1
|
Nandre RM, Newman AH, Terse PS. In vitro safety evaluation of dopamine D3R antagonist, R-VK4-116, as a potential medication for the treatment of opioid use disorder. PLoS One 2024; 19:e0315569. [PMID: 39680602 DOI: 10.1371/journal.pone.0315569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes. Four major metabolites were detected: two mono-oxidation products, one di-oxidation product, and one demethylated plus di-oxidation product. CYP2D6 and CYP3A4 were major contributors in R-VK4-116 metabolism. Further, R-VK4-116 did not induce/inhibit CYP enzymes. However, R-VK4-116 inhibited BCRP/P-gp, and showed antagonist effects on α1A(h), H1(h) and agonist effect on hGABAA∞1β2γ2 at 10 μM. R-VK4-116 inhibited hERG and Kir2.1 at a high concentration of 100 μM. KINOMEscanTM provided 5 hits (CHEK2, HPK1, MARK3, SRPK2 and TNK1) with Kds of >10 μM. Further, R-VK4-116 was bound to human, rat and dog plasma proteins (~83-93%). R-VK4-116 did not induce lysosome perturbation, mitochondrial toxicity, phospholipidosis, or steatosis at ≤10 μM. These results demonstrated that R-VK4-116 possesses favorable in vitro safety properties and supports further development as a potential medication for OUD.
Collapse
Affiliation(s)
- Rahul M Nandre
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institute of Health, Baltimore, Maryland, United States of America
| | - Pramod S Terse
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| |
Collapse
|
2
|
Allen MI, Lewis EA, Cao J, Newman AH, Nader MA. Selective dopamine D3 receptor partial agonist (±)VK4-40 reduces the reinforcing strength of d-amphetamine but not cocaine in rhesus monkeys responding under a progressive-ratio schedule of reinforcement. Drug Alcohol Depend 2024; 265:112494. [PMID: 39527868 PMCID: PMC11588530 DOI: 10.1016/j.drugalcdep.2024.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Although countless studies have aimed to identify and test novel therapeutics for stimulant misuse, there are still no FDA-approved pharmacotherapies for stimulant use disorders. One potential treatment target is the dopamine D3 receptor (D3R) and studies in rodents have suggested that the novel D3R partial agonist (±)VK4-40 may be effective at decreasing cocaine self-administration. However, no previous studies have examined the efficacy of (±)VK4-40 in reducing cocaine self-administration in nonhuman primates nor the generality of effects by examining self-administration of other stimulants using a within-subjects design. METHODS Experiment 1 examined how acute treatment with (±)VK4-40 (1.7-3.0mg/kg, i.v.) influenced cocaine and d-amphetamine self-administration in three rhesus monkeys responding under a progressive-ratio (PR) schedule of reinforcement. In Experiment 2, the reinforcing effects of (±)VK4-40 were evaluated under a PR schedule and compared to cocaine and d-amphetamine. RESULTS When given as a pretreatment, (±)VK4-40 significantly reduced the reinforcing strength of d-amphetamine but not cocaine. In general, the effects of (±)VK4-40 on d-amphetamine responding were parallel downward shifts in the self-administration dose-response curve. When (±)VK4-40 was substituted for cocaine, it functioned as a reinforcer in 2 of 3 monkeys. However, the reinforcing strength of (±)VK4-40 was significantly lower than cocaine and d-amphetamine, suggesting lower potential for misuse. CONCLUSIONS Overall, these findings support further exploration of D3R partial agonists, including (±)VK4-40, for treatment of d-amphetamine misuse or potentially in combination with d-amphetamine for treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Mia I Allen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Emory A Lewis
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jianjing Cao
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael A Nader
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
3
|
Saganuwan SA. Structure-activity relationship of pharmacophores and toxicophores: the need for clinical strategy. Daru 2024; 32:781-800. [PMID: 38935265 PMCID: PMC11555194 DOI: 10.1007/s40199-024-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Sometimes clinical efficacy and potential risk of therapeutic and toxic agents are difficult to predict over a long period of time. Hence there is need for literature search with a view to assessing cause of toxicity and less efficacy of drugs used in clinical practice. METHOD Hence literatures were searched for physicochemical properties, chemical formulas, molecular masses, pH values, ionization, receptor type, agonist and antagonist, therapeutic, toxic and structure-activity relationship of chemical compounds with pharmacophore and toxicophore, with a view to identifying high efficacious and relative low toxic agents. Inclusion criteria were manuscripts published on PubMed, Scopus, Web of Science, PubMed Central, Google Scholar among others, between 1960 and 2023. Keywords such as pharmacophore, toxicophore, structure-activity-relationship and disease where also searched. The exclusion criteria were the chemicals that lack pharmacophore, toxicophore and manuscripts published before 1960. RESULTS Findings have shown that pharmacophore and toxicophore functional groups determine clinical efficacy and safety of therapeutics, but if they overlap therapeutic and toxicity effects go concurrently. Hence the functional groups, dose, co-administration and concentration of drugs at receptor, drug-receptor binding and duration of receptor binding are the determining factors of pharmacophore and toxicophore activity. Molecular mass, chemical configuration, pH value, receptor affinity and binding capacity, multiple pharmacophores, hydrophilic/lipophilic nature of the chemical contribute greatly to functionality of pharmacophore and toxicophore. CONCLUSION Daily single therapy, avoidance of reversible pharmacology, drugs with covalent adduct, maintenance of therapeutic dose, and the use of multiple pharmacophores for terminal diseases will minimize toxicity and improve efficacy.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, P.M.B. 2373, Benue State, Nigeria.
| |
Collapse
|
4
|
Zhang G, Zhao S, Zhao Z, Jia C, Zhang Y, Xue J, Liu Y, Yang W. Synthesis and Evaluation of 18F-Labeled Phenylpiperazine-like Dopamine D3 Receptor Radioligands for Positron Emission Tomography Imaging. ACS Chem Neurosci 2024; 15:3459-3472. [PMID: 39276340 DOI: 10.1021/acschemneuro.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
The dopamine D3 receptor (D3R) is important in the pathophysiology of various neuropsychiatric disorders, such as depression, bipolar disorder, schizophrenia, drug addiction, and Parkinson's disease. Positron emission tomography (PET) with innovative radioligands provides an opportunity to assess D3R in vivo and to elucidate D3R-related disease mechanisms. Herein, we present the synthesis of eight 18F-labeled phenylpiperazine-like D3R-selective radioligands possessing good radiochemical purity (>97%), in vitro stability (>95%), and befitting lipophilicity. Based on in vitro binding assays and static microPET studies, the phenylpiperazine-like radioligands [18F]FBPC01 and [18F]FBPC03 were chosen as lead radioligands targeting D3R. Molecular docking further elucidated their binding mechanism. Radiolabeling conditions were optimized and then applied to an automated radiolabeling process, affording products with high specific activity (>112 GBq/μmol). Dynamic rat PET study demonstrated the specific binding of [18F]FBPC01 and [18F]FBPC03 to D3R in the brain ventricles and the pituitary gland. Validated by dynamic PET data analysis, biodistribution study, and metabolism analysis, [18F]FBPC03 exhibited the highest PET signal-to-noise ratio, good D3R-specific binding in the brain ventricles and pituitary gland of rats with few off-target binding, negligible defluorination, and stable brain metabolism, which indicated that [18F]FBPC03 was a promising D3R radioligand.
Collapse
Affiliation(s)
- Ge Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shilun Zhao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chenhao Jia
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuxuan Zhang
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Jingquan Xue
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Yu Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 10049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Wenjiang Yang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| |
Collapse
|
5
|
Yuan S, Jiang SC, Zhang ZW, Li ZL, Hu J. Substance Addiction Rehabilitation Drugs. Pharmaceuticals (Basel) 2024; 17:615. [PMID: 38794185 PMCID: PMC11124501 DOI: 10.3390/ph17050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs need to be developed urgently. There have been numerous reports on blocking the formation of substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited. Both the dopamine transporter (DAT) hypothesis and D3 dopamine receptor (D3R) hypothesis are proposed. DAT activators reduce the extracellular dopamine level, and D3R antagonists reduce the neuron's sensitivity to dopamine, both of which may exacerbate the withdrawal symptoms subsequently. The D3R partial agonist SK608 has biased signaling properties via the G-protein-dependent pathway but did not induce D3R desensitization and, thus, may be a promising drug for the withdrawal symptoms. Drugs for serotoninergic neurons or GABAergic neurons and anti-inflammatory drugs may have auxiliary effects to addiction treatments. Drugs that promote structural synaptic plasticity are also discussed.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Si-Cong Jiang
- Haisco Pharmaceutical Group Comp. Ltd., Chengdu 611138, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi’an 710032, China;
| | - Jing Hu
- School of Medicine, Northwest University, Xi’an 710069, China;
| |
Collapse
|
6
|
Lee JY, Kim HY, Martorano P, Riad A, Taylor M, Luedtke RR, Mach RH. In vitro characterization of [ 125I]HY-3-24, a selective ligand for the dopamine D3 receptor. Front Neurosci 2024; 18:1380009. [PMID: 38655111 PMCID: PMC11036874 DOI: 10.3389/fnins.2024.1380009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Dopamine D3 receptor (D3R) ligands have been studied for the possible treatment of neurological and neuropsychiatric disorders. However, selective D3R radioligands for in vitro binding studies have been challenging to identify due to the high structural similarity between the D2R and D3R. In a prior study, we reported a new conformationally-flexible benzamide scaffold having a high affinity for D3R and excellent selectivity vs. D2R. In the current study, we characterized the in vitro binding properties of a new radioiodinated ligand, [125I]HY-3-24. Methods In vitro binding studies were conducted in cell lines expressing D3 receptors, rat striatal homogenates, and rat and non-human primate (NHP) brain tissues to measure regional brain distribution of this radioligand. Results HY-3-24 showed high potency at D3R (Ki = 0.67 ± 0.11 nM, IC50 = 1.5 ± 0.58 nM) compared to other D2-like dopamine receptor subtypes (D2R Ki = 86.7 ± 11.9 nM and D4R Ki > 1,000). The Kd (0.34 ± 0.22 nM) and Bmax (38.91 ± 2.39 fmol/mg) values of [125I]HY-3-24 were determined. In vitro binding studies in rat striatal homogenates using selective D2R and D3R antagonists confirmed the D3R selectivity of [125I]HY-3-24. Autoradiography results demonstrated that [125I]HY-3-24 specifically binds to D3Rs in the nucleus accumbens, islands of Calleja, and caudate putamen in rat and NHP brain sections. Conclusion These results suggest that [125I]HY-3-24 appears to be a novel radioligand that exhibits high affinity binding at D3R, with low binding to other D2-like dopamine receptors. It is anticipated that [125I]HY-3-24 can be used as the specific D3R radioligand.
Collapse
Affiliation(s)
- Ji Youn Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ho Young Kim
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul Martorano
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Aladdin Riad
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Lee KH, Shi L. Unraveling Activation-Related Rearrangements and Intrinsic Divergence from Ligand-Specific Conformational Changes of the Dopamine D3 and D2 Receptors. J Chem Inf Model 2024; 64:1778-1793. [PMID: 38454785 DOI: 10.1021/acs.jcim.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Effective rational drug discovery hinges on understanding the functional states of the target protein and distinguishing it from homologues. However, for the G protein coupled receptors, both activation-related conformational changes (ACCs) and intrinsic divergence among receptors can be misled or obscured by ligand-specific conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics (MD) simulation results of the receptors bound with various ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors, including the extracellular portion of TM5 (TM5e) and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found more outward tilting of TM6e in the D2R compared to the D3R in both the experimental structures and simulations bound with ligands in different scaffolds. However, this difference was drastically reduced in the simulations bound with nonselective agonist quinpirole, suggesting a misleading effect of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may also obscure intrinsic divergence. Importantly, our MD simulations revealed divergence in the dynamics of these receptors. Specifically, the D2R exhibited heightened flexibility compared to the D3R in the extracellular loops and TMs 5e, 6e, and 7e, associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting the D2R and D3R with more precise pharmacological profiles.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
8
|
Tian GL, Hsieh CJ, Taylor M, Lee JY, Luedtke RR, Mach RH. Design and Synthesis of D 3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies. Molecules 2023; 29:123. [PMID: 38202706 PMCID: PMC10779535 DOI: 10.3390/molecules29010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
A series of bitopic ligands based on Fallypride with a flexible secondary binding fragment (SBF) were prepared with the goal of preparing a D3R-selective compound. The effect of the flexible linker ((R,S)-trans-2a-d), SBFs ((R,S)-trans-2h-j), and the chirality of orthosteric binding fragments (OBFs) ((S,R)-trans-d, (S,R)-trans-i, (S,S)-trans-d, (S,S)-trans-i, (R,R)-trans-d, and (R,R)-trans-i) were evaluated in in vitro binding assays. Computational chemistry studies revealed that the interaction of the fragment binding to the SBF increased the distance between the pyrrolidine nitrogen and ASP1103.32 of the D3R, thereby reducing the D3R affinity to a suboptimal level.
Collapse
Affiliation(s)
- Gui-Long Tian
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| | - Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (M.T.)
| | - Ji Youn Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (M.T.)
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| |
Collapse
|
9
|
Tian GL, Hsieh CJ, Taylor M, Lee JY, Riad AA, Luedtke RR, Mach RH. Synthesis of bitopic ligands based on fallypride and evaluation of their affinity and selectivity towards dopamine D 2 and D 3 receptors. Eur J Med Chem 2023; 261:115751. [PMID: 37688938 PMCID: PMC10841072 DOI: 10.1016/j.ejmech.2023.115751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the β-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.
Collapse
Affiliation(s)
- Gui-Long Tian
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Texas, TX, 76107, USA
| | - Ji Youn Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aladdin A Riad
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Texas, TX, 76107, USA
| | - Robert H Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Lee KH, Shi L. Unraveling activation-related rearrangements and intrinsic divergence from ligand-induced conformational changes of the dopamine D3 and D2 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566699. [PMID: 38014309 PMCID: PMC10680602 DOI: 10.1101/2023.11.11.566699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Effective rational drug discovery targeting a specific protein hinges on understanding their functional states and distinguishing it from homologs. However, for the G protein coupled receptors, both the activation-related conformational changes (ACCs) and the intrinsic divergence among receptors can be misled or obscured by ligand-induced conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics simulation results of the receptors bound with different ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors including TM5e and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found pronounced outward tilting of TM6e in the D2R compared to the D3R in both experimental structures and simulations with ligands in different scaffolds. This tilting was drastically reduced in the simulations of the receptors bound with nonselective full agonist quinpirole, suggesting a misleading impact of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may obscure intrinsic divergence. In addition, our analysis showed that the impact of the nonconserved TM1 propagated to conserved Trp7.40 and Glu2.65, both are ligand binding residues. We also found that the D2R exhibited heightened flexibility compared to the D3R in the extracellular portions of TMs 5, 6, and 7, potentially associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting D2R or D3R with more precise pharmacological profiles.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Woodlief K, Allen MI, Cornelissen JC, Banks ML, Newman AH, Nader MA. Effects of selective dopamine D3 receptor partial agonist/antagonists on oxycodone self-administration and antinociception in monkeys. Neuropsychopharmacology 2023; 48:1716-1723. [PMID: 37118057 PMCID: PMC10579365 DOI: 10.1038/s41386-023-01590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Recent studies suggest that dopamine D3 receptors (D3R) may be a therapeutic target for opioid use disorders (OUD). This study examined the effects of the D3R partial agonist (±)VK4-40 and the D3R-selective antagonist (±)VK4-116, compared to the mu-opioid receptor antagonist naltrexone (NTX), in nonhuman primate models of OUD and antinociception. Adult male and female (N = 4/sex) cynomolgus monkeys were trained to self-administer oxycodone (0.003-0.1 mg/kg/injection) first under a fixed-ratio (FR) and then a progressive-ratio (PR) schedule of reinforcement during daily 1- and 4-hr sessions, respectively. Under the FR schedule, intravenous NTX (0.01-0.1 mg/kg), (±)VK4-116 (1.0-10 mg/kg), and (±)VK4-40 (1.0-10 mg/kg) were studied in combination with the peak oxycodone dose and a dose on the descending limb of the dose-effect curve; NTX and (±)VK4-40 were also studied at the peak of the PR dose-response curve (N = 4). Following saline extinction, each compound was examined on oxycodone-induced reinstatement. Finally, these compounds were assessed in adult male rhesus monkeys (N = 3) in a warm-water (38 °C, 50 °C, 54 °C) tail withdrawal assay. NTX decreased responding on the peak of the FR oxycodone dose-response curve, but increased responding on the descending limb. (±)VK4-40, but not (±)VK4-116, significantly decreased peak oxycodone self-administration; (±)VK4-40 did not increase responding on the descending limb. NTX and (±)VK4-40, but not (±)VK4-116, attenuated oxycodone-induced reinstatement. Under PR responding, NTX and (±)VK4-40 decreased breakpoints. Oxycodone-induced antinociception was attenuated by NTX, but not by (±)VK4-40 or (±)VK4-116. Together, these results suggest that further research evaluating the effects of (±)VK4-40 as a novel pharmacotherapy for OUD is warranted.
Collapse
Affiliation(s)
- Kendall Woodlief
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, 27157, NC, USA
| | - Mia I Allen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, 27157, NC, USA
| | - Jeremy C Cornelissen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, VA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, VA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, 27157, NC, USA.
| |
Collapse
|
12
|
Doyle MR, Peng LN, Cao J, Rice KC, Newman AH, Collins GT. 3,4-Methylenedioxypyrovalerone High-Responder Phenotype as a Tool to Evaluate Candidate Medications for Stimulant Use Disorder. J Pharmacol Exp Ther 2023; 384:353-362. [PMID: 36627204 PMCID: PMC9976791 DOI: 10.1124/jpet.122.001419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Despite decades of research, there are no medications approved by the United States Food and Drug Administration to treat stimulant use disorders. Self-administration procedures are widely used to screen candidate medications for stimulant use disorder, although preclinical reductions in stimulant self-administration have not translated to meaningful reductions in stimulant use in humans. One possible reason for this discordance is that most preclinical studies evaluate candidate medications under conditions that promote predictable, and well-regulated patterns of drug-taking rather than the dysregulated and/or compulsive patterns of drug-taking characteristic of a stimulant use disorder. A subset of rats ("high-responders") that self-administer 3,4-methelyendioxypyrovalerone (MDPV), a monoamine uptake inhibitor, develop high levels of dysregulated drug-taking consistent with behaviors related to stimulant use disorders. Because MDPV acts on dopamine, serotonin (5-HT), and sigma receptor systems, the current studies compared the potency and effectiveness of a dopamine D3 receptor partial agonist (VK4-40) or antagonist (VK4-116), a sigma receptor antagonist (BD1063), a dopamine D2/D3/sigma receptor antagonist (haloperidol), and a 5-HT2C receptor agonist (CP-809,101) to reduce MDPV (0.0032-0.1 mg/kg/infusion) self-administration in high- and low-responding rats as well as rats self-administering cocaine (0.032-1 mg/kg/infusion). VK4-40, VK4-116, haloperidol, and CP-809,101 were equipotent and effective at reducing drug-taking in all three groups of rats, including the high-responders; however, VK4-116 and CP-809,101 were less potent at reducing drug-taking in female compared with male rats. Together, these studies suggest that drugs targeting dopamine D3 or 5-HT2C receptors can effectively reduce dysregulated patterns of stimulant use, highlighting their potential utility for treating stimulant use disorders. SIGNIFICANCE STATEMENT: There are no United States Food and Drug Administration-approved treatments for stimulant use disorder, perhaps in part because candidate medications are most often evaluated in preclinical models using male subjects with well-regulated drug-taking. In an attempt to better model aberrant drug taking, this study found compounds acting at dopamine D3 or 5-HT2C receptors can attenuate drug-taking in male and female rats that self-administered two different stimulants and exhibited either a high or low substance use disorder-like phenotype.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Lindsey N Peng
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Jianjing Cao
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Amy Hauck Newman
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Gregory T Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
13
|
Gogarnoiu ES, Vogt CD, Sanchez J, Bonifazi A, Saab E, Shaik AB, Soler-Cedeño O, Bi GH, Klein B, Xi ZX, Lane JR, Newman AH. Dopamine D 3/D 2 Receptor Ligands Based on Cariprazine for the Treatment of Psychostimulant Use Disorders That May Be Dual Diagnosed with Affective Disorders. J Med Chem 2023; 66:1809-1834. [PMID: 36661568 PMCID: PMC11100975 DOI: 10.1021/acs.jmedchem.2c01624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Highly selective dopamine D3 receptor (D3R) partial agonists/antagonists have been developed for the treatment of psychostimulant use disorders (PSUD). However, none have reached the clinic due to insufficient potency/efficacy or potential cardiotoxicity. Cariprazine, an FDA-approved drug for the treatment of schizophrenia and bipolar disorder, is a high-affinity D3R partial agonist (Ki = 0.22 nM) with 3.6-fold selectivity over the homologous dopamine D2 receptor (D2R). We hypothesized that compounds that are moderately D3R/D2R-selective partial agonists/antagonists may be effective for the treatment of PSUD. By systematically modifying the parent molecule, we discovered partial agonists/antagonists, as measured in bioluminescence resonance energy transfer (BRET)-based assays, with high D3R affinities (Ki = 0.14-50 nM) and moderate selectivity (<100-fold) over D2R. Cariprazine and two lead analogues, 13a and 13e, decreased cocaine self-administration (FR2; 1-10 mg/kg, i.p.) in rats, suggesting that partial agonists/antagonists with modest D3R/D2R selectivity may be effective in treating PSUD and potentially comorbidities with other affective disorders.
Collapse
Affiliation(s)
- Emma S. Gogarnoiu
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Caleb D. Vogt
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Omar Soler-Cedeño
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Guo-Hua Bi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Benjamin Klein
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
14
|
Newman AH, Xi ZX, Heidbreder C. Current Perspectives on Selective Dopamine D 3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. Curr Top Behav Neurosci 2023; 60:157-201. [PMID: 35543868 PMCID: PMC9652482 DOI: 10.1007/7854_2022_347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over three decades of evidence indicate that dopamine (DA) D3 receptors (D3R) are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders (SUD). The expectation that a selective D3R antagonist/partial agonist would be efficacious for the treatment of SUD is based on the following key observations. First, D3R are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and ventral pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse produces neuroadaptations in the D3R system. Third, the synthesis and characterization of highly potent and selective D3R antagonists/partial agonists have further strengthened the role of the D3R in SUD. Based on extensive preclinical and preliminary clinical evidence, the D3R shows promise as a target for the development of pharmacotherapies for SUD as reflected by their potential to (1) regulate the motivation to self-administer drugs and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, drug-associated environmental cues, or stress. The availability of PET ligands to assess clinically relevant receptor occupancy by selective D3R antagonists/partial agonists, the definition of reliable dosing, and the prospect of using human laboratory models may further guide the design of clinical proof of concept studies. Pivotal clinical trials for more rapid progression of this target toward regulatory approval are urgently required. Finally, the discovery that highly selective D3R antagonists, such as R-VK4-116 and R-VK4-40, do not adversely affect peripheral biometrics or cardiovascular effects alone or in the presence of oxycodone or cocaine suggests that this class of drugs has great potential in safely treating psychostimulant and/or opioid use disorders.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA.
| | - Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Kim HY, Lee JY, Hsieh CJ, Taylor M, Luedtke RR, Mach RH. Design and Synthesis of Conformationally Flexible Scaffold as Bitopic Ligands for Potent D 3-Selective Antagonists. Int J Mol Sci 2022; 24:432. [PMID: 36613875 PMCID: PMC9820167 DOI: 10.3390/ijms24010432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Previous studies have confirmed that the binding of D3 receptor antagonists is competitively inhibited by endogenous dopamine despite excellent binding affinity for D3 receptors. This result urges the development of an alternative scaffold that is capable of competing with dopamine for binding to the D3 receptor. Herein, an SAR study was conducted on metoclopramide that incorporated a flexible scaffold for interaction with the secondary binding site of the D3 receptor. The alteration of benzamide substituents and secondary binding fragments with aryl carboxamides resulted in excellent D3 receptor affinities (Ki = 0.8-13.2 nM) with subtype selectivity to the D2 receptor ranging from 22- to 180-fold. The β-arrestin recruitment assay revealed that 21c with 4-(pyridine-4-yl)benzamide can compete well against dopamine with the highest potency (IC50 = 1.3 nM). Computational studies demonstrated that the high potency of 21c and its analogs was the result of interactions with the secondary binding site of the D3 receptor. These compounds also displayed minimal effects for other GPCRs except moderate affinity for 5-HT3 receptors and TSPO. The results of this study revealed that a new class of selective D3 receptor antagonists should be useful in behavioral pharmacology studies and as lead compounds for PET radiotracer development.
Collapse
Affiliation(s)
- Ho Young Kim
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Ji Youn Lee
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Chia-Ju Hsieh
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
A highly D 3R-selective and efficacious partial agonist (S)-ABS01-113 compared to its D 3R-selective antagonist enantiomer (R)-ABS01-113 as potential treatments for opioid use disorder. Neuropsychopharmacology 2022; 47:2309-2318. [PMID: 35879349 PMCID: PMC9309443 DOI: 10.1038/s41386-022-01379-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
The non-medical use of opioids has become a national crisis in the USA. Developing non-opioid pharmacotherapies for controlling this opioid epidemic is urgent. Dopamine D3 receptor (D3R) antagonists and low efficacy partial agonists have shown promising profiles in animal models of opioid use disorders (OUD). However, to date, advancement to human studies has been limited. Here we report the effects of (S)- and (R)-enantiomers of (±)-ABS01-113, structural analogs of the D3R partial agonist, (±)-VK4-40, in which the 3-OH in the linking chain is replaced by 3-F group. (S)- and (R)-ABS01-113 are identical in chemical structure but with opposite chirality. In vitro receptor binding and functional assays indicate that (S)-ABS01-113 is an efficacious (55%) and potent (EC50 = 7.6 ± 3.9 nM) D3R partial agonist, while the (R)-enantiomer is a potent D3R antagonist (IC50 = 11.4 nM). Both (S)- and (R)-ABS01-113 bind with high affinity to D3R (Ki = 0.84 ± 0.16 and 0.37 ± 0.06 nM, respectively); however, the (S)-enantiomer is more D3/D2-selective (>1000-fold). Pharmacokinetic analyses indicate that both enantiomers display excellent oral bioavailability and high brain penetration. Systemic administration of (S)- or (R)-ABS01-113 alone failed to alter open-field locomotion in male rats and mice. Interestingly, pretreatment with (S)- or (R)-ABS01-113 attenuated heroin-enhanced hyperactivity, heroin self-administration, and (heroin + cue)-induced reinstatement of drug-seeking behavior. Together, these findings reveal that both enantiomers, particularly the highly selective and efficacious D3R partial agonist (S)-ABS01-113, demonstrate promising translational potential for the treatment of OUD.
Collapse
|
17
|
Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
|
18
|
Myslivecek J. Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors. Life (Basel) 2022; 12:life12050606. [PMID: 35629274 PMCID: PMC9147915 DOI: 10.3390/life12050606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D1-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation by the D2-like receptor family. Some dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α2-ARs and 5-HT receptors. Unfortunately, these compounds are often considered subtype(s) specific. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be an effect of other—or the co-effect of multiple receptors. However, there are enough molecules with adequate specificity. In this review, we want to give an overview of the most common off-targets for established dopamine receptor ligands. To give an overall picture, we included a discussion on subtype selectivity. Molecules used as antipsychotic drugs are reviewed too. Therefore, we will summarize reported affinities and give an outline of molecules sufficiently specific for one or more subtypes (i.e., for subfamily), the presence of DR, α2-ARs, and 5-HT receptors in CNS areas, which could help avoid ambiguous results.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| |
Collapse
|
19
|
Synthesis of functionalized 5-(4-arylpiperazin-1-yl)-N-arylpentanamides and their evaluation as D3 receptor ligands. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Blass BE, Chen PJ, Taylor M, Griffin SA, Gordon JC, Luedtke RR. Design, synthesis, and evaluation of functionalized 5-(4-arylpiperazin-1-yl)-N-arylpentanamides as selective dopamine D3 receptor ligands. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02825-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Battiti FO, Zaidi SA, Katritch V, Newman AH, Bonifazi A. Chiral Cyclic Aliphatic Linkers as Building Blocks for Selective Dopamine D 2 or D 3 Receptor Agonists. J Med Chem 2021; 64:16088-16105. [PMID: 34699207 PMCID: PMC11091832 DOI: 10.1021/acs.jmedchem.1c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Linkers are emerging as a key component in regulating the pharmacology of bitopic ligands directed toward G-protein coupled receptors (GPCRs). In this study, the role of regio- and stereochemistry in cyclic aliphatic linkers tethering well-characterized primary and secondary pharmacophores targeting dopamine D2 and D3 receptor subtypes (D2R and D3R, respectively) is described. We introduce several potent and selective D2R (rel-trans-16b; D2R Ki = 4.58 nM) and D3R (rel-cis-14a; D3R Ki = 5.72 nM) agonists while modulating subtype selectivity in a stereospecific fashion, transferring D2R selectivity toward D3R via inversion of the stereochemistry around these cyclic aliphatic linkers [e.g., (-)-(1S,2R)-43 and (+)-(1R,2S)-42]. Pharmacological observations were supported with extensive molecular docking studies. Thus, not only is it an innovative approach to modulate the pharmacology of dopaminergic ligands described, but a new class of optically active cyclic linkers are also introduced, which can be used to expand the bitopic drug design approach toward other GPCRs.
Collapse
Affiliation(s)
- Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Saheem A. Zaidi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, United States
| | - Vsevolod Katritch
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
22
|
Swinford-Jackson SE, O'Brien CP, Kenny PJ, Vanderschuren LJMJ, Unterwald EM, Pierce RC. The Persistent Challenge of Developing Addiction Pharmacotherapies. Cold Spring Harb Perspect Med 2021; 11:a040311. [PMID: 32601131 PMCID: PMC8559539 DOI: 10.1101/cshperspect.a040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There are currently effective Food and Drug Administration (FDA)-approved therapies for alcohol, nicotine, and opioid use disorders. This article will review the development of eight compounds used in the treatment of drug addiction with an emphasis on pharmacological mechanisms and the utility of preclinical animal models of addiction in therapeutic development. In contrast to these successes, animal research has identified a number of promising medications for the treatment of psychostimulant use disorder, none of which have proven to be clinically effective. A specific example of an apparently promising pharmacotherapeutic for cocaine that failed clinically will be examined to determine whether this truly represents a challenge to the predictive validity of current models of cocaine addiction. In addition, the development of promising cocaine use disorder therapeutics derived from animal research will be reviewed, with some discussion regarding how preclinical studies might be modified to better inform clinical outcomes.
Collapse
Affiliation(s)
- Sarah E Swinford-Jackson
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Charles P O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Ellen M Unterwald
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - R Christopher Pierce
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
23
|
Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 2021; 22:1669-1683. [PMID: 34042556 DOI: 10.1080/14656566.2021.1931684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Major depressive disorder (MDD) and cocaine use disorder (CUD) are prevalent and frequently co-occur. When co-occurring, the presence of one disorder typically negatively impacts the prognosis for the other. Given the clinical relevance, we sought to examine pharmacotherapies for co-occurring CUD and MDD. While multiple treatment options have been examined in the treatment of each condition individually, studies exploring pharmacological options for their comorbidity are fewer and not conclusive.Areas Covered: For this review, the authors searched the literature in PubMed using clinical query options for therapies and keywords relating to each condition. Then, they described potentially promising pharmacologic therapeutic options based on shared mechanisms between the two conditions and/or results from individual clinical trials conducted to date.Expert opinion: Medications like stimulants, dopamine (D3) receptors partial agonists or antagonists, antagonists of kappa opioid receptors, topiramate, and ketamine could be promising as there is significant overlap relating to reward deficiency models, antireward pathways, and altered glutamatergic systems. However, the available clinical literature on any one of these types of agents is mixed. Additionally, for some agents there is possible concern related to abuse potential (e.g. ketamine and stimulants).
Collapse
Affiliation(s)
- Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hasti Hadizadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ignacio Cerdena
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
24
|
Lee B, Taylor M, Griffin SA, McInnis T, Sumien N, Mach RH, Luedtke RR. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021; 26:molecules26113182. [PMID: 34073405 PMCID: PMC8198181 DOI: 10.3390/molecules26113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Tamara McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
- Correspondence:
| |
Collapse
|
25
|
Bonifazi A, Battiti FO, Sanchez J, Zaidi SA, Bow E, Makarova M, Cao J, Shaik AB, Sulima A, Rice KC, Katritch V, Canals M, Lane JR, Newman AH. Novel Dual-Target μ-Opioid Receptor and Dopamine D 3 Receptor Ligands as Potential Nonaddictive Pharmacotherapeutics for Pain Management. J Med Chem 2021; 64:7778-7808. [PMID: 34011153 DOI: 10.1021/acs.jmedchem.1c00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The need for safer pain-management therapies with decreased abuse liability inspired a novel drug design that retains μ-opioid receptor (MOR)-mediated analgesia, while minimizing addictive liability. We recently demonstrated that targeting the dopamine D3 receptor (D3R) with highly selective antagonists/partial agonists can reduce opioid self-administration and reinstatement to drug seeking in rodent models without diminishing antinociceptive effects. The identification of the D3R as a target for the treatment of opioid use disorders prompted the idea of generating a class of ligands presenting bitopic or bivalent structures, allowing the dual-target binding of the MOR and D3R. Structure-activity relationship studies using computationally aided drug design and in vitro binding assays led to the identification of potent dual-target leads (23, 28, and 40), based on different structural templates and scaffolds, with moderate (sub-micromolar) to high (low nanomolar/sub-nanomolar) binding affinities. Bioluminescence resonance energy transfer-based functional studies revealed MOR agonist-D3R antagonist/partial agonist efficacies that suggest potential for maintaining analgesia with reduced opioid-abuse liability.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, U.K
| | - Saheem A Zaidi
- Bridge Institute, Michelson Center for Convergent Bioscience, Department of Chemistry, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Eric Bow
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Mariia Makarova
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Jianjing Cao
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Vsevolod Katritch
- Bridge Institute, Michelson Center for Convergent Bioscience, Department of Chemistry, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, U.K
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, U.K
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
26
|
Hayatshahi HS, Luedtke RR, Taylor M, Chen PJ, Blass BE, Liu J. Factors Governing Selectivity of Dopamine Receptor Binding Compounds for D2R and D3R Subtypes. J Chem Inf Model 2021; 61:2829-2843. [PMID: 33988991 DOI: 10.1021/acs.jcim.1c00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the D3 dopamine receptor (D3R) is a promising pharmacotherapeutic strategy for the treatment of many disorders. The structure of the D3R is similar to the D2 dopamine receptor (D2R), especially in the transmembrane spanning regions that form the orthosteric binding site, making it difficult to identify D3R selective pharmacotherapeutic agents. Here, we examine the molecular basis for the high affinity D3R binding and D3R vs D2R binding selectivity of substituted phenylpiperazine thiopheneamides. We show that removing the thiophenearylamide portion of the ligand consistently decreases the affinity of these ligands at D3R, while not affecting their affinity at the D2R. Our long (>10 μs) molecular dynamics simulations demonstrated that both dopamine receptor subtypes adopt two major conformations that we refer to as closed or open conformations, with D3R sampling the open conformation more frequently than D2R. The binding of ligands with conjoined orthosteric-allosteric binding moieties causes the closed conformation to populate more often in the trajectories. Also, significant differences were observed in the extracellular loops (ECL) of these two receptor subtypes leading to the identification of several residues that contribute differently to the ligand binding for the two receptors that could potentially contribute to ligand binding selectivity. Our observations also suggest that the displacement of ordered water in the binding pocket of D3R contributes to the affinity of the compounds containing an allosteric binding motif. These studies provide a better understanding of how a bitopic mode of engagement can determine ligands that bind selectively to D2 and D3 dopamine receptor subtypes.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Peng-Jen Chen
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| |
Collapse
|
27
|
Chirality of Novel Bitopic Agonists Determines Unique Pharmacology at the Dopamine D3 Receptor. Biomolecules 2021; 11:biom11040570. [PMID: 33924613 PMCID: PMC8069330 DOI: 10.3390/biom11040570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The dopamine D2/D3 receptor (D2R/D3R) agonists are used as therapeutics for Parkinson's disease (PD) and other motor disorders. Selective targeting of D3R over D2R is attractive because of D3R's restricted tissue distribution with potentially fewer side-effects and its putative neuroprotective effect. However, the high sequence homology between the D2R and D3R poses a challenge in the development of D3R selective agonists. To address the ligand selectivity, bitopic ligands were designed and synthesized previously based on a potent D3R-preferential agonist PF592,379 as the primary pharmacophore (PP). This PP was attached to various secondary pharmacophores (SPs) using chemically different linkers. Here, we characterize some of these novel bitopic ligands at both D3R and D2R using BRET-based functional assays. The bitopic ligands showed varying differences in potencies and efficacies. In addition, the chirality of the PP was key to conferring improved D3R potency, selectivity, and G protein signaling bias. In particular, compound AB04-88 exhibited significant D3R over D2R selectivity, and G protein bias at D3R. This bias was consistently observed at various time-points ranging from 8 to 46 min. Together, the structure-activity relationships derived from these functional studies reveal unique pharmacology at D3R and support further evaluation of functionally biased D3R agonists for their therapeutic potential.
Collapse
|
28
|
Newman AH, Ku T, Jordan CJ, Bonifazi A, Xi ZX. New Drugs, Old Targets: Tweaking the Dopamine System to Treat Psychostimulant Use Disorders. Annu Rev Pharmacol Toxicol 2021; 61:609-628. [PMID: 33411583 PMCID: PMC9341034 DOI: 10.1146/annurev-pharmtox-030220-124205] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The abuse of illicit psychostimulants such as cocaine and methamphetamine continues to pose significant health and societal challenges. Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions about what mechanism(s) of action should be targeted for developing pharmacotherapies. As both cocaine and methamphetamine rapidly increase dopamine (DA) levels in mesolimbic brain regions, leading to euphoria that in some can lead to addiction, targets in which this increased dopaminergic tone may be mitigated have been explored. Further, understanding and targeting mechanisms underlying relapse are fundamental to the success of discovering medications that reduce the reinforcing effects of the drug of abuse, decrease the negative reinforcement or withdrawal/negative affect that occurs during abstinence, or both. Atypical inhibitors of the DA transporter and partial agonists/antagonists at DA D3 receptors are described as two promising targets for future drug development.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| |
Collapse
|
29
|
Appiah-Kubi P, Olotu FA, Soliman MES. Exploring the structural basis and atomistic binding mechanistic of the selective antagonist blockade at D 3 dopamine receptor over D 2 dopamine receptor. J Mol Recognit 2021; 34:e2885. [PMID: 33401335 DOI: 10.1002/jmr.2885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
More recently, there has been a paradigm shift toward selective drug targeting in the treatment of neurological disorders, including drug addiction, schizophrenia, and Parkinson's disease mediated by the different dopamine receptor subtypes. Antagonists with higher selectivity for D3 dopamine receptor (D3DR) over D2 dopamine receptor (D2DR) have been shown to attenuate drug-seeking behavior and associated side effects compared to non-subtype selective antagonists. However, high conservations among constituent residues of both proteins, particularly at the ligand-binding pockets, remain a challenge to therapeutic drug design. Recent studies have reported the discovery of two small-molecules R-VK4-40 and Y-QA31 which substantially inhibited D3DR with >180-fold selectivity over D2DR. Therefore, in this study, we seek to provide molecular and structural insights into these differential binding mechanistic using meta-analytic computational simulation methods. Findings revealed that R-VK4-40 and Y-QA31 adopted shallow binding modes and were more surface-exposed at D3DR while on the contrary, they exhibited deep hydrophobic pocket binding at D2DR. Also, two non-conserved residues; Tyr361.39 and Ser18245.51 were identified in D3DR, based on their crucial roles and contributions to the selective binding of R-VK4-40 and Y-QA31. Importantly, both antagonists exhibited high affinities in complex with D3DR compared to D2DR, while van der Waals energies contributed majorly to their binding and stability. Structural analyses also revealed the distinct stabilizing effects of both compounds on D3DR secondary architecture relative to D2DR. Therefore, findings herein pinpointed the origin and mechanistic of selectivity of the compounds, which may assist in the rational design of potential small molecules of the D2 -like dopamine family receptor subtype with improved potency and selectivity.
Collapse
Affiliation(s)
- Patrick Appiah-Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fisayo Andrew Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
30
|
Peris L, Szerman N. Partial Agonists and Dual Disorders: Focus on Dual Schizophrenia. Front Psychiatry 2021; 12:769623. [PMID: 34975572 PMCID: PMC8716462 DOI: 10.3389/fpsyt.2021.769623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
Dual disorder is a term applied to patients with an addictive disorder and other mental disorder. Epidemiological studies have established that dual disorders are an expectation rather than an exception. They are difficult to diagnose and treat and constitute a huge burden for both patients and their relatives and society. Current treatments are a combination of those needed to treat the addictive disorder with those focused on the co-occurring psychiatric disorder. Focusing specifically on schizophrenia, growing scientific evidence supports the existence of a shared vulnerability for substance use in these patients and those at risk. Various antipsychotics have been found to be useful in the treatment of psychotic symptoms and disorders; however, few effective treatments have been identified until now for substance use disorders in patients with dual schizophrenia. Partial agonism stands as a new pharmacological option available in recent years. Molecules with this kind of action may act as functional agonists or as antagonists, depending on the surrounding levels of the neurotransmitter. Studies have found their efficacy in schizophrenia, addiction, anxiety and depression. Certain partial agonist antipsychotics seem to have a role in the treatment of dual schizophrenia. That could be the case with cariprazine. Because of its higher affinity for dopaminergic D3 receptors compared to D2, a potential to prevent relapse to addiction, added to its antipsychotic efficacy, has been suggested. Here we briefly review current advances and future directions and introduce some personal insights into the role of partial agonists in co-occurring schizophrenia and substance use.
Collapse
Affiliation(s)
- Lola Peris
- Centre Neuchâtelois De Psychiatrie, Marin-Epagnier, Switzerland
| | - Nestor Szerman
- Hospital Universitario Gregorio Marañon, Madrid, Spain.,Fundación Patología Dual, WPA Section on Dual Disorders, WADD, Madrid, Spain
| |
Collapse
|
31
|
Multimodal investigation of dopamine D 2/D 3 receptors, default mode network suppression, and cognitive control in cocaine-use disorder. Neuropsychopharmacology 2021; 46:316-324. [PMID: 33007778 PMCID: PMC7852666 DOI: 10.1038/s41386-020-00874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Stimulant-use disorders have been associated with lower availability of dopamine type-2 receptors (D2R) and greater availability of type-3 receptors (D3R). Links between D2R levels, cognitive performance, and suppression of the default mode network (DMN) during executive functioning have been observed in healthy and addicted populations; however, there is limited evidence regarding a potential role of elevated D3R in influencing cognitive control processes in groups with and without addictions. Sixteen individuals with cocaine-use disorder (CUD) and 16 healthy comparison (HC) participants completed [11C]-(+)-PHNO PET imaging of D2R and D3R availability and fMRI during a Stroop task of cognitive control. Independent component analysis was performed on fMRI data to assess DMN suppression during Stroop performance. In HC individuals, lower D2R-related binding in the dorsal putamen was associated with improved task performance and greater DMN suppression. By comparison, in individuals with CUD, greater D3R-related binding in the substantia nigra was associated with improved performance and greater DMN suppression. Exploratory moderated-mediation analyses indicated that DMN suppression was associated with Stroop performance indirectly through D2R in HC and D3R in CUD participants, and these indirect effects were different between groups. To our knowledge, this is the first evidence of a dissociative and potentially beneficial role of elevated D3R availability in executive functioning in cocaine-use disorder.
Collapse
|
32
|
Battiti FO, Newman AH, Bonifazi A. Exception That Proves the Rule: Investigation of Privileged Stereochemistry in Designing Dopamine D 3R Bitopic Agonists. ACS Med Chem Lett 2020; 11:1956-1964. [PMID: 33062179 DOI: 10.1021/acsmedchemlett.9b00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 01/11/2023] Open
Abstract
In this study, starting from our selective D3R agonist FOB02-04A (5), we investigated the chemical space around the linker portion of the molecule via insertion of a hydroxyl substituent and ring-expansion of the trans-cyclopropyl moiety into a trans-cyclohexyl scaffold. Moreover, to further elucidate the importance of the primary pharmacophore stereochemistry in the design of bitopic ligands, we investigated the chiral requirements of (+)-PD128907 ((+)-(4a R ,10b R )-2)) by synthesizing and resolving bitopic analogues in all the cis and trans combinations of its 9-methoxy-3,4,4a,10b-tetrahydro-2H,5H-chromeno[4,3-b][1,4] oxazine scaffold. Despite the lack of success in obtaining new analogues with improved biological profiles, in comparison to our current leads, a "negative" result due to a poor or simply not improved biological profile is fundamental toward better understanding chemical space and optimal stereochemistry for target recognition. Herein, we identified essential structural information to understand the differences between orthosteric and bitopic ligand-receptor binding interactions, discriminate D3R active and inactive states, and assist multitarget receptor recognition. Exploring stereochemical complexity and developing extended D3R SAR from this new library complements previously described SAR and inspires future structural and computational biology investigation. Moreover, the expansion of chemical space characterization for D3R agonism may be utilized in machine learning and artificial intelligence (AI)-based drug design, in the future.
Collapse
Affiliation(s)
- Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
33
|
Powell GL, Namba MD, Vannan A, Bonadonna JP, Carlson A, Mendoza R, Chen PJ, Luetdke RR, Blass BE, Neisewander JL. The Long-Acting D3 Partial Agonist MC-25-41 Attenuates Motivation for Cocaine in Sprague-Dawley Rats. Biomolecules 2020; 10:biom10071076. [PMID: 32708461 PMCID: PMC7408535 DOI: 10.3390/biom10071076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
The dopamine D3 receptor is a prime target for developing treatments for cocaine use disorders (CUDs). In this study, we conducted a pre-clinical investigation of the therapeutic potential of a long-acting, D3 receptor partial agonist, MC-25-41. Male rats were pre-treated with MC-25-41 (vehicle, 1.0, 3.0, 5.6, or 10 mg/kg, intraperitoneal (IP)) five minutes prior to tests of cocaine or sucrose intake on either a progressive ratio schedule of reinforcement or a variable interval 60 s multiple schedule consisting of 4, 15-min components with sucrose or cocaine available in alternating components. A separate cohort of rats was tested on a within-session, dose-reduction procedure to determine the effects of MC-25-41 on demand for cocaine using a behavioral economics analysis. Finally, rats were tested for effects of MC-25-41 on spontaneous and cocaine-induced locomotion. MC-25-41 failed to alter locomotion, but reduced reinforcement rates for both cocaine and sucrose on the low-effort, multiple schedule. However, on the higher-effort, progressive ratio schedule of cocaine reinforcement, MC-25-41 reduced infusions, and active lever presses at doses that did not alter sucrose intake. The behavioral economics analysis showed that MC-25-41 also increased cocaine demand elasticity compared to vehicle, indicating a reduction in consumption as price increases. Together, these results suggest that similar to other D3-selective antagonists and partial agonists, MC-25-41 reduces motivation for cocaine under conditions of high cost but has the added advantage of a long half-life (>10 h). These findings suggest that MC-25-41 may be a suitable pre-clinical lead compound for development of medications to treat CUDs.
Collapse
Affiliation(s)
- Gregory L. Powell
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Mark D. Namba
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Annika Vannan
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - John Paul Bonadonna
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Andrew Carlson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Rachel Mendoza
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Robert R. Luetdke
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Benjamin E. Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
- Correspondence:
| |
Collapse
|
34
|
Galaj E, Newman AH, Xi ZX. Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neurosci Biobehav Rev 2020; 114:38-52. [PMID: 32376243 PMCID: PMC7252042 DOI: 10.1016/j.neubiorev.2020.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/11/2023]
Abstract
Opioid abuse and related overdose deaths continue to rise in the United States, contributing to the current national opioid crisis. Although several opioid-based pharmacotherapies are available (e.g., methadone, buprenorphine, naloxone), they show limited effectiveness in long-term relapse prevention. In response to the opioid crisis, the National Institute on Drug Abuse proposed a list of pharmacological targets of highest priority for medication development for the treatment of opioid use disorders (OUD). Among these are antagonists of dopamine D3 receptors (D3R). In this review, we first review recent progress in research of the dopamine hypothesis of opioid reward and abuse and then describe the rationale and recent development of D3R ligands for the treatment of OUD. Herein, an emphasis is placed on the effectiveness of newly developed D3R antagonists in the animal models of OUD. These new drug candidates may also potentiate the analgesic effects of clinically used opioids, making them attractive as adjunctive medications for pain management and treatment of OUD.
Collapse
Affiliation(s)
- Ewa Galaj
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Amy Hauck Newman
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States.
| |
Collapse
|
35
|
Tan L, Zhou Q, Yan W, Sun J, Kozikowski AP, Zhao S, Huang XP, Cheng J. Design and Synthesis of Bitopic 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as Selective Dopamine D3 Receptor Ligands. J Med Chem 2020; 63:4579-4602. [PMID: 32282200 DOI: 10.1021/acs.jmedchem.9b01835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2-Phenylcyclopropylmethylamine (PCPMA) analogues have been reported as selective serotonin 2C agonists. On the basis of the same scaffold, we designed and synthesized a series of bitopic derivatives as dopamine D3R ligands. A number of these new compounds show a high binding affinity for D3R with excellent selectivity. Compound (1R,2R)-22e and its enantiomer (1S,2S)-22e show a comparable binding affinity for the D3R, but the former is a potent D3R agonist, while the latter acts as an antagonist. Molecular docking studies revealed different binding poses of the PCPMA moiety within the orthosteric binding pocket of the D3R, which might explain the different functional profiles of the enantiomers. Compound (1R,2R)-30q shows a high binding affinity for the D3R (Ki = 2.2 nM) along with good selectivity, as well as good bioavailability and brain penetration properties in mice. These results reveal that the PCPMA scaffold may serve as a privileged scaffold for the design of aminergic GPCR ligands.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Jian Sun
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Alan P Kozikowski
- StarWise Therapeutics LLC, 2020 North Lincoln Park West, Chicago Illinois 60614, United States
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Xi-Ping Huang
- Department of Pharmacology, National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, United States
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| |
Collapse
|
36
|
Martinez A. Dopamine antagonists for the treatment of drug addiction: PF-4363467 and related compounds. ACTA ACUST UNITED AC 2020. [DOI: 10.5155/eurjchem.11.1.84-90.1970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug addiction refers to an out-of-control and compulsive use of substances, which can reach epidemic magnitudes. It is a health concern throughout the world and has major economic impact. Dopamine receptor agonists and antagonists have been cited as molecular targets for the treatment of drug addiction. In this report, the main idea is to analyze the new D3R/D2R ligands that are proposed for the treatment of drug abuse, in terms of their electron donor/acceptor properties. Substances catalogued as agonists represent good electron donors, whereas antagonists represent good electron acceptors. HOMO and LUMO eigenvalues indicate that more energy is necessary to remove an electron from the antagonists, and likewise more energy is gained when antagonists accept an electron. The combination of two molecules (PF-592379 and PNU-177864) produces a new compound (PF-4363467) with properties that are intermediate. Irrespective of the characteristics of the receptor, the classification of ligands is important, in order to further understanding of the reaction mechanism of these compounds. This may help in the design of new molecules for the treatment of drug addiction.
Collapse
Affiliation(s)
- Ana Martinez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Ciudad Universitaria. Coyoacan, CP 04510, CDMX, Mexico
| |
Collapse
|
37
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
38
|
de Guglielmo G, Kallupi M, Sedighim S, Newman AH, George O. Dopamine D 3 Receptor Antagonism Reverses the Escalation of Oxycodone Self-administration and Decreases Withdrawal-Induced Hyperalgesia and Irritability-Like Behavior in Oxycodone-Dependent Heterogeneous Stock Rats. Front Behav Neurosci 2020; 13:292. [PMID: 31992976 PMCID: PMC6971096 DOI: 10.3389/fnbeh.2019.00292] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Prescription opioids, such as oxycodone, are highly effective analgesics for clinical pain management, but approximately 25% of patients who are prescribed opioids misuse them, and 5%–10% develop an opioid use disorder (OUD). Effective therapies for the prevention and treatment of opioid abuse and addiction need to be developed. The present study evaluated the effects of the highly selective dopamine D3 receptor antagonist VK4-116 ([R]-N-[4-(4-[3-chloro-5-ethyl-2-methoxyphenyl]piperazin-1-yl)-3-hydroxybutyl]-1H-indole-2-carboxamide) on oxycodone addictive-like behaviors. We used a model of extended access to oxycodone self-administration and tested the effects of VK4-116 on the escalation of oxycodone self-administration and withdrawal-induced hyperalgesia and irritability-like behavior in male and female rats. Pretreatment with VK4-116 (5–25 mg/kg, i.p.) dose-dependently decreased the escalation of oxycodone self-administration and reduced withdrawal-induced hyperalgesia and irritability-like behavior in opioid-dependent rats. These findings demonstrate a key role for D3 receptors in both the motivation to take opioids and negative emotional states that are associated with opioid withdrawal and suggest that D3 receptor antagonism may be a viable therapeutic approach for the treatment of OUD.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Sharona Sedighim
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Amy H Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
39
|
Jordan CJ, Humburg BA, Thorndike EB, Shaik AB, Xi ZX, Baumann MH, Newman AH, Schindler CW. Newly Developed Dopamine D 3 Receptor Antagonists, R-VK4-40 and R-VK4-116, Do Not Potentiate Cardiovascular Effects of Cocaine or Oxycodone in Rats. J Pharmacol Exp Ther 2019; 371:602-614. [PMID: 31562201 PMCID: PMC6863462 DOI: 10.1124/jpet.119.259390] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Opioid and cocaine abuse are major public health burdens. Existing medications for opioid use disorder are limited by abuse liability and side effects, whereas no treatments are currently approved in the United States for cocaine use disorder. Dopamine D3 receptor (D3R) antagonists have shown promise in attenuating opioid and cocaine reward and mitigating relapse in preclinical models. However, translation of D3R antagonists to the clinic has been hampered by reports that the D3R antagonists GSK598,809 (5-(5-((3-((1S,5R)-1-(2-fluoro-4-(trifluoromethyl)phenyl)-3-azabicyclo[3.1.0]hexan-3-yl)propyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)-4-methyloxazole) and SB-277,011A (2-(2-((1r,4r)-4-(2-oxo-2-(quinolin-4-yl)ethyl)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile) have adverse cardiovascular effects in the presence of cocaine. Recently, we developed two structurally novel D3R antagonists, R-VK4-40 and R-VK4-116, which are highly selective for D3R and display translational potential for treatment of opioid use disorder. Here, we tested whether R-VK4-40 ((R)-N-(4-(4-(2-Chloro-3-ethylphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) and R-VK4-116 ((R)-N-(4-(4-(3-Chloro-5-ethyl-2-methoxyphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) have unwanted cardiovascular effects in the presence of oxycodone, a prescription opioid, or cocaine in freely moving rats fitted with surgically implanted telemetry transmitters. We also examined cardiovascular effects of the D3R antagonist, SB-277,011A, and L-741,626 (1-((1H-indol-3-yl)methyl)-4-(4-chlorophenyl)piperidin-4-ol), a dopamine D2 receptor-selective antagonist, for comparison. Consistent with prior reports, SB-277,011A increased blood pressure, heart rate, and locomotor activity alone and in the presence of cocaine. L-741,626 increased blood pressure and heart rate. In contrast, R-VK4-40 alone dose-dependently reduced blood pressure and heart rate and attenuated oxycodone-induced increases in blood pressure and oxycodone or cocaine-induced increases in heart rate. Similarly, R-VK4-116 alone dose-dependently reduced cocaine-induced increases in blood pressure and heart rate. These results highlight the safety of new D3R antagonists and support the continued development of R-VK4-40 and R-VK4-116 for the treatment of opioid and cocaine use disorders. SIGNIFICANCE STATEMENT: Opioid and cocaine abuse are major public health challenges and new treatments that do not adversely impact the cardiovascular system are needed. Here, we show that two structurally novel dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate, and may even protect against, oxycodone- or cocaine-induced changes in blood pressure and heart rate, supporting their further development for the treatment of opioid and/or cocaine use disorders.
Collapse
Affiliation(s)
- Chloe J Jordan
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Bree A Humburg
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Eric B Thorndike
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Anver Basha Shaik
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Michael H Baumann
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Charles W Schindler
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
40
|
Shaik AB, Kumar V, Bonifazi A, Guerrero AM, Cemaj SL, Gadiano A, Lam J, Xi ZX, Rais R, Slusher BS, Newman AH. Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D 3 Receptor Antagonists and Partial Agonists. J Med Chem 2019; 62:9061-9077. [PMID: 31526003 PMCID: PMC8830247 DOI: 10.1021/acs.jmedchem.9b00607] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dopamine D3 receptors (D3R) play a critical role in neuropsychiatric conditions including substance use disorders (SUD). Recently, we reported a series of N-(3-hydroxy-4-(4-phenylpiperazin-1-yl)butyl)-1H-indole-2-carboxamide analogues as high affinity and selective D3R lead molecules for the treatment of opioid use disorders (OUD). Further optimization led to a series of analogues that replaced the 3-OH with a 3-F in the linker between the primary pharmacophore (PP) and secondary pharmacophore (SP). Among the 3-F-compounds, 9b demonstrated the highest D3R binding affinity (Ki = 0.756 nM) and was 327-fold selective for D3R over D2R. In addition, modification of the PP or SP with a 3,4-(methylenedioxy)phenyl group was also examined. Further, an enantioselective synthesis as well as chiral HPLC methods were developed to give enantiopure R- and S-enantiomers of the four lead compounds. Off-target binding affinities, functional efficacies, and metabolic profiles revealed critical structural components for D3R selectivity as well as drug-like features required for development as pharmacotherapeutics.
Collapse
Affiliation(s)
- Anver Basha Shaik
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vivek Kumar
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Adrian M. Guerrero
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Sophie L. Cemaj
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alexandra Gadiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jenny Lam
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
41
|
Pal RK, Gadhiya S, Ramsey S, Cordone P, Wickstrom L, Harding WW, Kurtzman T, Gallicchio E. Inclusion of enclosed hydration effects in the binding free energy estimation of dopamine D3 receptor complexes. PLoS One 2019; 14:e0222902. [PMID: 31568493 PMCID: PMC6768453 DOI: 10.1371/journal.pone.0222902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
Confined hydration and conformational flexibility are some of the challenges encountered for the rational design of selective antagonists of G-protein coupled receptors. We present a set of C3-substituted (-)-stepholidine derivatives as potent binders of the dopamine D3 receptor. The compounds are characterized biochemically, as well as by computer modeling using a novel molecular dynamics-based alchemical binding free energy approach which incorporates the effect of the displacement of enclosed water molecules from the binding site. The free energy of displacement of specific hydration sites is obtained using the Hydration Site Analysis method with explicit solvation. This work underscores the critical role of confined hydration and conformational reorganization in the molecular recognition mechanism of dopamine receptors and illustrates the potential of binding free energy models to represent these key phenomena.
Collapse
Affiliation(s)
- Rajat Kumar Pal
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States of America
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
| | - Satishkumar Gadhiya
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, United States of America
| | - Steven Ramsey
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Lehman College, 250 Bedford Park Blvd. West, Bronx, NY 10468, United States of America
| | - Pierpaolo Cordone
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, United States of America
| | - Lauren Wickstrom
- Department of Science, Borough of Manhattan Community College, 199 Chambers Street, New York, NY 10007, United States of America
| | - Wayne W. Harding
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, United States of America
| | - Tom Kurtzman
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Lehman College, 250 Bedford Park Blvd. West, Bronx, NY 10468, United States of America
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States of America
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- * E-mail:
| |
Collapse
|
42
|
Dow-Edwards D, MacMaster FP, Peterson BS, Niesink R, Andersen S, Braams BR. Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicol Teratol 2019; 76:106834. [PMID: 31505230 DOI: 10.1016/j.ntt.2019.106834] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Adolescence is a period of dramatic neural reorganization creating a period of vulnerability and the possibility for the development of psychopathology. The maturation of various neural circuits during adolescence depends, to a large degree, on one's experiences both physical and psychosocial. This occurs through a process of plasticity which is the structural and functional adaptation of the nervous system in response to environmental demands, physiological changes and experiences. During adolescence, this adaptation proceeds upon a backdrop of structural and functional alterations imparted by genetic and epigenetic factors and experiences both prior to birth and during the postnatal period. Plasticity entails an altering of connections between neurons through long-term potentiation (LTP) (which alters synaptic efficiency), synaptogenesis, axonal sprouting, dendritic remodeling, neurogenesis and recruitment (Skaper et al., 2017). Although most empirical evidence for plasticity derives from studies of the sensory systems, recent studies have suggested that during adolescence, social, emotional, and cognitive experiences alter the structure and function of the networks subserving these domains of behavior. Each of these neural networks exhibits heightened vulnerability to experience-dependent plasticity during the sensitive periods which occur in different circuits and different brain regions at specific periods of development. This report will summarize some examples of adaptation which occur during adolescence and some evidence that the adolescent brain responds differently to stimuli compared to adults and children. This symposium, "Experience during adolescence shapes brain development: from synapses and networks to normal and pathological behavior" occurred during the Developmental Neurotoxicology Society/Teratology Society Annual Meeting in Clearwater Florida, June 2018. The sections will describe the maturation of the brain during adolescence as studied using imaging technologies, illustrate how plasticity shapes the structure of the brain using examples of pathological conditions such as Tourette's' syndrome and attention deficit hyperactivity disorder, and a review of the key molecular systems involved in this plasticity and how some commonly abused substances alter brain development. The role of stimulants used in the treatment of attention deficit hyperactivity disorder (ADHD) in the plasticity of the reward circuit is then described. Lastly, clinical data promoting an understanding of peer-influences on risky behavior in adolescents provides evidence for the complexity of the roles that peers play in decision making, a phenomenon different from that in the adult. Imaging studies have revealed that activation of the social network by the presence of peers at times of decision making is unique in the adolescent. Since normal brain development relies on experiences which alter the functional and structural connections between cells within circuits and networks to ultimately alter behavior, readers can be made aware of the myriad of ways normal developmental processes can be hijacked. The vulnerability of developing adolescent brain places the adolescent at risk for the development of a life time of abnormal behaviors and mental disorders.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States of America.
| | - Frank P MacMaster
- Departments of Psychiatry & Pediatrics, University of Calgary, Addiction and Mental Health Strategic Clinical Network, Calgary, Alberta, Canada
| | - Bradley S Peterson
- Children's Hospital Los Angeles, The Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States of America
| | - Raymond Niesink
- Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands; Faculty of Management, Science and Technology, School of Science, Open University of the Netherlands, Heerlen, the Netherlands
| | - Susan Andersen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - B R Braams
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
43
|
Design, synthesis, and evaluation of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamides as selective dopamine D 3 receptor ligands. Bioorg Med Chem Lett 2019; 29:2690-2694. [PMID: 31387791 DOI: 10.1016/j.bmcl.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022]
Abstract
As part of our on-going effort to explore the role of dopamine receptors in drug addiction and identify potential novel therapies for this condition, we have a identified a series of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide D3 ligands. Members of this class are highly selective for D3 versus D2, and we have identified two compounds (13g and 13r) whose rat in vivo IV pharmacokinetic properties that indicate that they are suitable for assessment in in vivo efficacy models of substance use disorders.
Collapse
|
44
|
Battiti FO, Cemaj SL, Guerrero AM, Shaik AB, Lam J, Rais R, Slusher BS, Deschamps JR, Imler GH, Newman AH, Bonifazi A. The Significance of Chirality in Drug Design and Synthesis of Bitopic Ligands as D 3 Receptor (D 3R) Selective Agonists. J Med Chem 2019; 62:6287-6314. [PMID: 31257877 DOI: 10.1021/acs.jmedchem.9b00702] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. Previous work has exemplified the use of bitopic ligands as a powerful strategy in achieving subtype selectivity for agonists and antagonists alike. Inspired by the potential for chemical modification of the D3 preferential agonists (+)-PD128,907 (1) and PF592,379 (2), we synthesized bitopic structures to further improve their D3R selectivity. We found that the (2S,5S) conformation of scaffold 2 resulted in a privileged architecture with increased affinity and selectivity for the D3R. In addition, a cyclopropyl moiety incorporated into the linker and full resolution of the chiral centers resulted in lead compound 53 and eutomer 53a that demonstrate significantly higher D3R binding selectivities than the reference compounds. Moreover, the favorable metabolic stability in rat liver microsomes supports future studies in in vivo models of dopamine system dysregulation.
Collapse
Affiliation(s)
- Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Sophie L Cemaj
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Adrian M Guerrero
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Jenny Lam
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States.,Johns Hopkins Drug Discovery Program , Johns Hopkins School of Medicine , 855 N. Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Rana Rais
- Johns Hopkins Drug Discovery Program , Johns Hopkins School of Medicine , 855 N. Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery Program , Johns Hopkins School of Medicine , 855 N. Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Jeffery R Deschamps
- Naval Research Laboratory , Code 6910, 4555 Overlook Avenue , Washington, DC 20375 , United States
| | - Greg H Imler
- Naval Research Laboratory , Code 6910, 4555 Overlook Avenue , Washington, DC 20375 , United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program , National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| |
Collapse
|
45
|
Newman AH, Cao J, Keighron JD, Jordan CJ, Bi GH, Liang Y, Abramyan AM, Avelar AJ, Tschumi CW, Beckstead MJ, Shi L, Tanda G, Xi ZX. Translating the atypical dopamine uptake inhibitor hypothesis toward therapeutics for treatment of psychostimulant use disorders. Neuropsychopharmacology 2019; 44:1435-1444. [PMID: 30858517 PMCID: PMC6785152 DOI: 10.1038/s41386-019-0366-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/10/2022]
Abstract
Medication-assisted treatments are unavailable to patients with cocaine use disorders. Efforts to develop potential pharmacotherapies have led to the identification of a promising lead molecule, JJC8-091, that demonstrates a novel binding mode at the dopamine transporter (DAT). Here, JJC8-091 and a structural analogue, JJC8-088, were extensively and comparatively assessed to elucidate neurochemical correlates to their divergent behavioral profiles. Despite sharing significant structural similarity, JJC8-088 was more cocaine-like, increasing extracellular DA concentrations in the nucleus accumbens shell (NAS) efficaciously and more potently than JJC8-091. In contrast, JJC8-091 was not self-administered and was effective in blocking cocaine-induced reinstatement to drug seeking. Electrophysiology experiments confirmed that JJC8-091 was more effective than JJC8-088 at inhibiting cocaine-mediated enhancement of DA neurotransmission. Further, when VTA DA neurons in DAT-cre mice were optically stimulated, JJC8-088 produced a significant leftward shift in the stimulation-response curve, similar to cocaine, while JJC8-091 shifted the curve downward, suggesting attenuation of DA-mediated brain reward. Computational models predicted that JJC8-088 binds in an outward facing conformation of DAT, similar to cocaine. Conversely, JJC8-091 steers DAT towards a more occluded conformation. Collectively, these data reveal the underlying molecular mechanism at DAT that may be leveraged to rationally optimize leads for the treatment of cocaine use disorders, with JJC8-091 representing a compelling candidate for development.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Jianjing Cao
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Jacqueline D. Keighron
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Chloe J. Jordan
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Guo-Hua Bi
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Ying Liang
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Ara M. Abramyan
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Alicia J. Avelar
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, UT Health Science Center, San Antonio, TX USA
| | - Christopher W. Tschumi
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, UT Health Science Center, San Antonio, TX USA ,0000 0000 8527 6890grid.274264.1Aging & Metabolism Research Group, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Michael J. Beckstead
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, UT Health Science Center, San Antonio, TX USA ,0000 0000 8527 6890grid.274264.1Aging & Metabolism Research Group, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Lei Shi
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Gianluigi Tanda
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Zheng-Xiong Xi
- 0000 0004 1936 8075grid.48336.3aMolecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224 USA
| |
Collapse
|
46
|
Dopamine D 3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 2019; 44:1415-1424. [PMID: 30555159 PMCID: PMC6785005 DOI: 10.1038/s41386-018-0284-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023]
Abstract
Prescription opioids such as oxycodone are highly effective analgesics for clinical pain management, but their misuse and abuse have led to the current opioid epidemic in the United States. In order to ameliorate this public health crisis, the development of effective pharmacotherapies for the prevention and treatment of opioid abuse and addiction is essential and urgently required. In this study, we evaluated-in laboratory rats-the potential utility of VK4-116, a novel and highly selective dopamine D3 receptor (D3R) antagonist, for the prevention and treatment of prescription opioid use disorders. Pretreatment with VK4-116 (5-25 mg/kg, i.p.) dose-dependently inhibited the acquisition and maintenance of oxycodone self-administration. VK4-116 also lowered the break-point (BP) for oxycodone self-administration under a progressive-ratio schedule of reinforcement, shifted the oxycodone dose-response curve downward, and inhibited oxycodone extinction responding and reinstatement of oxycodone-seeking behavior. In addition, VK4-116 pretreatment dose-dependently enhanced the antinociceptive effects of oxycodone and reduced naloxone-precipitated conditioned place aversion in rats chronically treated with oxycodone. In contrast, VK4-116 had little effect on oral sucrose self-administration. Taken together, these findings indicate a central role for D3Rs in opioid reward and support further development of VK4-116 as an effective agent for mitigating the development of opioid addiction, reducing the severity of withdrawal and preventing relapse.
Collapse
|
47
|
Reilly SW, Riad AA, Hsieh CJ, Sahlholm K, Jacome DA, Griffin S, Taylor M, Weng CC, Xu K, Kirschner N, Luedtke RR, Parry C, Malhotra S, Karanicolas J, Mach RH. Leveraging a Low-Affinity Diazaspiro Orthosteric Fragment to Reduce Dopamine D 3 Receptor (D 3R) Ligand Promiscuity across Highly Conserved Aminergic G-Protein-Coupled Receptors (GPCRs). J Med Chem 2019; 62:5132-5147. [PMID: 31021617 DOI: 10.1021/acs.jmedchem.9b00412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, we reported a 3-(2-methoxyphenyl)-9-(3-((4-methyl-5-phenyl-4 H-1,2,4-triazol-3-yl)thio)propyl)-3,9-diazaspiro[5.5]undecane (1) compound with excellent dopamine D3 receptor (D3R) affinity (D3R Ki = 12.0 nM) and selectivity (D2R/D3R ratio = 905). Herein, we present derivatives of 1 with comparable D3R affinity (32, D3R Ki = 3.2 nM, D2R/D3R ratio = 60) and selectivity (30, D3R Ki = 21.0 nM, D2R/D3R ratio = 934). Fragmentation of 1 revealed orthosteric fragment 5a to express an unusually low D3R affinity ( Ki = 2.7 μM). Compared to piperazine congener 31, which retains a high-affinity orthosteric fragment (5d, D3R Ki = 23.9 nM), 1 was found to be more selective for the D3R among D1- and D2-like receptors and exhibited negligible off-target interactions at serotoninergic and adrenergic G-protein-coupled receptors (GPCRs), common off-target sites for piperazine-containing D3R scaffolds. This study provides a unique rationale for implementing weakly potent orthosteric fragments into D3R ligand systems to minimize drug promiscuity at other aminergic GPCR sites.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Aladdin A Riad
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Chia-Ju Hsieh
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kristoffer Sahlholm
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Daniel A Jacome
- Department of Systems Pharmacology and Translational Therapeutics , University of Pennsylvania , 421 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - Suzy Griffin
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , 3500 Camp Bowie Boulevard , Fort Worth , Texas 76107 , United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , 3500 Camp Bowie Boulevard , Fort Worth , Texas 76107 , United States
| | - Chi-Chang Weng
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kuiying Xu
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Nathan Kirschner
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , 3500 Camp Bowie Boulevard , Fort Worth , Texas 76107 , United States
| | - Christopher Parry
- Program in Molecular Therapeutics , Fox Chase Cancer Center , 333 Cottman Avenue , Philadelphia , Pennsylvania 19111 , United States
| | - Shipra Malhotra
- Program in Molecular Therapeutics , Fox Chase Cancer Center , 333 Cottman Avenue , Philadelphia , Pennsylvania 19111 , United States
| | - John Karanicolas
- Program in Molecular Therapeutics , Fox Chase Cancer Center , 333 Cottman Avenue , Philadelphia , Pennsylvania 19111 , United States
| | - Robert H Mach
- Department of Radiology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
48
|
Jordan CJ, Humburg B, Rice M, Bi GH, You ZB, Shaik AB, Cao J, Bonifazi A, Gadiano A, Rais R, Slusher B, Newman AH, Xi ZX. The highly selective dopamine D 3R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology 2019; 158:107597. [PMID: 30974107 DOI: 10.1016/j.neuropharm.2019.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
Prescription opioid abuse is a global crisis. New treatment strategies for pain and opioid use disorders are urgently required. We evaluated the effects of R-VK4-40, a highly selective dopamine (DA) D3 receptor (D3R) antagonist, on the rewarding and analgesic effects of oxycodone, the most commonly abused prescription opioid, in rats and mice. Systemic administration of R-VK4-40 dose-dependently inhibited oxycodone self-administration and shifted oxycodone dose-response curves downward in rats. Pretreatment with R-VK4-40 also dose-dependently lowered break-points for oxycodone under a progressive-ratio schedule. To determine whether a DA-dependent mechanism underlies the impact of D3 antagonism in reducing opioid reward, we used optogenetic approaches to examine intracranial self-stimulation (ICSS) maintained by optical activation of ventral tegmental area (VTA) DA neurons in DAT-Cre mice. Photoactivation of VTA DA in non-drug treated mice produced robust ICSS behavior. Lower doses of oxycodone enhanced, while higher doses inhibited, optical ICSS. Pretreatment with R-VK4-40 blocked oxycodone-enhanced brain-stimulation reward. By itself, R-VK4-40 produced a modest dose-dependent reduction in optical ICSS. Pretreatment with R-VK4-40 did not compromise the antinociceptive effects of oxycodone in rats, and R-VK4-40 alone produced mild antinociceptive effects without altering open-field locomotion or rotarod locomotor performance. Together, these findings suggest R-VK4-40 may permit a lower dose of prescription opioids for pain management, potentially mitigating tolerance and dependence, while diminishing reward potency. Hence, development of R-VK4-40 as a therapy for the treatment of opioid use disorders and/or pain is currently underway. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Bree Humburg
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Myra Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Anver Basha Shaik
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alexandra Gadiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA; Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Barbara Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
49
|
Biased G Protein-Independent Signaling of Dopamine D 1-D 3 Receptor Heteromers in the Nucleus Accumbens. Mol Neurobiol 2019; 56:6756-6769. [PMID: 30919214 DOI: 10.1007/s12035-019-1564-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Several studies found in vitro evidence for heteromerization of dopamine D1 receptors (D1R) and D3 receptors (D3R), and it has been postulated that functional D1R-D3R heteromers that are normally present in the ventral striatum mediate synergistic locomotor-activating effects of D1R and D3R agonists in rodents. Based also on results obtained in vitro, with mammalian transfected cells, it has been hypothesized that those behavioral effects depend on a D1R-D3R heteromer-mediated G protein-independent signaling. Here, we demonstrate the presence on D1R-D3R heteromers in the mouse ventral striatum by using a synthetic peptide that selectively destabilizes D1R-D3R heteromers. Parallel locomotor activity and ex vivo experiments in reserpinized mice and in vitro experiments in D1R-D3R mammalian transfected cells were performed to dissect the signaling mechanisms of D1R-D3R heteromers. Co-administration of D1R and D3R agonists in reserpinized mice produced synergistic locomotor activation and a selective synergistic AKT phosphorylation in the most ventromedial region of the striatum in the shell of the nucleus accumbens. Application of the destabilizing peptide in transfected cells and in the shell of the nucleus accumbens allowed demonstrating that both in vitro and in vivo co-activation of D3R induces a switch from G protein-dependent to G protein-independent D1R-mediated signaling determined by D1R-D3R heteromerization. The results therefore demonstrate that a biased G protein-independent signaling of D1R-D3R heteromers localized in the shell of the nucleus accumbens mediate the locomotor synergistic effects of D1R and D3R agonists in reserpinized mice.
Collapse
|
50
|
Liow JS, Morse CL, Lu S, Frankland M, Tye GL, Zoghbi SS, Gladding RL, Shaik AB, Innis RB, Newman AH, Pike VW. [ O- methyl- 11C] N-(4-(4-(3-Chloro-2-methoxyphenyl)-piperazin-1-yl)butyl)-1 H-indole-2-carboxamide ([ 11C]BAK4-51) Is an Efflux Transporter Substrate and Ineffective for PET Imaging of Brain D₃ Receptors in Rodents and Monkey. Molecules 2018; 23:molecules23112737. [PMID: 30360553 PMCID: PMC6278341 DOI: 10.3390/molecules23112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
Selective high-affinity antagonists for the dopamine D₃ receptor (D₃R) are sought for treating substance use disorders. Positron emission tomography (PET) with an effective D₃R radioligand could be a useful tool for the development of such therapeutics by elucidating pharmacological specificity and target engagement in vivo. Currently, a D₃R-selective radioligand does not exist. The D₃R ligand, N-(4-(4-(3-chloro-2-methoxyphenyl)piperazin-1-yl)butyl)-1H-indole-2-carboxamide (BAK4-51, 1), has attractive properties for PET radioligand development, including full antagonist activity, very high D₃R affinity, D₃R selectivity, and moderate lipophilicity. We labeled 1 with the positron-emitter carbon-11 (t1/2 = 20.4 min) in the methoxy group for evaluation as a radioligand in animals with PET. However, [11C]1 was found to be an avid substrate for brain efflux transporters and lacked D₃R-specific signal in rodent and monkey brain in vivo.
Collapse
Affiliation(s)
- Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Michael Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Anver B Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|