1
|
Amada H, Zhai YC, Yamanaka K, Shui QJ, Oyama KI, Miwa K, Lin HS, Matsuo Y. Reaction mechanism with indano[60]fullerene bromide for evaporable fullerene derivatives. Chem Commun (Camb) 2025; 61:1665-1668. [PMID: 39744901 DOI: 10.1039/d4cc05600k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Indano[60]fullerene bromide was isolated as a key intermediate in the synthesis of indano[60]fullerene ketone, an evaporable fullerene derivative. Based on the identified reaction mechanism, aqueous hydrobromic acid was used to achieve reproducible and high-yielding reactions. A scalable one-pot reaction from aryl[60]fullerenyl dimers to indano[60]fullerene ketone was also demonstrated.
Collapse
Affiliation(s)
- Hirofumi Amada
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yong-Chang Zhai
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Koki Yamanaka
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Qing-Jun Shui
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Kin-Ichi Oyama
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuhira Miwa
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hao-Sheng Lin
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yutaka Matsuo
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Yuan SH, Ma SC, Wu J, Zheng XY, Xuan J, Li F. NHC-BH 2-C 60H: synthesis, characterization and electrochemical properties of the N-heterocyclic-carbene-stabilized fullerene-borane complex. Chem Commun (Camb) 2025; 61:528-531. [PMID: 39648941 DOI: 10.1039/d4cc04866k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
NHC-[60]fullereborane (NHC-BH2-C60H) has been synthesized, isolated in pure form, and characterized. The reaction of C60 with NHC-borane produced NHC-BH2-C60H as the first air-stable and separatable fullerene-borane compound. The formation of a N-heterocyclic carbene stabilized this borane complex of C60, and the structure of the complex was unambiguously determined throughsingle-crystal X-ray analysis. This fullerene-borane complex exhibited remarkable stability and promising electrochemical properties.
Collapse
Affiliation(s)
- Sheng-Hu Yuan
- Department of Chemistry, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China
| | - Shu-Chao Ma
- Department of Chemistry, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China
| | - Jian Wu
- Department of Chemistry, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Jun Xuan
- Department of Chemistry, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China
| | - Fei Li
- Department of Chemistry, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Kraevaya OA, Bolshakova VS, Slita AV, Esaulkova IL, Zhilenkov AV, Mikhalsky MG, Sinegubova EO, Voronov II, Peregudov AS, Shestakov AF, Zarubaev VV, Troshin PA. Buckyballs to fight pandemic: Water-soluble fullerene derivatives with pendant carboxylic groups emerge as a new family of promising SARS-CoV-2 inhibitors. Bioorg Chem 2025; 154:108097. [PMID: 39729769 DOI: 10.1016/j.bioorg.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Herein, we present the first experimental study of individual water-soluble fullerene derivatives proving their ability to inhibit SARS-CoV-2 in vitro. The initial screening allowed us to identify a few new compounds that have demonstrated pronounced antiviral activity with IC50 values as low as 390 nM and selectivity indexes reaching 214. Time-of-addition analysis and molecular docking results suggested that the viral protease and/or the spike protein are the most probable targets inhibited by the fullerene derivatives. Further rational design of fullerene derivatives might lead to the development of compounds with further enhanced antiviral activity and decreased toxicity.
Collapse
Affiliation(s)
- Olga A Kraevaya
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia.
| | - Valeriya S Bolshakova
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Alexander V Slita
- St. Petersburg Pasteur Institute, Mira st. 14, St. Petersburg 197101, Russia
| | - Iana L Esaulkova
- St. Petersburg Pasteur Institute, Mira st. 14, St. Petersburg 197101, Russia
| | - Alexander V Zhilenkov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Mikhail G Mikhalsky
- St. Petersburg Pasteur Institute, Mira st. 14, St. Petersburg 197101, Russia
| | | | - Ilya I Voronov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Alexander S Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds of RAS, Vavylova St. 28, B- 334, Moscow 119991, Russia
| | - Alexander F Shestakov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia; Department of Fundamental Physics & Chemical Engineering, M.V. Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Vladimir V Zarubaev
- St. Petersburg Pasteur Institute, Mira st. 14, St. Petersburg 197101, Russia.
| | - Pavel A Troshin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia; Zhengzhou Research Institute of HIT, Longyuan East 7th 26, Jinshui District, Zhengzhou, Henan Province 450003, China.
| |
Collapse
|
4
|
Oh H, Lee JS, Son P, Sim J, Park MH, Bang YE, Sung D, Lim JM, Choi WI. Highly Water-Dispersed Natural Fullerenes Coated with Pluronic Polymers as Novel Nanoantioxidants for Enhanced Antioxidant Activity. Antioxidants (Basel) 2024; 13:1240. [PMID: 39456493 PMCID: PMC11505577 DOI: 10.3390/antiox13101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Fullerene is a cosmic material with a buckyball-like structure comprising 60 carbon atoms. It has attracted significant interest because of its outstanding antioxidant, antiviral, and antibacterial properties. Natural fullerene (NC60) in shungite meets the demand of biomedical fields to scavenge reactive oxygen species in many diseases. However, its hydrophobicity and poor solubility in water hinder its use as an antioxidant. In this study, highly water-dispersed and stable Pluronic-coated natural fullerene nanoaggregates (NC60/Plu) were prepared from various Pluronic polymers. The water dispersity and stability of NC60 were compared and optimized based on the characteristics of Pluronic polymers including F68, F127, L35, P123, and L81. In particular, NC60 coated with Pluronic F127 at a weight ratio of 1 to 5 showed excellent antioxidant effects both in situ and in vitro. This suggests that the high solubilization of NC60 in Pluronic polymers increases its chance of interacting with reactive oxygen radicals and improves radical scavenging activity. Thus, the optimized NC60/PF127 may be a novel biocompatible antioxidant for treating various diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Panmo Son
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jooyoung Sim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| | - Min Hee Park
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| | - Young Eun Bang
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Republic of Korea;
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| | - Jong-Min Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| |
Collapse
|
5
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Bai X, Dong C, Shao X, Rahman FU, Hao H, Zhang Y. Research progress of fullerenes and their derivatives in the field of PDT. Eur J Med Chem 2024; 271:116398. [PMID: 38614061 DOI: 10.1016/j.ejmech.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
In contemporary studies, the predominant utilization of C60 derivatives pertains to their role as photosensitizers or agents that scavenge free radicals. The intriguing coexistence of these divergent functionalities has prompted extensive investigation into water-soluble fullerenes. The photodynamic properties of these compounds find practical applications in DNA cleavage, antitumor interventions, and antibacterial endeavors. Consequently, photodynamic therapy is progressively emerging as a pivotal therapeutic modality within the biomedical domain, owing to its notable levels of safety and efficacy. The essential components of photodynamic therapy encompass light of the suitable wavelength, oxygen, and a photosensitizer, wherein the reactive oxygen species generated by the photosensitizer play a pivotal role in the therapeutic mechanism. The remarkable ability of fullerenes to generate singlet oxygen has garnered significant attention from scholars worldwide. Nevertheless, the limited permeability of fullerenes across cell membranes owing to their low water solubility necessitates their modification to enhance their efficacy and utilization. This paper reviews the applications of fullerene derivatives as photosensitizers in antitumor and antibacterial fields for the recent years.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chungeng Dong
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xinle Shao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
7
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
8
|
Ma WB, Wang LG, Chen SR, Zhang X, Xuan J, Li F. Synthesis of spiro[indolenine]-methanofullerenes via Deoxofluor promoted deoxygenative cyclopropanation of 1,2-(3-indole)-fullerenols. Org Biomol Chem 2023; 21:9459-9462. [PMID: 37997156 DOI: 10.1039/d3ob01697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Deoxofluor-promoted intramolecular cyclopropanation of 1,2-(3-indole)fullerenols has been developed as a straightforward and efficient protocol for the synthesis of various spiro[indolenine]-methanofullerenes. This approach exhibits low cost, operational simplicity, and convenient conditions, and thus has potential application value.
Collapse
Affiliation(s)
- Wen-Bin Ma
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Long-Ge Wang
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Shou-Rui Chen
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Xiang Zhang
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Jun Xuan
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Fei Li
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| |
Collapse
|
9
|
Motuziuk O, Nozdrenko D, Prylutska S, Vareniuk I, Bogutska K, Braniuk S, Korotkyi O, Prylutskyy Y, Ritter U, Piosik J. The effect of C 60 fullerene on the mechanokinetics of muscle gastrocnemius contraction in chronically alcoholized rats. Heliyon 2023; 9:e18745. [PMID: 37554800 PMCID: PMC10404780 DOI: 10.1016/j.heliyon.2023.e18745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The C60 fullerene effect (oral administration at a dose of 1 mg kg-1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.
Collapse
Affiliation(s)
- Olexandr Motuziuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Dmytro Nozdrenko
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Svitlana Prylutska
- Department of Physiology, Plant Biochemistry and Bioenergetics, Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, 03041, Ukraine
| | - Igor Vareniuk
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Kateryna Bogutska
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Serhii Braniuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Olexandr Korotkyi
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Yuriy Prylutskyy
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, 98693, Germany
| | - Jacek Piosik
- Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307, Gdańsk, Poland
| |
Collapse
|
10
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
11
|
Mitchell I, Qiu L, Page A, Lamb LD, Ding F. Role of Graphitic Bowls in Temperature Dependent Fullerene Formation. J Phys Chem A 2022; 126:8955-8963. [DOI: 10.1021/acs.jpca.2c05855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Izaac Mitchell
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Alister Page
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales2308, Australia
| | - Lowell D. Lamb
- Broadcom, Ltd., 1320 Ridder Park Drive, San Jose, California95131, United States
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| |
Collapse
|
12
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
13
|
Guo Y, Wang Y, Chen H, Jiang W, Zhu C, Toufouki S, Yao S. A new deep eutectic solvent-agarose gel with hydroxylated fullerene as electrical “switch” system for drug release. Carbohydr Polym 2022; 296:119939. [DOI: 10.1016/j.carbpol.2022.119939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
|
14
|
Xu B, Ding Z, Hu Y, Zhang T, Shi S, Yu G, Qi X. Preparation and Evaluation of the Cytoprotective Activity of Micelles with DSPE-PEG-C60 as a Carrier Against Doxorubicin-Induced Cytotoxicity. Front Pharmacol 2022; 13:952800. [PMID: 35991873 PMCID: PMC9386048 DOI: 10.3389/fphar.2022.952800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
To deliver doxorubicin (DOX) with enhanced efficacy and safety in vivo, fullerenol-modified micelles were prepared with the amphiphilic polymer DSPE-PEG-C60 as a carrier, which was synthesized by linking C60(OH)22 with DSPE-PEG-NH2. Studies of its particle size, PDI, zeta potential, and encapsulation efficiency were performed. DOX was successfully loaded into the micelles, exhibiting a suitable particle size [97 nm, 211 nm, 260 nm, vector: DOX = 5:1, 10:1; 15:1 (W/W)], a negative zeta potential of around -30 mv, and an acceptable encapsulation efficiency [86.1, 95.4, 97.5%, vector: DOX = 5:1, 10:1; 15:1 (W/W)]. The release behaviors of DOX from DSPE-PEG-C60 micelles were consistent with the DSPE-PEG micelles, and it showed sustained release. There was lower cytotoxicity of DSPE-PEG-C60 micelles on normal cell lines (L02, H9c2, GES-1) than free DOX and DSPE-PEG micelles. We explored the protective role of DSPE-PEG-C60 on doxorubicin-induced cardiomyocyte damage in H9c2 cells, which were evaluated with a reactive oxygen species (ROS) assay kit, JC-1, and an FITC annexin V apoptosis detection kit for cellular oxidative stress, mitochondrial membrane potential, and apoptosis. The results showed that H9c2 cells exposed to DSPE-PEG-C60 micelles displayed decreased intracellular ROS, an increased ratio of red fluorescence (JC-1 aggregates) to green fluorescence (JC-1 monomers), and a lower apoptotic ratio than the control and DSPE-PEG micelle cells. In conclusion, the prepared DOX-loaded DSPE-PEG-C60 micelles have great promise for safe, effective tumor therapy.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongpeng Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hu
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical University, Ningbo, China
| | - Ting Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, School of Medicine, Zhejiang University, Shaoxing, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
How fullerene derivatives (FDs) act on therapeutically important targets associated with diabetic diseases. Comput Struct Biotechnol J 2022; 20:913-924. [PMID: 35242284 PMCID: PMC8861571 DOI: 10.1016/j.csbj.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Five proteins related to diabetic disease were selected from Protein Data Bank. Binding scores were calculated for five proteins with 169 fullerene derivatives. Correlation between drug-like descriptors and binding scores activity was examined. The contribution of descriptors to protein-ligand binding was demonstrated. The QSARs models for prediction of binding scores activity were built.
Fullerene derivatives (FDs) belong to a relatively new family of nano-sized organic compounds. They are widely applied in materials science, pharmaceutical industry, and (bio) medicine. This research focused on the study of FDs in terms of their potential inhibitory effect on therapeutic targets associated with diabetic disease, as well as analysis of protein–ligand binding in order to identify the key binding characteristics of FDs. Therapeutic drug compounds when entering the biological system usually inevitably encounter and interact with a vast variety of biomolecules that are responsible for many different functions in organisms. Protein biomolecules are the most important functional components and used in this study as target structures. The structures of proteins [(PDB ID: 1BMQ, 1FM6, 1GPB, 1H5U, 1US0)] belonging to the class of anti-diabetes targets were obtained from the Protein Data Bank (PDB). Protein binding activity data (binding scores) were calculated for the dataset of 169 FDs related to these five proteins. Subsequently, the resulting data were analyzed using various machine learning and cheminformatics methods, including artificial neural network algorithms for variable selection and property prediction. The Quantitative Structure-Activity Relationship (QSAR) models for prediction of binding scores activity were built up according to five Organization for Economic Co-operation and Development (OECD) principles. All the data obtained can provide important information for further potential use of FDs with different functional groups as promising medical antidiabetic agents. Binding scores activity can be used for ranking of FDs in terms of their inhibitory activity (pharmacological properties) and potential toxicity.
Collapse
|
16
|
Charykov NA, Keskinov VA, Petrov AV. Adducts of Lower Fullerenes and Amino Acids: Synthesis, Identification, and Quantum-Mechanical Modeling of Their Physicochemical Properties. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Different ways of synthesizing bis-, tris-, and octakis-adducts of C60 and C70 lower fullerenes are considered, and their yield and purity are described. The adducts are identified by physicochemical means: elemental analysis, IR, electron spectroscopy, Raman spectroscopy, HPLC, mass spectrometry, and complex thermal analysis. Their physicochemical properties are modeled using computers, density functional theory, and molecular dynamics at the atomic-molecular level.
Collapse
|
17
|
Stetska VO, Dovbynchuk TV, Makedon YS, Dziubenko NV. The effect of water-soluble pristine C60 fullerene on 6-OHDA-induced Parkinson’s disease in rats. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress is thought to be one of the mechanisms that leads to the dysfunction and degeneration of dopaminergic neurons in Parkinson’s disease pathogenesis and presumed to be underway during the prodromal phase. Therefore, therapy, which is effective against pre-motor symptoms, might be effective in preventing or delaying the development and progression of Parkinson’s disease. The aim of our study was to investigate the therapeutic efficiency of pristine C60 fullerene aqueous solution (C60FAS) during Parkinson’s disease in rats. The unilateral dopamine deficiency was induced in male Wistar rats (220–250 g) by stereotaxic microinjection of neurotoxin 6-hydroxydopamine (6-OHDA, 12 μg). C60FAS was injected to rats intraperitoneally daily for 10 days (0.65 mg/kg per day). The percentage of destroyed dopaminergic neurons was determined by the apomorphine test and by IHC staining of tyrosine hydroxylase-positive neurons in substantia nigra. We evaluated the rat body weight, the water and food intake, Open Field behavioural test, the level of biochemical antioxidant system, the activity of peritoneal macrophages. Levels of spontaneous and carbachol-stimulated colon motility were estimated by ballonographic method in vivo. C60FAS showed a positive tendency to increase the number of tyrosine hydroxylase-positive cells in the midbrain, which was associated with more profound improvement in apomorphine-rotation behaviour and slight relief of the anxiety level in Open Field test. Furthermore, C60FAS treatment increased the index of stimulated distal colon motor activity while it did not have a significant effect on water content in feces and total gastrointestinal transit time. C60FAS treatment did not affect water intake behaviour or body weight changes while it induced an increase of glutathione level and decrease activity of glutathione peroxidase in the brain as well as an increase in activity of peritoneal macrophages in 6-OHDA-Parkinson’s disease rats. These findings confirmed the potential therapeutic effectiveness of water-soluble pristine C60 fullerene in Parkinson’s disease pathogenesis, though there is ground for caution because of its systemic mild toxic effect.
Collapse
|
18
|
Permeation pathway of two hydrophobic carbon nanoparticles across a lipid bilayer. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Biochemical and tensometric analysis of C(60) fullerenes protective effect on the development of skeletal muscle fatigue. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Mikheev IV, Sozarukova MM, Izmailov DY, Kareev IE, Proskurnina EV, Proskurnin MA. Antioxidant Potential of Aqueous Dispersions of Fullerenes C 60, C 70, and Gd@C 82. Int J Mol Sci 2021; 22:5838. [PMID: 34072504 PMCID: PMC8199091 DOI: 10.3390/ijms22115838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
The antioxidant potential (capacity and activity) of aqueous fullerene dispersions (AFD) of non-functionalized C60, C70, and Gd@C82 endofullerene (in micromolar concentration range) was estimated based on chemiluminescence measurements of the model of luminol and generation of organic radicals by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP). The antioxidant capacity was estimated by the TRAP method, from the concentration of half-suppression, and from the suppression area in the initial period. All three approaches agree and show that the antioxidant capacity of AFDs increased in the order Gd@C82 < C70 < C60. Mathematical modeling of the long-term kinetics data was used for antioxidant activity estimation. The effect of C60 and C70 is found to be quenching of the excited product of luminol with ABAP-generated radical and not an actual antioxidant effect; quenching constants differ insignificantly. Apart from quenching with a similar constant, the AFD of Gd@C82 exhibits actual antioxidant action. The antioxidant activity in Gd@C82 is 300-fold higher than quenching constants.
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.S.); (M.A.P.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.S.); (M.A.P.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Dmitry Yu. Izmailov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Ivan E. Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Moscow, Russia;
| | | | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.S.); (M.A.P.)
| |
Collapse
|
21
|
Mitchell I, Qiu L, Lamb LD, Ding F. High Temperature Accelerated Stone-Wales Transformation and the Threshold Temperature of IPR-C 60 Formation. J Phys Chem A 2021; 125:4548-4557. [PMID: 34032443 DOI: 10.1021/acs.jpca.1c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Stone-Wales bond rotation isomerization of nonicosahedral C60 (C2v-C60) into isolated-pentagon rule following icosahedral C60 (Ih-C60 or IPR-C60) is a limiting step in the synthesis of Ih-C60. However, extensive previous studies indicate that the potential energy barrier of the Stone-Wales bond rotation is between 6 and 8 eV, extremely high to allow for bond rotation at the temperatures used to produce fullerenes conventionally. This is also despite data indicating a possible fullerene road mechanism that necessitates low-temperature annealing. However, these previous investigations often have limiting factors, such as using the harmonic approximation to determine free energies at high temperatures or considering only the reverse Ih-C60 to C2v-C60 transition as a basis. Indeed, when the difference in energy between Ih-C60 and C2v-C60 is accounted for, this barrier is generally reduced by ∼1.5 eV. Thus, utilizing the recently developed density functional tight binding metadynamics (DFTB-MTD) interface, the effects of temperature on the bond rotation in the conversion of C2v-C60 to Ih-C60 have been investigated. We found that Stone-Wales bond rotations are complex processes with both in-plane and out-of-plane transition states, and which transition path dominates depends on temperature. Our results clearly show that at temperatures of 2000 K, the free energy for a C2v-C60 to Ih-C60 transition is only ∼4.21 eV and further reduces to ∼3.77 eV at 3000 K. This translates to transition times of ∼971 μs at 2000 K and ∼34 ns at 3000 K, indicating that defect healing is a fast process at temperatures typical of arc jet or laser ablation experiments. Conversely, below ∼2000 K, bond rotation becomes prohibitively slow, putting a lower threshold limit on the temperature of fullerene formation and subsequent annealing.
Collapse
Affiliation(s)
- Izaac Mitchell
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Lowell D Lamb
- Broadcom Inc., 1320 Ridder Park Drive, San Jose, California 95131, United States
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Shytikov D, Shytikova I, Rohila D, Kulaga A, Dubiley T, Pishel I. Effect of Long-Term Treatment with C 60 Fullerenes on the Lifespan and Health Status of CBA/Ca Mice. Rejuvenation Res 2021; 24:345-353. [PMID: 33849306 DOI: 10.1089/rej.2020.2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several studies claimed C60 fullerenes as a prospective geroprotector drug due to their ability to capture free radicals effectively and caused a profound interest in C60 in life extension communities. Multiple additives are already sold for human consumption despite a small body of evidence supporting the beneficial effects of fullerenes on the lifespan. To test the effect of C60 fullerenes on lifespan and healthspan, we administered C60 fullerenes dissolved in virgin olive oil orally to 10-12 months old CBA/Ca mice of both genders for 7 months and assessed their survival. To uncover C60 and virgin olive effects, we established two control groups: mice treated with virgin olive oil (vehicle) and mice treated with drinking water. To measure healthspan, we conducted daily monitoring of health condition and lethality and monthly bodyweight measurements. We also assessed physical activity, glucose metabolism, and hematological parameters every 3 months. We did not observe health deterioration in the animals treated with C60 compared with the control groups. Treatment of mice with C60 fullerenes resulted in an increased lifespan of males and females compared with the olive oil-treated animals. The lifespan of C60-treated mice was similar to the mice treated with water. These results suggest that the lifespan-extending effect in C60-treated mice appears due to the protective effect of fullerenes in opposition to the negative effect of olive oil in CBA/Ca mice.
Collapse
Affiliation(s)
- Dmytro Shytikov
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.,International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| | - Iryna Shytikova
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.,International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| | - Deepak Rohila
- International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| | - Anton Kulaga
- International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France.,Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Tatiana Dubiley
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Iryna Pishel
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.,International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| |
Collapse
|
23
|
Semenov KN, Ivanova DA, Ageev SV, Petrov AV, Podolsky NE, Volochaeva EM, Fedorova EM, Meshcheriakov AA, Zakharov EE, Murin IV, Sharoyko VV. Evaluation of the C 60 biodistribution in mice in a micellar ExtraOx form and in an oil solution. Sci Rep 2021; 11:8362. [PMID: 33863918 PMCID: PMC8052328 DOI: 10.1038/s41598-021-87014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
The article is devoted to the study of the pharmacokinetics of fullerene C60 in oil and micellar forms, analysis of its content in blood, liver, lungs, kidneys, heart, brain, adrenal glands, thymus, testicles, and spleen. The highest accumulation of C60 was found in the liver and adrenal glands. As a result of the studies carried out, it was shown that the bioavailability of C60 in the micellar form is higher than that in an oil solution.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504. .,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, Russia, 197758.
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022.,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Nikita E Podolsky
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | | | | | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022.,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Egor E Zakharov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504. .,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, Russia, 197758.
| |
Collapse
|
24
|
Grohn KJ, Moyer BS, Wortel DC, Fisher CM, Lumen E, Bianchi AH, Kelly K, Campbell PS, Hagrman DE, Bagg RG, Clement J, Wolfe AJ, Basso A, Nicoletti C, Lai G, Provinciali M, Malavolta M, Moody KJ. C 60 in olive oil causes light-dependent toxicity and does not extend lifespan in mice. GeroScience 2021; 43:579-591. [PMID: 33123847 PMCID: PMC8110650 DOI: 10.1007/s11357-020-00292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022] Open
Abstract
C60 is a potent antioxidant that has been reported to substantially extend the lifespan of rodents when formulated in olive oil (C60-OO) or extra virgin olive oil (C60-EVOO). Despite there being no regulated form of C60-OO, people have begun obtaining it from online sources and dosing it to themselves or their pets, presumably with the assumption of safety and efficacy. In this study, we obtain C60-OO from a sample of online vendors, and find marked discrepancies in appearance, impurity profile, concentration, and activity relative to pristine C60-OO formulated in-house. We additionally find that pristine C60-OO causes no acute toxicity in a rodent model but does form toxic species that can cause significant morbidity and mortality in mice in under 2 weeks when exposed to light levels consistent with ambient light. Intraperitoneal injections of C60-OO did not affect the lifespan of CB6F1 female mice. Finally, we conduct a lifespan and health span study in males and females C57BL/6 J mice comparing oral treatment with pristine C60-EVOO and EVOO alone versus untreated controls. We failed to observe significant lifespan and health span benefits of C60-EVOO or EVOO supplementation compared to untreated controls, both starting the treatment in adult or old age. Our results call into question the biological benefit of C60-OO in aging.
Collapse
Affiliation(s)
- Kristopher J Grohn
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Brandon S Moyer
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Danique C Wortel
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Cheyanne M Fisher
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Ellie Lumen
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
- Betterhumans Inc., Gainesville, FL, USA
| | - Anthony H Bianchi
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Kathleen Kelly
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Paul S Campbell
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Douglas E Hagrman
- Department of Chemistry and Physical Sciences, State University of New York, Onondaga Community College, Syracuse, NY, 13215, USA
| | - Roger G Bagg
- BioSenex, Ltd., Lyndhurst, 1 Cranmer Street, Nottingham, Nottinghamshire, NG10 1NJ, UK
| | | | - Aaron J Wolfe
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Andrea Basso
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Cristina Nicoletti
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Giovanni Lai
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy.
| | - Kelsey J Moody
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| |
Collapse
|
25
|
Chen S, Yang WW, Hou HL, Li ZJ, Gao X. Reactions of [60]Fullerene with Acetone under Basic Condition: Nucleophilic Ring Opening of the [5,6]-Cyclopropane in C 60 and Formation of the Substituted Methano[60]Fulleroids. J Org Chem 2021; 86:4843-4848. [PMID: 33630594 DOI: 10.1021/acs.joc.0c02902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reactions of C60 with acetone were carried out under basic condition in the presence of 1.0 M TBAOH (tetra-n-butylammonium hydroxide) methanol solution and ArCH2Br (Ar = Ph or o-BrPh), where methano[60]fulleroids with a novel 1,1,4,9,9,25-configuration were obtained and structurally characterized by single crystal diffraction. The product was formed via the ring-opening reaction of the [5,6]-cyclopropane by the nucleophilic addition of MeO-, which is different from the reactions of other ketones reported previously.
Collapse
Affiliation(s)
- Si Chen
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Wei-Wei Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Hui-Lei Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Zong-Jun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Xiang Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
26
|
Sharoyko VV, Iurev GO, Postnov VN, Meshcheriakov AA, Ageev SV, Ivanova DA, Petrov AV, Luttsev MD, Nashchekin AV, Iamalova NR, Vasina LV, Solovtsova IL, Murin IV, Semenov KN. Biocompatibility of a nanocomposite based on Aerosil 380 and carboxylated fullerene C 60[C(COOH) 2] 3. J Biotechnol 2021; 331:83-98. [PMID: 33727085 DOI: 10.1016/j.jbiotec.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Silica is silicon dioxide, which, depending on the production method, can exist in various amorphous forms with varying specific surface area, particle size, pore volume and size, and, as a result, with different physicochemical and sorption characteristics. The presence of silanol groups on the surface of silicas provides the possibility of its further functionalisation. In addition, the developed specific surface of Aerosil allows to obtain composites with a high content of biologically active substances. In this work, we studied the biocompatibility of a composite based on Aerosil 380 and carboxylated fullerene C60[C(COOH)2]3, namely: haemolysis (spontaneous and photoinduced), platelet aggregation, binding to HSA, cyto- and genotoxicity, antiradical activity. Interest in the creation of this nanomaterial is due to the fact that carboxylated fullerenes have potential applications in various fields of biomedicine, including the ability to bind reactive oxygen species, inhibition of tumour development, inactivation of viruses and bacteria. The obtained composite can be used for the immobilisation of various drugs and the further development of drugs for theranostics.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Almazov National Medical Research Centre, 2 Akkuratova ulitsa, Saint Petersburg, 197341, Russia
| | - Viktor N Postnov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Michail D Luttsev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Alexei V Nashchekin
- Ioffe Institute, 26 Politekhnicheskaya ulitsa, Saint Petersburg, 194021, Russia
| | - Nailia R Iamalova
- Agrophysical Research Institute, 14 Grazhdanskii prospect, Saint Petersburg, 195220, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| |
Collapse
|
27
|
Gul G, Ileri-Ercan N. Fullerene translocation through peroxidized lipid membranes. RSC Adv 2021; 11:7575-7586. [PMID: 35423238 PMCID: PMC8694942 DOI: 10.1039/d1ra00272d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Recent cytotoxicity research suggests that fullerenes can enter the cell and cross the blood-brain barrier. However, the underlying toxicity mechanism behind the penetration of fullerenes through biological membranes is still not well understood. Here we perform coarse-grained molecular dynamics simulations to investigate the interactions of fullerenes and their polar derivatives (Janus) with model regular and peroxidized bilayers. We show that the translocation of fullerenes and their residence time in bulk water vary depending on the bilayer's peroxidation degree and fullerene polarity. The distribution of fullerenes inside the bilayer is mainly determined by the peroxidation degree and the saturation level of lipid acyl chains. The transport of pristine fullerenes through bilayers occurs at nano timescale while the complete diffusion may not be achieved for Janus fullerenes in micro timescale. As for the toxic response of fullerenes in terms of membrane damage, no mechanical disruption of model bilayers is observed throughout the studied simulation times.
Collapse
Affiliation(s)
- Gulsah Gul
- Department of Chemical Engineering, Bogazici University Istanbul Turkey
| | - Nazar Ileri-Ercan
- Department of Chemical Engineering, Bogazici University Istanbul Turkey
| |
Collapse
|
28
|
|
29
|
Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002797. [PMID: 33552863 PMCID: PMC7856897 DOI: 10.1002/advs.202002797] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in physiological and pathological processes. Studies on the regulation of ROS for disease treatments have caused wide concern, mainly involving the topics in ROS-regulating therapy such as antioxidant therapy triggered by ROS scavengers and ROS-induced toxic therapy mediated by ROS-elevation agents. Benefiting from the remarkable advances of nanotechnology, a large number of nanomaterials with the ROS-regulating ability are developed to seek new and effective ROS-related nanotherapeutic modalities or nanomedicines. Although considerable achievements have been made in ROS-based nanomedicines for disease treatments, some fundamental but key questions such as the rational design principle for ROS-related nanomaterials are held in low regard. Here, the design principle can serve as the initial framework for scientists and technicians to design and optimize the ROS-regulating nanomedicines, thereby minimizing the gap of nanomedicines for biomedical application during the design stage. Herein, an overview of the current progress of ROS-associated nanomedicines in disease treatments is summarized. And then, by particularly addressing these known strategies in ROS-associated therapy, several fundamental and key principles for the design of ROS-associated nanomedicines are presented. Finally, future perspectives are also discussed in depth for the development of ROS-associated nanomedicines.
Collapse
Affiliation(s)
- Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Medical UniversityTaiyuan030001China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangdong510700China
| |
Collapse
|
30
|
The effect of fullerenol C60 on skeletal muscle after lower limb ischemia reperfusion injury in streptozotocin-induced diabetic rats. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.756665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Effects of fullerene C 60 supplementation on gut microbiota and glucose and lipid homeostasis in rats. Food Chem Toxicol 2020; 140:111302. [PMID: 32234425 DOI: 10.1016/j.fct.2020.111302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
The effects of twelve weeks of supplementation with fullerene C60 olive/coconut oil solution on a broad spectrum of parameters in rats were examined. The tissue bioaccumulation of C60 was shown to be tissue-specific, with the liver, heart, and adrenal glands being the organs of the greatest, and the kidney, brain, and spleen being the organs of the smallest accumulation. C60 did not change aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase serum activities level, nor the damage of liver cells DNA. There were no effects of fullerene on prooxidant-antioxidant balance in the liver, kidney, spleen, heart, and brain, nor any visible harmful effects on the liver, heart, aorta, spleen, kidney, and small intestine histology. Fullerene changed the gut microbiota structure towards the bacteria that ameliorate lipid homeostasis, causing a serum triglycerides concentration decrease. However, C60 significantly increased the insulin resistance, serum ascorbate oxidation, and brain malondialdehyde and advanced oxidation protein products level. The deteriorative effects of C60 on the brain and serum could be attributed to the specific physicochemical composition of these tissues, potentiating the C60 aggregation or biotransformation as the key element of its pro-oxidative action.
Collapse
|
32
|
Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, Mahajna J, Milisav I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 2020; 173:113551. [PMID: 31185225 DOI: 10.1016/j.bcp.2019.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
|
33
|
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C 60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics 2019; 11:pharmaceutics11110586. [PMID: 31717305 PMCID: PMC6920783 DOI: 10.3390/pharmaceutics11110586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anatoliy Buchelnikov
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Nina Tverdokhleb
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
| | - Maxim Evstigneev
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
- Laboratory of Organic Synthesis and NMR Spectroscopy, Belgorod State University, 308015 Belgorod, Russia
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, Leontovicha Str. 9, 01030 Kyiv, Ukraine;
| | - Vsevolod Cherepanov
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Valeriy Yashchuk
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anton Naumovets
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Correspondence: ; Tel.: +49-(0)-3375-508-249
| |
Collapse
|
34
|
Bolshakova O, Borisenkova A, Suyasova M, Sedov V, Slobodina A, Timoshenko S, Varfolomeeva E, Golomidov I, Lebedev V, Aksenov V, Sarantseva S. In vitro and in vivo study of the toxicity of fullerenols С 60, С 70 and С 120О obtained by an original two step method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109945. [PMID: 31499967 DOI: 10.1016/j.msec.2019.109945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023]
Abstract
The toxicity of C60(OH)30, C70(OH)30, and C120O(OH)n fullerenols, prepared by a new original method, has been studied. This method allowed us to obtain high-purity fullerenols and eliminate the risks of synthesis of preparations containing insoluble fractions contaminated with impurities such as fullerenes not completely reacted by hydroxylation. All fullerenols were detected inside cultured cells. The MTT assay as well as the analysis of apoptosis and cell cycle showed that С60(ОН)30 and С70(OH)30 are non-toxic for cultured V79 и HeLa cells at concentrations exceeding physiological levels by an order of magnitude. С120O(OH)n caused low toxicity. Studies in Drosophila melanogaster showed that any preparations used did not result in a decreased lifespan or in behavior abnormalities in flies.
Collapse
Affiliation(s)
- Olga Bolshakova
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Alina Borisenkova
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Marina Suyasova
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Victor Sedov
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Aleksandra Slobodina
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Svetlana Timoshenko
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Elena Varfolomeeva
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Ilia Golomidov
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Vasily Lebedev
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia
| | - Victor Aksenov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Svetlana Sarantseva
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute, Gatchina 188300, Russia.
| |
Collapse
|
35
|
Yakupova LR, Sakhautdinov IM, Malikova RN, Safiullin RL. Effect of Fullerene Containing a Maleopimarimide Substituent on the Kinetics of Liquid-Phase Radical Chain Oxidation of Ethylbenzene. KINETICS AND CATALYSIS 2019. [DOI: 10.1134/s0023158419010130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res 2019; 143:186-203. [DOI: 10.1016/j.phrs.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
|
37
|
Melnyk MI, Ivanova IV, Dryn DO, Prylutskyy YI, Hurmach VV, Platonov M, Al Kury LT, Ritter U, Soloviev AI, Zholos AV. C 60 fullerenes selectively inhibit BK Ca but not K v channels in pulmonary artery smooth muscle cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:1-11. [PMID: 30981819 DOI: 10.1016/j.nano.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
Abstract
Possessing unique physical and chemical properties, C60 fullerenes are arising as a potential nanotechnological tool that can strongly affect various biological processes. Recent molecular modeling studies have shown that C60 fullerenes can interact with ion channels, but there is lack of data about possible effects of C60 molecule on ion channels expressed in smooth muscle cells (SMC). Here we show both computationally and experimentally that water-soluble pristine C60 fullerene strongly inhibits the large conductance Ca2+-dependent K+ (BKCa), but not voltage-gated K+ (Kv) channels in pulmonary artery SMC. Both molecular docking simulations and analysis of single channel activity indicate that C60 fullerene blocks BKCa channel pore in its open state. In functional tests, C60 fullerene enhanced phenylephrine-induced contraction of pulmonary artery rings by about 25% and reduced endothelium-dependent acetylcholine-induced relaxation by up to 40%. These findings suggest a novel strategy for biomedical application of water-soluble pristine C60 fullerene in vascular dysfunction.
Collapse
Affiliation(s)
- Mariia I Melnyk
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Irina V Ivanova
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Yuriy I Prylutskyy
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Vasyl V Hurmach
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maxim Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lina T Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Uwe Ritter
- Technical University of Ilmenau, Institute of Chemistry and Biotechnology, Ilmenau, Germany
| | - Anatoly I Soloviev
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Alexander V Zholos
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| |
Collapse
|
38
|
Wu SL, Li ZJ, Gao X. Dithiolation of [70]Fullerene with Aliphatic Primary Thiols in the Presence of n-Butylamine via Aerobic Oxidation Reaction. J Org Chem 2019; 84:3045-3054. [DOI: 10.1021/acs.joc.8b02462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng-Li Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Zong-Jun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Xiang Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
39
|
Van Guyse JFR, de la Rosa VR, Lund R, De Bruyne M, De Rycke R, Filippov SK, Hoogenboom R. Striking Effect of Polymer End-Group on C 60 Nanoparticle Formation by High Shear Vibrational Milling with Alkyne-Functionalized Poly(2-oxazoline)s. ACS Macro Lett 2019; 8:172-176. [PMID: 35619425 DOI: 10.1021/acsmacrolett.8b00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Buckminsterfullerene (C60) has a large potential for biomedical applications. However, the main challenge for the realization of its biomedical application potential is to overcome its extremely low water solubility. One approach is the coformulation with biocompatible water-soluble polymers, such as poly(2-oxazoline)s (PAOx), to form water-soluble C60 nanoparticles (NPs). However, uniform and defined NPs have only been obtained via a thin film hydration method or using cyclodextrin-functionalized PAOx. Here, we report the mechanochemical preparation of defined and stable C60:PAOx NPs by the introduction of a simple alkyne group as a polymer end-group. The presence of this alkyne bond is proven to be crucial in the mechanochemical synthesis of stable, defined sub-100 nm C60:PAOx NPs, with high C60 content up to 8.9 wt %.
Collapse
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Victor R. de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0371 Oslo, Norway
| | - Michiel De Bruyne
- Ghent University, Department of Biomedical Molecular Biology, 9052 Ghent, Belgium and VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9052 Ghent, Belgium
| | - Riet De Rycke
- Ghent University, Department of Biomedical Molecular Biology, 9052 Ghent, Belgium and VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9052 Ghent, Belgium
| | - Sergey K. Filippov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
40
|
Zavodovskyi DO, Zay SY, Matvienko TY, Prylutskyy YI, Nurishchenko NY, Paradizova SS, Bezuh LL, Ritter U, Scharff P. Influence of C(60) fullerene on the ischemia-reperfusion injury in the skeletal muscle of rat limb: mechanokinetic and biochemical analysis. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.06.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Mizuki K, Matsumoto S, Honda T, Maeda K, Toyama S, Iohara D, Hirayama F, Okazaki S, Takeshita K, Hatta T. Synthesis, Aggregation Behavior, and Photodynamic Properties of a Water-Soluble Fulleropyrrolidine Bearing an N-PEG Pyridinium Unit. Chem Pharm Bull (Tokyo) 2018; 66:822-825. [DOI: 10.1248/cpb.c18-00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Mizuki
- Department of Nanoscience, Faculty of Engineering, Sojo University
| | - Seigo Matsumoto
- Department of Nanoscience, Faculty of Engineering, Sojo University
| | - Taro Honda
- Department of Nanoscience, Faculty of Engineering, Sojo University
| | - Kouhei Maeda
- Department of Nanoscience, Faculty of Engineering, Sojo University
| | - Satoshi Toyama
- Department of Nanoscience, Faculty of Engineering, Sojo University
| | | | | | | | | | - Taizo Hatta
- Department of Nanoscience, Faculty of Engineering, Sojo University
| |
Collapse
|
42
|
Effect of C 60 fullerene nanoparticles on the diet-induced obesity in rats. Int J Obes (Lond) 2018; 42:1987-1998. [PMID: 30401827 DOI: 10.1038/s41366-018-0016-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/13/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obesity is a growing global health problem. Since increased oxidative stress is one of the key pathological mechanisms underpinning overweight and strongly correlates with progression of obesity-related complications we hypothesized that C60 fullerene nanoparticles, due to their strong antioxidant capacity, could be the promising therapeutic agent in the treatment of this disease. Here we investigated whether the C60 fullerenes can alleviate diet-induced obesity (DIO) and metabolic impairments associated with it. METHODS To determine the effect of C60 fullerenes on some nutritional and metabolic parameters, rats were fed either a normal diet (6.7% fat, 15.27 kJ·g-1) or a high-fat diet (38.8% fat, 28.71 kJ·g-1) for 70 days and were simultaneously treated per os with pristine C60 fullerene aqueous solution (C60FAS; 0.3 mg·kg-1 every other day) since the 28th day from the start of the experiment. RESULTS Rats fed with high fat diet had significantly increased body mass index (BMI), levels of insulin, glucose, glycosilated hemoglobin (HbA1c) and serum pro-inflammatory cytokines compared with control rats fed with low-fat chow. C60 fullerenes normalized the metabolic parameters and partially reduced BMI in DIO animals. Pro-inflammatory cytokines (IL-1b, IL-12, INFγ) were also decreased in serum of DIO rats treated with C60 fullerenes while anti-inflammatory cytokines (IL-4, IL-10) were at the control levels. High fat diet caused the increased level of oxidative stress products, and this was accompanied by decreased activity both the superoxide dismutase and catalase, whereas the administration of C60 fullerenes markedly decreased level of oxidative stress and enhanced antioxidant enzyme activities. CONCLUSION These data indicate that water-soluble pristine C60 fullerenes reduce chronic inflammation, restore glucose homeostasis as well as positively affects on prooxidant-antioxidant homeostasis. C60 fullerenes could be represented as a promising therapeutic agent in the treatment of obesity and its related complications.
Collapse
|
43
|
Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials. Toxicol In Vitro 2017; 45:128-133. [DOI: 10.1016/j.tiv.2017.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/02/2023]
|
44
|
|
45
|
Lin J, Zhong Z, Li Q, Tan Z, Lin T, Quan Y, Zhang D. Facile Low-Temperature Synthesis of Cellulose Nanocrystals Carrying Buckminsterfullerene and Its Radical Scavenging Property in Vitro. Biomacromolecules 2017; 18:4034-4040. [DOI: 10.1021/acs.biomac.7b01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinxian Lin
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Zhijing Zhong
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Qunling Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Tao Lin
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Dong Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| |
Collapse
|
46
|
Zhou Y, Li J, Ma H, Zhen M, Guo J, Wang L, Jiang L, Shu C, Wang C. Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35539-35547. [PMID: 28945341 DOI: 10.1021/acsami.7b08348] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemotherapy as a conventional cancer treatment suffers from critical systemic side effects, which is generally considered as the consequence of reactive oxygen species (ROS). Fullerenes have been widely studied for their excellent performance in radicals scavenging. In the present study, we report a solid-liquid reaction to synthesize fullerenols and their application as ROS scavengers in chemotherapy protection. The solid-liquid reaction is carried out without catalyst and suitable for mass production. The novel [60]/[70] fullerenols show a high stability in water, and the [70] fullerenols (C70-OH) exhibit radical scavenging capability superior to that of [60] fullerenols (C60-OH) in chemotherapy protection. The mouse model for single and reduplicative chemotherapy-induced liver injury demonstrates their protective effects in the chemotherapeutic process, which is confirmed by histopathological examinations and hematological index. The increase of the hepatic l-glutathione (GSH) level and downregulated expression of the cytochrome P-450 2E1 (CYP2E1) give the possible mechanism associated with the impact of fullerenols on the metabolism of doxorubicin. The novel fullerenols may be promising protective agents to satisfy the demand for future clinical chemotherapy.
Collapse
Affiliation(s)
- Yue Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Haijun Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Liping Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Li Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
47
|
Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M. Fullerene: biomedical engineers get to revisit an old friend. MATERIALS TODAY 2017; 20:460-480. [DOI: 10.1016/j.mattod.2017.03.017] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
48
|
Sastre J, Mannelli I, Reigada R. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study. Biochim Biophys Acta Gen Subj 2017; 1861:2872-2882. [PMID: 28780125 DOI: 10.1016/j.bbagen.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks. METHODS We report on a systematic coarse-grained molecular dynamics study of the interaction of fullerene molecules with simple model cell membranes. We have analyzed bilayers consisting of lipid species with different degrees of unsaturation and a variety of cholesterol fractions. Addition of fullerene particles to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the organization of the cell membrane. RESULTS Fullerene addition to lipid membranes modifies their structural properties like thickness, area and internal ordering of the lipid species, as well as dynamical aspects such as molecular diffusion and cholesterol flip-flop. Interestingly, we show that phase-segregating ternary lipid membranes accumulate fullerene molecules preferentially in the liquid-disordered domains promoting phase-segregation and domain alignment across the membrane. CONCLUSIONS Lipid membrane internal ordering determines the behavior and distribution of fullerene particle, and this, in turn, determines the influence of fullerene on the membrane. Lipid membranes are good solvents of fullerene molecules, and in particular those with low internal ordering. GENERAL SIGNIFICANCE Preference of fullerene molecules to be dissolved in the more disordered hydrophobic regions of a lipid bilayer and the consequent alteration of its phase behavior may have important consequences on the activity of biological cell membranes and on the bioconcentration of fullerene in living organisms.
Collapse
Affiliation(s)
- Judit Sastre
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, c/Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain
| | - Ilaria Mannelli
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ramon Reigada
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, c/Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain; Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain.
| |
Collapse
|
49
|
Sutradhar S, Patnaik A. Structure and Dynamics of a N-Methylfulleropyrrolidine-Mediated Gold Nanocomposite: A Spectroscopic Ruler. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21921-21932. [PMID: 28593769 DOI: 10.1021/acsami.7b02640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A mechanistic understanding of the structure and dynamics of a chemically tunable N-methylfulleropyrrolidine (8-NMFP)-assisted gold nanocomposite and its aggregation via a controllable interparticle interaction is reported as a function of the molar ratio and pH of the medium. Electronic structure calculations adopting density functional theory methods implied electrostatic interactions to play a dominant role between 8-NMFP and citrate-capped gold nanoparticles. MM+ molecular mechanics force field computations revealed intermolecular gold-gold interactions, contributing toward the formation of spherical composite aggregates. Corroborating these, optical absorption spectra showed the usual surface plasmon band along with a higher-wavelength feature at ∼600-650 nm, indicative of the aggregated nanocomposite. pH-controlled reversible tuning of the plasmonic features in the composite was evident in a pH interval ∼5-6.8, revealing prevalent interparticle electrostatic interactions. In addition, photoluminescence (PL) and time-correlated single-photon counting studies revealed a strong nanocomposite interaction with a pure fluorescent dye, Rhodamine B, indicating excitation energy transfer from the dye to the composite. The dye upon interaction with the nanocomposite showed a significant quenching of its PL intensity and shortening of lifetime. Energy coupling between the metal nanoparticle composite and the emitting molecular dipole resulted in a long-range surface energy transfer (SET) from the donor dye to the surface plasmon modes of the nanoparticle following a donor-acceptor distance dependence of 1/r4. This molecular beacon with correlation between the nanoscale structure and the nonradiative nanometal SET can be used as a spectroscopic/molecular ruler in probing advanced functional materials.
Collapse
Affiliation(s)
- Sanjeeb Sutradhar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - Archita Patnaik
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
50
|
Mateker WR, McGehee MD. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603940. [PMID: 28004854 DOI: 10.1002/adma.201603940] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Indexed: 05/23/2023]
Abstract
Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.
Collapse
|