1
|
Miyamoto E, Hayashi H, Murayama S, Yanagisawa K, Sato T, Matsubara T. Prevention of amyloid β fibril deposition on the synaptic membrane in the precuneus by ganglioside nanocluster-targeting inhibitors. RSC Chem Biol 2024; 5:459-466. [PMID: 38725912 PMCID: PMC11078214 DOI: 10.1039/d4cb00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/16/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative condition, is one of the most common causes of dementia. Senile plaques, a hallmark of AD, are formed by the accumulation of amyloid β protein (Aβ), which starts to aggregate before the onset of the disease. Gangliosides, sialic acid-containing glycosphingolipids, play a key role in the formation of toxic Aβ aggregates. In membrane rafts, ganglioside-bound complexes (GAβ) act as nuclei for Aβ assembly, suggesting that GAβ is a promising target for AD therapy. The formation of GAβ-induced Aβ assemblies has been evaluated using reconstituted planar lipid membranes composed of synaptosomal plasma membrane (SPM) lipids extracted from human and mouse brains. Although the effects of gangliosides on Aβ accumulation in the precuneus have been established, effects on Aβ fibrils have not been determined. In this study, Aβ42 fibrils on reconstituted membranes composed of SPM lipids prepared from the precuneus cortex of human autopsied brains were evaluated by atomic force microscopy. In particular, Aβ42 accumulation, as well as the fibril number and size were higher for membranes with precuneus lipids than for membranes with calcarine cortex lipids. In addition, artificial peptide inhibitors targeting Aβ-sensitive ganglioside nanoclusters cleared Aβ assemblies on synaptic membranes in the brain, providing a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Erika Miyamoto
- Department of Biosciences and Informatics, Keio University 3-14-1 Hiyoshi, Kouhoku-ku Yokohama 223-8522 Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology 35-2 Sakae-cho Itabashi-ku Tokyo 173-0015 Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University 2-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Katsuhiko Yanagisawa
- Research and Development Center for Precision Medicine, University of Tsukuba 1-2 Kasuga Tsukuba Ibaraki 305-8550 Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University 3-14-1 Hiyoshi, Kouhoku-ku Yokohama 223-8522 Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University 3-14-1 Hiyoshi, Kouhoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
2
|
Miyamoto E, Sato T, Matsubara T. Cyclization of Peptides Enhances the Inhibitory Activity against Ganglioside-Induced Aβ Fibril Formation. ACS Chem Neurosci 2023; 14:4199-4207. [PMID: 37971427 DOI: 10.1021/acschemneuro.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease and is the most common cause of dementia. It has been reported that the assembly of amyloid β-protein (Aβ) on the cell membrane is induced by the interaction of the Aβ monomer with gangliosides such as GM1. The ganglioside-bound Aβ (GAβ) complex acts as a seed to promote the toxic assembly of the Aβ fibrils. In a previous study, we found that a GM1 cluster-binding peptide (GCBP) specifically recognizes Aβ-sensitive ganglioside nanoclusters and inhibits the assembly of Aβ on a GM1-containing lipid membrane. In this study, cysteine-substituted double mutants of GCBP were designed and cyclized by intramolecular disulfide bond formation. Affinity assays indicated that one of the cyclic peptides had a higher affinity to a GM1-containing membrane compared to that of GCBP. Furthermore, surface topography analysis indicated that this peptide recognizes GM1 nanoclusters on the lipid membrane. An evaluation of the inhibitory kinetics indicated that the cyclic peptide could inhibit the formation of Aβ fibrils with an IC50 value of 1.2 fM, which is 10,000-fold higher than that of GCBP. The cyclic peptide was also shown to have a clearance effect on Aβ fibrils deposited on the lipid membrane and suppressed the formation of toxic Aβ assemblies. Our results indicate that the cyclic peptide that binds to the Aβ-sensitive ganglioside nanocluster is a potential novel inhibitor of ganglioside-induced Aβ assembly.
Collapse
Affiliation(s)
- Erika Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
4
|
Self-assembled nanomaterials as vaccines for COVID-19 and future pandemics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
5
|
Saito S, Funayama K, Kato W, Okuda M, Kawamoto M, Matsubara T, Sato T, Sato A, Otsuguro S, Sasaki M, Orba Y, Sawa H, Maenaka K, Shindo K, Imoto M, Arai MA. Dihydromaniwamycin E, a Heat-Shock Metabolite from Thermotolerant Streptomyces sp. JA74, Exhibiting Antiviral Activity against Influenza and SARS-CoV-2 Viruses. JOURNAL OF NATURAL PRODUCTS 2022; 85:2583-2591. [PMID: 36223390 PMCID: PMC9578650 DOI: 10.1021/acs.jnatprod.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a "heat shock metabolite (HSM)" by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 μM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 μM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Kayo Funayama
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Wataru Kato
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Mayu Okuda
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Meiko Kawamoto
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory,
Shionogi & Co., Ltd., Osaka541-0045,
Japan
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
| | - Satoko Otsuguro
- Laboratory of Biomolecular Science, Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812,
Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for
Zoonosis Control, Hokkaido University, Sapporo001-0020,
Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for
Zoonosis Control, Hokkaido University, Sapporo001-0020,
Japan
- One Health Research Center, Hokkaido
University, Sapporo060-0818, Japan
- Global Virus Network,
Baltimore, Maryland21201, United States
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812,
Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan
Women’s University, Tokyo112-8681, Japan
| | - Masaya Imoto
- Department of Neurology, Juntendo
University School of Medicine, Tokyo113-8431,
Japan
| | - Midori A. Arai
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| |
Collapse
|
6
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Matsubara T, Nakai M, Nishihara M, Miyamoto E, Sato T. Ganglioside Nanocluster-Targeting Peptidyl Inhibitor Prevents Amyloid β Fibril Formation on the Neuronal Membrane. ACS Chem Neurosci 2022; 13:1868-1876. [PMID: 35729803 DOI: 10.1021/acschemneuro.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurotoxicity caused by peptide and protein aggregates is associated with the onset of neurodegenerative diseases. Accumulation of the amyloid β protein (Aβ) induced by neuronal ganglioside-enriched nanodomains (nanoclusters) in the presynaptic neuronal membrane, resulting in toxic oligomeric and fibrous forms, is implicated in the onset of Alzheimer's disease (AD). In the current study, we found that the ganglioside cluster-binding peptide (GCBP), a pentadecapeptide VWRLLAPPFSNRLLP that binds to ganglioside-enriched nanoclusters, inhibits the formation of Aβ assemblies with an IC50 of 12 pM and also removes Aβ fibrils deposited on the lipid membrane. Thus, in addition to inhibiting Aβ assembly formation, GCBP effectively clears toxic Aβ assemblies as well, thereby suppressing neuronal cellular damage and death induced by such assemblies. These results indicate that ganglioside cluster-binding molecules may act as novel Aβ-targeting drugs with a unique mechanism of action that may be utilized to ameliorate AD.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Mako Nakai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Masaya Nishihara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Erika Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
9
|
Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res 2021; 62:100129. [PMID: 34599996 PMCID: PMC8480132 DOI: 10.1016/j.jlr.2021.100129] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Oral Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shaon Sengupta
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Matsuura K, Hisamoto K, Tanaka T, Sakamoto R, Okazaki M, Inaba H. Turn-On Fluorescent Probe Based on a Dansyl Triarginine Peptide for Ganglioside Imaging. ACS ORGANIC & INORGANIC AU 2021; 1:60-67. [PMID: 36855753 PMCID: PMC9954261 DOI: 10.1021/acsorginorgau.1c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gangliosides play pivotal biological roles in the animal cell membranes, and it is vital to develop fluorescent probes for imaging them. To date, various artificial receptors for ganglioside imaging have been developed; however, turn-on fluorescence imaging for gangliosides with high contrast has not been achieved. We developed a simple fluorescent probe on the basis of a dansyl triarginine peptide for turn-on ganglioside imaging on the liposome membrane. The probe bound to monosialyl gangliosides and other anionic lipids with association constants was 105 M-1, which enhanced from 6-fold to 7-fold the fluorescence intensity. Upon binding to monosialyl ganglioside-containing giant liposomes, the turn-on probe selectively enhanced the fluorescence intensity compared with the other anionic lipids. This simple peptide probe for turn-on fluorescence imaging of gangliosides would provide a novel molecular tool for chemical biology.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan,Centre
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan,E-mail:
| | - Koichi Hisamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Tomoya Tanaka
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Ryota Sakamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Mizuki Okazaki
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan,Centre
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
11
|
Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021; 13:v13061120. [PMID: 34200959 PMCID: PMC8230593 DOI: 10.3390/v13061120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The latest coronavirus disease outbreak, COVID-19, has brought attention to viral infections which have posed serious health threats to humankind throughout history. The rapid global spread of COVID-19 is attributed to the increased human mobility of today's world, yet the threat of viral infections to global public health is expected to increase continuously in part due to increasing human-animal interface. Development of antiviral agents is crucial to combat both existing and novel viral infections. Recently, there is a growing interest in peptide/protein-based drug molecules. Antibodies are becoming especially predominant in the drug market. Indeed, in a remarkably short period, four antibody therapeutics were authorized for emergency use in COVID-19 treatment in the US, Russia, and India as of November 2020. Phage display has been one of the most widely used screening methods for peptide/antibody drug discovery. Several phage display-derived biologics are already in the market, and the expiration of intellectual property rights of phage-display antibody discovery platforms suggests an increment in antibody drugs in the near future. This review summarizes the most common phage display libraries used in antiviral discovery, highlights the approaches employed to enhance the antiviral potency of selected peptides/antibody fragments, and finally provides a discussion about the present status of the developed antivirals in clinic.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| |
Collapse
|
12
|
F Nahhas A, F Nahhas A, J Webster T. Nanoscale pathogens treated with nanomaterial-like peptides: a platform technology appropriate for future pandemics. Nanomedicine (Lond) 2021; 16:1237-1254. [PMID: 33988037 PMCID: PMC8120868 DOI: 10.2217/nnm-2020-0447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections are historically very difficult to treat. Although imperfect and time-consuming to develop, we do have some conventional vaccine and therapeutic approaches to stop viral spreading. Most importantly, all of this takes significant time while viruses continue to wreak havoc on our healthcare system. Furthermore, viral infections are accompanied by a weakened immune system which is often overlooked in antiviral drug strategies and requires additional drug development. In this review, for the first time, we touch on some promising alternative approaches to treat viral infections, specifically those focused on the use of platform nanomaterials with antiviral peptides. In doing so, this review presents a timely discussion of how we need to change our old way of treating viruses into one that can quickly meet the demands of COVID-19, as well as future pandemic-causing viruses, which will come.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, KSA
| | - Alrayan F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, KSA
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
14
|
Protein Sensing Device with Multi-Recognition Ability Composed of Self-Organized Glycopeptide Bundle. Int J Mol Sci 2020; 22:ijms22010366. [PMID: 33396442 PMCID: PMC7795492 DOI: 10.3390/ijms22010366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
We designed and synthesized amphiphilic glycopeptides with glucose or galactose at the C-terminals. We observed the protein-induced structural changes of the amphiphilic glycopeptide assembly in the lipid bilayer membrane using transmission electron microscopy (TEM) and Fourier transform infrared reflection-absorption spectra (FTIR-RAS) measurements. The glycopeptides re-arranged to form a bundle that acted as an ion channel due to the interaction among the target protein and the terminal sugar groups of the glycopeptides. The bundle in the lipid bilayer membrane was fixed on a gold-deposited quartz crystal microbalance (QCM) electrode by the membrane fusion method. The protein-induced re-arrangement of the terminal sugar groups formed a binding site that acted as a receptor, and the re-binding of the target protein to the binding site induced the closing of the channel. We monitored the detection of target proteins by the changes of the electrochemical properties of the membrane. The response current of the membrane induced by the target protein recognition was expressed by an equivalent circuit consisting of resistors and capacitors when a triangular voltage was applied. We used peanut lectin (PNA) and concanavalin A (ConA) as target proteins. The sensing membrane induced by PNA shows the specific response to PNA, and the ConA-induced membrane responded selectively to ConA. Furthermore, PNA-induced sensing membranes showed relatively low recognition ability for lectin from Ricinus Agglutinin (RCA120) and mushroom lectin (ABA), which have galactose binding sites. The protein-induced self-organization formed the spatial arrangement of the sugar chains specific to the binding site of the target protein. These findings demonstrate the possibility of fabricating a sensing device with multi-recognition ability that can recognize proteins even if the structure is unknown, by the protein-induced self-organization process.
Collapse
|
15
|
Zhang Q, Liang T, Nandakumar KS, Liu S. Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opin Pharmacother 2020; 22:715-728. [PMID: 33327812 DOI: 10.1080/14656566.2020.1856814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Seasonal influenza vaccination, together with FDA-approved neuraminidase (NA) and polymerase acidic (PA) inhibitors, is the most effective way for prophylaxis and treatment of influenza infections. However, the low efficacy of prevailing vaccines to newly emerging influenza strains and increasing resistance to available drugs drives intense research to explore more effective inhibitors. Hemagglutinin (HA), one of the major surface proteins of influenza strains, represents an attractive therapeutic target to develop such new inhibitors.Areas covered: This review summarizes the current progress of HA-based influenza virus inhibitors and their mechanisms of action, which may facilitate further research in developing novel antiviral inhibitors for controlling influenza infections.Expert opinion: HA-mediated entry of influenza virus is an essential step for successful infection of the host, which makes HA a promising target for the development of antiviral drugs. Recent progress in delineating the crystal structures of HA, especially HA-inhibitors complexes, has revealed a number of key residues and conserved binding pockets within HA. This has opened up important insights for developing HA-based antiviral inhibitors that have a high resistance barrier and broad-spectrum activities.
Collapse
Affiliation(s)
- Qiao Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China.,State Key Laboratory of Organ Failure Research, Institute of Kidney Disease of Guangdong, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
17
|
Matsubara T, Ujie M, Yamamoto T, Einaga Y, Daidoji T, Nakaya T, Sato T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens 2020; 5:431-439. [PMID: 32077684 DOI: 10.1021/acssensors.9b02126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of a simple detection method with high sensitivity is essential for the diagnosis and surveillance of infectious diseases. Previously, we constructed a sensitive biosensor for the detection of pathological human influenza viruses using a boron-doped diamond electrode terminated with a sialyloligosaccharide receptor-mimic peptide that could bind to hemagglutinins involved in viral infection. Circulation of influenza induced by the avian virus in humans has become a major public health concern, and methods for the detection of avian viruses are urgently needed. Here, peptide density and dendrimer generation terminated on the electrode altered the efficiency of viral binding to the electrode surface, thus significantly enhancing charge-transfer resistance measured by electrochemical impedance spectroscopy. The peptide-terminated electrodes exhibited an excellent detection limit of less than one plaque-forming unit of seasonal H1N1 and H3N2 viruses. Furthermore, the improved electrode was detectable for avian viruses isolated from H5N3, H7N1, and H9N2, showing the potential for the detection of all subtypes of influenza A virus, including new subtypes. The peptide-based electrochemical architecture provided a promising approach to biosensors for ultrasensitive detection of pathogenic microorganisms.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Michiko Ujie
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- JST-ACCEL, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
18
|
Chung TW, Kim EY, Choi HJ, Han CW, Jang SB, Kim KJ, Jin L, Koh YJ, Ha KT. 6'-Sialylgalactose inhibits vascular endothelial growth factor receptor 2-mediated angiogenesis. Exp Mol Med 2019; 51:1-13. [PMID: 31604908 PMCID: PMC6802645 DOI: 10.1038/s12276-019-0311-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 01/29/2023] Open
Abstract
Angiogenesis should be precisely regulated because disordered neovascularization is involved in the aggravation of multiple diseases. The vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2) axis is crucial for controlling angiogenic responses in vascular endothelial cells (ECs). Therefore, inactivating VEGFR-2 signaling may effectively suppress aberrant angiogenesis and alleviate related symptoms. In this study, we performed virtual screening, identified the synthetic disaccharide 6′-sialylgalactose (6SG) as a potent VEGFR-2-binding compound and verified its high binding affinity by Biacore assay. 6SG effectively suppressed VEGF-A-induced VEGFR-2 phosphorylation and subsequent in vitro angiogenesis in HUVECs without inducing cytotoxicity. 6SG also inhibited VEGF-A-induced extracellular-regulated kinase (ERK)/Akt activation and actin stress fiber formation in HUVECs. We demonstrated that 6SG inhibited retinal angiogenesis in a mouse model of retinopathy of prematurity and tumor angiogenesis in a xenograft mouse model. Our results suggest a potential therapeutic benefit of 6SG in inhibiting angiogenesis in proangiogenic diseases, such as retinopathy and cancer. Therapy based on a synthetic molecule can block abnormal blood vessel formation, limiting the progression of diabetic eye conditions and tumor growth in mice. The growth of new blood vessels from existing vessels, called angiogenesis, is critical to wound healing and embryonic development. The main angiogenesis signalling pathway involves growth factors, including one called VEGFR-2. Disruption to this pathway plays a significant part in the development of multiple diseases. A South Korean team led by Ki-Tae Ha at Pusan National University, Yangsan, and Young Jun Koh at Dongguk University, Seoul, identified and trialed a synthetic disaccharide capable of binding to and limiting the activity of VEGFR-2 during faulty signaling. Trials on mice with the diabetic eye condition retinopathy, and mice with implanted tumors, showed that the compound inhibited excessive angiogenesis and limited disease progression.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Eun-Yeong Kim
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Hee-Jung Choi
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjeong-gu, Busan, 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjeong-gu, Busan, 46241, Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, TaeKyeung University, Gyeongsan, Gyeongbuk, 38547, Korea
| | - Ling Jin
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Young Jun Koh
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, 10326, Korea. .,GI Innovation, Inc., A-1116, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul, 05855, Korea.
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea.
| |
Collapse
|
19
|
Chao L, Jongkees S. High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019; 58:12750-12760. [PMID: 30913359 PMCID: PMC6771893 DOI: 10.1002/anie.201900055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Indexed: 01/13/2023]
Abstract
Carbohydrates are attached and removed in living systems through the action of carbohydrate-active enzymes such as glycosyl transferases and glycoside hydrolases. The molecules resulting from these enzymes have many important roles in organisms, such as cellular communication, structural support, and energy metabolism. In general, each carbohydrate transformation requires a separate catalyst, and so these enzyme families are extremely diverse. To make this diversity manageable, high-throughput approaches look at many enzymes at once. Similarly, high-throughput approaches can be a powerful way of finding inhibitors that can be used to tune the reactivity of these enzymes, either in an industrial, a laboratory, or a medicinal setting. In this review, we provide an overview of how these enzymes and inhibitors can be sought using techniques such as high-throughput natural product and combinatorial library screening, phage and mRNA display of (glyco)peptides, fluorescence-activated cell sorting, and metagenomics.
Collapse
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| |
Collapse
|
20
|
Matsubara T, Kubo A, Sato T. Detection of influenza virus by agglutination using nanoparticles conjugated with a sialic acid-mimic peptide. Polym J 2019. [DOI: 10.1038/s41428-019-0252-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Chao L, Jongkees S. High‐Throughput Approaches in Carbohydrate‐Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| |
Collapse
|
22
|
Zhou H, Wang G, Wang X, Song Z, Tang R. Mineralized State of the Avian Influenza Virus in the Environment. Angew Chem Int Ed Engl 2017; 56:12908-12912. [DOI: 10.1002/anie.201705769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Hangyu Zhou
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Guangchuan Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Zhiyong Song
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| |
Collapse
|
23
|
Zhou H, Wang G, Wang X, Song Z, Tang R. Mineralized State of the Avian Influenza Virus in the Environment. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hangyu Zhou
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Guangchuan Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Zhiyong Song
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| |
Collapse
|
24
|
Matsubara T, Otani R, Yamashita M, Maeno H, Nodono H, Sato T. Selective Intracellular Delivery of Ganglioside GM3-Binding Peptide through Caveolae/Raft-Mediated Endocytosis. Biomacromolecules 2017; 18:355-362. [DOI: 10.1021/acs.biomac.6b01262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences
and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Ryohei Otani
- Department of Biosciences
and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Miki Yamashita
- Department of Biosciences
and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Haruka Maeno
- Department of Biosciences
and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Hanae Nodono
- Department of Biosciences
and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences
and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
25
|
Lee H, Jin W, Jeong BC, Suh JW. A new in vitro hemagglutinin inhibitor screening system based on a single-vesicle fusion assay. Sci Rep 2016; 6:30642. [PMID: 27469068 PMCID: PMC4965830 DOI: 10.1038/srep30642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
Hemagglutinin (HA) from the influenza virus plays a pivotal role in the infection of host mammalian cells and is, therefore, a druggable target, similar to neuraminidase. However, research involving the influenza virus must be conducted in facilities certified at or above Biosafety Level 2 because of the potential threat of the contagiousness of this virus. To develop a new HA inhibitor screening system without intact influenza virus, we conceived a single-vesicle fusion assay using full-length recombinant HA. In this study, we first showed that full-length recombinant HA can mediate membrane fusion in ensemble and single-vesicle fusion assays. The fluorescence resonance energy transfer (FRET) frequency pattern of single-vesicle complexes completely differed when the inhibitors targeted the HA1 or HA2 domain of HA. This result indicates that analysing the FRET patterns in this assay can provide information regarding the domains of HA inhibited by compounds and compounds' inhibitory activities. Therefore, our results suggest that the assay developed here is a promising tool for the discovery of anti-influenza virus drug candidates as a new in vitro inhibitor screening system against HA from the influenza virus.
Collapse
Affiliation(s)
- Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gacheon University, Incheon, 21936, Republic of Korea.,Gachon Medical Research Institute, Gil Medical Center, Incheon, 21565, Republic of Korea
| | - Byeong-Chul Jeong
- Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.,Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
26
|
Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proc Natl Acad Sci U S A 2016; 113:8981-4. [PMID: 27457924 DOI: 10.1073/pnas.1603609113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The progression of influenza varies according to age and the presence of an underlying disease; appropriate treatment is therefore required to prevent severe disease. Anti-influenza therapy, such as with neuraminidase inhibitors, is effective, but diagnosis at an early phase of infection before viral propagation is critical. Here, we show that several dozen plaque-forming units (pfu) of influenza virus (IFV) can be detected using a boron-doped diamond (BDD) electrode terminated with a sialic acid-mimic peptide. The peptide was used instead of the sialyloligosaccharide receptor, which is the common receptor of influenza A and B viruses required during the early phase of infection, to capture IFV particles. The peptide, which was previously identified by phage-display technology, was immobilized by click chemistry on the BDD electrode, which has excellent electrochemical characteristics such as low background current and weak adsorption of biomolecules. Electrochemical impedance spectroscopy revealed that H1N1 and H3N2 IFVs were detectable in the range of 20-500 pfu by using the peptide-terminated BDD electrode. Our results demonstrate that the BDD device integrated with the receptor-mimic peptide has high sensitivity for detection of a low number of virus particles in the early phase of infection.
Collapse
|
27
|
Matsubara T, Shibata R, Sato T. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane. Front Microbiol 2016; 7:468. [PMID: 27092124 PMCID: PMC4823272 DOI: 10.3389/fmicb.2016.00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023] Open
Abstract
Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Yokohama, Japan
| | - Rabi Shibata
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Yokohama, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Yokohama, Japan
| |
Collapse
|
28
|
Chemical Synthesis and In Vitro Evaluation of a Phage Display-Derived Peptide Active against Infectious Salmon Anemia Virus. Appl Environ Microbiol 2016; 82:2563-2571. [PMID: 26896129 DOI: 10.1128/aem.00184-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Infectious salmon anemia virus (ISAV) is the etiological agent of the disease by the same name and causes major losses in the salmon industry worldwide. Epizootic ISAV outbreaks have occurred in Norway and, to a lesser degree, in Canada. In 2007, an ISAV outbreak in Chile destroyed most of the seasonal production and endangered the entire Chilean salmon industry. None of the existing prophylactic approaches have demonstrated efficacy in providing absolute protection from or even a palliative effect on ISAV proliferation. Sanitary control measures for ISAV, based on molecular epidemiology data, have proven insufficient, mainly due to high salmon culture densities and a constant presence of a nonpathogenic strain of the virus. This report describes an alternative treatment approach based on interfering peptides selected from a phage display library. The screening of a phage display heptapeptide library resulted in the selection of a novel peptide with significant in vitro antiviral activity against ISAV. This peptide specifically interacted with the viral hemagglutinin-esterase protein, thereby impairing virus binding, with plaque reduction assays showing a significant reduction in viral yields. The identified peptide acts at micromolar concentrations against at least two different pathogenic strains of the virus, without detectable cytotoxic effects on the tested fish cells. Therefore, antiviral peptides represent a novel alternative for controlling ISAV and, potentially, other fish pathogens. IMPORTANCE Identifying novel methods for the efficient control of infectious diseases is imperative for the future of global aquaculture. The present study used a phage display heptapeptide library to identify a peptide with interfering activity against a key protein of the infectious salmon anemia virus (ISAV). A piscine orthomyxovirus, ISAV is a continuous threat to the commercial sustainability of cultured salmon production worldwide. The complex epidemiological strategy of this pathogen has made prophylactic control extremely difficult. The identified antiviral peptide efficiently impairs ISAV infection in vitro by specifically blocking hemagglutinin-esterase, a pivotal surface protein of this virus. Peptide synthesis could further modify the primary structure of the identified peptide to improve specific activity and stability. The present results form the foundation for developing a new pharmacological treatment against ISAV.
Collapse
|
29
|
Chen Q, Guo Y. Influenza Viral Hemagglutinin Peptide Inhibits Influenza Viral Entry by Shielding the Host Receptor. ACS Infect Dis 2016; 2:187-93. [PMID: 27623031 DOI: 10.1021/acsinfecdis.5b00139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Influenza viral infection of the host begins by the attachment of viral hemagglutinin to a cell surface receptor. In the current study, a hemagglutinin fragment peptide library was screened using an H5N1 recombinant pseudotyped viral system. One peptide, designated HA-pep25, showed effective antiviral activity against both human and avian influenza viral strains (IC50 = 12.0-51.0 μM). A mechanistic study demonstrated direct binding between HA-pep25 and sialyllactose, which mimics the host receptor for the influenza virus. This binding was independent of the presence of sialic acid on the cell membrane. By generating alanine substitutions in HA-pep25, eight residues were identified as essential for the peptide's anti-influenza activity. HA-pep25 derived from hemagglutinin blocked influenza viral entry by shielding the host receptor on the cell membrane. This peptide might be a candidate drug for influenza virus entry inhibition and may be combined with other antivirals targeting different steps of the influenza viral life cycle.
Collapse
Affiliation(s)
- Qing Chen
- State Key Laboratory
of Bioactive Substances and Function, Department of Pharmacology,
Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- State Key Laboratory
of Bioactive Substances and Function, Department of Pharmacology,
Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
30
|
Wang H, Xu R, Shi Y, Si L, Jiao P, Fan Z, Han X, Wu X, Zhou X, Yu F, Zhang Y, Zhang L, Zhang L, Zhou D, Xiao S. Design, synthesis and biological evaluation of novel l-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. Eur J Med Chem 2016; 110:376-88. [DOI: 10.1016/j.ejmech.2016.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
|
31
|
Lauster D, Pawolski D, Storm J, Ludwig K, Volkmer R, Memczak H, Herrmann A, Bhatia S. Potential of acylated peptides to target the influenza A virus. Beilstein J Org Chem 2015; 11:589-95. [PMID: 26124860 PMCID: PMC4464269 DOI: 10.3762/bjoc.11.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/24/2015] [Indexed: 01/15/2023] Open
Abstract
For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeB(GF)), preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeB(GF) (C18-PeB(GF)) was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeB(GF) to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010), and the "Entry Blocker" (EB) (Jones et al. 2006), with respect to their antiviral activity against infection by Influenza A Virus (IAV) H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.
Collapse
Affiliation(s)
- Daniel Lauster
- Humboldt-Universität zu Berlin, Institute of Biology, Invalidenstr. 42, 10115 Berlin, Germany
| | - Damian Pawolski
- Humboldt-Universität zu Berlin, Institute of Biology, Invalidenstr. 42, 10115 Berlin, Germany
| | - Julian Storm
- Humboldt-Universität zu Berlin, Institute of Biology, Invalidenstr. 42, 10115 Berlin, Germany
| | - Kai Ludwig
- Freie Universität Berlin, Research Center of Electron Microscopy, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Rudolf Volkmer
- Charité Universitätsmedizin Berlin, Institute of Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Henry Memczak
- Fraunhofer Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andreas Herrmann
- Humboldt-Universität zu Berlin, Institute of Biology, Invalidenstr. 42, 10115 Berlin, Germany
| | - Sumati Bhatia
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
32
|
Yu M, Si L, Wang Y, Wu Y, Yu F, Jiao P, Shi Y, Wang H, Xiao S, Fu G, Tian K, Wang Y, Guo Z, Ye X, Zhang L, Zhou D. Discovery of Pentacyclic Triterpenoids as Potential Entry Inhibitors of Influenza Viruses. J Med Chem 2014; 57:10058-71. [DOI: 10.1021/jm5014067] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maorong Yu
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Longlong Si
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yufei Wang
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yiming Wu
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Fei Yu
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Pingxuan Jiao
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yongying Shi
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Han Wang
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ge Fu
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ke Tian
- Stanley Manne Children’s
Research Institute, Northwestern University, 2430 Halsted Street, Chicago, Illinois 60614, United States
| | - Yitao Wang
- State Key
Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida Wai, Long, Taipo, Macao
| | - Zhihong Guo
- Department of Chemistry and Biotechnology
Research Institute, The Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong
| | - Xinshan Ye
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of
Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
33
|
Hatano K, Matsubara T, Muramatsu Y, Ezure M, Koyama T, Matsuoka K, Kuriyama R, Kori H, Sato T. Synthesis and influenza virus inhibitory activities of carbosilane dendrimers peripherally functionalized with hemagglutinin-binding Peptide. J Med Chem 2014; 57:8332-9. [PMID: 25249262 DOI: 10.1021/jm5007676] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of carbosilane dendrimers uniformly functionalized with hemagglutinin (HA) binding peptide (sialic acid-mimic peptide, Ala-Arg-Leu-Pro-Arg) was systematically synthesized, and their anti-influenza virus activity was evaluated. The carbosilane-based peptide dendrimers, unlike sialylated dendrimers, cannot be digested by virus neuraminidases. The peptide dendrimers exhibited intriguing biological activities depending on the form of their core frame, with a dumbbell-type peptide dendrimer showing particularly strong inhibitory activities against two human influenza viruses, A/PR/8/34 (H1N1) and A/Aichi/2/68 (H3N2). The IC50 values of the dumbbell-type peptide dendrimer for both strains were 0.60 μM, the highest activity among the HA-binding peptide derivatives. The results suggest that a dumbbell-shaped carbosilane dendrimer is the most suitable core scaffold for HA-binding peptide dendrimers.
Collapse
Affiliation(s)
- Ken Hatano
- Division of Materials Science, Graduate School of Science and Technology, Saitama University , 255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A protein chip based inhibitor screening for influenza neuraminidases: the importance of glycan-specific recognition. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Lao YH, Chiang HY, Yang DK, Peck K, Chen LC. Selection of aptamers targeting the sialic acid receptor of hemagglutinin by epitope-specific SELEX. Chem Commun (Camb) 2014; 50:8719-22. [PMID: 24964092 DOI: 10.1039/c4cc03116d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new SELEX scheme is proposed for the selection of aptamers targeting a specific epitope of a native protein. Anti-sialic acid receptor (SAR) aptamers that inhibit H1 hemagglutination at a low picomole dose are selected accordingly.
Collapse
Affiliation(s)
- Yeh-Hsing Lao
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Influenza A and B viruses are highly contagious respiratory pathogens with a considerable medical and socioeconomical burden and known pandemic potential. Current influenza vaccines require annual updating and provide only partial protection in some risk groups. Due to the global spread of viruses with resistance to the M2 proton channel inhibitor amantadine or the neuraminidase inhibitor oseltamivir, novel antiviral agents with an original mode of action are urgently needed. We here focus on emerging options to interfere with the influenza virus entry process, which consists of the following steps: attachment of the viral hemagglutinin to the sialylated host cell receptors, endocytosis, M2-mediated uncoating, low pH-induced membrane fusion, and, finally, import of the viral ribonucleoprotein into the nucleus. We review the current functional and structural insights in the viral and cellular components of this entry process, and the diverse antiviral strategies that are being explored. This encompasses small molecule inhibitors as well as macromolecules such as therapeutic antibodies. There is optimism that at least some of these innovative concepts to block influenza virus entry will proceed from the proof of concept to a more advanced stage. Special attention is therefore given to the challenging issues of influenza virus (sub)type-dependent activity or potential drug resistance.
Collapse
Affiliation(s)
| | - Lieve Naesens
- Rega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| |
Collapse
|
37
|
Kapoor S, Dhama K. Prevention and Control of Influenza Viruses. INSIGHT INTO INFLUENZA VIRUSES OF ANIMALS AND HUMANS 2014. [PMCID: PMC7121144 DOI: 10.1007/978-3-319-05512-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 2003–2004 outbreaks of highly pathogenic avian influenza (HPAI) have proven to be disastrous to the regional poultry industry in Asia, and have raised serious worldwide public health apprehension regarding the steps that should be taken to urgently control HPAI. Control measures must be taken based on the principles of biosecurity and disease management and at the same time making public aware of the precautionary measures at the verge of outbreak. Creation of protection and surveillance zones, various vaccination strategies viz. routine, preventive, emergency, mass and targeted vaccination programmes using live, inactivated and recombinant vaccines are the common strategies adopted in different parts of the globe. The new generation vaccines include recombinant vaccines and recombinant fusion vaccine. The pro-poor disease control programmes, giving compensation and subsidies to the farmers along with effective and efficient Veterinary Services forms integral part of control of HPAI. Following biosecurity principles and vaccination forms integral part of control programme against swine and equine influenza as well. Use of neuraminidase (NA) inhibitors (Zanamivir and Oseltamivir) for the treatment of human influenza has been widely accepted worldwide. The threat of increasing resistance of the flu viruses to these antivirals has evoked interest in the development of novel antiviral drugs for influenza virus such as inhibitors of cellular factors and host signalling cascades, cellular miRNAs, siRNA and innate immune peptides (defensins and cathelicidins). Commercial licensed inactivated vaccines for humans against influenza A and B viruses are available consisting of three influenza viruses: influenza type A subtype H3N2, influenza type A subtype H1N1 (seasonal) virus strain and influenza type B virus strain. As per WHO, use of tetravaccine consisting of antigens of influenza virus serotypes H3N2, H1N1, B and H5 is the most promising method to control influenza pandemic. All healthy children in many countries are required to be vaccinated between 6 and 59 months of age. The seasonal vaccines currently used in humans induce strain-specific humoral immunity as the antibodies. Universal influenza virus vaccines containing the relatively conserved ectodomain of M2 (M2e), M1, HA fusion peptide and stalk domains, NA, NP alone or in combination have been developed which have been shown to induce cross-protection. The T cell-based vaccines are another recent experimental approach that has been shown to elicit broad-spectrum heterosubtypic immunity in the host. As far as HPAI is concerned, various pandemic preparedness strategies have been documented.
Collapse
Affiliation(s)
- Sanjay Kapoor
- Department of Veterinary Microbiology, LLR University of Veterinary and Animal Sciences, Hisar, 125004 Haryana India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122 Uttar Pradesh India
| |
Collapse
|
38
|
Strategies for the Development of Influenza Drugs: Basis for New Efficient Combination Therapies. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
39
|
Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol 2013; 95:263-277. [PMID: 24225499 DOI: 10.1099/vir.0.059477-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus is a major human pathogen that causes annual epidemics and occasional pandemics. Moreover, the virus causes outbreaks in poultry and other animals, such as pigs, requiring costly and laborious countermeasures. Therefore, influenza virus has a substantial impact on health and the global economy. Here, we review entry of this important pathogen into target cells, an essential process by which viral genomes are delivered from extracellular virions to sites of transcription/replication in the cell nucleus. We summarize current knowledge on the interaction of influenza viruses with their receptor, sialic acid, and highlight the ongoing search for additional receptors. We describe receptor-mediated endocytosis and the recently discovered macropinocytosis as alternative virus uptake pathways, and illustrate the subsequent endosomal trafficking of the virus with advanced live microscopy techniques. Release of virus from the endosome and import of the viral ribonucleoproteins into the host cell nucleus are also outlined. Although a focus has been on viral protein function during entry, recent studies have revealed exciting information on cellular factors required for influenza virus entry. We highlight these, and discuss established entry inhibitors targeting viral and host factors, as well as the latest prospects for designing novel 'anti-entry' compounds. New entry inhibitors are of particular importance for current efforts to develop the next generation of anti-influenza drugs - entry is the first essential step of virus replication and is an ideal target to block infection efficiently.
Collapse
Affiliation(s)
- Thomas O Edinger
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
40
|
Shen X, Zhang X, Liu S. Novel hemagglutinin-based influenza virus inhibitors. J Thorac Dis 2013; 5 Suppl 2:S149-59. [PMID: 23977436 DOI: 10.3978/j.issn.2072-1439.2013.06.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses.
Collapse
Affiliation(s)
- Xintian Shen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; ; Department of Physiology, Huaihua Medical College, Huaihua 418000, China
| | | | | |
Collapse
|
41
|
Kuzmanov U, Kosanam H, Diamandis EP. The sweet and sour of serological glycoprotein tumor biomarker quantification. BMC Med 2013; 11:31. [PMID: 23390961 PMCID: PMC3751898 DOI: 10.1186/1741-7015-11-31] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/07/2013] [Indexed: 12/25/2022] Open
Abstract
Aberrant and dysregulated protein glycosylation is a well-established event in the process of oncogenesis and cancer progression. Years of study on the glycobiology of cancer have been focused on the development of clinically viable diagnostic applications of this knowledge. However, for a number of reasons, there has been only sparse and varied success. The causes of this range from technical to biological issues that arise when studying protein glycosylation and attempting to apply it to practical applications. This review focuses on the pitfalls, advances, and future directions to be taken in the development of clinically applicable quantitative assays using glycan moieties from serum-based proteins as analytes. Topics covered include the development and progress of applications of lectins, mass spectrometry, and other technologies towards this purpose. Slowly but surely, novel applications of established and development of new technologies will eventually provide us with the tools to reach the ultimate goal of quantification of the full scope of heterogeneity associated with the glycosylation of biomarker candidate glycoproteins in a clinically applicable fashion.
Collapse
Affiliation(s)
- Uros Kuzmanov
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, 6th floor, 60 Murray Street, Box 32, Toronto, ON M5T 3L9, Canada
| | | | | |
Collapse
|
42
|
Arnaud J, Audfray A, Imberty A. Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 2013; 42:4798-813. [PMID: 23353569 DOI: 10.1039/c2cs35435g] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The large diversity and complexity of glycan structures together with their crucial role in many biological or pathological processes require the development of new high-throughput techniques for analyses. Lectins are classically used for characterising, imaging or targeting glycoconjugates and, when printed on microarrays, they are very useful tools for profiling glycomes. Development of recombinant lectins gives access to reliable and reproducible material, while engineering of new binding sites on existing scaffolds allows tuning of specificity. From the accumulated knowledge on protein-carbohydrate interactions, it is now possible to use nucleotide and peptide (bio)synthesis for producing new carbohydrate-binding molecules. Such a biomimetic approach can also be addressed by boron chemistry and supra-molecular chemistry for the design of fully artificial glycosensors.
Collapse
Affiliation(s)
- Julie Arnaud
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-CNRS), affiliated to Grenoble-Université and ICMG, Grenoble, France
| | | | | |
Collapse
|
43
|
Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses 2013; 5:352-73. [PMID: 23340380 PMCID: PMC3564125 DOI: 10.3390/v5010352] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 01/13/2023] Open
Abstract
Influenza A virus (IAV) has caused seasonal influenza epidemics and influenza pandemics, which resulted in serious threat to public health and socioeconomic impacts. Until now, only 5 drugs belong to two categories are used for prophylaxis and treatment of IAV infection. Hemagglutinin (HA), the envelope glycoprotein of IAV, plays a critical role in viral binding, fusion and entry. Therefore, HA is an attractive target for developing anti‑IAV drugs to block the entry step of IAV infection. Here we reviewed the recent progress in the study of conformational changes of HA during viral fusion process and the development of HA-based IAV entry inhibitors, which may provide a new choice for controlling future influenza pandemics.
Collapse
|
44
|
Carbohydrate recognition by pentadecapeptide ligands for a series of sialylated oligosaccharides. Bioorg Med Chem 2012; 20:6452-8. [DOI: 10.1016/j.bmc.2012.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022]
|
45
|
Becker GL, Lu Y, Hardes K, Strehlow B, Levesque C, Lindberg I, Sandvig K, Bakowsky U, Day R, Garten W, Steinmetzer T. Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 2012; 287:21992-2003. [PMID: 22539349 DOI: 10.1074/jbc.m111.332643] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Optimization of our previously described peptidomimetic furin inhibitors was performed and yielded several analogs with a significantly improved activity. The most potent compounds containing an N-terminal 4- or 3-(guanidinomethyl)phenylacetyl residue inhibit furin with K(i) values of 16 and 8 pM, respectively. These analogs inhibit other proprotein convertases, such as PC1/3, PC4, PACE4, and PC5/6, with similar potency, whereas PC2, PC7, and trypsin-like serine proteases are poorly affected. Incubation of selected compounds with Madin-Darby canine kidney cells over a period of 96 h revealed that they exhibit great stability, making them suitable candidates for further studies in cell culture. Two of the most potent derivatives were used to inhibit the hemagglutinin cleavage and viral propagation of a highly pathogenic avian H7N1 influenza virus strain. The treatment with inhibitor 24 (4-(guanidinomethyl)phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide) resulted in significantly delayed virus propagation compared with an inhibitor-free control. The same analog was also effective in inhibiting Shiga toxin activation in HEp-2 cells. This antiviral effect, as well as the protective effect against a bacterial toxin, suggests that inhibitors of furin or furin-like proprotein convertases could represent promising lead structures for future drug development, in particular for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Gero L Becker
- Institute of Pharmaceutical Chemistry, Philipps University, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li Z, Zhan P, Naesens L, Vanderlinden E, Liu A, Du G, De Clercq E, Liu X. Synthesis and Preliminary Biologic Evaluation of 5-Substituted-2-(4-substituted phenyl)-1,3-Benzoxazoles as A Novel Class of Influenza Virus A Inhibitors. Chem Biol Drug Des 2012; 79:1018-24. [DOI: 10.1111/j.1747-0285.2012.01344.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
48
|
Moise A, André S, Eggers F, Krzeminski M, Przybylski M, Gabius HJ. Toward Bioinspired Galectin Mimetics: Identification of Ligand-Contacting Peptides by Proteolytic-Excision Mass Spectrometry. J Am Chem Soc 2011; 133:14844-7. [DOI: 10.1021/ja201967v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Adrian Moise
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Frederike Eggers
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Mickael Krzeminski
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Michael Przybylski
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
49
|
Wu D, Li G, Qin C, Ren X. Phage displayed peptides to avian H5N1 virus distinguished the virus from other viruses. PLoS One 2011; 6:e23058. [PMID: 21887228 PMCID: PMC3161733 DOI: 10.1371/journal.pone.0023058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/12/2011] [Indexed: 01/10/2023] Open
Abstract
The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Dan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofeng Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
50
|
Steinmetzer T. [Strategies for development of new influenza medication]. ACTA ACUST UNITED AC 2011; 40:160-8. [PMID: 21630545 DOI: 10.1002/pauz.201100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Torsten Steinmetzer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg.
| |
Collapse
|