1
|
Neubert TJ, Hielscher MM, Walter K, Schröter CM, Stage M, Rosencrantz RR, Panis F, Rompel A, Balasubramanian K, Waldvogel SR, Börner HG. Electrosynthesis of Mussel-inspired Adhesive Polymers as a Novel Class of Transient Enzyme Stabilizers. Angew Chem Int Ed Engl 2025:e202419684. [PMID: 39743873 DOI: 10.1002/anie.202419684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92 % conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes. The electrochemical activation yields quinone-solutions, which are free of undesired reactive compounds and eliminates the challenging step of isolating the reactive quinones. The DiDOPA quinones were employed in polyaddition reactions with multi-thiols, forming oligomers that functioned as transient enzyme stabilizers (TES). These TCC-TES-additives improved the thermal stability and the activity of tyrosinase in heat stress assays.
Collapse
Affiliation(s)
- Tilmann J Neubert
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Unter den Linden 6, 10117, Berlin, Germany
| | - Maximilian M Hielscher
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Keven Walter
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| | - Carolin M Schröter
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| | - Marion Stage
- Fraunhofer Institute for Applied Polymer Research IAP, Life Science & Bioprocesses, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Ruben R Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Life Science & Bioprocesses, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
- Brandenburg University of Technology BTU, Institute for Materials Chemistry, Chair of Biofunctional Polymermaterials, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Kannan Balasubramanian
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Unter den Linden 6, 10117, Berlin, Germany
| | - Siegfried R Waldvogel
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| |
Collapse
|
2
|
Liu C, Xu W, Song X, Tian W, Liu F, Wang F. A Nanotheranostic Agent for Synergistic Antitumor Chemo/Phototherapy Prepared by Paclitaxel-Induced Self-Assembly of PEGylated Human Serum Albumin with Prolonged Circulation. ACS OMEGA 2024; 9:51062-51072. [PMID: 39758671 PMCID: PMC11696392 DOI: 10.1021/acsomega.4c05986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
The integration of different therapies to enhance the efficacy and minimize adverse reactions has become popular recently. This approach leverages the complementary mechanisms of action of different treatments, which can lead to better therapeutic outcomes and reduced side effects. Human serum albumin (HSA) exhibits excellent drug loading ability and is often used for biomimetic tumor delivery in multidrug nanocarriers. However, albumin nanocarriers are often unstable with a short plasma half-life. Therefore, a nanotheranostic agent for synergistic antitumor chemo/phototherapy was designed to improve HSA's pharmacokinetic properties, including prolonged circulation. Cys34-specifically PEGylated HSA (PEG-cys34HSA) was used as the nanocarrier, hydrophobic paclitaxel (PTX) served as the chemotherapeutic drug and self-assembly inducer of nanoparticles (NPs), and near-infrared dye indocyanine green (ICG) was utilized for phototherapy and fluorescence imaging. PEGylation with 20 kDa polyethylene glycol (PEG20kD) promoted the formation of uniform and regular NPs more effectively than PEG5kD. PEG20kD also enhanced the particle size, drug loading, and encapsulation efficiency. Moreover, PEG20kD significantly enhanced tumor targeting without hindering endocytosis, transport, and release of NPs. PEG20kD-cys34HSA/PTX/ICG-mediated combination therapy exhibited synergistic inhibitory effects on tumor growth both in vitro and in vivo. Thus, PEG20kD-cys34HSA shows potential as an alternative nanocarrier. This study provides the foundation for future investigations into PEG-modified nanocarriers and comprehensive tumor treatment.
Collapse
Affiliation(s)
- Changsong Liu
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenjia Xu
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinlei Song
- Department
of Pharmacy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Weilu Tian
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Fuyan Liu
- School
of Biological Sciences and Technology, University
of Jinan, Jinan 250022, China
| | - Fengshan Wang
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Wan C, Yang D, An Y, Kong L, Zhou Z, Tang L, Zhang Z, Dai Y, Wang R. Tunable Activated Esters Enable Lysine-Selective Protein Labeling and Profiling. Anal Chem 2024; 96:18377-18383. [PMID: 39509607 DOI: 10.1021/acs.analchem.4c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lysine residues on protein surfaces are abundant and often found in enzyme active sites, making them critical targets for studying undruggable proteins. However, the varied microenvironment surrounding lysine residues results in a wide range of pKa values, complicating site-specific covalent binding. In this study, we address the challenges posed by the diverse reactivity of amino side chains by modulating the amide reaction activity of heteroaromatic activated esters. By fine-tuning the type, position, and number of heteroatoms, we successfully rationalized the regulation of their amide reaction activity, leading to the design of probes for selective lysine labeling within the proteome for profiling purposes. Systematic optimization of these esters' reactivity and selectivity has yielded a series of effective probes suitable for both in vitro and cellular applications. These findings significantly enhance our understanding of protein functions and mechanisms, facilitated by the precise identification and analysis of protein labeling and profiling.
Collapse
Affiliation(s)
- Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, 510230 Guangzhou, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Lingwei Kong
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, P. R. China
| | - Li Tang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Zhe Zhang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Yaohong Dai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
4
|
Lin Z, Liu B, Lu M, Wang Y, Ren X, Liu Z, Luo C, Shi W, Zou X, Song X, Tang F, Huang H, Huang W. Controlled Reversible N-Terminal Modification of Peptides and Proteins. J Am Chem Soc 2024; 146:23752-23763. [PMID: 39143892 DOI: 10.1021/jacs.4c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A reversible modification strategy enables a switchable cage/decage process of proteins with an array of applications for protein function research. However, general N-terminal selective reversible modification strategies which present site selectivity are specifically limited. Herein, we report a general reversible modification strategy compatible with 20 canonical amino acids at the N-terminal site by the palladium-catalyzed cinnamylation of native peptides and proteins under biologically relevant conditions. This approach broadens the substrate adaptability of N-terminal modification of proteins and shows a potential impact on the more challenging protein substrates such as antibodies. In the presence of 1,3-dimethylbarbituric acid, palladium-catalyzed deconjugation released native peptides and proteins efficiently. Harnessing the reversible nature of this protocol, practical applications were demonstrated by precise function modulation of antibodies and traceless enrichment of the protein-of-interest for proteomics analysis. This novel on/off strategy working on the N-terminus will provide new opportunities in chemical biology and medicinal research.
Collapse
Affiliation(s)
- Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoxi Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Caili Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Amiri A, Abedanzadeh S, Davaeil B, Shaabani A, Moosavi-Movahedi AA. Protein click chemistry and its potential for medical applications. Q Rev Biophys 2024; 57:e6. [PMID: 38619322 DOI: 10.1017/s0033583524000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.
Collapse
Affiliation(s)
- Ahmad Amiri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Shaabani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
7
|
Liu B, Rodriguez J, J Kilgallon L, Wang W, Wang Y, Wang A, Dai Y, Nguyen HVT, Pentelute BL, Johnson JA. An organometallic swap strategy for bottlebrush polymer-protein conjugate synthesis. Chem Commun (Camb) 2024; 60:4238-4241. [PMID: 38529790 PMCID: PMC11008127 DOI: 10.1039/d4cc00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Polymer-protein bioconjugation offers a powerful strategy to alter the physical properties of proteins, and various synthetic polymer compositions and architectures have been investigated for this purpose. Nevertheless, conjugation of molecular bottlebrush polymers (BPs) to proteins remains an unsolved challenge due to the large size of BPs and a general lack of methods to transform the chain ends of BPs into functional groups suitable for bioconjugation. Here, we present a strategy to address this challenge in the context of BPs prepared by "graft-through" ring-opening metathesis polymerization (ROMP), one of the most powerful methods for BP synthesis. Quenching ROMP of PEGylated norbornene macromonomers with an activated enyne terminator facilitates the transformation of the BP Ru alkylidene chain ends into Pd oxidative addition complexes (OACs) for facile bioconjugation. This strategy is shown to be effective for the synthesis of two BP-protein conjugates (albumin and ERG), setting the stage for a new class of BP-protein conjugates for future therapeutic and imaging applications.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Yuyan Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Aiden Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Yutong Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Hung V-T Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology Cambridge, MA, 02142, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology Cambridge, MA, 02142, USA
| |
Collapse
|
8
|
Li C, Li T, Tian X, An W, Wang Z, Han B, Tao H, Wang J, Wang X. Research progress on the PEGylation of therapeutic proteins and peptides (TPPs). Front Pharmacol 2024; 15:1353626. [PMID: 38523641 PMCID: PMC10960368 DOI: 10.3389/fphar.2024.1353626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
With the rapid advancement of genetic and protein engineering, proteins and peptides have emerged as promising drug molecules for therapeutic applications. Consequently, there has been a growing interest in the field of chemical modification technology to address challenges associated with their clinical use, including rapid clearance from circulation, immunogenicity, physical and chemical instabilities (such as aggregation, adsorption, deamination, clipping, oxidation, etc.), and enzymatic degradation. Polyethylene glycol (PEG) modification offers an effective solution to these issues due to its favorable properties. This review presents recent progress in the development and application of PEGylated therapeutic proteins and peptides (TPPs). For this purpose, firstly, the physical and chemical properties as well as classification of PEG and its derivatives are described. Subsequently, a detailed summary is provided on the main sites of PEGylated TPPs and the factors that influence their PEGylation. Furthermore, notable instances of PEG-modified TPPs (including antimicrobial peptides (AMPs), interferon, asparaginase and antibodies) are highlighted. Finally, we propose the chemical modification of TPPs with PEG, followed by an analysis of the current development status and future prospects of PEGylated TPPs. This work provides a comprehensive literature review in this promising field while facilitating researchers in utilizing PEG polymers to modify TPPs for disease treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xinya Tian
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
9
|
Beutel J, Tannig P, Di Vincenzo R, Schumacher T, Überla K, Eichler J. Bind&Bite: covalently stabilized heterodimeric coiled-coil peptides for the site-selective, cysteine-free chemical modification of proteins. RSC Chem Biol 2023; 4:794-803. [PMID: 37799587 PMCID: PMC10549240 DOI: 10.1039/d3cb00122a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 10/07/2023] Open
Abstract
Ensuring site-selectivity in covalent chemical modification of proteins is one of the major challenges in chemical biology and related biomedical disciplines. Most current strategies either utilize the selectivity of proteases, or are based on reactions involving the thiol groups of cysteine residues. We have modified a pair of heterodimeric coiled-coil peptides to enable the selective covalent stabilization of the dimer without using enzymes or cysteine moieties. Fusion of one peptide to the protein of interest, in combination with linking the desired chemical modification to the complementary peptide, facilitates stable, regio-selective attachment of the chemical moiety to the protein, through the formation of the covalently stabilized coiled-coil. This ligation method, which is based on the formation of isoeptide and squaramide bonds, respectively, between the coiled-coil peptides, was successfully used to selectively modify the HIV-1 envelope glycoprotein. Covalent stabilization of the coiled-coil also facilitated truncation of the peptides by one heptad sequence. Furthermore, selective addressing of individual positions of the peptides enabled the generation of mutually selective coiled-coils. The established method, termed Bind&Bite, can be expected to be beneficial for a range of biotechnological and biomedical applications, in which chemical moieties need to be stably attached to proteins in a site-selective fashion.
Collapse
Affiliation(s)
- Jannis Beutel
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg (FAU) Erlangen Germany
- Institut Virion-Serion GmbH Würzburg Germany
| | - Pierre Tannig
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| | - Riccardo Di Vincenzo
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| | | | - Klaus Überla
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| |
Collapse
|
10
|
Nisavic M, Wørmer GJ, Nielsen CS, Jeppesen SM, Palmfeldt J, Poulsen TB. oxSTEF Reagents Are Tunable and Versatile Electrophiles for Selective Disulfide-Rebridging of Native Proteins. Bioconjug Chem 2023. [PMID: 37201197 DOI: 10.1021/acs.bioconjchem.3c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Site-selective disulfide rebridging has emerged as a powerful strategy to modulate the structural and functional properties of proteins. Here, we introduce a novel class of electrophilic reagents, designated oxSTEF, that demonstrate excellent efficiency in disulfide rebridging via double thiol exchange. The oxSTEF reagents are prepared using an efficient synthetic sequence which may be diverted to obtain a range of derivatives allowing for tuning of reactivity or steric bulk. We demonstrate highly selective rebridging of cyclic peptides and native proteins, such as human growth hormone, and the absence of cross-reactivity with other nucleophilic amino acid residues. The oxSTEF conjugates undergo glutathione-mediated disintegration under tumor-relevant glutathione concentrations, which highlights their potential for use in targeted drug delivery. Finally, the α-dicarbonyl motif of the oxSTEF reagents enables "second phase" oxime ligation, which furthermore increases the thiol stability of the conjugates significantly.
Collapse
Affiliation(s)
- Marija Nisavic
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Department of Clinical Medicine─Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus N, Denmark
| | - Gustav J Wørmer
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Cecilie S Nielsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Sofie M Jeppesen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine─Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus N, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Zhou S, Wei Y. Kaleidoscope megamolecules synthesis and application using self-assembly technology. Biotechnol Adv 2023; 65:108147. [PMID: 37023967 DOI: 10.1016/j.biotechadv.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/20/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The megamolecules with high ordered structures play an important role in chemical biology and biomedical engineering. Self-assembly, a long-discovered but very appealing technique, could induce many reactions between biomacromolecules and organic linking molecules, such as an enzyme domain and its covalent inhibitors. Enzyme and its small-molecule inhibitors have achieved many successes in medical application, which realize the catalysis process and theranostic function. By employing the protein engineering technology, the building blocks of enzyme fusion protein and small molecule linker can be assembled into a novel architecture with the specified organization and conformation. Molecular level recognition of enzyme domain could provide both covalent reaction sites and structural skeleton for the functional fusion protein. In this review, we will discuss the range of tools available to combine functional domains by using the recombinant protein technology, which can assemble them into precisely specified architectures/valences and develop the kaleidoscope megamolecules for catalytic and medical application.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
12
|
Harel O, Jbara M. Chemical Synthesis of Bioactive Proteins. Angew Chem Int Ed Engl 2023; 62:e202217716. [PMID: 36661212 DOI: 10.1002/anie.202217716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.
Collapse
Affiliation(s)
- Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
13
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
14
|
Zhang Y, Yang M, Wu X, Deng F, Yin X, Ma R, Shi L. Glucose-Responsive Nanochaperones Mediate Exendin-4 Delivery for Enhancing Therapeutic Effects. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44211-44221. [PMID: 36153949 DOI: 10.1021/acsami.2c13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exendin-4 (Ex-4) is a promising therapeutic peptide for the clinical treatment of type 2 diabetes, but its instability and immunogenicity result in a short circulating half-life and low bioavailability, which severely limit its clinical application. Here, complex micelles with 4-carboxy-3-fluorophenylboronic acid (FPBA)-modified and positively charged hydrophobic domains on the surface were devised as nanochaperones to mediate the delivery of Ex-4. The nanochaperones can bind Ex-4 on the surface via the synergy of electrostatic and hydrophobic interactions, leading to efficient loading and stabilization of Ex-4. More importantly, the immunogenic site of Ex-4 was shielded by the nanochaperones, thereby effectively reducing the immune clearance and prolonging the half-life. Hyperglycemia-triggered release of Ex-4 was achieved by the hydrophobic to the hydrophilic transformation of the FPBA-modified domains and the introduced negative charge because of the binding of glucose by FPBA. The Ex-4-loaded nanochaperones exhibited an enhanced therapeutic effect on type 2 diabetic mice.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Menglin Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xu Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
| |
Collapse
|
15
|
Joaquin D, Mansfield SA, Chanthakhoun JC, LeSueur AK, Blackburn TA, Castle SL. Synthesis and Studies of Bulky Cycloalkyl α,β-Dehydroamino Acids that Enhance Proteolytic Stability. Org Lett 2022; 24:5329-5333. [PMID: 35839437 PMCID: PMC10243721 DOI: 10.1021/acs.orglett.2c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new bulky cycloalkyl α,β-dehydroamino acids (ΔAAs) have been designed and synthesized. Each residue enhances the rigidity of model peptides and their stability to proteolysis, with larger ring sizes exhibiting greater effects. Peptides containing bulky cycloalkyl ΔAAs are inert to conjugate addition by a nucleophilic thiol. The results suggest that these residues will be effective tools for improving the proteolytic stability of bioactive peptides.
Collapse
Affiliation(s)
- Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel A Mansfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Joseph C Chanthakhoun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Austin K LeSueur
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tiffani A Blackburn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
16
|
Navarro RS, Huang MS, Roth JG, Hubka KM, Long CM, Enejder A, Heilshorn SC. Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology. Adv Healthc Mater 2022; 11:e2200011. [PMID: 35373510 PMCID: PMC9262823 DOI: 10.1002/adhm.202200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/20/2022] [Indexed: 12/20/2022]
Abstract
Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin-like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide-containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide-modified ELPs are crosslinked into hydrogels with bicyclononyne-modified hyaluronic acid (HA-BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100-1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness.
Collapse
Affiliation(s)
- Renato S Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kelsea M Hubka
- Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chris M Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Kemp E, Palomäki T, Ruuth IA, Boeva ZA, Nurminen TA, Vänskä RT, Zschaechner LK, Pérez AG, Hakala TA, Wardale M, Haeggström E, Bobacka J. Influence of enzyme immobilization and skin-sensor interface on non-invasive glucose determination from interstitial fluid obtained by magnetohydrodynamic extraction. Biosens Bioelectron 2022; 206:114123. [DOI: 10.1016/j.bios.2022.114123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 01/07/2023]
|
18
|
Di Trani CA, Cirella A, Arrizabalaga L, Fernandez-Sendin M, Bella A, Aranda F, Melero I, Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:107-141. [PMID: 35777862 DOI: 10.1016/bs.ircmb.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
19
|
Malik AA, Ara T. An efficient, catalyst and solvent free Staudinger phosphite reaction for the synthesis of phosphoramidates under mild conditions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asif A. Malik
- Department of Chemistry, National Institute of Technology (NIT), Srinagar, India
| | - Tabassum Ara
- Department of Chemistry, National Institute of Technology (NIT), Srinagar, India
| |
Collapse
|
20
|
Qiao Q, Cai L, Shao Q. Molecular Simulations of Zwitterlation-induced Conformation and Dynamics Variation of Glucagon-like Peptide-1 and Insulin. J Mater Chem B 2022; 10:2490-2496. [DOI: 10.1039/d1tb02561a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic materials have shown their ability to improve the circulation time and stability of proteins. Zwitterionic peptides present unique potential because genetic technology can fuse them to any wild-type protein....
Collapse
|
21
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
22
|
Reddi RN, Rogel A, Resnick E, Gabizon R, Prasad PK, Gurwicz N, Barr H, Shulman Z, London N. Site-Specific Labeling of Endogenous Proteins Using CoLDR Chemistry. J Am Chem Soc 2021; 143:20095-20108. [PMID: 34817989 PMCID: PMC8662641 DOI: 10.1021/jacs.1c06167] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Chemical modifications
of native proteins can affect their stability,
activity, interactions, localization, and more. However, there are
few nongenetic methods for the installation of chemical modifications
at a specific protein site in cells. Here we report a covalent ligand
directed release (CoLDR) site-specific labeling strategy, which enables
the installation of a variety of functional tags on a target protein
while releasing the directing ligand. Using this approach, we were
able to label various proteins such as BTK, K-RasG12C,
and SARS-CoV-2 PLpro with different tags. For BTK we have
shown selective labeling in cells of both alkyne and fluorophores
tags. Protein labeling by traditional affinity methods often inhibits
protein activity since the directing ligand permanently occupies the
target binding pocket. We have shown that using CoLDR chemistry, modification
of BTK by these probes in cells preserves its activity. We demonstrated
several applications for this approach including determining the half-life
of BTK in its native environment with minimal perturbation, as well
as quantification of BTK degradation by a noncovalent proteolysis
targeting chimera (PROTAC) by in-gel fluorescence. Using an environment-sensitive
“turn-on” fluorescent probe, we were able to monitor
ligand binding to the active site of BTK. Finally, we have demonstrated
efficient CoLDR-based BTK PROTACs (DC50 < 100 nM), which
installed a CRBN binder onto BTK. This approach joins very few available
labeling strategies that maintain the target protein activity and
thus makes an important addition to the toolbox of chemical biology.
Collapse
Affiliation(s)
- Rambabu N Reddi
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Resnick
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ronen Gabizon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Pragati Kishore Prasad
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Gurwicz
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
23
|
Li M, Blum NT, Wu J, Lin J, Huang P. Weaving Enzymes with Polymeric Shells for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008438. [PMID: 34197008 DOI: 10.1002/adma.202008438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Enzyme therapeutics have received increasing attention due to their high biological specificity, outstanding catalytic efficiency, and impressive therapeutic outcomes. Protecting and delivering enzymes into target cells while retaining enzyme catalytic efficiency is a big challenge. Wrapping of enzymes with rational designed polymer shells, rather than trapping them into large nanoparticles such as liposomes, have been widely explored because they can protect the folded state of the enzyme and make post-functionalization easier. In this review, the methods for wrapping up enzymes with protective polymer shells are mainly focused on. It is aimed to provide a toolbox for the rational design of polymeric enzymes by introducing methods for the preparation of polymeric enzymes including physical adsorption and chemical conjugation with specific examples of these conjugates/hybrid applications. Finally, a conclusion is drawn and key points are emphasized.
Collapse
Affiliation(s)
- Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
24
|
Dirauf M, Fritz N, Gottschaldt M, Weber C, Schubert US. Poly(2-ethyl-2-oxazoline) Featuring a Central Amino Moiety. Macromol Rapid Commun 2021; 42:e2100132. [PMID: 33960561 DOI: 10.1002/marc.202100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Indexed: 11/08/2022]
Abstract
The incorporation of an amino group into a bifunctional initiator for the cationic ring-opening polymerization (CROP) is achieved in a two-step reaction. Detailed kinetic studies using 2-ethyl-2-oxazoline demonstrate the initiators' eligibility for the CROP yielding well-defined polymers featuring molar masses of about 2000 g mol-1 . Deprotection of the phthalimide moiety subsequent to polymerization enables the introduction of a cyclooctyne group in central position of the polymer which is further exploited in a strain-promoted alkyne-azide click reaction (SpAAC) with a Fmoc-protected azido lysine representing a commonly used binding motif for site specific polymer-protein/peptide conjugation. In-depth characterization via electrospray ionization mass spectrometry (ESI) confirms the success of all post polymerization modification steps.
Collapse
Affiliation(s)
- Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Nicole Fritz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
25
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
26
|
Kuan SL, Raabe M. Solid-Phase Protein Modifications: Towards Precision Protein Hybrids for Biological Applications. ChemMedChem 2021; 16:94-104. [PMID: 32667697 PMCID: PMC7818443 DOI: 10.1002/cmdc.202000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins have attracted increasing attention as biopharmaceutics and diagnostics due to their high specificity, biocompatibility, and biodegradability. The biopharmaceutical sector in particular is experiencing rapid growth, which has led to an increase in the production and sale of protein drugs and diagnostics over the last two decades. Since the first-generation biopharmaceutics dominated by native proteins, both recombinant and chemical technologies have evolved and transformed the outlook of this rapidly developing field. This review article presents updates on the fabrication of covalent and supramolecular fusion hybrids, as well as protein-polymer hybrids using solid-phase approaches that hold great promise for preparing protein hybrids with precise control at the macromolecular level to incorporate additional features. In addition, the applications of the resultant protein hybrids in medicine and diagnostics are highlighted where possible.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marco Raabe
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
27
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Sun J, Wu J, Jin H, Ying T, Jin W, Fan M, Zhou J, Chen H, Jin L, Zhou J. Structure-guided design, generation, and biofunction of PEGylated fibroblast growth factor 2 variants for wound healing. NANOSCALE 2020; 12:18200-18213. [PMID: 32856665 DOI: 10.1039/d0nr05999d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibroblast growth factor 2 (FGF2) plays an important role in multiple physiological functions such as tissue repair. However, FGF2 has a short half-life in vivo due to protease degradation, thus limiting its clinical application. Traditional PEGylation has typically focused on the N-terminal α-amino group of FGF2. These modifications do not consider potential effects on protein function or structure, and sometimes lead to decreased bioactivity. In this study, we generated three PEGylated FGF2 variants based on the structure of the FGF2-FGFR-heparin ternary complex via gene mutation and PEGylation, and investigated the effects of these PEGylated sites on protein stability and bioactivity. Compared with native FGF2, all PEG-FGF2 conjugates exhibited significantly improved stability. Conjugates PEGylated at a site separated from both binding regions more effectively promoted proliferation, migration and angiogenesis than FGF2 in vitro, and exhibited excellent wound healing activity in vivo, making these conjugates potential therapeutic candidates for wound healing. Computer-assisted modification based on structure reveals the detailed structural characteristics of proteins, allowing efficient protein modification for improved stability and activity. This structure-guided PEGylation offers a more reliable modification strategy and should be applied for the rational design of protein-based therapeutics.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiamin Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Jin
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Te Ying
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wei Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Miaojuan Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianhui Zhou
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Hui Chen
- Department of neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jie Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Tamshen K, Wang Y, Jamieson SM, Perry JK, Maynard HD. Genetic Code Expansion Enables Site-Specific PEGylation of a Human Growth Hormone Receptor Antagonist through Click Chemistry. Bioconjug Chem 2020; 31:2179-2190. [PMID: 32786367 PMCID: PMC8291075 DOI: 10.1021/acs.bioconjchem.0c00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.
Collapse
Affiliation(s)
- Kyle Tamshen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yue Wang
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
| | - Stephen M.F. Jamieson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
30
|
Abstract
Abstract
Site-specific protein conjugation is a critical step in the generation of unique protein analogs for a range of basic research and therapeutic developments. Protein transformations must target a precise residue in the presence of a plethora of functional groups to obtain a well-characterized homogeneous product. Competing reactive residues on natural proteins render rapid and selective conjugation a challenging task. Organometallic reagents have recently emerged as a powerful strategy to achieve site-specific labeling of a diverse set of biopolymers, due to advances in water-soluble ligand design, high reaction rate, and selectivity. The thiophilic nature of various transition metals, especially soft metals, makes cysteine an ideal target for these reagents. The distinctive reactivity and selectivity of organometallic-based reactions, along with the unique reactivity and abundancy of cysteine within the human proteome, provide a powerful platform to modify native proteins in aqueous media. These reactions often provide the modified proteins with a stable linkage made from irreversible cross-coupling steps. Additionally, transition metal reagents have recently been applied for the decaging of cysteine residues in the context of chemical protein synthesis. Orthogonal cysteine protecting groups and functional tags are often necessary for the synthesis of challenging proteins, and organometallic reagents are powerful tools for selective, rapid, and water-compatible removal of those moieties. This review examines transition metal-based reactions of cysteine residues for the synthesis and modification of natural peptides and proteins.
Collapse
Affiliation(s)
- Muhammad Jbara
- Massachusetts Institute of Technology , Department of Chemistry , 77 Massachusetts Avenue , Cambridge , MA , 02139, USA
| |
Collapse
|
31
|
Shao Q. Effect of conjugated (EK)10 peptide on structural and dynamic properties of ubiquitin protein: a molecular dynamics simulation study. J Mater Chem B 2020; 8:6934-6943. [DOI: 10.1039/d0tb00664e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide conjugation modulates the stability and biological acitivty of proteins via the allosteric effect.
Collapse
Affiliation(s)
- Qing Shao
- Chemical and Materials Engineering Department
- University of Kentucky
- Lexington KY
- USA
| |
Collapse
|
32
|
Joaquin D, Lee MA, Kastner DW, Singh J, Morrill ST, Damstedt G, Castle SL. Impact of Dehydroamino Acids on the Structure and Stability of Incipient 3 10-Helical Peptides. J Org Chem 2019; 85:1601-1613. [PMID: 31730750 DOI: 10.1021/acs.joc.9b02747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comparative study of the impact of small, medium-sized, and bulky α,β-dehydroamino acids (ΔAAs) on the structure and stability of Balaram's incipient 310-helical peptide (1) is reported. Replacement of the N-terminal Aib residue of 1 with a ΔAA afforded peptides 2a-c that maintained the 310-helical shape of 1. In contrast, installation of a ΔAA in place of Aib-3 yielded peptides 3a-c that preferred a β-sheet-like conformation. The impact of the ΔAA on peptide structure was independent of size, with small (ΔAla), medium-sized (Z-ΔAbu), and bulky (ΔVal) ΔAAs exerting similar effects. The proteolytic stabilities of 1 and its analogs were determined by incubation with Pronase. Z-ΔAbu and ΔVal increased the resistance of peptides to proteolysis when incorporated at the 3-position and had negligible impact on stability when placed at the 1-position, whereas ΔAla-containing peptides degraded rapidly regardless of position. Exposure of peptides 2a-c and 3a-c to the reactive thiol cysteamine revealed that ΔAla-containing peptides underwent conjugate addition at room temperature, while Z-ΔAbu- and ΔVal-containing peptides were inert even at elevated temperatures. These results suggest that both bulky and more accessible medium-sized ΔAAs should be valuable tools for bestowing rigidity and proteolytic stability on bioactive peptides.
Collapse
Affiliation(s)
- Daniel Joaquin
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Michael A Lee
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - David W Kastner
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Jatinder Singh
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Shardon T Morrill
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Gracie Damstedt
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
33
|
Liu X, Boron M, Zhao Y, Sun XL. End-point modification of recombinant thrombomodulin with enhanced stability and anticoagulant activity. Eur J Pharm Sci 2019; 139:105066. [PMID: 31513922 PMCID: PMC6767613 DOI: 10.1016/j.ejps.2019.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022]
Abstract
Thrombomodulin (TM) is an endothelial cell membrane protein that plays essential roles in controlling vascular haemostatic balance. The 4, 5, 6 EGF-like domain of TM (TM456) has cofactor activity for thrombin binding and subsequently protein C activation. Therefore, recombinant TM456 is a promising anticoagulant candidate but has a very short half-life. Ligation of poly (ethylene glycol) to a bioactive protein (PEGylation) is a practical choice to improve stability, extend circulating life, and reduce immunogenicity of the protein. Site-specific PEGylation is preferred as it could avoid the loss of protein activity resulting from nonspecific modification. We report herein two site-specific PEGylation strategies, enzymatic ligation and copper-free click chemistry (CFCC), for rTM456 modification. Recombinant TM456 with a C-terminal LPETG tag (rTM456-LPETG) was expressed in Escherichia coli for its end-point modification with NH2-diglycine-PEG5000-OMe via Sortase A-mediated ligation (SML). Similarly, an azide functionality was easily introduced at the C-terminus of rTM456-LPETG via SML with NH2-diglycine-PEG3-azide, which facilitates a site-specific PEGylation of rTM456via CFCC. Both PEGylated rTM456 conjugates retained protein C activation activity as that of rTM456. Also, they were more stable than rTM456 in Trypsin digestion assay. Further, both PEGylated rTM456 conjugates showed a concentration-dependent prolongation of thrombin clotting time (TCT) compared to non-modified protein, which confirms the effectiveness of these two site-specific PEGylation schemes.
Collapse
Affiliation(s)
- Xia Liu
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA; Biology Teaching and Research Section, Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province 157011, China
| | - Mallorie Boron
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA
| | - Yu Zhao
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA.
| |
Collapse
|
34
|
Hebel M, Riegger A, Zegota MM, Kizilsavas G, Gačanin J, Pieszka M, Lückerath T, Coelho JAS, Wagner M, Gois PMP, Ng DYW, Weil T. Sequence Programming with Dynamic Boronic Acid/Catechol Binary Codes. J Am Chem Soc 2019; 141:14026-14031. [PMID: 31436970 PMCID: PMC6743217 DOI: 10.1021/jacs.9b03107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/25/2022]
Abstract
The development of a synthetic code that enables a sequence programmable feature like DNA represents a key aspect toward intelligent molecular systems. We developed herein the well-known dynamic covalent interaction between boronic acids (BAs) and catechols (CAs) into synthetic nucleobase analogs. Along a defined peptide backbone, BA or CA residues are arranged to enable sequence recognition to their complementary strand. Dynamic strand displacement and errors were elucidated thermodynamically to show that sequences are able to specifically select their partners. Unlike DNA, the pH dependency of BA/CA binding enables the dehybridization of complementary strands at pH 5.0. In addition, we demonstrate the sequence recognition at the macromolecular level by conjugating the cytochrome c protein to a complementary polyethylene glycol chain in a site-directed fashion.
Collapse
Affiliation(s)
- Marco Hebel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andreas Riegger
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maksymilian M. Zegota
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gönül Kizilsavas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jasmina Gačanin
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michaela Pieszka
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thorsten Lückerath
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jaime A. S. Coelho
- Research Institute
for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pedro M. P. Gois
- Research Institute
for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
35
|
Safary A, Akbarzadeh Khiavi M, Omidi Y, Rafi MA. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 2019; 76:3363-3381. [PMID: 31101939 PMCID: PMC11105648 DOI: 10.1007/s00018-019-03135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidoses (MPSs), which are inherited lysosomal storage disorders caused by the accumulation of undegraded glycosaminoglycans, can affect the central nervous system (CNS) and elicit cognitive and behavioral issues. Currently used enzyme replacement therapy methodologies often fail to adequately treat the manifestations of the disease in the CNS and other organs such as bone, cartilage, cornea, and heart. Targeted enzyme delivery systems (EDSs) can efficiently cross biological barriers such as blood-brain barrier and provide maximal therapeutic effects with minimal side effects, and hence, offer great clinical benefits over the currently used conventional enzyme replacement therapies. In this review, we provide comprehensive insights into MPSs and explore the clinical impacts of multimodal targeted EDSs.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mostafa Akbarzadeh Khiavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
36
|
Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K, Ghosh A, Siahaan TJ, Banerjee S, Banerjee SK. Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal 2019; 13:319-330. [PMID: 30499020 PMCID: PMC6732144 DOI: 10.1007/s12079-018-0492-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
PEGylation is a biochemical modification process of bioactive molecules with polyethylene glycol (PEG), which lends several desirable properties to proteins/peptides, antibodies, and vesicles considered to be used for therapy or genetic modification of cells. However, PEGylation of proteins is a complex process and can be carried out using more than one strategy that depends on the nature of the protein and the desired application. Proteins of interest are covalently conjugated or non-covalently complexed with inert PEG strings. Purification of PEGylated protein is another critical step, which is mainly carried out based on electrostatic interactions or molecular sizes using chromatography. Several PEGylated drugs are being used for diseases like anemia, kidney disease, multiple sclerosis, hemophilia and cancers. With the advancement and increased specificity of the PEGylation process, the world of drug therapy, and specifically cancer therapy could benefit by utilizing this technique to create more stable and non-immunogenic therapies. In this article we describe the structure and functions of PEGylation and how this chemistry helps in drug discovery. Moreover, special emphasis has been given to CCN-family proteins that can be targeted or used as therapy to prevent or block cancer progression through PEGylation technology.
Collapse
Affiliation(s)
- Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA.
| | - Kevin Singh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Gaurav Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Kritin Vasamreddy
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Teruna J Siahaan
- School of Pharmacy-Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66047, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
37
|
Xiao Q, Draper SRE, Smith MS, Brown N, Pugmire NAB, Ashton DS, Carter AJ, Lawrence EEK, Price JL. Influence of PEGylation on the Strength of Protein Surface Salt Bridges. ACS Chem Biol 2019; 14:1652-1659. [PMID: 31188563 DOI: 10.1021/acschembio.9b00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conjugation of polyethylene glycol (PEGylation) is a well-known strategy for extending the serum half-life of protein drugs and for increasing their resistance to proteolysis and aggregation. We previously showed that PEGylation can increase protein conformational stability; the extent of PEG-based stabilization depends on the PEGylation site, the structure of the PEG-protein linker, and the ability of PEG to release water molecules from the surrounding protein surface to the bulk solvent. The strength of a noncovalent interaction within a protein depends strongly on its microenvironment, with salt-bridge and hydrogen-bond strength increasing in nonpolar versus aqueous environments. Accordingly, we wondered whether partial desolvation by PEG of the surrounding protein surface might result in measurable increases in the strength of a salt bridge near a PEGylation site. Here we explore this possibility using triple-mutant box analysis to assess the impact of PEGylation on the strength of nearby salt bridges at specific locations within three peptide model systems. The results indicate that PEG can increase the nearby salt-bridge strength, though this effect is not universal, and its precise structural prerequisites are not a simple function of secondary structural context, of the orientation and distance between the PEGylation site and salt bridge, or of salt-bridge residue identity. We obtained high-resolution X-ray diffraction data for a PEGylated peptide in which PEG enhances the strength of a nearby salt bridge. Comparing the electron density map of this PEGylated peptide versus that of its non-PEGylated counterpart provides evidence of localized protein surface desolvation as a mechanism for PEG-based salt-bridge stabilization.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven R. E. Draper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mason S. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Nathaniel Brown
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Natalie A. B. Pugmire
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dallin S. Ashton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Anthony J. Carter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Eliza E. K. Lawrence
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Joshua L. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
38
|
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
39
|
Xiao Q, Bécar NA, Brown NP, Smith MS, Stern KL, Draper SRE, Thompson KP, Price JL. Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect. Org Biomol Chem 2019; 16:8933-8939. [PMID: 30444518 DOI: 10.1039/c8ob02535e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hydrocarbon stapling and PEGylation are distinct strategies for enhancing the conformational stability and/or pharmacokinetic properties of peptide and protein drugs. Here we combine these approaches by incorporating asparagine-linked O-allyl PEG oligomers at two positions within the β-sheet protein WW, followed by stapling of the PEGs via olefin metathesis. The impact of stapling two sites that are close in primary sequence is small relative to the impact of PEGylation alone and depends strongly on PEG length. In contrast, stapling of two PEGs that are far apart in primary sequence but close in tertiary structure provides substantially more stabilization, derived mostly from an entropic effect. Comparison of PEGylation + stapling vs. alkylation + stapling at the same positions in WW reveals that both approaches provide similar overall levels of conformational stability.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. Highly efficient novel recombinant L-asparaginase with no glutaminase activity from a new halo-thermotolerant Bacillus strain. BIOIMPACTS : BI 2019. [PMID: 30788256 DOI: 10.15171/2fbi.2019.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Introduction: The bacterial enzyme has gained more attention in therapeutic application because of the higher substrate specificity and longer half-life. L-asparaginase is an important enzyme with known antineoplastic effect against acute lymphoblastic leukemia (ALL). Methods: Novel L-asparaginase genes were identified from a locally isolated halo-thermotolerant Bacillus strain and the recombinant enzymes were overexpressed in modified E. coli strains, OrigamiTM B and BL21. In addition, the biochemical properties of the purified enzymes were characterized, and the enzyme activity was evaluated at different temperatures, pH, and substrate concentrations. Results: The concentration of pure soluble enzyme obtained from Origami strain was ~30 mg/L of bacterial culture, which indicates the significant improvement compared to L-asparaginase produced by E. coli BL21 strain. The catalytic activity assay on the identified L-asparaginases (ansA1 and ansA3 genes) from Bacillus sp. SL-1 demonstrated that only ansA1 gene codes an active and stable homologue (ASPase A1) with high substrate affinity toward L-asparagine. The Kcat and Km values for the purified ASPase A1 enzyme were 23.96s-1 and 10.66 µM, respectively. In addition, the recombinant ASPase A1 enzyme from Bacillus sp. SL-1 possessed higher specificity to L-asparagine than L-glutamine. The ASPase A1 enzyme was highly thermostable and resistant to the wide range of pH 4.5-10. Conclusion: The biochemical properties of the novel ASPase A1 derived from Bacillus sp. SL-l indicated a great potential for the identified enzyme in pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
41
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
42
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
43
|
Tamura T, Hamachi I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J Am Chem Soc 2018; 141:2782-2799. [DOI: 10.1021/jacs.8b11747] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO, Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
44
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. Highly efficient novel recombinant L-asparaginase with no glutaminase activity from a new halo-thermotolerant Bacillus strain. ACTA ACUST UNITED AC 2018; 9:15-23. [PMID: 30788256 PMCID: PMC6378094 DOI: 10.15171/bi.2019.03] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
![]()
Introduction: The bacterial enzyme has gained more attention in therapeutic application because of the higher substrate specificity and longer half-life. L-asparaginase is an important enzyme with known antineoplastic effect against acute lymphoblastic leukemia (ALL).
Methods: Novel L-asparaginase genes were identified from a locally isolated halo-thermotolerant Bacillus strain and the recombinant enzymes were overexpressed in modified E. coli strains, OrigamiTM B and BL21. In addition, the biochemical properties of the purified enzymes were characterized, and the enzyme activity was evaluated at different temperatures, pH, and substrate concentrations.
Results: The concentration of pure soluble enzyme obtained from Origami strain was ~30 mg/L of bacterial culture, which indicates the significant improvement compared to L-asparaginase produced by E. coli BL21 strain. The catalytic activity assay on the identified L-asparaginases (ansA1 and ansA3 genes) from Bacillus sp. SL-1 demonstrated that only ansA1 gene codes an active and stable homologue (ASPase A1) with high substrate affinity toward L-asparagine. The Kcat and Km values for the purified ASPase A1 enzyme were 23.96s-1 and 10.66 µM, respectively. In addition, the recombinant ASPase A1 enzyme from Bacillus sp. SL-1 possessed higher specificity to L-asparagine than L-glutamine. The ASPase A1 enzyme was highly thermostable and resistant to the wide range of pH 4.5–10.
Conclusion: The biochemical properties of the novel ASPase A1 derived from Bacillus sp. SL-l indicated a great potential for the identified enzyme in pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
45
|
Rouhani M, Khodabakhsh F, Norouzian D, Cohan RA, Valizadeh V. Molecular dynamics simulation for rational protein engineering: Present and future prospectus. J Mol Graph Model 2018; 84:43-53. [DOI: 10.1016/j.jmgm.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
|
46
|
Yilmaz E, Bier D, Guillory X, Briels J, Ruiz-Blanco YB, Sanchez-Garcia E, Ottmann C, Kaiser M. Mono- and Bivalent 14-3-3 Inhibitors for Characterizing Supramolecular "Lysine Wrapping" of Oligoethylene Glycol (OEG) Moieties in Proteins. Chemistry 2018; 24:13807-13814. [PMID: 29924885 DOI: 10.1002/chem.201801074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Indexed: 12/26/2022]
Abstract
Previous studies have indicated the presence of defined interactions between oligo or poly(ethylene glycol) (OEG or PEG) and lysine residues. In these interactions, the OEG or PEG residues "wrap around" the lysine amino group, thereby enabling complexation of the amino group by the ether oxygen residues. The resulting biochemical binding affinity and thus biological relevance of this supramolecular interaction however remains unclear so far. Here, we report that OEG-containing phosphophenol ether inhibitors of 14-3-3 proteins also display such a "lysine-wrapping" binding mode. For better investigating the biochemical relevance of this binding mode, we made use of the dimeric nature of 14-3-3 proteins and designed as well as synthesized a set of bivalent 14-3-3 inhibitors for biochemical and X-ray crystallography-based structural studies. We found that all synthesized derivatives adapted the "lysine-wrapping" binding mode in the crystal structures; in solution, a different binding mode is however observed, most probably as the "lysine-wrapping" binding mode turned out to be a rather weak interaction. Accordingly, our studies demonstrate that structural studies of OEG-lysine interactions are difficult to interpret and their presence in structural studies may not automatically be correlated with a relevant interaction also in solution but requires further biochemical studies.
Collapse
Affiliation(s)
- Elvan Yilmaz
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - David Bier
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Xavier Guillory
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Jeroen Briels
- Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Christian Ottmann
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
47
|
Ishiwari F, Sakamoto M, Matsumura S, Fukushima T. Topology Effect of AIEgen-Appended Poly(acrylic acid) with Biocompatible Segments on Ca 2+-Sensing and Protein-Adsorption-Resistance Properties. ACS Macro Lett 2018; 7:711-715. [PMID: 35632952 DOI: 10.1021/acsmacrolett.8b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported that tetraphenylethene-appended poly(acrylic acid) derivatives (e.g., PAA-TPE0.02) can serve as fluorescent Ca2+ sensors in the presence of physiological concentrations of biologically relevant ions, amino acids, and sugars. However, in the presence of basic proteins such as albumins, the Ca2+-sensing property of the polymer is significantly impaired due to the nonspecific adsorption of protein molecules, which competes with binding to Ca2+. To solve this problem, we explored new designs by focusing on the polymer-chain topology of PAA-TPE0.02 with biocompatible segments. Here, we report the Ca2+-sensing and protein-adsorption-resistance properties of various types of PAA-TPE0.02 copolymers with a poly(oligoethylene glycol acrylate) (polyOEGA) segment, featuring a random, diblock, triblock, or 4-armed-star-block structure. Through this study, we show an interesting topology effect; i.e., a branch-shaped PAA-TPE0.02-co-polyOEGA with biocompatible segments at every terminal (i.e., 4-armed-star-block copolymer) exhibits both good Ca2+-sensing and protein-adsorption-resistance properties.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Minami Sakamoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Satoko Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
48
|
|
49
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
50
|
Mukherjee I, Sinha SK, Datta S, De P. Recyclable Thermoresponsive Polymer−β-Glucosidase Conjugate with Intact Hydrolysis Activity. Biomacromolecules 2018; 19:2286-2293. [DOI: 10.1021/acs.biomac.8b00258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|