1
|
Tan L, Zheng X, Shi J, Qin T, Ji L. 4,9- and 4,10-Substituted pyrenes: synthesis, successful isolation, and optoelectronic properties. Org Biomol Chem 2024; 22:1676-1685. [PMID: 38299623 DOI: 10.1039/d3ob01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report herein a way to prepare and purify optoelectronic functional 4,9- and 4,10-substituted pyrene isomers. By tuning the size of substituents, the designed 4,9- and 4,10-isomers can be successfully isolated by recycling preparative size-exclusion chromatography (SEC) and/or repeated recrystallization. The structure and purity of the isolated compounds 1-5 have been confirmed by 1H NMR, 13C NMR, and HRMS. The photophysical and electrochemical properties of compounds 1-5 have been studied in detail both experimentally and theoretically. The lowest transitions of these pyrenes, 1-5, are allowed, with moderate to high fluorescence quantum yields and radiative decay rates around 108 s-1. The differences between the electrochemical and photophysical properties of 4,9-, 4,10-, 1,6-, and 2,7-substituted isomers are compared and concluded.
Collapse
Affiliation(s)
- Leibo Tan
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| | - Xiuli Zheng
- Qilu Pharmaceutical Co. Ltd, No. 23999, Gongye Bei Road, Jinan 250100, China
| | - Junqing Shi
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu 211816, China.
| | - Lei Ji
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| |
Collapse
|
2
|
Yu IF, Wilson JW, Hartwig JF. Transition-Metal-Catalyzed Silylation and Borylation of C-H Bonds for the Synthesis and Functionalization of Complex Molecules. Chem Rev 2023; 123:11619-11663. [PMID: 37751601 DOI: 10.1021/acs.chemrev.3c00207] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The functionalization of C-H bonds in organic molecules containing functional groups has been one of the holy grails of catalysis. One synthetically important approach to the diverse functionalization of C-H bonds is the catalytic silylation or borylation of C-H bonds, which enables a broad array of downstream transformations to afford diverse structures. Advances in both undirected and directed methods for the transition-metal-catalyzed silylation and borylation of C-H bonds have led to their rapid adoption in early-, mid-, and late-stage of the synthesis of complex molecules. In this Review, we review the application of the transition-metal-catalyzed silylation and borylation of C-H bonds to the synthesis of bioactive molecules, organic materials, and ligands. Overall, we aim to provide a picture of the state of art of the silylation and borylation of C-H bonds as applied to the synthesis and modification of diverse architectures that will spur further application and development of these reactions.
Collapse
Affiliation(s)
- Isaac F Yu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jake W Wilson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Obermann S, Zheng W, Melidonie J, Böckmann S, Osella S, Arisnabarreta N, Guerrero-León LA, Hennersdorf F, Beljonne D, Weigand JJ, Bonn M, De Feyter S, Hansen MR, Wang HI, Ma J, Feng X. Curved graphene nanoribbons derived from tetrahydropyrene-based polyphenylenes via one-pot K-region oxidation and Scholl cyclization. Chem Sci 2023; 14:8607-8614. [PMID: 37592977 PMCID: PMC10430550 DOI: 10.1039/d3sc02824k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 08/19/2023] Open
Abstract
Precise synthesis of graphene nanoribbons (GNRs) is of great interest to chemists and materials scientists because of their unique opto-electronic properties and potential applications in carbon-based nanoelectronics and spintronics. In addition to the tunable edge structure and width, introducing curvature in GNRs is a powerful structural feature for their chemi-physical property modification. Here, we report an efficient solution synthesis of the first pyrene-based GNR (PyGNR) with curved geometry via one-pot K-region oxidation and Scholl cyclization of its corresponding well-soluble tetrahydropyrene-based polyphenylene precursor. The efficient A2B2-type Suzuki polymerization and subsequent Scholl reaction furnishes up to ∼35 nm long curved GNRs bearing cove- and armchair-edges. The construction of model compound 1, as a cutout of PyGNR, from a tetrahydropyrene-based oligophenylene precursor proves the concept and efficiency of the one-pot K-region oxidation and Scholl cyclization, which is clearly revealed by single crystal X-ray diffraction analysis. The structure and optical properties of PyGNR are investigated by Raman, FT-IR, solid-state NMR, STM and UV-Vis analysis with the support of DFT calculations. PyGNR exhibits a narrow optical bandgap of ∼1.4 eV derived from a Tauc plot, qualifying as a low-bandgap GNR. Moreover, THz spectroscopy on PyGNR estimates its macroscopic charge mobility μ as ∼3.6 cm2 V-1 s-1, outperforming several other curved GNRs reported via conventional Scholl reaction.
Collapse
Affiliation(s)
- Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
| | - Wenhao Zheng
- Max-Planck-Institute for Polymer Research D-55128 Mainz Germany
| | - Jason Melidonie
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
| | - Steffen Böckmann
- Institute of Physical Chemistry, Westfählische Wilhelms-Universität (WWU) Münster D-48149 Münster Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies University of Warsaw Banacha 2C Warsaw 02-097 Poland
| | - Nicolás Arisnabarreta
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - L Andrés Guerrero-León
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
| | - Felix Hennersdorf
- Chair of Inorganic Molecular Chemistry, Technische Universität Dresden Dresden Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons Mons 7000 Belgium
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Technische Universität Dresden Dresden Germany
| | - Mischa Bonn
- Max-Planck-Institute for Polymer Research D-55128 Mainz Germany
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfählische Wilhelms-Universität (WWU) Münster D-48149 Münster Germany
| | - Hai I Wang
- Max-Planck-Institute for Polymer Research D-55128 Mainz Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
4
|
Zhang X, Rauch F, Niedens J, da Silva RB, Friedrich A, Nowak-Król A, Garden SJ, Marder TB. Electrophilic C–H Borylation of Aza[5]helicenes Leading to Bowl-Shaped Quasi-[7]Circulenes with Switchable Dynamics. J Am Chem Soc 2022; 144:22316-22324. [DOI: 10.1021/jacs.2c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Niedens
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ramon B. da Silva
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon J. Garden
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Para-N-Methylpyridinium Pyrenes: Impact of Positive Charge on ds-DNA/RNA and Protein Recognition, Photo-Induced Bioactivity, and Intracellular Localisation. Pharmaceutics 2022; 14:pharmaceutics14112499. [PMID: 36432689 PMCID: PMC9696974 DOI: 10.3390/pharmaceutics14112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
The 2- and 2,7- substituted para-N-methylpyridinium pyrene cations show high-affinity intercalation into ds-DNAs, whereas their non-methylated analogues interacted with ds-DNA/RNA only in the protonated form (at pH 5), but not at physiological conditions (pH 7). The fluorescence from non-methylated analogues was strongly dependent on the protonation of the pyridines; consequently, they act as fluorescence ratiometric probes for simultaneous detection of both ds-DNA and BSA at pH 5, relying on the ratio between intensities at 420 nm (BSA specific) and 520 nm (DNA specific), whereby exclusively ds-DNA sensing could be switched-off by adjustment to pH 7. Only methylated, permanently charged pyrenes show photoinduced cleavage of circular DNA, attributed to pyrene-mediated irradiation-induced production of singlet oxygen. Consequently, the moderate toxicity of these cations against human cell lines is strongly increased upon irradiation. Detailed studies revealed increased total ROS production in cells treated by the compounds studied, accompanied by cell swelling and augmentation of cellular complexity. The most photo-active 2-para-N-methylpyridinium pyrene showed significant localization at mitochondria, its photo-bioactivity likely due to mitochondrial DNA damage. Other derivatives were mostly non-selectively distributed between various cytoplasmic organelles, thus being less photoactive.
Collapse
|
6
|
Pigulski B, Shoyama K, Sun MJ, Würthner F. Fluorescence Enhancement by Supramolecular Sequestration of a C 54-Nanographene Trisimide by Hexabenzocoronene. J Am Chem Soc 2022; 144:5718-5722. [PMID: 35319872 DOI: 10.1021/jacs.2c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A supramolecular trilayer nanographene complex consisting of a newly synthesized D3h-symmetric C54-nanographene trisimide (NTI 1) and two hexabenzocoronenes (HBC) has been obtained by self-assembly. This 1:2 complex is structurally well-defined according to UV/vis and single crystal X-ray studies and exhibits high thermodynamic stability even in polar halogenated solvents. Complexation of NTI 1 by two HBC molecules protects the NTI 1 π-surface efficiently from oxygen quenching, thereby leading to a sequestration-induced fluorescence enhancement under ambient conditions.
Collapse
Affiliation(s)
- Bartłomiej Pigulski
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Meng-Jia Sun
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Ferger M, Berger SM, Rauch F, Schönitz M, Rühe J, Krebs J, Friedrich A, Marder TB. Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Bench-Stable Boron Precursors. Chemistry 2021; 27:9094-9101. [PMID: 33844337 PMCID: PMC8360097 DOI: 10.1002/chem.202100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 02/04/2023]
Abstract
A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr2 Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sarina M. Berger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Markus Schönitz
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Rühe
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
8
|
Zreid M, Tabasi ZA, Zhao Y. Comparative studies of the noncovalent interactions in the single‐crystal packing of pyrene, pyrene‐4,5‐dione, and pyrene‐4,5,9,10‐tetraone. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Monther Zreid
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| | - Zahra A. Tabasi
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| | - Yuming Zhao
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| |
Collapse
|
9
|
Zhang Y, Tan L, Shi J, Ji L. Iridium-catalysed borylation of pyrene – a powerful route to novel optoelectronic materials. NEW J CHEM 2021. [DOI: 10.1039/d1nj00538c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We summarized the Ir-catalysed borylation of PAHs, especially pyrene, and the optoelectronic materials generated by following this chemistry. The optoelectronic properties of pyrene derivatives have also been discussed.
Collapse
Affiliation(s)
- Yufeng Zhang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Leibo Tan
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| |
Collapse
|
10
|
Schmitt HC, Fischer I, Ji L, Merz J, Marder TB, Hoche J, Röhr MIS, Mitric R. Isolated 2-hydroxypyrene and its dimer: a frequency- and time-resolved spectroscopic study. NEW J CHEM 2021. [DOI: 10.1039/d0nj02391d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated isolated 2-hydroxypyrene and its dimer in the gas phase by time- and frequency-resolved photoionisation with picosecond time-resolution.
Collapse
Affiliation(s)
- Hans-Christian Schmitt
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| | - Lei Ji
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| | - Julia Merz
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| | - Todd B. Marder
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| | - Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| | - Merle I. S. Röhr
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, D-97074 Würzburg, Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
11
|
Merz J, Dietrich L, Nitsch J, Krummenacher I, Braunschweig H, Moos M, Mims D, Lambert C, Marder TB. Synthesis, Photophysical and Electronic Properties of Mono-, Di-, and Tri-Amino-Substituted Ortho-Perylenes, and Comparison to the Tetra-Substituted Derivative. Chemistry 2020; 26:12050-12059. [PMID: 32329914 PMCID: PMC7540539 DOI: 10.1002/chem.202001475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Indexed: 12/02/2022]
Abstract
We synthesized a series of new mono-, di-, tri- and tetra-substituted perylene derivatives with strong bis(para-methoxyphenyl)amine (DPA) donors at the uncommon 2,5,8,11-positions. The properties of our new donor-substituted perylenes were studied in detail to establish a structure-property relationship. Interesting trends and unusual properties are observed for this series of new perylene derivatives, such as a decreasing charge transfer (CT) character with increasing number of DPA moieties and individual reversible oxidations for each DPA moiety. Thus, (DPA)-Per possesses one reversible oxidation while (DPA)4 -Per has four. The mono- and di-substituted derivatives display unusually large Stokes shifts not previously reported for perylenes. Furthermore, transient absorption measurements of the new derivatives reveal an excited state with lifetimes of several hundred microseconds, which sensitizes singlet oxygen with quantum yields of up to 0.83.
Collapse
Affiliation(s)
- Julia Merz
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lena Dietrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jörn Nitsch
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Michael Moos
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - David Mims
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Rauch F, Krebs J, Günther J, Friedrich A, Hähnel M, Krummenacher I, Braunschweig H, Finze M, Marder TB. Electronically Driven Regioselective Iridium-Catalyzed C-H Borylation of Donor-π-Acceptor Chromophores Containing Triarylboron Acceptors. Chemistry 2020; 26:10626-10633. [PMID: 32510684 PMCID: PMC7497074 DOI: 10.1002/chem.202002348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Indexed: 12/11/2022]
Abstract
We observed a surprisingly high electronically driven regioselectivity for the iridium-catalyzed C-H borylation of donor-π-acceptor (D-π-A) systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(F Xyl)2 ) as the acceptor, and 1,4-phenylene as the π-bridge. Under our conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor group. As boronate esters are versatile building blocks for organic synthesis (C-C coupling, functional group transformations) the C-H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2 ) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.
Collapse
Affiliation(s)
- Florian Rauch
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Günther
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Hähnel
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
13
|
Syed ZH, Chen Z, Idrees KB, Goetjen TA, Wegener EC, Zhang X, Chapman KW, Kaphan DM, Delferro M, Farha OK. Mechanistic Insights into C–H Borylation of Arenes with Organoiridium Catalysts Embedded in a Microporous Metal–Organic Framework. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zoha H. Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11764, United States
| | - Karam B. Idrees
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy A. Goetjen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W. Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11764, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Lu Q, Kole GK, Friedrich A, Müller-Buschbaum K, Liu Z, Yu X, Marder TB. Comparison Study of the Site-Effect on Regioisomeric Pyridyl–Pyrene Conjugates: Synthesis, Structures, and Photophysical Properties. J Org Chem 2020; 85:4256-4266. [PMID: 32129624 DOI: 10.1021/acs.joc.9b03421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Lu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Goutam Kumar Kole
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Klaus Müller-Buschbaum
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Todd B. Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
15
|
Vanga M, Lalancette RA, Jäkle F. Controlling the Optoelectronic Properties of Pyrene by Regioselective Lewis Base‐Directed Electrophilic Aromatic Borylation. Chemistry 2019; 25:10133-10140. [DOI: 10.1002/chem.201901231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
16
|
Murai M, Nishinaka N, Kimura M, Takai K. Regioselective Functionalization of 9,9-Dimethyl-9-silafluorenes by Borylation, Bromination, and Nitration. J Org Chem 2019; 84:5667-5676. [PMID: 30938531 DOI: 10.1021/acs.joc.9b00598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the utility of 9-silafluorenes as functional materials and as building blocks, methods for efficient functionalization of their backbone are rare, probably because of the presence of easily cleavable C-Si bonds. Although controlling the regioselectivity of iridium-catalyzed direct borylation of C-H bonds is difficult, we found that bromination and nitration of 2-methoxy-9-silafluorene under mild conditions occurred predominantly at the electron-rich position. The resulting product having methoxy and bromo groups can be utilized as a building block for the synthesis of unsymmetrically substituted 9-silafluorene-containing π-conjugated molecules.
Collapse
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Naoki Nishinaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Mizuki Kimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
17
|
The role of Si in Ir(SiNN) catalyst and chemoselectivity of dehydrogenative borylation over hydroborylation: A theoretical study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Amide Effects in C−H Activation: Noncovalent Interactions with L-Shaped Ligand for meta
Borylation of Aromatic Amides. Angew Chem Int Ed Engl 2018; 57:15762-15766. [DOI: 10.1002/anie.201809929] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 11/07/2022]
|
19
|
Bisht R, Hoque ME, Chattopadhyay B. Amide Effects in C−H Activation: Noncovalent Interactions with L-Shaped Ligand for meta
Borylation of Aromatic Amides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809929] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ranjana Bisht
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR); SGPGIMS Campus; Raebareli Road Lucknow 226014 U.P. India
| | - Md Emdadul Hoque
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR); SGPGIMS Campus; Raebareli Road Lucknow 226014 U.P. India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR); SGPGIMS Campus; Raebareli Road Lucknow 226014 U.P. India
| |
Collapse
|
20
|
Nagano T, Nakamura K, Tokimaru Y, Ito S, Miyajima D, Aida T, Nozaki K. Functionalization of Azapentabenzocorannulenes by Fivefold C−H Borylation and Cross‐Coupling Arylation: Application to Columnar Liquid‐Crystalline Materials. Chemistry 2018; 24:14075-14078. [DOI: 10.1002/chem.201803676] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Taro Nagano
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kimihiro Nakamura
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Yuki Tokimaru
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Shingo Ito
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Daigo Miyajima
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takuzo Aida
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kyoko Nozaki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
21
|
Ji L, Krummenacher I, Friedrich A, Lorbach A, Haehnel M, Edkins K, Braunschweig H, Marder TB. Synthesis, Photophysical, and Electrochemical Properties of Pyrenes Substituted with Donors or Acceptors at the 4- or 4,9-Positions. J Org Chem 2018; 83:3599-3606. [DOI: 10.1021/acs.joc.7b03227] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Lorbach
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Haehnel
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katharina Edkins
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
22
|
Kaiser RP, Ulč J, Císařová I, Nečas D. Direct regioselective C–H borylation of [5]helicene. RSC Adv 2018. [DOI: 10.1039/c7ra13021j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient protocol for a regioselective borylation of [5]helicene was achieved via Ir-catalyzed C–H activation.
Collapse
Affiliation(s)
- R. P. Kaiser
- Department of Organic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - J. Ulč
- Department of Organic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - I. Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - D. Nečas
- Department of Organic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| |
Collapse
|
23
|
Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Recent advances in catalytic C−H borylation reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.11.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Merz J, Fink J, Friedrich A, Krummenacher I, Al Mamari HH, Lorenzen S, Haehnel M, Eichhorn A, Moos M, Holzapfel M, Braunschweig H, Lambert C, Steffen A, Ji L, Marder TB. Pyrene Molecular Orbital Shuffle-Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals. Chemistry 2017; 23:13164-13180. [PMID: 28718975 DOI: 10.1002/chem.201702594] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/01/2023]
Abstract
We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes2 (mes=2,4,6-Me3 C6 H2 ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul2 Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440 mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives.
Collapse
Affiliation(s)
- Julia Merz
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julian Fink
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Hamad H Al Mamari
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khoud, 123, Muscat, Sultanate of Oman
| | - Sabine Lorenzen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Haehnel
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Antonius Eichhorn
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
25
|
Mietke T, Cruchter T, Winterling E, Tripp M, Harms K, Meggers E. Suzuki Cross-Coupling for Post-Complexation Derivatization of Non-Racemic Bis-Cyclometalated Iridium(III) Complexes. Chemistry 2017; 23:12363-12371. [DOI: 10.1002/chem.201701758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas Mietke
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Thomas Cruchter
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Erik Winterling
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Matthias Tripp
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Klaus Harms
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Eric Meggers
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
26
|
Hoque ME, Bisht R, Haldar C, Chattopadhyay B. Noncovalent Interactions in Ir-Catalyzed C-H Activation: L-Shaped Ligand for Para-Selective Borylation of Aromatic Esters. J Am Chem Soc 2017; 139:7745-7748. [PMID: 28537744 DOI: 10.1021/jacs.7b04490] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient strategy for the para-selective borylation of aromatic esters is described. For achieving high para-selectivity, a new catalytic system has been developed modifying the core structure of the bipyridine. It has been proposed that the L-shaped ligand is essential to recognize the functionality of the oxygen atom of the ester carbonyl group via noncovalent interaction, which provides an unprecedented controlling factor for para-selective C-H activation/borylation.
Collapse
Affiliation(s)
- Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Chabush Haldar
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
27
|
Takaki Y, Yoza K, Kobayashi K. Fourfold C–H Borylation of Anthracene: 1,3,5,7-Tetraborylanthracene and Its Application to 1,3,5,7-Tetraarylanthracenes. CHEM LETT 2017. [DOI: 10.1246/cl.170037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuta Takaki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529
| | - Kenji Yoza
- Bruker axs, 3-9-B Moriya, Kanagawa-ku, Yokohama, Kanagawa 221-0022
| | - Kenji Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529
| |
Collapse
|
28
|
Affiliation(s)
- David Nečas
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Albertov 6 12843 Praha 2 Czech Republic
| | - Reinhard P. Kaiser
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Albertov 6 12843 Praha 2 Czech Republic
| | - Jan Ulč
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Albertov 6 12843 Praha 2 Czech Republic
| |
Collapse
|
29
|
Mfuh AM, Nguyen VT, Chhetri B, Burch JE, Doyle JD, Nesterov VN, Arman HD, Larionov OV. Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C-H/C-X Borylation of Haloarenes. J Am Chem Soc 2016; 138:8408-11. [PMID: 27347688 PMCID: PMC4958914 DOI: 10.1021/jacs.6b05436] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein a simple, additive- and metal-free, photoinduced, dual C-H/C-X borylation of chloro-, bromo-, and iodoarenes. The reaction produces 1,2- and 1,3-diborylarenes on gram scales under batch and continuous flow conditions. The regioselectivity of the dual C-H/C-X borylation is determined by the solvent and the substituents in the parent haloarenes.
Collapse
Affiliation(s)
- Adelphe M. Mfuh
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Vu T. Nguyen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Bhuwan Chhetri
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Jessica E. Burch
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - John D. Doyle
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Vladimir N. Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
30
|
Feng X, Hu JY, Redshaw C, Yamato T. Functionalization of Pyrene To Prepare Luminescent Materials-Typical Examples of Synthetic Methodology. Chemistry 2016; 22:11898-916. [PMID: 27388023 DOI: 10.1002/chem.201600465] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 01/04/2023]
Abstract
Pyrene-based π-conjugated materials are considered to be an ideal organic electro-luminescence material for application in semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), and so forth. However, the great drawback of employing pyrene as an organic luminescence material is the formation of excimer emission, which quenches the efficiency at high concentration or in the solid-state. Thus, in order to obtain highly efficient optical devices, scientists have devoted much effort to tuning the structure of pyrene derivatives in order to realize exploitable properties by employing two strategies, 1) introducing a variety of moieties at the pyrene core, and 2) exploring effective and convenient synthetic strategies to functionalize the pyrene core. Over the past decades, our group has mainly focused on synthetic methodologies for functionalization of the pyrene core; we have found that formylation/acetylation or bromination of pyrene can selectly lead to functionalization at K-region by Lewis acid catalysis. Herein, this Minireview highlights the direct synthetic approaches (such as formylation, bromination, oxidation, and de-tert-butylation reactions, etc.) to functionalize the pyrene in order to advance research on luminescent materials for organic electronic applications. Further, this article demonstrates that the future direction of pyrene chemistry is asymmetric functionalization of pyrene for organic semiconductor applications and highlights some of the classical asymmetric pyrenes, as well as the latest breakthroughs. In addition, the photophysical properties of pyrene-based molecules are briefly reviewed. To give a current overview of the development of pyrene chemistry, the review selectively covers some of the latest reports and concepts from the period covering late 2011 to the present day.
Collapse
Affiliation(s)
- Xing Feng
- School of Printing and Packing Engineering, Beijing Institute of Graphic Communication, 1 Xinghua Avenue (Band Two), Daxing, Beijing, 102600, P.R. China. .,Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga, 840-8502, Japan.
| | - Jian-Yong Hu
- School of Materials Science and Engineering, Shannxi Normal University, Xi'an, 710062, Shannxi, P.R. China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga, 840-8502, Japan.
| |
Collapse
|
31
|
Kurata R, Tanaka K, Ito A. Isolation and Characterization of Persistent Radical Cation and Dication of 2,7-Bis(dianisylamino)pyrene. J Org Chem 2015; 81:137-45. [PMID: 26690970 DOI: 10.1021/acs.joc.5b02425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Orbital interaction between 2,7-pyrenylene and two nitrogen redox-active centers effectively reduces the energy difference between HOMO and HOMO-1, both of which were distributed over the two nitrogen centers. In fact, one- and two-electron oxidation of 2,7-bis(dianisylamino)pyrene 3 generated a persistent radical cation and a persistent dication, respectively, and we succeeded in the isolation and single crystal X-ray structural analyses of all three oxidation states. The radical cation was considered as a spin and charge delocalized mixed-valence compound with a semiquinoidal structure. The dication was in an open-shell singlet state with a small singlet-triplet energy gap. The molecular and electronic structures for all three oxidation states of 3 were studied in comparison with the data reported for each oxidation state of closely related bis(triarylamine)s, of which structures were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Ryohei Kurata
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuyoshi Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akihiro Ito
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
32
|
Yemam HA, Mahl A, Koldemir U, Remedes T, Parkin S, Greife U, Sellinger A. Boron-rich benzene and pyrene derivatives for the detection of thermal neutrons. Sci Rep 2015; 5:13401. [PMID: 26334111 PMCID: PMC4558605 DOI: 10.1038/srep13401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
A synthetic methodology is developed to generate boron rich aromatic small molecules based on benzene and pyrene moieties for the detection of thermal neutrons. The prepared aromatic compounds have a relatively high boron content up to 7.4 wt%, which is important for application in neutron detection as 10B (20% of natural abundance boron) has a large neutron induced reaction cross-section. This is demonstrated by preparing blends of the synthesized molecules with fluorescent dopants in poly(vinyltoluene) matrices resulting in comparable scintillation light output and neutron capture as state-of-the art commercial scintillators, but with the advantage of much lower cost. The boron-rich benzene and pyrene derivatives are prepared by Suzuki conditions using both microwave and traditional heating, affording yields of 40–93%. This new procedure is simple and straightforward, and has the potential to be scaled up.
Collapse
Affiliation(s)
- Henok A Yemam
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Adam Mahl
- Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
| | - Unsal Koldemir
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Tyler Remedes
- Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Uwe Greife
- Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
| | - Alan Sellinger
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
33
|
Sasaki I, Taguchi J, Hiraki S, Ito H, Ishiyama T. Catalyst-controlled regiodivergent C-H borylation of multifunctionalized heteroarenes by using iridium complexes. Chemistry 2015; 21:9236-41. [PMID: 25966001 DOI: 10.1002/chem.201500658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 12/25/2022]
Abstract
The regiodivergent C-H borylation of 2,5-disubstituted heteroarenes with bis(pinacolato)diboron was achieved by using iridium catalysts formed in situ from [Ir(OMe)(cod)]2 /dtbpy (cod=1,5-cyclooctadiene, dtbpy: 4,4'-di-tert-butyl-2,2'-bipyridine) or [Ir(OMe)(cod)]2 /2 AsPh3 . When [Ir(OMe)(cod)]2 /dtbpy was used as the catalyst, borylation at the 4-position proceeded selectively to afford 4-borylated products in high yields (dtbpy system A). The regioselectivity changed when the [Ir(OMe)(cod)]2 /2 AsPh3 catalyst was used; 3-borylated products were obtained in high yields with high regioselectivity (AsPh3 system B). The regioselectivity of borylation was easily controlled by changing the ligands. This reaction was used in the syntheses of two different bioactive compound analogues by using the same starting material.
Collapse
Affiliation(s)
- Ikuo Sasaki
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562
| | - Jumpei Taguchi
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562
| | - Shotaro Hiraki
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562
| | - Hajime Ito
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562.
| | - Tatsuo Ishiyama
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562.
| |
Collapse
|
34
|
Ji L, Edkins RM, Lorbach A, Krummenacher I, Brückner C, Eichhorn A, Braunschweig H, Engels B, Low PJ, Marder TB. Electron Delocalization in Reduced Forms of 2-(BMes2)pyrene and 2,7-Bis(BMes2)pyrene. J Am Chem Soc 2015; 137:6750-3. [DOI: 10.1021/jacs.5b03805] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Ji
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert M. Edkins
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Lorbach
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Charlotte Brückner
- Institut
für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Antonius Eichhorn
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institut
für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Paul J. Low
- School
of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Todd B. Marder
- Institut
für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
35
|
Ji L, Lorbach A, Edkins RM, Marder TB. Synthesis and photophysics of a 2,7-disubstituted donor-acceptor pyrene derivative: an example of the application of sequential Ir-catalyzed C-H borylation and substitution chemistry. J Org Chem 2015; 80:5658-65. [PMID: 25927248 DOI: 10.1021/acs.joc.5b00618] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a general and selective method to synthesize 2,7-disubstituted pyrene derivatives containing two different substituents by sequential Ir-catalyzed borylation and substitution chemistry. To demonstrate the utility of our approach, we synthesized 2-cyano-7-(N,N-diethylamino)pyrene (3), a pyrene analogue of the widely studied chromophore 4-(N,N-dimethylamino)benzonitrile (DMABN). Compound 3 and the monosubstituted compounds 2-(N,N-diethylamino)pyrene (1) and 2-cyanopyrene (2) have been structurally characterized. Their electronic and optical properties have been studied by a combination of absorption and emission spectroscopies, lifetime and quantum yield measurements, and modeling by DFT and TD-DFT. The photophysical properties of 3 are compared to those of DMABN and 2-cyano-7-(N,N-dimethylamino)-4,5,9,10-tetrahydropyrene, and we show that 2,7-disubstituted pyrene is a moderately effective π-bridge for the construction of donor-acceptor compounds. It is also shown that donor or acceptor groups are only effective at the 2,7-positions of pyrene if they are suitably strong, leading to a switch in the energetic ordering of the HOMO-1 and HOMO or the LUMO and LUMO+1 of pyrene, respectively.
Collapse
Affiliation(s)
- Lei Ji
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Lorbach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert M Edkins
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
36
|
Sadler SA, Hones AC, Roberts B, Blakemore D, Marder TB, Steel PG. Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C–H Borylation. J Org Chem 2015; 80:5308-14. [DOI: 10.1021/acs.joc.5b00452] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott A. Sadler
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrew C. Hones
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Bryan Roberts
- Astra Zeneca, Alderley Park, Macclesfield SK10 4TF, U.K
| | - David Blakemore
- Pfizer-Neusentis, The Portway Building, Granta Park, Cambridge, CB21 6GS, U.K
| | - Todd B. Marder
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Patrick G. Steel
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|