. [PMID: 38829529 DOI: 10.1021/acs.jafc.4c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2DM) significantly diminishes people's quality of life and imposes a substantial economic burden. This pathological progression is intimately linked with specific gut microbiota, such as Akkermansia muciniphila. Pasteurized A. muciniphila (P-AKK) has been defined as a novel food by the European Food Safety Authority and exhibited significant hypoglycemic activity. However, current research on the hypoglycemic activity of P-AKK is limited to the metabolic level, neglecting systematic exploration at the pathological level. Consequently, its material basis and mechanism of action for hypoglycemia remain unclear. Drawing upon this foundation, we utilized high-temperature killed A. muciniphila (H-K-AKK) with insignificant hypoglycemic activity as the control research object. Assessments were conducted at pathological levels to evaluate the hypoglycemic functions of both P-AKK and H-K-AKK separately. Our study unveiled for the first time that P-AKK ameliorated symptoms of T2DM by enhancing the generation of glucagon-Like Peptide 1 (GLP-1), with pasteurized A. muciniphila total proteins (PP) being a pivotal component responsible for this activity. Utilizing SDS-PAGE, proteomics, and molecular docking techniques, we deeply analyzed the material foundation of PP. We scientifically screened and identified a protein weighing 77.85 kDa, designated as P5. P5 enhanced GLP-1 synthesis and secretion by activating the G protein-coupled receptor (GPCR) signaling pathway, with free fatty acid receptor 2 (FFAR-2) being identified as the pivotal target protein for P5's physiological activity. These findings further promote the widespread application of P-AKK in the food industry, laying a solid theoretical foundation for its utilization as a beneficial food ingredient or functional component.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Daniel Zogona
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
14
|
Dumitraş D, Dalmau D, García-Orduña P, Pop A, Silvestru A, Urriolabeitia EP. Orthopalladated imidazolones and thiazolones: synthesis, photophysical properties and photochemical reactivity. Dalton Trans 2024; 53:8948-8957. [PMID: 38727513 DOI: 10.1039/d4dt00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The reaction of Pd(OAc)2 with (Z)-5-arylidene-4-(4H)-imidazolones (2a-e) and (Z)-4-arylidene-5(4H)-thiazolones (3a-e) in trifluoroacetic acid results in the corresponding orthopalladated dinuclear complexes (4a-e, imidazolones; 11a-d, thiazolones) with trifluoroacetate bridges through regioselective C-H activation at the ortho position of the 4-arylidene group. Compound 4e, which contains an imidazolone substituted at 2- and 4-positions of the arylidene ring with methoxide groups and exhibits strong push-pull charge transfer, is an excellent precursor for the synthesis of fluorescent complexes with green yellowish emission and remarkable quantum yields. Breaking the bridging system with pyridine yields the mononuclear complex 5e (ΦF = 5%), while metathesis of trifluoroacetate ligands with chloride leads to the dinuclear complex 6e, also a precursor of fluorescent complexes by breaking the chloride bridging system with pyridine (7e, ΦF = 7%), or by substitution of chloride ligands with pyridine (8e, ΦF = 15%) or acetylacetonate (9e, ΦF = 2%). In addition to notable photophysical properties, dinuclear complexes 4 and 11 also exhibit significant photochemical reactivity. Thus, irradiation of orthopalladates 4a-c and 11a-c in CH2Cl2 with blue light (465 nm) proceeds via [2 + 2] photocycloaddition of the CC double bonds of imidazolone and thiazolone ligands, yielding the corresponding cyclobutane-bridging diaminotruxillic derivatives 10a-c and 12a-c, respectively.
Collapse
Affiliation(s)
- Darius Dumitraş
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Alexandra Pop
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Anca Silvestru
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
15
|
Xie X, Valiente PA, Kim J, Kim PM. HelixDiff, a Score-Based Diffusion Model for Generating All-Atom α-Helical Structures. ACS CENTRAL SCIENCE 2024; 10:1001-1011. [PMID: 38799672 PMCID: PMC11117309 DOI: 10.1021/acscentsci.3c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/29/2024]
Abstract
Here, we present HelixDiff, a score-based diffusion model for generating all-atom helical structures. We developed a hot spot-specific generation algorithm for the conditional design of α-helices targeting critical hotspot residues in bioactive peptides. HelixDiff generates α-helices with near-native geometries for most test scenarios with root-mean-square deviations (RMSDs) less than 1 Å. Significantly, HelixDiff outperformed our prior GAN-based model with regard to sequence recovery and Rosetta scores for unconditional and conditional generations. As a proof of principle, we employed HelixDiff to design an acetylated GLP-1 D-peptide agonist that activated the glucagon-like peptide-1 receptor (GLP-1R) cAMP accumulation without stimulating the glucagon-like peptide-2 receptor (GLP-2R). We predicted that this D-peptide agonist has a similar orientation to GLP-1 and is substantially more stable in MD simulations than our earlier D-GLP-1 retro-inverse design. This D-peptide analogue is highly resistant to protease degradation and induces similar levels of AKT phosphorylation in HEK293 cells expressing GLP-1R compared to the native GLP-1. We then discovered that matching crucial hotspots for the GLP-1 function is more important than the sequence orientation of the generated D-peptides when constructing D-GLP-1 agonists.
Collapse
Affiliation(s)
- Xuezhi Xie
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department
of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Pedro A Valiente
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jisun Kim
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Philip M Kim
- Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department
of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
16
|
Zheng Y, Lao Z, Liu R, Xu J, Guo L, Lin Z, Yang X. Customizable Click Biochemistry Strategy for the Design and Preparation of Glucagon-like Peptide-1 Conjugates and Coagonists. Bioconjug Chem 2024; 35:693-702. [PMID: 38700695 DOI: 10.1021/acs.bioconjchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of oligomeric glucagon-like peptide-1 (GLP-1) and GLP-1-containing coagonists holds promise for enhancing the therapeutic potential of the GLP-1-based drugs for treating type 2 diabetes mellitus (T2DM). Here, we report a facile, efficient, and customizable strategy based on genetically encoded SpyCatcher-SpyTag chemistry and an inducible, cleavable self-aggregating tag (icSAT) scheme. icSAT-tagged SpyTag-fused GLP-1 and the dimeric or trimeric SpyCatcher scaffold were designed for dimeric or trimeric GLP-1, while icSAT-tagged SpyCatcher-fused GLP-1 and the icSAT-tagged SpyTag-fused GIP were designed for dual GLP-1/GIP (glucose-dependent insulinotropic polypeptide) receptor agonist. These SpyCatcher- and SpyTag-fused protein pairs were spontaneously ligated directly from the cell lysates. The subsequent icSAT scheme, coupled with a two-step standard column purification, resulted in target proteins with authentic N-termini, with yields ranging from 35 to 65 mg/L and purities exceeding 99%. In vitro assays revealed 3.0- to 4.1-fold increased activities for dimeric and trimeric GLP-1 compared to mono-GLP-1. The dual GLP-1/GIP receptor agonist exhibited balanced activity toward the GLP-1 receptor or the GIP receptor. All the proteins exhibited 1.8- to 3.0-fold prolonged half-lives in human serum compared to mono-GLP-1 or GIP. This study provides a generally applicable click biochemistry strategy for developing oligomeric or dual peptide/protein-based drug candidates.
Collapse
Affiliation(s)
- Yunchun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Run Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Xu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., 368 Middle Zhenan Road, Changan, Dongguan 523871, China
| | - Linfeng Guo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., 368 Middle Zhenan Road, Changan, Dongguan 523871, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Xia X, Lin Q, Zhou Z, Chen Y. An imbalanced GLP-1R/GIPR co-agonist peptide with a site-specific N-terminal PEGylation to maximize metabolic benefits. iScience 2024; 27:109377. [PMID: 38510128 PMCID: PMC10951637 DOI: 10.1016/j.isci.2024.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Glycemic and body weight control gained from GLP-1R agonists remains an unmet need for diabetes and obesity treatment, leading to the development of GLP-1R/GIPR co-agonists. An imbalance in GLP-1R/GIPR agonism may extensively maximize the glucose- and weight-lowering effects. Hence, we prepared a potent and imbalanced GLP-1R/GIPR co-agonist, and refined its action time through a site-specific N-terminal PEGylation strategy. The pharmacological efficacy of these resulting long-acting co-agonists was interrogated both in vitro and in vivo. The results showed that peptide 1 possessed potent and imbalanced receptor-stimulating potency favoring GIP activity, but its hypoglycemic action was disrupted probably resulting from its short half-life. After PEGylation to improve the pharmacokinetics, the pharmacological effects were amplified compared to native peptide 1. Among the resulting derivatives, D-5K exhibited significant glycemic, HbA1c, body-weight, and food-intake control, outperforming GLP-1R mono-agonists. Based on its excellent pharmacological profiles, D-5K may hold the great therapeutic potential for diabetes and obesity treatment.
Collapse
Affiliation(s)
- Xuan Xia
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qianmeng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhan Zhou
- Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
19
|
Aghajani Mir M. Vault RNAs (vtRNAs): Rediscovered non-coding RNAs with diverse physiological and pathological activities. Genes Dis 2024; 11:772-787. [PMID: 37692527 PMCID: PMC10491885 DOI: 10.1016/j.gendis.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
The physicochemical characteristics of RNA admit non-coding RNAs to perform a different range of biological acts through various mechanisms and are involved in regulating a diversity of fundamental processes. Notably, some reports of pathological conditions have proved abnormal expression of many non-coding RNAs guides the ailment. Vault RNAs are a class of non-coding RNAs containing stem regions or loops with well-conserved sequence patterns that play a fundamental role in the function of vault particles through RNA-ligand, RNA-RNA, or RNA-protein interactions. Taken together, vault RNAs have been proposed to be involved in a variety of functions such as cell proliferation, nucleocytoplasmic transport, intracellular detoxification processes, multidrug resistance, apoptosis, and autophagy, and serve as microRNA precursors and signaling pathways. Despite decades of investigations devoted, the biological function of the vault particle or the vault RNAs is not yet completely cleared. In this review, the current scientific assertions of the vital vault RNAs functions were discussed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Health Research Institute, Babol University of Medical Sciences, Babol 47176-4774, Iran
| |
Collapse
|
20
|
Smidt JM, Lykke L, Stidsen CE, Pristovšek N, Gothelf K. Synthesis of peptide-siRNA conjugates via internal sulfonylphosphoramidate modifications and evaluation of their in vitro activity. Nucleic Acids Res 2024; 52:49-58. [PMID: 37971296 PMCID: PMC10783514 DOI: 10.1093/nar/gkad1015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Lennart Lykke
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Carsten Enggaard Stidsen
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Nuša Pristovšek
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
21
|
Barakat G, Assi G, Khalil H, El Khatib S. A Comprehensive Review on GLP-1 Signaling Pathways in the Management of Diabetes Mellitus - Focus on the Potential Role of GLP-1 Receptors Agonists and Selenium among Various Organ Systems. Curr Diabetes Rev 2024; 21:e160424228945. [PMID: 38629376 DOI: 10.2174/0115733998287178240403055901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 10/30/2024]
Abstract
Diabetes Mellitus develops when the body becomes unable to fuel its cells with glucose, which results in the accumulation of sugar excess in the bloodstream. Because it has diverse pathophysiological impacts on the body, diabetes mellitus represents a significant issue of concern in an attempt to find suitable treatment modalities and medications for afflicted diabetic patients. Glucagon-like peptide 1 (GLP-1) plays a pivotal role in the incretin effect, emerging as a prospective treatment for diabetes mellitus and a promising means of regenerating pancreatic cells, whether directly or through its receptor agonists. It has been shown that GLP-1 efficiently increases insulin production, lowers blood sugar levels in patients with type 2 diabetes mellitus, and decreases appetite, craving, and hunger, therefore amplifying the sensation of fullness and satiety. Moreover, since they are all dependent on GLP-1 effect, intricate signaling pathways share some similarities during specific phases, although the pathways continue to exhibit significant divergence engendered by specific reactions and effects in each organ, which encompasses the rationale behind observed differences. This triggers an expanding range of GLP-1 R agonists, creating new unforeseen research and therapeutic application prospects. This review aims to explain the incretin effect, discuss how GLP-1 regulates blood glucose levels, and how it affects different body organs, as well as how it transmits signals, before introducing selenium's role in the incretin impact.
Collapse
Affiliation(s)
- Ghinwa Barakat
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hussein Khalil
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
22
|
Gupta JK, Singh K. Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders. Curr Mol Med 2024; 24:962-979. [PMID: 37691200 DOI: 10.2174/1566524023666230907115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
23
|
Kumar A, Mazumder R, Rani A, Pandey P, Khurana N. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update. Curr Diabetes Rev 2024; 20:e051023221768. [PMID: 37888820 DOI: 10.2174/0115733998261903230921102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
Diabetes mellitus is an irreversible, chronic metabolic disorder indicated by hyperglycemia. It is now considered a worldwide pandemic. T2DM, a spectrum of diseases initially caused by tissue insulin resistance and slowly developing to a state characterized by absolute loss of secretory action of the β cells of the pancreas, is thought to be caused by reduced insulin secretion, resistance to tissue activities of insulin, or a combination of both. Insulin secretagogues, biguanides, insulin sensitizers, alpha-glucosidase inhibitors, incretin mimetics, amylin antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors are the main medications used to treat T2DM. Several of these medication's traditional dosage forms have some disadvantages, including frequent dosing, a brief half-life, and limited absorption. Hence, attempts have been made to develop new drug delivery systems for oral antidiabetics to ameliorate the difficulties associated with conventional dosage forms. In comparison to traditional treatments, this review examines the utilization of various innovative therapies (such as microparticles, nanoparticles, liposomes, niosomes, phytosomes, and transdermal drug delivery systems) to improve the distribution of various oral hypoglycemic medications. In this review, we have also discussed some new promising candidates that have been approved recently by the US Food and Drug Administration for the treatment of T2DM, like semaglutide, tirzepatide, and ertugliflozin. They are used as a single therapy and also as combination therapy with drugs like metformin and sitagliptin.
Collapse
Affiliation(s)
- Abhishek Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
24
|
d'Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Jons CK, Kasse CM, Yan J, Prossnitz AN, Chang E, Baker SW, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, Appel EA. Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management. Cell Rep Med 2023; 4:101292. [PMID: 37992687 PMCID: PMC10694761 DOI: 10.1016/j.xcrm.2023.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management.
Collapse
Affiliation(s)
- Andrea I d'Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Leslee T Nguyen
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA
| | - Katie Lu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ian A Hall
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Catherine M Kasse
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander N Prossnitz
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Enmian Chang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Lars Hovgaard
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Dorte B Steensgaard
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Hanne B Andersen
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Lotte Simonsen
- Department of Obesity Research, Global Drug Discovery, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Gunawardena HP, Jayatilake MM, Brelsford JD, Nanda H. Diagnostic utility of N-terminal TMPP labels for unambiguous identification of clipped sites in therapeutic proteins. Sci Rep 2023; 13:18602. [PMID: 37903854 PMCID: PMC10616084 DOI: 10.1038/s41598-023-45446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Protein therapeutics are susceptible to clipping via enzymatic and nonenzymatic mechanisms that create neo-N-termini. Typically, neo-N-termini are identified by chemical derivatization of the N-terminal amine with (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) followed by proteolysis and mass spectrometric analysis. Detection of the TMPP-labeled peptide is achieved by mapping the peptide sequence to the product ion spectrum derived from collisional activation. The site-specific localization of the TMPP tag enables unambiguous determination of the true N-terminus or neo-N-termini. In addition to backbone product ions, TMPP reporter ions at m/z 573, formed via collision-induced dissociation, can be diagnostic for the presence of a processed N-termini. However, reporter ions generated by collision-induced dissociation may be uninformative because of their low abundance. We demonstrate a novel high-throughput LC-MS method for the facile generation of the TMPP reporter ion at m/z 533 and, in some instances m/z 590, upon electron transfer dissociation. We further demonstrate the diagnostic utility of TMPP labeled peptides derived from a total cell lysate shows high degree of specificity towards selective N-terminal labeling over labeling of lysine and tyrosine and highly-diagnostic Receiver Operating Characteristic's (ROC) of TMPP reporter ions of m/z 533 and m/z 590. The abundant generation of these reporters enables subsequent MS/MS by intensity and m/z-dependent triggering of complementary ion activation modes such as collision-induced dissociation, high-energy collision dissociation, or ultraviolet photo dissociation for subsequent peptide sequencing.
Collapse
Affiliation(s)
- Harsha P Gunawardena
- Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA.
| | - Meth M Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery D Brelsford
- Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Hirsh Nanda
- Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
26
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
28
|
Duffet L, Williams ET, Gresch A, Chen S, Bhat MA, Benke D, Hartrampf N, Patriarchi T. Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution. eLife 2023; 12:86628. [PMID: 37265064 DOI: 10.7554/elife.86628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Simin Chen
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Zhang X, Cai Y, Yao Z, Chi H, Li Y, Shi J, Zhou Z, Sun L. Discovery of novel OXM-based glucagon-like peptide 1 (GLP-1)/glucagon receptor dual agonists. Peptides 2023; 161:170948. [PMID: 36646385 DOI: 10.1016/j.peptides.2023.170948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Novel glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) dual agonists are reported to have improved efficacy over GLP-1R mono-agonists in treating type 2 diabetes (T2DM) and obesity. Here, we describe the discovery of a novel oxyntomodulin (OXM) based GLP-1R/GCGR dual agonist with potent and balanced potency toward GLP-1R and GCGR. The lead peptide OXM-7 was obtained via stepwise rational design and long-acting modification. In ICR and db/db mice, OXM-7 exhibited prominent acute and long-acting hypoglycemic effects. In diet-induced obesity (DIO) mice, twice-daily administration of OXM-7 produced significant weight loss, normalized lipid metabolism, and improved glucose control. In DIO-nonalcoholic steatohepatitis (NASH) mice, OXM-7 treatment significantly reversed hepatic steatosis, and reduced serum and hepatic lipid levels. These preclinical data suggest the therapeutic potential of OXM-7 as a novel anti-diabetic, anti-steatotic and/or anti-obesity agent.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Yuchen Cai
- School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Zhihong Yao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Yan Li
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Jingjing Shi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, Guangxi, PR China.
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China.
| |
Collapse
|
30
|
Dâ Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Prossnitz AN, Chang E, Baker SW, Kasse CM, Jons CK, Yan J, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, Appel EA. Sustained Delivery of GLP-1 Receptor Agonists from Injectable Biomimetic Hydrogels Improves Treatment of Diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526057. [PMID: 36778223 PMCID: PMC9915491 DOI: 10.1101/2023.01.28.526057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D.
Collapse
|
31
|
Xie X, Valiente PA, Kim PM. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures. Bioinformatics 2023; 39:6991169. [PMID: 36651657 PMCID: PMC9887083 DOI: 10.1093/bioinformatics/btad036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
MOTIVATION Protein and peptide engineering has become an essential field in biomedicine with therapeutics, diagnostics and synthetic biology applications. Helices are both abundant structural feature in proteins and comprise a major portion of bioactive peptides. Precise design of helices for binding or biological activity is still a challenging problem. RESULTS Here, we present HelixGAN, the first generative adversarial network method to generate de novo left-handed and right-handed alpha-helix structures from scratch at an atomic level. We developed a gradient-based search approach in latent space to optimize the generation of novel α-helical structures by matching the exact conformations of selected hotspot residues. The designed α-helical structures can bind specific targets or activate cellular receptors. There is a significant agreement between the helix structures generated with HelixGAN and PEP-FOLD, a well-known de novo approach for predicting peptide structures from amino acid sequences. HelixGAN outperformed RosettaDesign, and our previously developed structural similarity method to generate D-peptides matching a set of given hotspots in a known L-peptide. As proof of concept, we designed a novel D-GLP1_1 analog that matches the conformations of critical hotspots for the GLP1 function. MD simulations revealed a stable binding mode of the D-GLP1_1 analog coupled to the GLP1 receptor. This novel D-peptide analog is more stable than our previous D-GLP1 design along the MD simulations. We envision HelixGAN as a critical tool for designing novel bioactive peptides with specific properties in the early stages of drug discovery. AVAILABILITY AND IMPLEMENTATION https://github.com/xxiexuezhi/helix_gan. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xuezhi Xie
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada,Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pedro A Valiente
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | |
Collapse
|
32
|
Mirzaei F, Khodadadi I, Majdoub N, Vafaei SA, Tayebinia H, Abbasi E. Role of Glucagon-like Peptide-1 (GLP-1) Agonists in the Management of Diabetic Patients with or without COVID-19. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022. [DOI: 10.2174/18741045-v16-e2212130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone released after a meal, which alleviates hyperglycemia, increases β-cell survival, reduces body weight, and reduces inflammation. These thrilling effects motivated clinical studies to discover the potential use of GLP-1 receptor agonists (GLP-1 RAs) in the management of T2D. GLP-1 RAs are potential anti-diabetic agents that can reduce blood pressure, glucose levels, HbA1c and, weight loss without hypoglycemia risk. This manuscript reviews the importance of GLP-1 RAs and their role in the management of T2D with or without COVID-19 infection. Hence, this manuscript can help physicians and researchers to choose the most appropriate drugs for the individualized treatment of subjects.
Collapse
|
33
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
34
|
Mlakar L, Garrett SM, Watanabe T, Sanderson M, Nishimoto T, Heywood J, Helke KL, Pilewski JM, Herzog EL, Feghali-Bostwick C. Ameliorating Fibrosis in Murine and Human Tissues with END55, an Endostatin-Derived Fusion Protein Made in Plants. Biomedicines 2022; 10:2861. [PMID: 36359382 PMCID: PMC9687961 DOI: 10.3390/biomedicines10112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Organ fibrosis, particularly of the lungs, causes significant morbidity and mortality. Effective treatments are needed to reduce the health burden. A fragment of the carboxyl-terminal end of collagen XVIII/endostatin reduces skin and lung fibrosis. This fragment was modified to facilitate its production in plants, which resulted in the recombinant fusion protein, END55. We found that expression of END55 had significant anti-fibrotic effects on the treatment and prevention of skin and lung fibrosis in a bleomycin mouse model. We validated these effects in a second mouse model of pulmonary fibrosis involving inducible, lung-targeted expression of transforming growth factor β1. END55 also exerted anti-fibrotic effects in human lung and skin tissues maintained in organ culture in which fibrosis was experimentally induced. The anti-fibrotic effect of END55 was mediated by a decrease in the expression of extracellular matrix genes and an increase in the levels of matrix-degrading enzymes. Finally, END55 reduced fibrosis in the lungs of patients with systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF) who underwent lung transplantation due to the severity of their lung disease, displaying efficacy in human tissues directly relevant to human disease. These findings demonstrate that END55 is an effective anti-fibrotic therapy in different organs.
Collapse
Affiliation(s)
- Logan Mlakar
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sara M. Garrett
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tomoya Watanabe
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Matthew Sanderson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tetsuya Nishimoto
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jonathan Heywood
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erica L. Herzog
- Yale ILD Center of Excellence, Department of Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Lin Q, Xia X, Li J, Zhou Z, Chen Y. Site-specific N-terminal PEGylation-based controlled release of biotherapeutics: An application for GLP-1 delivery to improve pharmacokinetics and prolong hypoglycemic effects. Eur J Med Chem 2022; 242:114672. [PMID: 35973313 DOI: 10.1016/j.ejmech.2022.114672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
PEGylation is a well-established technology for half-life extension in drug delivery. In this study, we aimed to develop a site-specific N-terminal PEGylation for biotherapeutics to achieve controlled release, using GLP-1 as a model. An additional threonine was introduced at N-terminal GLP-1. Followed by periodate oxidation, hydrazide-based PEGylation was achieved in a site-selective manner under reductive condition. Two homogenous monovalent mPEG5k-GLP-1 (peptide 4) and mPEG20k-GLP-1 (peptide 5) were successfully constructed. After PEGylation, the degradation by DPP-IV and rat plasma was obviously reduced. Their pharmacokinetic performances were enhanced at the expense of impaired GLP-1R stimulating potency, and their hypoglycemic effects were improved in different degrees. Compared with conventional strategies, this approach is devoid of the restriction and alteration of native peptide sequences, and can produce utterly homogenous conjugates with excellent selectivity and efficiency. It provides a practical controlled release approach for peptides by site-specific modification to achieve better pharmacological and therapeutic properties.
Collapse
Affiliation(s)
- Qianmeng Lin
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuan Xia
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jun Li
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhan Zhou
- Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
36
|
Manavi MA. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 2022; 94:102250. [PMID: 35561568 DOI: 10.1016/j.npep.2022.102250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Epilepsy is a common neurological condition induced by losing equilibrium of different pathway as well as neurotransmitters that affects over 50 million people globally. Furthermore, long-term administration of anti-seizure medications has been associated with psychological adverse effects. Also, epilepsy has been related to an increased prevalence of obesity and called type 2 diabetes mellitus. On the other hand, GLP-1 receptors are located throughout the brain, including the hippocampus, which have been associated to majority of neurological conditions, such as epilepsy and psychiatric disorders. Moreover, the impact of different GLP-1 analogues on diverse neurotransmitter systems and associated cellular and molecular pathways as a potential therapeutic target for epilepsy and associated comorbidities has piqued curiosity. In this regard, the anticonvulsant effects of GLP-1 analogues have been investigated in various animal models and promising results such as anticonvulsants as well as cognitive improvements have been observed. For instance, GLP-1 analogues like liraglutide in addition to their possible anticonvulsant benefits, could be utilized to alleviate mental cognitive problems caused by both epilepsy and anti-seizure medication side effects. In this review and growing protective function of GLP-1 in epilepsy induced by disturbed neurotransmitter pathways and the probable mechanisms of action of GLP-1 analogues as well as the GLP-1 receptor in these effects have been discussed.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Rossi L, Kerekes K, Kovács-Kocsi J, Körhegyi Z, Bodnár M, Fazekas E, Prépost E, Pignatelli C, Caneva E, Nicotra F, Russo L. Multivalent γ-PGA-Exendin-4 conjugates to target pancreatic β-cells. Chembiochem 2022; 23:e202200196. [PMID: 35762648 PMCID: PMC9542156 DOI: 10.1002/cbic.202200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Targeting of glucagon‐like peptide 1 receptor (GLP‐1R), expressed on the surface of pancreatic β‐cells, is of great interest for the development of advanced therapies for diabetes and diagnostics for insulinoma. We report the conjugation of exendin‐4 (Ex‐4), an approved drug to treat type 2 diabetes, to poly‐γ‐glutamic acid (γ‐PGA) to obtain more stable and effective GLP‐1R ligands. Exendin‐4 modified at Lysine‐27 with PEG4‐maleimide was conjugated to γ‐PGA functionalized with furan, in different molar ratios, exploiting a chemoselective Diels‐Alder cycloaddition. The γ‐PGA presenting the highest number of conjugated Ex‐4 molecules (average 120 per polymeric chain) showed a double affinity towards GLP‐1R with respect to exendin per se, paving the way to improved therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Lorenzo Rossi
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, ITALY
| | | | | | | | | | | | | | - Cataldo Pignatelli
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, ITALY
| | - Enrico Caneva
- Unitech Cospect: Comprehensive Substances Characterization via advances SPECTroscopy, -, ITALY
| | - Francesco Nicotra
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, ITALY
| | - Laura Russo
- Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, Piazza della Scienza 2, 20126, Milan, ITALY
| |
Collapse
|
38
|
Investigating Potential GLP-1 Receptor Agonists in Cyclopeptides from Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra, and Peptides Derived from Heterophyllin B for the Treatment of Type 2 Diabetes: An In Silico Study. Metabolites 2022; 12:metabo12060549. [PMID: 35736482 PMCID: PMC9227353 DOI: 10.3390/metabo12060549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
GLP-1 receptor agonists stimulate GLP-1R to promote insulin secretion, whereas DPP4 inhibitors slow GLP-1 degradation. Both approaches are incretin-based therapies for T2D. In addition to GLP-1 analogs, small nonpeptide GLP-1RAs such as LY3502970, TT-OAD2, and PF-06882961 have been considered as possible therapeutic alternatives. Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra are plants rich in cyclopeptides with hypoglycemic effects. Our previous study demonstrated the potential of their cyclopeptides for DPP4 inhibition. Reports of cyclic setmelanotide as an MC4R (GPCR) agonist and cyclic α-conotoxin chimeras as GLP-1RAs led to docking studies of these cyclopeptides with GLP-1R. Heterophyllin B, Pseudostellarin B, Cyclolinopeptide B, Cyclolinopeptide C, Drymarin A, and Diandrine C are abundant in these plants, with binding affinities of −9.5, −10.4, −10.3, −10.6, −11.2, and −11.9 kcal/mol, respectively. The configuration they demonstrated established multiple hydrogen bonds with the transmembrane region of GLP-1R. DdC:(cyclo)-GGPYWP showed the most promising docking score. The results suggest that, in addition to DPP4, GLP-1R may be a hypoglycemic target of these cyclopeptides. This may bring about more discussion of plant cyclopeptides as GLP-1RAs. Moreover, peptides derived from the HB precursor (IFGGLPPP), including IFGGWPPP, IFPGWPPP, IFGGYWPPP, and IFGYGWPPPP, exhibited diverse interactions with GLP-1R and displayed backbones available for further research.
Collapse
|
39
|
Boulmpou A, Patoulias D, Papadopoulos CE, Teperikidis E, Doumas M, Vassilikos V. Meta-analysis of cardiovascular outcome trials assessing the impact of glucagon-like peptide-1 receptor agonists on major cardiac arrhythmias. Acta Cardiol 2022:1-6. [PMID: 35699112 DOI: 10.1080/00015385.2022.2087839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor agonists (GLP-1RAs), a group of novel antidiabetic agents, demonstrated beneficial cardiovascular effects in recent large, placebo-controlled randomised clinical trials (RCTs); their clear antiarrhythmic benefit has not been yet underlined. The purpose of the present meta-analysis is to clarify the impact of GLP-1RAs on different types of cardiac arrhythmias. METHODS We searched PubMed from its inception up to 8 October 2020 for all available cardiovascular and renal outcome, placebo-controlled RCTs utilising GLP-1RAs versus placebo. The present meta-analysis is reported according to the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) statement. RESULTS We included data from 7 RCTs with GLP-1RAs in a total of 55,943 participants. Treatment with GLP-1RAs did not provide significant benefit in the risk for atrial fibrillation (RR = 0.81, 95%CI; 0.78-1.15, I2 = 51%), atrial flutter (RR = 0.79, 95%CI; 0.53-1.16, I2 = 0%), ventricular fibrillation (RR = 0.99, 95%CI; 0.48-2.04, I2 = 0%), ventricular tachycardia (RR = 1.41, 95%CI; 0.87-2.28, I2 = 10%), atrial tachycardia (RR = 0.63, 95%CI; 0.10-3.90, I2 = 24%), sinus node dysfunction (RR = 0.70, 95%CI; 0.40-1.23, I2 = 0%), ventricular extrasystoles (RR = 1.37, 95%CI; 0.56-3.30, I2 = 0%), second-degree atrioventricular block (RR = 0.96, 95%CI; 0.52-1.74, I2 = 0%) or complete atrioventricular block (RR = 0.78, 95%CI; 0.39-1.54, I2 = 38%). CONCLUSIONS In patients with type 2 diabetes mellitus, treatment with GLP-1RAs does not significantly affect the risk for major cardiac arrhythmias.
Collapse
Affiliation(s)
- Aristi Boulmpou
- Third Department of Cardiology, Ippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propaedeutic Department of Internal Medicine, Ippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christodoulos E Papadopoulos
- Third Department of Cardiology, Ippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Teperikidis
- Third Department of Cardiology, Ippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- Second Propaedeutic Department of Internal Medicine, Ippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Veterans Affairs Medical Center, George Washington University, Washington, DC, USA
| | - Vassilios Vassilikos
- Third Department of Cardiology, Ippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Yang Q, Zhou F, Tang X, Wang J, Feng H, Jiang W, Jin L, Jiang N, Yuan Y, Han J, Yan Z. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur J Med Chem 2022; 233:114214. [DOI: 10.1016/j.ejmech.2022.114214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
|
41
|
Decara JM, Vázquez-Villa H, Brea J, Alonso M, Srivastava RK, Orio L, Alén F, Suárez J, Baixeras E, García-Cárceles J, Escobar-Peña A, Lutz B, Rodríguez R, Codesido E, Garcia-Ladona FJ, Bennett TA, Ballesteros JA, Cruces J, Loza MI, Benhamú B, Rodríguez de Fonseca F, López-Rodríguez ML. Discovery of V-0219: A Small-Molecule Positive Allosteric Modulator of the Glucagon-Like Peptide-1 Receptor toward Oral Treatment for “Diabesity”. J Med Chem 2022; 65:5449-5461. [PMID: 35349261 PMCID: PMC9014410 DOI: 10.1021/acs.jmedchem.1c01842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan M. Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario, Málaga E-29010, Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - José Brea
- Biofarma Research group, USEF Screening Platform, CIMUS, USC, Santiago de Compostela E-15782, Spain
| | - Mónica Alonso
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario, Málaga E-29010, Spain
| | - Raj Kamal Srivastava
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz 55128, Germany
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario, Málaga E-29010, Spain
| | - Elena Baixeras
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario, Málaga E-29010, Spain
| | - Javier García-Cárceles
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Andrea Escobar-Peña
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz 55128, Germany
| | | | | | | | - Teresa A. Bennett
- ViviaBiotech S.L., Parque Científico de Madrid, Madrid E-28760, Spain
| | | | | | - María I. Loza
- Biofarma Research group, USEF Screening Platform, CIMUS, USC, Santiago de Compostela E-15782, Spain
| | - Bellinda Benhamú
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario, Málaga E-29010, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | | |
Collapse
|
42
|
Qiao Q, Cai L, Shao Q. Molecular Simulations of Zwitterlation-induced Conformation and Dynamics Variation of Glucagon-like Peptide-1 and Insulin. J Mater Chem B 2022; 10:2490-2496. [DOI: 10.1039/d1tb02561a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic materials have shown their ability to improve the circulation time and stability of proteins. Zwitterionic peptides present unique potential because genetic technology can fuse them to any wild-type protein....
Collapse
|
43
|
Vilaseca M, Gracia-Sancho J. Drugs to Modify Liver Fibrosis Progression and Regression. PORTAL HYPERTENSION VII 2022:201-218. [DOI: 10.1007/978-3-031-08552-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established.
AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles.
METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.”
RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg.
CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.
Collapse
|
45
|
Roberts S, Khera E, Choi C, Navaratna T, Grimm J, Thurber GM, Reiner T. Optoacoustic Imaging of Glucagon-like Peptide-1 Receptor with a Near-Infrared Exendin-4 Analog. J Nucl Med 2021; 62:839-848. [PMID: 33097631 PMCID: PMC8729860 DOI: 10.2967/jnumed.120.252262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Limitations in current imaging tools have long challenged the imaging of small pancreatic islets in animal models. Here, we report the first development and in vivo validation testing of a broad-spectrum and high-absorbance near-infrared optoacoustic contrast agent, E4x12-Cy7. Our near-infrared tracer is based on the amino acid sequence of exendin-4 and targets the glucagon-like peptide-1 receptor (GLP-1R). Cell assays confirmed that E4x12-Cy7 has a high-binding affinity (dissociation constant, Kd, 4.6 ± 0.8 nM). Using the multispectral optoacoustic tomography, we imaged E4x12-Cy7 and optoacoustically visualized β-cell insulinoma xenografts in vivo for the first time. In the future, similar optoacoustic tracers that are specific for β-cells and combines optoacoustic and fluorescence imaging modalities could prove to be important tools for monitoring the pancreas for the progression of diabetes.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Crystal Choi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tejas Navaratna
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Program of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Pharmacology Program, Weill Cornell Medical College, New York, New York
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
46
|
Tan DJY, Cheong VV, Lim KW, Phan AT. A modular approach to enzymatic ligation of peptides and proteins with oligonucleotides. Chem Commun (Camb) 2021; 57:5507-5510. [PMID: 34036975 DOI: 10.1039/d1cc01348c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Joining peptides and oligonucleotides offers potential benefits, but current methods remain laborious. Here we present a novel approach towards enzymatic ligation of the two modalities through the development of tag phosphoramidites as adaptors that can be readily incorporated onto oligonucleotides. This simple and highly efficient approach paves the way towards streamlined development and production of peptide/protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Derrick Jing Yang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | | | | | | |
Collapse
|
47
|
Alavi SE, Cabot PJ, Raza A, Moyle PM. Developing GLP-1 Conjugated Self-Assembling Nanofibers Using Copper-Catalyzed Alkyne-Azide Cycloaddition and Evaluation of Their Biological Activity. Bioconjug Chem 2021; 32:810-820. [PMID: 33843208 DOI: 10.1021/acs.bioconjchem.1c00091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 GLP-1 is a gut-derived peptide secreted from pancreatic β-cells that reduces blood glucose levels and body weight; however, native GLP-1 (GLP-1(7-36)-NH2 and GLP-1(7-37)) have short in vivo circulation half-lives (∼2 min) due to proteolytic degradation and rapid renal clearance due to its low molecular weight (MW; 3297.7 Da). This study aimed to improve the proteolytic stability and delivery properties of glucagon-like peptide-1 (GLP-1) through modifications that form nanostructures. For this purpose, N- (NtG) and C-terminal (CtG), and Lys26 side chain (K26G) alkyne-modified GLP-1 analogues were conjugated to an azide-modified lipidic peptide (L) to give N-L, C-L, and K-26-L, respectively; or CtG was conjugated with a fibrilizing self-assembling peptide (SAP) (AEAEAKAK)3 to yield C-S, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). N-L demonstrated the best serum stability (t1/2 > 48 h) compared to K-26-L (44 h), C-L (20 h), C-S (27 h), and the parental GLP-1(7-36;A8G)-NH2 (A8G) (19 h) peptides. Each conjugate demonstrated subnanomolar hGLP-1RA potency, and none demonstrated toxicity toward PC-3 cells at concentrations up to 1 μM. Each analogue was observed by transmission electron microscopy to form fibrils in solution. K-26-L demonstrated among the best human serum stability (t1/2 = 44 h) and similar hGLP-1RA potency (EC50 48 pM) to C-S. In conclusion, this study provided an alternative to lipid modification, i.e., fibrillizing peptides, that could improve pharmacokinetic parameters of GLP-1.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| |
Collapse
|
48
|
GLP-1 peptide analogs for targeting pancreatic beta cells. Drug Discov Today 2021; 26:1936-1943. [PMID: 33839290 DOI: 10.1016/j.drudis.2021.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Loss or dysfunction of the pancreatic beta cells or insulin receptors leads to diabetes mellitus (DM). This usually occurs over many years; therefore, the development of methods for the timely detection and clinical intervention are vital to prevent the development of this disease. Glucagon-like peptide-1 receptor (GLP-1R) is the receptor of GLP-1, an incretin hormone that causes insulin secretion in a glucose-dependent manner. GLP-1R is highly expressed on the surface of pancreatic beta cells, providing a potential target for bioimaging. In this review, we provide an overview of various strategies, such as the development of GLP-1R agonists (e.g., exendin-4), and GLP-1 sequence modifications for GLP-1R targeting for the diagnosis and treatment of pancreatic beta cell disorders. We also discuss the challenges of targeting pancreatic beta cells and strategies to address such challenges.
Collapse
|
49
|
Sicinski K, Montanari V, Raman VS, Doyle JR, Harwood BN, Song YC, Fagan MP, Rios M, Haines DR, Kopin AS, Beinborn M, Kumar K. A Non-Perturbative Molecular Grafting Strategy for Stable and Potent Therapeutic Peptide Ligands. ACS CENTRAL SCIENCE 2021; 7:454-466. [PMID: 33791428 PMCID: PMC8006168 DOI: 10.1021/acscentsci.0c01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 06/12/2023]
Abstract
The gut-derived incretin hormone, glucagon-like peptide-1 (GLP1), plays an important physiological role in attenuating post-prandial blood glucose excursions in part by amplifying pancreatic insulin secretion. Native GLP1 is rapidly degraded by the serine protease, dipeptidyl peptidase-4 (DPP4); however, enzyme-resistant analogues of this 30-amino-acid peptide provide an effective therapy for type 2 diabetes (T2D) and can curb obesity via complementary functions in the brain. In addition to its medical relevance, the incretin system provides a fertile arena for exploring how to better separate agonist function at cognate receptors versus susceptibility of peptides to DPP4-induced degradation. We have discovered that novel chemical decorations can make GLP1 and its analogues completely DPP4 resistant while fully preserving GLP1 receptor activity. This strategy is also applicable to other therapeutic ligands, namely, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-2 (GLP2), targeting the secretin family of receptors. The versatility of the approach offers hundreds of active compounds based on any template that target these receptors. These observations should allow for rapid optimization of pharmacological properties and because the appendages are in a position crucial to receptor stimulation, they proffer the possibility of conferring "biased" signaling and in turn minimizing side effects.
Collapse
Affiliation(s)
- Kathleen
M. Sicinski
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkata S. Raman
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jamie R. Doyle
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Benjamin N. Harwood
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Yi Chi Song
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Micaella P. Fagan
- Department
of Neuroscience, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
| | - Maribel Rios
- Department
of Neuroscience, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
| | - David R. Haines
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Alan S. Kopin
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
50
|
Knerr L, Prakash TP, Lee R, Drury Iii WJ, Nikan M, Fu W, Pirie E, Maria LD, Valeur E, Hayen A, Ölwegård-Halvarsson M, Broddefalk J, Ämmälä C, Østergaard ME, Meuller J, Sundström L, Andersson P, Janzén D, Jansson-Löfmark R, Seth PP, Andersson S. Glucagon Like Peptide 1 Receptor Agonists for Targeted Delivery of Antisense Oligonucleotides to Pancreatic Beta Cell. J Am Chem Soc 2021; 143:3416-3429. [PMID: 33626278 DOI: 10.1021/jacs.0c12043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extra hepatic delivery of antisense oligonucleotides (ASOs) remains a challenge and hampers the widespread application of this powerful class of therapeutic agents. In that regard, pancreatic beta cells are a particularly attractive but challenging cell type because of their pivotal role in diabetes and the fact that they are refractory to uptake of unconjugated ASOs. To circumvent this, we have expanded our understanding of the structure activity relationship of ASOs conjugated to Glucagon Like Peptide 1 Receptor (GLP1R) agonist peptide ligands. We demonstrate the key role of the linker chemistry and its optimization to design maleimide based conjugates with improved in vivo efficacy. In addition, truncation studies and scoping of a diverse set of GLP1R agonists proved fruitful to identify additional targeting ligands efficacious in vivo including native hGLP1(7-36)NH2. Variation of the carrier peptide also shed some light on the dramatic impact of subtle sequence differences on the corresponding ASO conjugate performance in vivo, an area which clearly warrant further investigations. We have confirmed the remarkable potential of GLP1R agonist conjugation for the delivery of ASOs to pancreatic beta cell by effectively knocking down islet amyloid polypeptide (IAPP) mRNA, a potential proapoptotic target, in mice.
Collapse
Affiliation(s)
- Laurent Knerr
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Thazha P Prakash
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Richard Lee
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - William J Drury Iii
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mehran Nikan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Wuxia Fu
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Elaine Pirie
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Leonardo De Maria
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eric Valeur
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ahlke Hayen
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Ölwegård-Halvarsson
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Broddefalk
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael E Østergaard
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Johan Meuller
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Sundström
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrik Andersson
- Respiratory and Immunology Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Janzén
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Punit P Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Shalini Andersson
- Research and early Development, Discovery Sciences,, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|