1
|
Hua K, Wu Z, Chen W, Xi X, Chen X, Yang S, Gao P, Zheng Y. Preparation and Photocatalytic Properties of Al 2O 3-SiO 2-TiO 2 Porous Composite Semiconductor Ceramics. Molecules 2024; 29:4391. [PMID: 39339386 PMCID: PMC11433845 DOI: 10.3390/molecules29184391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Titanium dioxide (TiO2) is widely employed in the catalytic degradation of wastewater, owing to its robust stability, superior photocatalytic efficiency, and cost-effectiveness. Nonetheless, isolating the fine particulate photocatalysts from the solution post-reaction poses a significant challenge in practical photocatalytic processes. Furthermore, these particles have a tendency to agglomerate into larger clusters, which diminishes their stability. To address this issue, the present study has developed Al2O3-SiO2-TiO2 composite semiconductor porous ceramics and has systematically explored the influence of Al2O3 and SiO2 on the structure and properties of TiO2 porous ceramics. The findings reveal that the incorporation of Al2O3 augments the open porosity of the ceramics and inhibits the aggregation of TiO2, thereby increasing the catalytic site and improving the light absorption capacity. On the other hand, the addition of SiO2 enhances the bending strength of the ceramics and inhibits the conversion of anatase to rutile, thereby further enhancing its photocatalytic activity. Consequently, at an optimal composition of 55 wt.% Al2O3, 40 wt.% TiO2, and 5 wt.% SiO2, the resulting porous ceramics exhibit a methylene blue removal rate of 91.50%, and even after undergoing five cycles of testing, their catalytic efficiency remains approximately 83.82%. These outcomes underscore the exceptional photocatalytic degradation efficiency, recyclability, and reusability of the Al2O3-SiO2-TiO2 porous ceramics, suggesting their substantial potential for application in the treatment of dye wastewater, especially for the removal of methylene blue.
Collapse
Affiliation(s)
- Kaihui Hua
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China
| | - Zhijing Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Weijie Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiuan Xi
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Xiaobing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuyan Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Pinhai Gao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China
| | - Yu Zheng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China
| |
Collapse
|
2
|
Jamil S, Jabeen N, Sajid F, Khan LU, Kanwal A, Sohail M, Zaheer M, Akhter Z. Visible light driven (VLD) reduced TiO 2-x nanocatalysts designed by inorganic and organic reducing agent-mediated solvothermal methods for electrocatalytic and photocatalytic applications. RSC Adv 2024; 14:24092-24104. [PMID: 39091372 PMCID: PMC11292792 DOI: 10.1039/d4ra03402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
This work presents a comparative study on the structural, optical and electrochemical characteristics of visible light driven (VLD) reduced titanium dioxide (TiO2-x ) nanocatalysts synthesized via inorganic and organic synthetic routes. X-ray diffraction (XRD) patterns, Raman spectra and X-ray absorption fine structure (XAFS) analyses reflected anatase phase titania. Whereas, the quantitative EXAFS fit and XANES analysis revealed structural distortion due to the presence of oxygen and titanium vacancies with low valent Ti states in anatase lattices of certain nanocatalysts, which subsequently leads to better electrochemical and photocatalytic activities. Moreover, owing to the large surface area and mesoporous structures, the Mg-TiO2-x nanocatalysts exhibited enhanced water adsorption and ultimately increased overall water splitting with an OER overpotential equal to 420 mV vs. RHE at a current density of 10 mA cm-2 (Tafel slope = 62 mV dec-1), extended visible light absorbance, decreased photoluminescence (PL) intensity and increased carrier lifetime in comparison with commercial titania.
Collapse
Affiliation(s)
- Sadaf Jamil
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Naila Jabeen
- Nanosciences and Technology Division, National Centre for Physics QAU Campus, Shahdra Valley Road, P.O. Box 2141 Islamabad-44000 Pakistan
| | - Fatima Sajid
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Latif U Khan
- Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) P.O. Box 7 Allan 19252 Jordan
| | - Afia Kanwal
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Manzar Sohail
- School of Natural Sciences, National University of Sciences and Technology (NUST) H-12 Islamabad Pakistan
| | - Muhammad Zaheer
- Lahore University of Management Sciences DHA Lahore Cantt 54792 Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
3
|
Xu L, Wen L, Zhao X, Li N, Liu B. Commonly Existing Hole-Capturer Organics Adsorption-Induced Recombination over Metal/Semiconductor Perimeters: A Possible Important Factor Affecting Photocatalytic Efficiencies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11974-11987. [PMID: 38801162 DOI: 10.1021/acs.langmuir.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalysis is a physiochemical effect arising from the relaxation of photoinduced electrons from the conduction band to the valence band. Controlling the electron relaxation to occur through photocatalytic pathways and prohibiting other relaxations is the main scientific thought for photocatalytic studies. It is needed to know the parallel relaxation pathways that can compete with photocatalytic reactions. By means of in situ photoconductances (PCs) and photoinduced absorptions (PAs), the current research studied the photoinduced electron relaxations of the Au/TiO2 in different atmospheres and at different temperatures. The PC and PA relaxations became different and fast when methanol, ethanol, isopropanol, and acetone were introduced; they also tend to decrease as temperature increases, while that of the undecorated TiO2 in all atmospheres and the Au/TiO2 in pure N2 increased. The results indicated that the organic adsorptions over the Au/TO2 perimeters change the relaxation pathway, and a hole-capturing organics adsorption-induced recombination over the Au/TiO2 perimeter was proposed to explain the relaxations. We found that this relaxation also exists for Ag/TiO2, Pt/TiO2, and Au/ZnO, so it is a commonly existing physical course for the metal/semiconductor (M/S) materials. The effect of the organics and M/S structures on the relaxation was discussed, and the relationship with photocatalytic reactions was also analyzed. Our finding means that blocking this relaxation pathway is an effective way to increase photocatalytic activities, which might open a door for highly active photocatalyst developments.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province 430065, P. R. China
| | - Liping Wen
- School of Environmental & Biological Engineering, Wuhan Technology and Business University, Wuhan City, Hubei province 430065, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province 430065, P. R. China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province 430065, P. R. China
| | - Baoshun Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province 430065, P. R. China
| |
Collapse
|
4
|
Das D, Shyam S. Reduced Work Function in Anatase ⟨101⟩ TiO 2 Films Self-Doped by O-Vacancy-Dependent Ti 3+ Bonds Controlling the Photocatalytic Dye Degradation Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10502-10517. [PMID: 38711250 DOI: 10.1021/acs.langmuir.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
TiO2 has the proven capability of catalytically decomposing pollutants under light illumination, thereby embracing potential applications in wastewater management. The photocatalytic dye degradation activity is largely controlled by the optical band gap that dictates the extent of electron-hole pair generation via photon absorption, and the recombination kinetics of charges. In this context, the material's work function governs how easily the charge carriers can be transferred at the dye-adsorbed photocatalytically active sites. Accordingly, nanocrystalline TiO2 thin films are grown in the anatase phase with ⟨101⟩ orientation, using RF magnetron sputtering at 200 °C. Besides studying the film's structural morphology, optical band gap, and elemental composition, the electronic properties are extensively investigated. The work function of the material was controlled by varying the O-vacancy-dependent Ti3+ bonding configuration in the network. It has been demonstrated how the photocatalytic methylene blue dye degradation activity of the nanocrystalline TiO2 films of predominantly the anatase phase improves on reducing the sputtering pressure during deposition. At a low deposition pressure of 20 mTorr, a low work function of ∼4.2 eV of the film, resulting from the formation of a Ti3+-bond through the O vacancies in the network, potentially increases its carrier lifetime and delivers the superior photocatalytic activity (∼82.7% dye degradation with a rate constant of k ∼ 0.0073 min-1) via silently facilitating fast electron transfer from the photocatalyst to the dye in the aqueous solution. The higher stoichiometric film prepared at p = 40 mTorr exhibits an inferior photocatalytic activity (∼20.4% dye degradation with a rate constant of k ∼ 0.0009 min-1), as retarded by its higher work function of ∼4.62 eV, despite retaining a relatively low band gap. Thus, without using any heterojunction or extrinsically doped photocatalyst, the dye degradation can be controlled simply by reducing the work function of nanocrystalline TiO2 thin films via controlling the O-vacancy-dependent Ti3+ bonding in its self-doped network.
Collapse
Affiliation(s)
- Debajyoti Das
- Energy Research Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Sukalyan Shyam
- Energy Research Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
5
|
Hernández-Rodríguez F, Garza-Hernández R, Alfaro-Cruz M, Torres-Martínez LM. Tunable structure of TiO 2 deposited by DC magnetron sputtering to adsorb Cr (VI) and Fe (III) from water. Heliyon 2024; 10:e27359. [PMID: 38501005 PMCID: PMC10945184 DOI: 10.1016/j.heliyon.2024.e27359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
TiO2 thin films with mixtures of the anatase, rutile, and brookite phases were deposited on glass substrates via magnetron sputtering. Based on XRD and Raman results, the TiO2-0.47 and TiO2-3.47 films principally contained the brookite phase, while the TiO2-1.27 and TiO2-2.13 films were primarily anatase. The capacities of the TiO2 films to adsorb heavy metals were tested with Cr(VI) and Fe(III) solutions, and the maximum Cr(VI) and Fe(III) adsorption capacities were realized with the TiO2-0.47 film (334.5 mg/g) and TiO2-3.47 film (271.3 mg/g), respectively. SEM‒EDS results revealed the presence of Cr and Fe on the surfaces of the films, thus corroborating the ability of the TiO2 films to adsorb and remove heavy metals. They are strong candidates for use in wastewater treatment plants.
Collapse
Affiliation(s)
- F.A. Hernández-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - R. Garza-Hernández
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Col. Lomas del Campestre León, Guanajuato, C.P. 37150, Mexico
| | - M.R. Alfaro-Cruz
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
- CONAHCYT-Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Leticia M. Torres-Martínez
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chih., CP, 31136, Mexico
| |
Collapse
|
6
|
Basuny BN, Kospa DA, Ibrahim AA, Gebreil A. Stable polyethylene glycol/biochar composite as a cost-effective photothermal absorber for 24 hours of steam and electricity cogeneration. RSC Adv 2023; 13:31077-31091. [PMID: 37881767 PMCID: PMC10595053 DOI: 10.1039/d3ra06028d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Seawater desalination powered by solar energy is the most environmentally and economical solution in responding to the global water and energy crisis. However, solar desalination has been negatively impacted by intermittent sun radiation that alternates between day and night. In this study, sugarcane bagasse (SCB) was recycled via the pyrolysis process to biochar as a cost-effective solar absorber. Besides, polyethylene glycol (PEG) as a phase change material was encapsulated in the abundant pore structure of biochar to store the thermal energy for 24 hours of continuous steam generation. The BDB/1.5 PEG evaporator exhibited an evaporation rate of 2.11 kg m-2 h-1 (98.1% efficiency) under 1 sun irradiation. Additionally, the BDB/1.5 PEG evaporator incorporated by the TEC1-12706 module for continuous steam and electricity generation with a power density of 320.41 mW m-2. Moreover, 10 continuous hours of evaporation were applied to the composite demonstrating outstanding stability. The composite exhibited high water purification efficiency through solar desalination due to the abundant functional groups on the biochar surface. Finally, the resulting low-cost and highly efficient PCM-based absorber can be used on a wide scale to produce fresh water and energy.
Collapse
Affiliation(s)
- Belal N Basuny
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Ahmed Gebreil
- Nile Higher Institutes of Engineering and Technology El-Mansoura Egypt
| |
Collapse
|
7
|
Kamal Z, Said AH, Ebnalwaled AA, Rehan IF, Zigo F, Farkašová Z, Allam M. Genetic effects of chemically and biosynthesized titanium dioxide nanoparticles in vitro and in vivo of female rats and their fetuses. Front Vet Sci 2023; 10:1142305. [PMID: 37614463 PMCID: PMC10442826 DOI: 10.3389/fvets.2023.1142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023] Open
Abstract
With the increase in nanoparticles (NPs) products on the market, the possibility of animal and human exposure to these materials will increase. The smaller size of NPs facilitates their entrance through placental barriers and allows them to accumulate in embryonic tissue, where they can then be a source of different developmental malformations. Several toxicity studies with chemically synthesized titanium dioxide NPs (CTiO2 NPs) have been recently carried out; although there is insufficient data on exposure to biosynthesized titanium dioxide NPs (BTiO2 NPs) during pregnancy, the study aimed to evaluate the ability of an eco-friendly biosynthesis technique using garlic extract against maternal and fetal genotoxicities, which could result from repeated exposure to TiO2 NPs during gestation days (GD) 6-19. A total of fifty pregnant rats were divided into five groups (n = 10) and gavaged CTiO2 NPs and BTiO2 NPs at 100 and 300 mg/kg/day concentrations. Pregnant rats on GD 20 were anesthetized, uterine horns were removed, and then embryotoxicity was performed. The kidneys of the mothers and fetuses in each group were collected and then maintained in a frozen condition. Our results showed that garlic extract can be used as a reducing agent for the formation of TiO2 NPs. Moreover, BTiO2 NPs showed less toxic potential than CTiO2 NPs in HepG2 cells. Both chemically and biosynthesized TiO2 NP-induced genetic variation in the 16S rRNA sequences of mother groups compared to the control group. In conclusion, the genetic effects of the 16S rRNA sequence induced by chemically synthesized TiO2 NPs were greater than those of biosynthesized TiO2 NPs. However, there were no differences between the control group and the embryo-treated groups with chemically and biologically synthesized TiO2 NPs.
Collapse
Affiliation(s)
- Zeinab Kamal
- Department of Zoology, Faculty of Science, South Valley University, Qena, Egypt
| | - Alaa H. Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - A. A. Ebnalwaled
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Mohammad Allam
- Department of Zoology, Faculty of Science, Luxor University, Luxor, Egypt
| |
Collapse
|
8
|
Wenderich K, Zhu K, Bu Y, Tichelaar FD, Mul G, Huijser A. Photophysical Characterization of Ru Nanoclusters on Nanostructured TiO 2 by Time-Resolved Photoluminescence Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14353-14362. [PMID: 37529662 PMCID: PMC10388344 DOI: 10.1021/acs.jpcc.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/23/2023] [Indexed: 08/03/2023]
Abstract
Despite the promising performance of Ru nanoparticles or nanoclusters on nanostructured TiO2 in photocatalytic and photothermal reactions, a mechanistic understanding of the photophysics is limited. The aim of this study is to uncover the nature of light-induced processes in Ru/TiO2 and the role of UV versus visible excitation by time-resolved photoluminescence (PL) spectroscopy. The PL at a 267 nm excitation is predominantly due to TiO2, with a minor contribution of the Ru nanoclusters. Relative to TiO2, the PL of Ru/TiO2 following a 267 nm excitation is significantly blue-shifted, and the bathochromic shift with time is smaller. We show by global analysis of the spectrotemporal PL behavior that for both TiO2 and Ru/TiO2 the bathochromic shift with time is likely caused by the diffusion of electrons from the TiO2 bulk toward the surface. During this directional motion, electrons may recombine (non)radiatively with relatively immobile hole polarons, causing the PL spectrum to red-shift with time following excitation. The blue-shifted PL spectra and smaller bathochromic shift with time for Ru/TiO2 relative to TiO2 indicate surface PL quenching, likely due to charge transfer from the TiO2 surface into the Ru nanoclusters. When deposited on SiO2 and excited at 532 nm, Ru shows a strong emission. The PL of Ru when deposited on TiO2 is completely quenched, demonstrating interfacial charge separation following photoexcitation of the Ru nanoclusters with a close to unity quantum yield. The nature of the charge-transfer phenomena is discussed, and the obtained insights indicate that Ru nanoclusters should be deposited on semiconducting supports to enable highly effective photo(thermal)catalysis.
Collapse
Affiliation(s)
- Kasper Wenderich
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kaijian Zhu
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yibin Bu
- Nanolab,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frans D. Tichelaar
- Kavli
Institute of Technology, Quantum Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Guido Mul
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Annemarie Huijser
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Khan MJ, Ahirwar A, Sirotiya V, Rai A, Varjani S, Vinayak V. Nanoengineering TiO 2 for evaluating performance in dye sensitized solar cells with natural dyes. RSC Adv 2023; 13:22630-22638. [PMID: 37501775 PMCID: PMC10369046 DOI: 10.1039/d3ra02927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The current study employs nanoengineering diatom and TiO2 NPs to form diatom-Si-TiO2 nanoengineered structures to fabricate a dye sensitized solar cell (DSSC) (DsTnas-DSSC). This was characterized and spin coated on a Fluorine-doped Tin Oxide (FTO) anode plate. The counter cathode was prepared by spin coating graphene oxide on a FTO glass plate and using Lugol's iodine as an electrolyte. The power density of DsTnas-DSSC was estimated with different natural dyes in comparison to conventional photosensitive ruthenium dye. It was found that the natural dyes extracted from plants and microalgae show significant power efficiencies in DSSC. The percentage efficiency of maximum power densities (PDmax) of DsTnas-DSSC obtained with photosensitive dyes were 9.4% with synthetic ruthenium dye (control) and 7.19% > 4.08% > 0.72% > 0.58% > 0.061% from natural dyes found in Haematococcus pluvialis (astaxanthin) > Syzygium cumini (anthocyanin) > Rosa indica (anthocyanin) > Hibiscus rosa-sinensis (anthocyanin) > Beta vulgaris (betalains), respectively. Among all the natural dyes used, the PDmax for the control ruthenium dye was 6.164 mW m-2 followed by the highest in astaxanthin natural dye from Haematococcus pluvialis (5.872 mW m-2). Overall, the use of natural dye DsTnas-DSSC makes the fuel cell low cost and an alternative to conventional expensive, metal and synthetic dyes.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Maharishi Markendeshwar University Ambala Haryana 133203 India
- State Forensic Science Laboratory Haryana Madhuban 132037 India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong Tat Chee Avenue Kowloon 999077 Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies Dehradun-248 007 Uttarakhand India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| |
Collapse
|
10
|
M.Munshi A. Collaborative impact of Cu/TiO2 nano composites for elimination of cationic dye from aqueous solution: Kinetics and isothermal modeling. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
11
|
Paz-López CV, Fereidooni M, Praserthdam P, Praserthdam S, Farfán N, Marquez V. Comprehensive analysis (aerobic/anaerobic, molecular recognitions, band-position and degradation-mechanism) of undoped and Co-doped anatase-brookite - An experimental/theoretical evaluation of the less-studied TiO 2 mixed phase. ENVIRONMENTAL RESEARCH 2023; 229:115968. [PMID: 37121350 DOI: 10.1016/j.envres.2023.115968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The molecular recognition (MRec) effect is required in the initial phase of organic reactions. The second stage involves molecular-orientations and molecular-orbitals energy-levels (MOrbE). The components of a reaction must be compatible in terms MRec and MOrbE. Therefore, the comprehension of photocatalytic systems applied in wastewater treatment will be improved if the MRec effect is also considered as an important factor. The purpose of this study is to provide a comprehensive understanding of the less studied anatase-brookite mixed-phase (doped and undoped). Anatase/brookite photocatalytic systems were evaluated utilizing experimental/theoretical approaches in H2O (aerobic/anaerobic) environments with Vis-light and the organic pollutant (OrPo) methyl orange (MO). The compatibility of MRec and MOrbE of anatase-brookite mixed-phase (with the different reactive system components) confirmed this is the optimal combination for photocatalytic application. Using the sol-gel method, AM-TiO2NP (amorphous), TiO2NP (crystalline), and TiO2NP-Co0.1 at% (crystalline Co-doped) anatase-brookite mixed-phase photocatalysts were obtained. The morphology and surface were characterized using XRD, BET, SEM, HR-TEM, FT-IR and XPS. Employing UV-vis DRS and PL, photo-response and electron-hole recombination were studied. LVS and Mott-Schottky plot were employed to determine photo-electrochemical activity. The results of TiO2NP photocatalytic degradation in both aerobic and anaerobic environments are remarkable. The results of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) validate the remarkable photocatalytic MO degradation.
Collapse
Affiliation(s)
- C V Paz-López
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - M Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - P Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - S Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - N Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - V Marquez
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. Polymers (Basel) 2023; 15:polym15071643. [PMID: 37050256 PMCID: PMC10097359 DOI: 10.3390/polym15071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.
Collapse
|
13
|
Mohanta M, Thirugnanam A. Development of Multifunctional Commercial Pure Titanium-Polyethylene Glycol Drug-Eluting Substrates with Enhanced Optical and Antithrombotic Properties. Cardiovasc Eng Technol 2023; 14:37-51. [PMID: 35701708 DOI: 10.1007/s13239-022-00637-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Development of multifunctional advanced stent implants (metal/polymer composite)-drug-eluting stents with superior material and optical properties is still a challenge. In this research work, multifunctional metal-polymer composite drug-eluting substrates (DES) for stent application were developed by using commercially pure titanium (cpTi) and polyethylene glycol (PEG). METHODS Surface modifications on titanium substrates were carried out by sodium hydroxide under various concentrations; 5M (6 and 24 h) and 10M (6 and 24 h). It induces a nanoporous structure which facilitates the larger area for encapsulation of the drug, Aspirin (ASA) via intermolecular forces followed by polymer coating of PEG (MW-20,000) by physical adsorption process, which is structured as layer-by-layer gathering. RESULTS The developed cpTi-PEG DES were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), optical energy bandgap, static contact angle measurement, antithrombotic and drug release studies. The development of sodium titanate oxide prompted surface nano-features revealed by SEM and XRD. Moreover, FTIR confirms the presence of ASA and PEG functional groups over the cpTi surface. Drug release studies fitted with Ritger-Peppas kinetic model (≤ 60%), which indicates the super case II transport mechanisms (n > 1). Further UV-visible absorbance spectrum was quantified by the Tauc plot, which shows the broadening of the energy bandgap (Eg). In addition, the shrink in blood clots was more around the Tib2/ASA/PEG.Please confirm the inserted city name in affiliations [1,2] are correct and amend if necessary.Yes, city name "Rourkela" is correct. CONCLUSION Developed cpTi-PEG DES has improved optical properties and prevent thrombus formation which suggesting it a potential substrate to overcome prime clinical challenges.
Collapse
Affiliation(s)
- Monalisha Mohanta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - A Thirugnanam
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Room No. 206, Rourkela, Odisha, 769008, India.
| |
Collapse
|
14
|
Photodynamic and antibacterial studies of template-assisted Fe 2O 3-TiO 2 nanocomposites. Photodiagnosis Photodyn Ther 2022; 40:103064. [PMID: 35963529 DOI: 10.1016/j.pdpdt.2022.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Fe2O3-TiO2 (FT) nanocomposites were successfully synthesized by template-assisted precipitation reaction using Polyvinylpyrrolidone-Polyethylene glycol (PVP-PEG), Tween-80 (T-80) and Cetyltrimethylammomium bromide (CTAB) as templates. The prepared nanocomposites were characterized by XRD, SEM, EDX, UV-DRS, FT-IR, and FT-Raman spectroscopic analysis. The photohemolysis studies were done in human erythrocytes and the cell viability studies were done in HeLa cell lines under the irradiation of an LED light source. The photodynamic studies were performed under two different experimental conditions, such as varying concentrations as well as a time of irradiation. The nanocomposites exhibit significant photodynamic activity via the generation of reactive oxygen species (ROS) under the light source. The results show that the PVP-PEG-assisted Fe2O3-TiO2 (FT-PVP-PEG) nanocomposite has more potential for photodynamic activity in the presence of an LED light source. Also, the antibacterial effect of the samples was investigated against gram-negative bacteria (Escherichia coli). Among all nanocomposites, FT-PVP-PEG shows remarkable antibacterial activity against E. coli. Moreover, the template-assisted nanocomposites protect the biomolecules from the toxicity generated by the magnetic nanoparticles (NPs). The template-assisted FT nanocomposites for the field of photodynamic activity have been experimentally shown for the first time.
Collapse
|
15
|
TiO2-Based Heterostructure Containing g-C3N4 for an Effective Photocatalytic Treatment of a Textile Dye. Catalysts 2022. [DOI: 10.3390/catal12121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Water pollution has become a serious environmental issue. The textile industries using textile dyes are considered to be one of the most polluting of all industrial sectors. The application of solar-light semiconductor catalysts in wastewater treatment, among which TiO2 can be considered a prospective candidate, is limited by rapid recombination of photogenerated charge carriers. To address these limitations, TiO2 was tailored with graphitic carbon nitride (g-C3N4) to develop a heterostructure of g-C3N4@TiO2. Herein, a simple hydrothermal synthesis of TiO2@g-C3N4 is presented, using titanium isopropoxide (TTIP) and urea as precursors. The morphological and optical properties and the structure of g-C3N4, TiO2, and the prepared heterostructure TiO2@g-C3N4 (with different wt.% up to 32%), were analyzed by various laboratory methods. The photocatalytic activity was studied through the degradation of methylene blue (MB) aqueous solution under UV-A and simulated solar irradiation. The results showed that the amount of g-C3N4 and the irradiation source are the most important influences on the efficiency of MB removal by g-C3N4@TiO2. Photocatalytic degradation of MB was also examined in realistic conditions, such as natural sunlight and different aqueous environments. The synthesized g-C3N4@TiO2 nanocomposite showed superior photocatalytic properties in comparison with pure TiO2 and g-C3N4, and is thus a promising new photocatalyst for real-life implementation. The degradation mechanism was investigated using scavengers for electrons, photogenerated holes, and hydroxyl radicals to find the responsible species for MB degradation.
Collapse
|
16
|
Borchers M, Lott P, Deutschmann O. Selective Catalytic Reduction with Hydrogen for Exhaust gas after-treatment of Hydrogen Combustion Engines. Top Catal 2022. [DOI: 10.1007/s11244-022-01723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractIn this work, two palladium-based catalysts with either ZSM-5 or Zeolite Y as support material are tested for their performance in selective catalytic reduction of NOx with hydrogen (H2-SCR). The ligh-toff measurements in synthetic exhaust gas mixtures typical for hydrogen combustion engines are supplemented by detailed catalyst characterization comprising N2 physisorption, X-ray powder diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR) and ammonia temperature programmed desorption (NH3-TPD). Introducing 10% or 20% TiO2 into the catalyst formulations reduced the surface area and the number of acidic sites for both catalysts, however, more severely for the Zeolite Y-supported catalysts. The higher reducibility of the Pd particles that was uncovered by H2-TPR resulted in an improved catalytic performance during the light-off measurements and substantially boosted NO conversion. Upon exposition to humid exhaust gas, the ZSM-5-supported catalysts showed a significant drop in performance, whereas the Zeolite Y-supported catalyst kept the high levels of conversion while shifting the selectivity from N2O more toward NH3 and N2. The 1%Pd/20%TiO2/HY catalyst subject to this work outperforms one of the most active and selective benchmark catalyst formulations, 1%Pd/5%V2O5/20%TiO2-Al2O3, making Zeolite Y a promising support material for H2-SCR catalyst formulations that allow efficient and selective NOx-removal from exhaust gases originating from hydrogen-fueled engines.
Collapse
|
17
|
Salarbashi D, Tafaghodi M, Rajabi O, Fazli Bazzaz BS, Soheili V. Soluble soybean polysaccharide/
TiO
2
nanocomposites: Biological activity, release behavior, biodegradability, and biosafety. J Food Saf 2022. [DOI: 10.1111/jfs.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research Center, School of Medicine Gonabad University of Medical Sciences Gonabad Iran
- Department of Food Science and Nutrition, School of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutics, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Bibi Sedigheh Fazli Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
18
|
A facile way to synthesize noble metal free TiO2 based catalysts for glycerol photoreforming. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Kaur H, Kalia A, Sandhu JS, Dheri GS, Kaur G, Pathania S. Interaction of TiO 2 nanoparticles with soil: Effect on microbiological and chemical traits. CHEMOSPHERE 2022; 301:134629. [PMID: 35447207 DOI: 10.1016/j.chemosphere.2022.134629] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are the most widely used nanomaterials and their expanding use raises concerns about their impacts on soil ecosystems and functioning. The present study evaluates the potential impacts of TiO2 NPs applied at low doses (0, 1.0, 2.5, 5.0, 10.0 and 20.0 mg L-1) on soil chemical properties including the macro and micronutrient contents, microbial population and enzyme activities in rhizosphere soil of mung bean crop at different time intervals (7, 14, 28 and 56 days). A quantitative RT-PCR study was also performed to study the relative change in the gene expression of ammonia oxidizer and nitrogen fixers upon TiO2 NP supplementation. An increase in soil nutrient content viz., available N, P, Cu, Fe, Mn, nitrate-N and ammonical-N was observed with NP application except available K and Zn content. The TiO2 NPs stimulated the growth of soil microflora at low concentrations while an inhibitory effect was recorded at high concentrations. The soil fungi and actinobacteria emerged as the most sensitive groups of soil microbes towards TiO2 NP exposure exhibiting detrimental impacts on their growth at all concentrations. Similarly, the soil enzyme activities enhanced till TiO2 NPs (10.0 mg L-1) which was followed by decrease at higher concentrations. The qRT-PCR study showed that the ammonia oxidizers were more affected by TiO2 NPs application than nitrogen fixers. These findings suggest that TiO2 NPs can be used as stimulators of soil nutrients and soil microbial dynamics at low concentrations.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurmeet Singh Dheri
- Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Shivali Pathania
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
20
|
Ebrahimi H, Sharif F, Ramazani SAA. Effects of modified titanium dioxide nanoparticles on the thermal and mechanical properties of poly(l-lactide)-b-poly(ε-caprolactone). IRANIAN POLYMER JOURNAL 2022; 31:893-904. [DOI: 10.1007/s13726-022-01039-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 07/27/2023]
|
21
|
Secundino-Sánchez O, Díaz-Reyes J, Sánchez-Ramírez J, Arias-Cerón J, Galván-Arellano M, Vázquez-Cuchillo O. Controlled synthesis of electrospun TiO2 nanofibers and their photocatalytic application in the decolouration of Remazol Black B azo dye. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Choe H, Kim SY, Zhao S, Cha BJ, Grehl T, Brüner P, Kim YD. Surface Structures of Fe-TiO 2 Photocatalysts for NO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24028-24038. [PMID: 35549024 DOI: 10.1021/acsami.2c04118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commercial rutile TiO2 particles capped with Al2O3 and ZrO2 layers, which are widely used in white pigments, can serve as a starting material for the fabrication of visible light-responsive photocatalysts toward gas-phase NO oxidation. The as-received TiO2 with iron impurities exhibited reduced photocatalytic activity, and the activity was boosted by the deposition of additional iron comparable in quantity to the intrinsic iron impurity level. Analyses using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, and low-energy ion scattering spectroscopy revealed that the deposited iron and intrinsic impurity iron are dissimilar in terms of location, oxidation states, and interaction with TiO2. This suggests that tracking the structure and impurity levels of photocatalyst elements can be crucial for understanding structure-activity relationships of real catalysts.
Collapse
Affiliation(s)
- Huicheol Choe
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Soong Yeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Shufang Zhao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Byeong Jun Cha
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- Center of Scientific Instrumentation, Korea Basic Science Institute, Ochang Center, Cheongju 28119, Chungbuk, Korea
| | - Thomas Grehl
- IONTOF Technologies GmbH, Heisenbergstr. 15, Münster 48149, Germany
| | - Philipp Brüner
- IONTOF Technologies GmbH, Heisenbergstr. 15, Münster 48149, Germany
| | - Young Dok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
23
|
Wang TT, Yang YT, Lim SC, Chiang CL, Lim JS, Lin YC, Peng CK, Lin MC, Lin YG. Hydrogenation engineering of bimetallic Ag–Cu-modified-titania photocatalysts for production of hydrogen. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Rani M, Shanker U. Efficient removal of plastic additives by sunlight active titanium dioxide decorated Cd-Mg ferrite nanocomposite: Green synthesis, kinetics and photoactivity. CHEMOSPHERE 2022; 290:133307. [PMID: 34929280 DOI: 10.1016/j.chemosphere.2021.133307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Large use of flame retardants or additives in plastic industries have caused scientific attention as their leaching from consumer products is indicative of environmental concern. Moreover, plastic additives have proven features of endocrine disruptors, genotoxicity and persistence. Therefore, photodegradation of tetrabromobisphenol A (TBBPA) and bisphenol A (BPA) were explored in water. Seeing environmental safety, titanium dioxide decorated magnesium substituted cadmium ferrite (CdMgFe2O4@TiO2) was synthesized by using plant extract of M. koenigii via co-precipitation. Sharp peaks obtained in PXRD ensured high crystallinity and purity of distorted spherical nanocomposite (5-25 nm). Subsequently, CdMgFe2O4@TiO2 nanocatalyst was evaluated for the effective elimination of plastic additives at variable reaction parameters (pollutant: 2-10 mgL-1; catalyst: 5-25 mg; pH: 3-7, dark-sunlight). With 20 mg of catalytic dose, CdMgFe2O4@TiO2 showed maximum degradation of 2 mgL-1 of TBBPA (91%) and BPA (94%) at neutral pH under sunlight. Considerable reduction in persistence of TBBPA (t1/2:2.4 h) and BPA (t1/2:2.1 h) indicated admirable photoactivity of CdMgFe2O4@TiO2. Results were supported by BET, zeta potential, band reflectance and photoluminescence analysis that indicated for higher surface area (90 m2g-1), larger particle stability (-20 mV), lower band gap (1.9 eV) and inhibited charge-pairs recombination in nanocomposite. Degradation consisted of initial Langmuir-adsorption followed by first order kinetics. Scavenger analysis revealed the role of hydroxyl radical in photodegradation studies. Nanocomposite was effective up to eight cycles without any significant loss of activity that advocated its high-sustainability and cost-effectiveness. Overall, with excellent surface characteristics, green synthesized CdMgFe2O4@TiO2 nanocomposite is a promising and alternative photocatalyst for industrial applications.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
25
|
Metanawin S, Sornsuwit N, Metanawin T. Miniemulsion polymerization technique enhancement: the photocatalysis of commercial rutile-TiO 2 hybrids with nano poly(methyl methacrylate). POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1953526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Siripan Metanawin
- Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Nuttaphong Sornsuwit
- Department of Materials and Production Technology Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Tanapak Metanawin
- Department of Materials and Production Technology Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
26
|
Sharma V, Sharma S, Sharma N, Sharma S, Paul S. A novel core–shell Pd(0)@enSiO 2–Ni–TiO 2 nanocomposite with a synergistic effect for efficient hydrogenations. NEW J CHEM 2022. [DOI: 10.1039/d2nj02845j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a core–shell nano-structured Pd(0)@enSiO2–Ni–TiO2 catalyst for the hydrogenation of nitro-arenes, quinoline and α,β-unsaturated carbonyl compounds was demonstrated.
Collapse
Affiliation(s)
- Vrinda Sharma
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Surbhi Sharma
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Nitika Sharma
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Sukanya Sharma
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Satya Paul
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| |
Collapse
|
27
|
Application of Prunus armeniaca gum exudates and chitosan for encapsulation of Pomegranate peel extract as a natural antioxidant. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Godin R, Durrant JR. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem Soc Rev 2021; 50:13372-13409. [PMID: 34786578 DOI: 10.1039/d1cs00577d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued development of solar energy conversion technologies relies on an improved understanding of their limitations. In this review, we focus on a comparison of the charge carrier dynamics underlying the function of photovoltaic devices with those of both natural and artificial photosynthetic systems. The solar energy conversion efficiency is determined by the product of the rate of generation of high energy species (charges for solar cells, chemical fuels for photosynthesis) and the energy contained in these species. It is known that the underlying kinetics of the photophysical and charge transfer processes affect the production yield of high energy species. Comparatively little attention has been paid to how these kinetics are linked to the energy contained in the high energy species or the energy lost in driving the forward reactions. Here we review the operational parameters of both photovoltaic and photosynthetic systems to highlight the energy cost of extending the lifetime of charge carriers to levels that enable function. We show a strong correlation between the energy lost within the device and the necessary lifetime gain, even when considering natural photosynthesis alongside artificial systems. From consideration of experimental data across all these systems, the emprical energetic cost of each 10-fold increase in lifetime is 87 meV. This energetic cost of lifetime gain is approx. 50% greater than the 59 meV predicted from a simple kinetic model. Broadly speaking, photovoltaic devices show smaller energy losses compared to photosynthetic devices due to the smaller lifetime gains needed. This is because of faster charge extraction processes in photovoltaic devices compared to the complex multi-electron, multi-proton redox reactions that produce fuels in photosynthetic devices. The result is that in photosynthetic systems, larger energetic costs are paid to overcome unfavorable kinetic competition between the excited state lifetime and the rate of interfacial reactions. We apply this framework to leading examples of photovoltaic and photosynthetic devices to identify kinetic sources of energy loss and identify possible strategies to reduce this energy loss. The kinetic and energetic analyses undertaken are applicable to both photovoltaic and photosynthetic systems allowing for a holistic comparison of both types of solar energy conversion approaches.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada. .,Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, British Columbia, Canada
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
29
|
Au-Ag/TiO2 Thin Films Preparation by Laser Ablation and Sputtering Plasmas for Its Potential Use as Photoanodes in Electrochemical Advanced Oxidation Processes (EAOP). Catalysts 2021. [DOI: 10.3390/catal11111406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Titanium dioxide (TiO2) is widely used, studied, and synthesized using different methodologies. By a modification of the material, it can be applied to wastewater treatment. A combined sputtering-laser ablation setup was used to deposit TiO2 thin films modified, individually and simultaneously, with gold (Au) and silver (Ag). To investigate the effect of the metal incorporation in titanium and its impact on the photocatalytic activity, with dye discoloration as a pollutant compound model, the deposited films were characterized by UV–Vis, photoluminescence, and Raman spectroscopies, as well as by parallel beam X-ray diffraction. The results showed that films with different Au and Ag loads, and an 18 nm average crystallite size, were obtained. These metals have an essential effect on the deposited film’s compositional, structural, and optical properties, directly reflected in its photocatalytic activity. The photocatalytic test results using UV-Vis showed that, after 1 h of applying a 4.8 V electric voltage, a discoloration of up to 80% of malachite green (MG) was achieved, using ultraviolet (UV) light.
Collapse
|
30
|
Lipińska W, Grochowska K, Ryl J, Karczewski J, Siuzdak K. Influence of Annealing Atmospheres on Photoelectrochemical Activity of TiO 2 Nanotubes Modified with AuCu Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52967-52977. [PMID: 34704439 DOI: 10.1021/acsami.1c16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, we studied the annealing process of AuCu layers deposited on TiO2 nanotubes (NTs) conducted in various atmospheres such as air, vacuum, argon, and hydrogen in order to obtain materials active in both visible and UV-vis ranges. The material fabrication route covers the electrochemical anodization of a Ti plate, followed by thin AuCu film magnetron sputtering and further thermal treatment. Scanning electron microscopy images confirmed the presence of spherical nanoparticles (NPs) formed on the external and internal walls of NTs. The optical and structural properties were characterized using UV-vis, X-ray diffraction, and X-ray photoelectron spectroscopies. It was proved that thermal processing under the argon atmosphere leads to the formation of a CuAuTi alloy in contrast to materials fabricated in air, vacuum, and hydrogen. The electrochemical measurements were carried out in NaOH using cyclic voltammetry, linear voltammetry, and chronoamperometry. The highest photoactivity was achieved for materials thermally treated in the argon atmosphere. In addition, the Mott-Schottky analysis was performed for bare TiO2 NTs and TiO2 NTs modified with gold copper NPs indicating a shift in the flatband potential. Overall, thermal processing resulted in changes in optical and structural properties as well as electrochemical and photoelectrochemical activities.
Collapse
Affiliation(s)
- Wiktoria Lipińska
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| |
Collapse
|
31
|
Pattanayak DS, Mishra J, Nanda J, Sahoo PK, Kumar R, Sahoo NK. Photocatalytic degradation of cyanide using polyurethane foam immobilized Fe-TCPP-S-TiO 2-rGO nano-composite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113312. [PMID: 34333311 DOI: 10.1016/j.jenvman.2021.113312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
An attempt has been made for the treatment of cyanide contaminated wastewater using a S-TiO2@rGO heterogeneous photocatalyst system immobilized on polyurethane foam (PUF) supporting materials. Further, to make the photocatalytic system more efficient and active under visible light, a highly efficient iron porphyrin derivative sensitizer viz. Fe-TCPP was synthesized and employed for cyanide degradation. To investigate the synthesized heterogeneous nano-composite S-TiO2@rGO-FeTCPP photocatalytic system, advanced techniques such as XRD, XPS, FT-IR, PL spectra, UV-vis DRS, FESEM, and EDS were utilized. The photocatalytic performance of the nanocomposite was evaluated in a suspended system and results revealed that about 75% of cyanide degradation was obtained at 100 mg/L of initial cyanide within 2 h. Whereas, at the same condition, more than 91% of cyanide degradation as well as 88% toxicity removal occurred by the PUF immobilized S-TiO2@rGO-FeTCPP solid-state photocatalytic system. First-order kinetics was applied to investigate the degradation of cyanide by the photocatalytic nanocomposite. From the kinetic study, the estimated first-order rate constant (Kf) in a solid-state photocatalytic system of the nanocomposite was 1.7 times superior to that of the suspended system. Further, the rate of photocatalytic activity was nearly 10.8 times greater than that of pure TiO2. This study demonstrated that the immobilized S-TiO2@rGO-FeTCPP photocatalytic system could be an efficient technique for degrading cyanide from industrial effluent.
Collapse
Affiliation(s)
- Dhruti Sundar Pattanayak
- Department of Chemistry, Environmental Science Program, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Jyoti Mishra
- Department of Chemistry, Environmental Science Program, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Jyotirmayee Nanda
- Department of Physics, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Rahul Kumar
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Naresh Kumar Sahoo
- Department of Chemistry, Environmental Science Program, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India.
| |
Collapse
|
32
|
Salarbashi D, Tafaghodi M, Fathi M, aboutorabzade SM, Sabbagh F. Development of curcumin-loaded Prunus armeniaca gum nanoparticles: Synthesis, characterization, control release behavior, and evaluation of anticancer and antimicrobial properties. Food Sci Nutr 2021; 9:6109-6119. [PMID: 34760242 PMCID: PMC8565235 DOI: 10.1002/fsn3.2562] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
The present work was conducted to develop a new polysaccharide-based encapsulation system via electrostatic interactions between Prunus armeniaca gum exudates (PAGE) and Ca2+ ions to enhance the biological activity and bioavailability of curcumin. The effects of different levels of pH (6, 7, and 8) and ion concentrations (1, 3, and 5) on the particle diameter and surface charge of the samples were examined. The encapsulation efficiency in the PAGE-based nanoparticles was realized to be 86.1%, indicating the encapsulation technique applied in this study was effective to entrap most of the curcumin within the PAGE matrix. The nanoparticles showed a smooth surface with spherical shape. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (X-ray) studies confirmed the formation of polyelectrolyte complexation. The cumulative release of curcumin in simulated gastrointestinal tract was less than 75%, revealing a gradual release trend. Both pure curcumin and curcumin-loaded nanoparticles were toxic to the cancer cell lines.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterSchool of MedicineGonabad University of Medical SciencesGonabadIran
- Department of food science and nutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Morteza Fathi
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Farzaneh Sabbagh
- Department of Chemical EngineeringChungbuk National UniversityCheongjuKorea
| |
Collapse
|
33
|
Acosta S, Borrero-González LJ, Umek P, Nunes LAO, Guttmann P, Bittencourt C. Nd 3+-Doped TiO 2 Nanoparticles as Nanothermometer: High Sensitivity in Temperature Evaluation inside Biological Windows. SENSORS (BASEL, SWITZERLAND) 2021; 21:5306. [PMID: 34450748 PMCID: PMC8399183 DOI: 10.3390/s21165306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023]
Abstract
TiO2 nanoparticles doped with different amounts of Nd3+ (0.5, 1, and 3 wt.%) were synthetized by the sol-gel method, and evaluated as potential temperature nanoprobes using the fluorescence intensity ratio between thermal-sensitive radiative transitions of the Nd3+. XRD characterization identified the anatase phase in all the doped samples. The morphology of the nanoparticles was observed with SEM, TEM and HRTEM microscopies. The relative amount of Nd3+ in TiO2 was obtained by EDXS, and the oxidation state of titanium and neodymium was investigated via XPS and NEXAFS, respectively. Nd3+ was present in all the samples, unlike titanium, where besides Ti4+, a significantly amount of Ti3+ was observed; the relative concentration of Ti3+ increased as the amount of Nd3+ in the TiO2 nanoparticles increased. The photoluminescence of the synthetized nanoparticles was investigated, with excitation wavelengths of 350, 514 and 600 nm. The emission intensity of the broad band that was associated with the presence of defects in the TiO2, increased when the concentration of Nd3+ was increased. Using 600 nm for excitation, the 4F7/2→4I9/2, 4F5/2→4I9/2 and 4F3/2→4I9/2 transitions of Nd3+ ions, centered at 760 nm, 821 nm, and 880 nm, respectively, were observed. Finally, the effect of temperature in the photoluminescence intensity of the synthetized nanoparticles was investigated, with an excitation wavelength of 600 nm. The spectra were collected in the 288-348 K range. For increasing temperatures, the emission intensity of the 4F7/2→4I9/2 and 4F5/2→4I9/2 transitions increased significantly, in contrast to the 4F3/2→4I9/2 transition, in which the intensity emission decreased. The fluorescence intensity ratio between the transitions I821I880=F5/24I49/2F43/2I49/2 and I760I880=F47/2I49/2F43/2I49/2 were used to calculate the relative sensitivity of the sensors. The relative sensitivity was near 3% K-1 for I760I880 and near 1% K-1 for I821I880.
Collapse
Affiliation(s)
- Selene Acosta
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, 7000 Mons, Belgium;
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí., San Luis Potosí 78210, Mexico
| | - Luis J. Borrero-González
- Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador;
| | - Polona Umek
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Luiz A. O. Nunes
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil;
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Department X-Ray Microscopy, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin, Germany;
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, 7000 Mons, Belgium;
| |
Collapse
|
34
|
Ebrahimi H, Sharif F, Ramazani SA A. Synthesis and characterization of poly(L‐lactide)‐block‐poly(ε‐caprolactone)‐grafted titanium dioxide nanoparticles via ring‐opening in situ grafting polymerization. POLYMER COMPOSITES 2021; 42:3722-3731. [DOI: 10.1002/pc.26087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 07/27/2023]
Affiliation(s)
- Hossein Ebrahimi
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Ahmad Ramazani SA
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| |
Collapse
|
35
|
Label-Free Creatinine Optical Sensing Using Molecularly Imprinted Titanium Dioxide-Polycarboxylic Acid Hybrid Thin Films: A Preliminary Study for Urine Sample Analysis. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Creatinine (CR) is a representative metabolic byproduct of muscles, and its sensitive and selective detection has become critical in the diagnosis of kidney diseases. In this study, poly(acrylic acid) (PAA)-assisted molecularly imprinted (MI) TiO2 nanothin films fabricated via liquid phase deposition (LPD) were employed for CR detection. The molecular recognition properties of the fabricated films were evaluated using fiber optic long period grating (LPG) and quartz crystal microbalance sensors. Imprinting effects were examined compared with nonimprinted (NI) pure TiO2 and PAA-assisted TiO2 films fabricated similarly without a template. In addition, the surface modification of the optical fiber section containing the LPG with a mesoporous base coating of silica nanoparticles, which was conducted before LPD-based TiO2 film deposition, contributed to the improvement of the sensitivity of the MI LPG sensor. The sensitivity and selectivity of LPGs coated with MI films were tested using CR solutions dissolved in different pH waters and artificial urine (near pH 7). The CR binding constants of the MI and NI films, which were calculated from the Benesi–Hildebrand plots of the wavelength shifts of the second LPG band recorded in water at pH 4.6, were estimated to be 67 and 7.8 M–1, respectively, showing an almost ninefold higher sensitivity in the MI film. The mechanism of the interaction between the template and the TiO2 matrix and the film composition was investigated via ultraviolet–visible and attenuated total reflectance Fourier-transform infrared spectroscopy along with X-ray photoelectron spectroscopy analysis. In addition, morphological studies using a scanning electron microscope and atomic force microscope were conducted. The proposed system has the potential for practical use to determine CR levels in urine samples. This LPG-based label-free CR biosensor is innovative and expected to be a new tool to identify complex biomolecules in terms of its easy fabrication and simplicity in methodology.
Collapse
|
36
|
Photodehydrogenation of Ethanol over Cu 2O/TiO 2 Heterostructures. NANOMATERIALS 2021; 11:nano11061399. [PMID: 34070566 PMCID: PMC8230259 DOI: 10.3390/nano11061399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
The photodehydrogenation of ethanol is a sustainable and potentially cost-effective strategy to produce hydrogen and acetaldehyde from renewable resources. The optimization of this process requires the use of highly active, stable and selective photocatalytic materials based on abundant elements and the proper adjustment of the reaction conditions, including temperature. In this work, Cu2O-TiO2 type-II heterojunctions with different Cu2O amounts are obtained by a one-pot hydrothermal method. The structural and chemical properties of the produced materials and their activity toward ethanol photodehydrogenation under UV and visible light illumination are evaluated. The Cu2O-TiO2 photocatalysts exhibit a high selectivity toward acetaldehyde production and up to tenfold higher hydrogen evolution rates compared to bare TiO2. We further discern here the influence of temperature and visible light absorption on the photocatalytic performance. Our results point toward the combination of energy sources in thermo-photocatalytic reactors as an efficient strategy for solar energy conversion.
Collapse
|
37
|
Kumar V, Kumar A, Song M, Lee DJ, Han SS, Park SS. Properties of Silicone Rubber-Based Composites Reinforced with Few-Layer Graphene and Iron Oxide or Titanium Dioxide. Polymers (Basel) 2021; 13:1550. [PMID: 34066158 PMCID: PMC8151798 DOI: 10.3390/polym13101550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing demand for polymer composites with novel or improved properties requires novel fillers. To meet the challenges posed, nanofillers such as graphene, carbon nanotubes, and titanium dioxide (TiO2) have been used. In the present work, few-layer graphene (FLG) and iron oxide (Fe3O4) or TiO2 were used as fillers in a room-temperature-vulcanized (RTV) silicone rubber (SR) matrix. Composites were prepared by mixing RTV-SR with nanofillers and then kept for vulcanization at room temperature for 24 h. The RTV-SR composites obtained were characterized with respect to their mechanical, actuation, and magnetic properties. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to investigate the composite raw materials and finished composites, and X-ray photoelectron spectroscopy (XPS) analysis was used to study composite surface elemental compositions. Results showed that mechanical properties were improved by adding fillers, and actuation displacements were dependent on the type of nanofiller used and the applied voltage. Magnetic stress-relaxation also increased with filler amount and stress-relaxation rates decreased when a magnetic field was applied parallel to the deformation axes. Thus, this study showed that the inclusion of iron oxide (Fe3O4) or TiO2 fillers in RTV-SR improves mechanical, actuation, and magnetic properties.
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea; (V.K.); (D.-J.L.)
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea; (A.K.); (S.-S.H.)
| | - Minseok Song
- Graduate School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea;
| | - Dong-Joo Lee
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea; (V.K.); (D.-J.L.)
| | - Sung-Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea; (A.K.); (S.-S.H.)
| | - Sang-Shin Park
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea; (V.K.); (D.-J.L.)
| |
Collapse
|
38
|
Ibrayev NK, Seliverstova EV, Sadykova AE, Serikov TM. Synthesis, Structure, and Physical Properties of a Nanocomposite Based on Graphene Oxide and TiO2. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Iqbal A, Kafizas A, Sotelo-Vazquez C, Wilson R, Ling M, Taylor A, Blackman C, Bevan K, Parkin I, Quesada-Cabrera R. Charge Transport Phenomena in Heterojunction Photocatalysts: The WO 3/TiO 2 System as an Archetypical Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9781-9793. [PMID: 33595275 DOI: 10.1021/acsami.0c19692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent studies have demonstrated the high efficiency through which nanostructured core-shell WO3/TiO2 (WT) heterojunctions can photocatalytically degrade model organic pollutants (stearic acid, QE ≈ 18% @ λ = 365 nm), and as such, has varied potential environmental and antimicrobial applications. The key motivation herein is to connect theoretical calculations of charge transport phenomena, with experimental measures of charge carrier behavior using transient absorption spectroscopy (TAS), to develop a fundamental understanding of how such WT heterojunctions achieve high photocatalytic efficiency (in comparison to standalone WO3 and TiO2 photocatalysts). This work reveals an order of magnitude enhancement in electron and hole recombination lifetimes, respectively located in the TiO2 and WO3 sides, when an optimally designed WT heterojunction photocatalyst operates under UV excitation. This observation is further supported by our computationally captured details of conduction band and valence band processes, identified as (i) dominant electron transfer from WO3 to TiO2 via the diffusion of excess electrons; and (ii) dominant hole transfer from TiO2 to WO3 via thermionic emission over the valence band edge. Simultaneously, our combined theoretical and experimental study offers a time-resolved understanding of what occurs on the micro- to milliseconds (μs-ms) time scale in this archetypical photocatalytic heterojunction. At the microsecond time scale, a portion of the accumulated holes in WO3 contribute to the depopulation of W5+ polaronic states, whereas the remaining accumulated holes in WO3 are separated from adjacent electrons in TiO2 up to 3 ms after photoexcitation. The presence of these exceptionally long-lived photogenerated carriers, dynamically separated by the WT heterojunction, is the origin of the superior photocatalytic efficiency displayed by this system (in the degradation of stearic acid). Consequently, our combined computational and experimental approach delivers a robust understanding of the direction of charge separation along with critical time-resolved insights into the evolution of charge transport phenomena in this model heterojunction photocatalyst.
Collapse
Affiliation(s)
- Asif Iqbal
- Materials Engineering, McGill University, 3610 University Street, Montréal Quebec H3A 0C5, Canada
| | - Andreas Kafizas
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
- The Grantham Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carlos Sotelo-Vazquez
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rachel Wilson
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Min Ling
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Alaric Taylor
- Department of Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Chris Blackman
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Kirk Bevan
- Materials Engineering, McGill University, 3610 University Street, Montréal Quebec H3A 0C5, Canada
| | - Ivan Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Raul Quesada-Cabrera
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
40
|
Borchers M, Keller K, Lott P, Deutschmann O. Selective Catalytic Reduction of NO x with H 2 for Cleaning Exhausts of Hydrogen Engines: Impact of H 2O, O 2, and NO/H 2 Ratio. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Borchers
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Kevin Keller
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Patrick Lott
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Olaf Deutschmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| |
Collapse
|
41
|
Sharafi S, Nateghi L. Optimization of gamma-aminobutyric acid production by probiotic bacteria through response surface methodology. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:584-591. [PMID: 33613913 PMCID: PMC7884281 DOI: 10.18502/ijm.v12i6.5033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background and Objectives: Gamma-aminobutyric acid (GABA) is a non-protein four-carbon amino acid that has many physiological properties, including reducing blood pressure, accelerating protein synthesis in the brain, and treatment of insomnia and depression. This amino acid is produced by a number of lactic acid bacteria, fungi and yeasts. The objective of the present study was to identify probiotic bacteria with the maximum ability to generate GABA and optimize the bacterial culture conditions having the highest potential for GABA production. Materials and Methods: The potential of GABA production by Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Streptococcus thermophilus, Lactobacillus brevis and Lactococcus lactis ssp. lactis in the culture medium of MRS broth was assessed by High Performance Liquid Chromatography (HPLC). In order to increase the rate of GABA produced by the bacteria having the highest potential for GABA production, the conditions of the culture medium including pH (3.5 to 6.5) “temperature (25 to 45°C), time (12 to 96 h) and glutamic acid (GA) concentration (25 to 650 mmol) were optimized by the Box-Behnken’s Response Surface Method (RSM). Results: Lactobacillus brevis had the highest potential of GABA production (5960.8 mg/l). The effect of time and GA concentration was significant on the amount of GABA production. The best conditions of culture medium to achieve the highest amount of GABA production by Lactobacillus brevis (19960 mg/l) were temperature 34.09°C, pH 4.65, GA concentration 650 mmol and time 96 h. Conclusion: The results showed that by optimization of the culture medium conditions of probiotic bacteria we can produce more GABA in culture medium.
Collapse
Affiliation(s)
- Sharmineh Sharafi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
42
|
Wang TT, Lin YC, Lin MC, Lin YG. Au-assisted methanol-hydrogenated titanium dioxide for photocatalytic evolution of hydrogen. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Wawrzyniak J, Karczewski J, Kupracz P, Grochowska K, Coy E, Mazikowski A, Ryl J, Siuzdak K. Formation of the hollow nanopillar arrays through the laser-induced transformation of TiO 2 nanotubes. Sci Rep 2020; 10:20235. [PMID: 33214670 PMCID: PMC7677399 DOI: 10.1038/s41598-020-77309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
In the following article, we present a simple, two-step method of creating spaced, hollow nanopillars, from the titania nanotube arrays via pulsed laser-treatment. Due to the high ordering of the structure, the prepared material exhibits photonic properties, which has been shown to increase the overall photoefficiency. The optical and morphological changes in the titania nanotubes after pulsed laser-treatment with 532, 355, and 266 nm wavelengths in the 10-50 mJ/cm2 fluence range are studied. The investigation reveals, that by using appropriate wavelength and energy, the number of surface defects, geometrical features, or both can be tailored.
Collapse
Affiliation(s)
- Jakub Wawrzyniak
- Centre of Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 st., 80-231, Gdańsk, Poland.
| | - Jakub Karczewski
- Department of Solid-State Physics, Gdańsk University of Technology, Gabriela Narutowicza 11/12 st., 80-233, Gdańsk, Poland
| | - Piotr Kupracz
- Centre of Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 st., 80-231, Gdańsk, Poland
| | - Katarzyna Grochowska
- Centre of Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 st., 80-231, Gdańsk, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowkiej 3 st., 61-614, Poznań, Poland
| | - Adam Mazikowski
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Gabriela Narutowicza 11/12 st., 80-233, Gdańsk, Poland
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12 st., 80-233, Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre of Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 st., 80-231, Gdańsk, Poland
| |
Collapse
|
44
|
Maruthapandi M, Saravanan A, Luong JHT, Gedanken A. Antimicrobial Properties of the Polyaniline Composites against Pseudomonas aeruginosa and Klebsiella pneumoniae. J Funct Biomater 2020; 11:E59. [PMID: 32824954 PMCID: PMC7566003 DOI: 10.3390/jfb11030059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
CuO, TiO2, or SiO2 was decorated on polyaniline (PANI) by a sonochemical method, and their antimicrobial properties were investigated for two common Gram-negative pathogens: Pseudomonas aeruginosa (PA) and Klebsiella pneumoniae (KP). Without PANI, CuO, TiO2, or SiO2 with a concentration of 220 µg/mL exhibited no antimicrobial activities. In contrast, PANI-CuO and PANI-TiO2 (1 mg/mL, each) completely suppressed the PA growth after 6 h of exposure, compared to 12 h for the PANI-SiO2 at the same concentration. The damage caused by PANI-SiO2 to KP was less effective, compared to that of PANI-TiO2 with the eradication time of 12 h versus 6 h, respectively. This bacterium was not affected by PANI-CuO. All the composites bind tightly to the negative groups of bacteria cell walls to compromise their regular activities, leading to the damage of the cell wall envelope and eventual cell lysis.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| | - John H. T. Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland;
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| |
Collapse
|
45
|
Najafi A, Emam‐Djomeh Z, Askari G, Fathi M. Electrospun hydrophobe nanofibrous membrane based on polysulfone/Triton x‐100: A novel vehicle to concentrate pomegranate juice. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amin Najafi
- Functional Food Research Core (FFRC), Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Campus Karaj Iran
| | - Zahra Emam‐Djomeh
- Functional Food Research Core (FFRC), Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Campus Karaj Iran
| | - Gholamreza Askari
- Functional Food Research Core (FFRC), Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Campus Karaj Iran
| | - Morteza Fathi
- Functional Food Research Core (FFRC), Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Campus Karaj Iran
| |
Collapse
|
46
|
Effect of Surface Modification with TiO2 Coating on Improving Filtration Efficiency of Whisker-Hydroxyapatite (HAp) Membrane. COATINGS 2020. [DOI: 10.3390/coatings10070670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Whisker-like hydroxyapatite (HAp) particles were prepared by controlling particle growth via hydrothermal synthesis. The surface modification for the hydrothermally synthesized HAp whiskers was accomplished by TiO2 coating. After the TiO2 modification, the zeta potential of the HAp whiskers was significantly improved from +8.6 to +21 mV at pH = 8.5. A free-standing membrane (diameter of ~4.5 cm and thickness of ~0.2 mm) was fabricated by using the TiO2-coated HAp whiskers and was used to separate the Au nanoparticles (size = 5 nm and zeta potential = −38.6 mV at pH = 8.5) at a significantly high filtration efficiency of ~100%. The achieved high filtration efficiency was considered to be the result of effectively utilizing the electrostatic interaction between the positively-charged TiO2-coated HAp whiskers and negatively-charged Au nanoparticles. The excellently biocompatible and highly effective TiO2-coated HAp membrane would be potentially applied as biological and artificial separators in biotechnology processes for the biomedicine field.
Collapse
|
47
|
Ombaka LM, Curti M, McGettrick JD, Davies ML, Bahnemann DW. Nitrogen/Carbon-Coated Zero-Valent Copper as Highly Efficient Co-catalysts for TiO 2 Applied in Photocatalytic and Photoelectrocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30365-30380. [PMID: 32525294 DOI: 10.1021/acsami.0c06880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zero-valent copper (Cu0) is a promising co-catalyst in semiconductor-based photocatalysis as it is inexpensive and exhibits electronic properties similar to those of Ag and Au. However, its practical application in photocatalytic hydrogen production is limited by its susceptibility to oxidation, forming less active Cu species. Herein, we have carried out in situ encapsulation of Cu0 nanoparticles with N-graphitic carbon layers (14.4% N) to stabilize Cu0 nanoparticles (N/C-coated Cu) and improve the electronic communication with a TiO2 photocatalyst. A facile solvothermal procedure is used to coat the Cu0 nanoparticles at 200 °C, while graphitization is achieved by calcination at 550 °C under an inert atmosphere. The resultant N/C-coated Cu/TiO2 composites outperform the uncoated Cu counterparts, exhibiting a 27-fold enhancement of the hydrogen evolution rate compared to TiO2 and achieving a rate of 19.03 mmol g-1 h-1 under UV-vis irradiation. Likewise, the N/C-coated Cu co-catalyst exhibits a less negative onset potential of -0.05 V toward hydrogen evolution compared to uncoated Cu (ca. -0.30 V). This superior activity is attributed to coating Cu0 with N/C, which enhances the stability, electronic communication with TiO2, conductivity, and interfacial charge transfer processes. The reported synthetic approach is simple and scalable, yielding an efficient and affordable Cu0 co-catalyst for TiO2.
Collapse
Affiliation(s)
- Lucy M Ombaka
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstrasse 3, Hannover 30167, Germany
- School of Chemistry and Material Science, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Mariano Curti
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstrasse 3, Hannover 30167, Germany
| | - James D McGettrick
- SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, U.K
| | - Matthew L Davies
- SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, U.K
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Detlef W Bahnemann
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstrasse 3, Hannover 30167, Germany
- Laboratorium für Nano- und Quantenengineering, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 39, Hannover 30167, Germany
- Laboratory for Photoactive Nanocomposite Materials, Department of Photonics, Faculty of Physics, Saint-Petersburg State University, Ulianovskaia Str. 3, Peterhof, Saint-Petersburg 198504, Russia
| |
Collapse
|
48
|
Tetteh EK, Rathilal S, Naidoo DB. Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology. Sci Rep 2020; 10:8850. [PMID: 32483279 PMCID: PMC7264190 DOI: 10.1038/s41598-020-65480-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
The photocatalytic degradation of a local South Africa oil refinery wastewater was conducted under UV radiation using an aqueous catalyst of titanium dioxide (TiO2), Degussa P25 (80% anatase, 20% rutile) in suspension. The experiment was carried out in a batch aerated photocatalytic reactor based on a central composite design (CCD) and analyzed using response surface methodology (RSM). The effects of three operational variables viz. TiO2 dosage (2-8 g/L), runtime (30-90 minutes), and airflow rate (0.768-1.48 L/min) were examined for the removal of phenol and soap oil and grease (SOG). The data derived from the CCD, and the successive analysis of variance (ANOVA) showed the TiO2 dosage to be the most influential factor, while the other factors were also significant (P < 0.0001). Also, the ANOVA test revealed the second-order of TiO2 dosage and runtime as the main interaction factors on the removal efficiency. To maximize the pollutant removal, the optimum conditions were found at runtime of 90 minutes, TiO2 dosage of 8 g/L, and an aeration flow rate of 1.225 L/min. Under the conditions stated, the percentage removal of phenol (300 ± 7) and SOG (4000 ± 23) were 76% and 88% respectively. At 95% confidence level, the predicted models developed results were in reasonable agreement with that of the experimental data, which confirms the adaptability of the models. The first-order kinetic constants were estimated as 0.136 min-1 and 0.083 min-1 for SOG and phenol respectively.
Collapse
Affiliation(s)
- E K Tetteh
- Faculty of Engineering and the Built Environment, Department of Chemical Engineering, Durban University of Technology, Steve Biko Campus Block S4 Level 1, Box 1334, Durban, 4000, South Africa.
| | - S Rathilal
- Faculty of Engineering and the Built Environment, Department of Chemical Engineering, Durban University of Technology, Steve Biko Campus Block S4 Level 1, Box 1334, Durban, 4000, South Africa
| | - D B Naidoo
- Faculty of Engineering and the Built Environment, Department of Chemical Engineering, Durban University of Technology, Steve Biko Campus Block S4 Level 1, Box 1334, Durban, 4000, South Africa
| |
Collapse
|
49
|
|
50
|
Alotaibi A, Williamson BAD, Sathasivam S, Kafizas A, Alqahtani M, Sotelo-Vazquez C, Buckeridge J, Wu J, Nair SP, Scanlon DO, Parkin IP. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO 2 Thin Films: Theory and Experiment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15348-15361. [PMID: 32109038 PMCID: PMC7146757 DOI: 10.1021/acsami.9b22056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 05/12/2023]
Abstract
Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol-assisted chemical vapor deposition to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase and showed excellent antibacterial (vs Staphylococcus aureus and Escherichia coli) ability. Using a combination of transient absorption spectroscopy, photoluminescence measurements, and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples and the enhanced UV photoactivities observed.
Collapse
Affiliation(s)
- Abdullah
M. Alotaibi
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- The
National Centre for Building and Construction Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442-6086, Saudi Arabia
| | - Benjamin A. D. Williamson
- Department
of Chemistry, Christopher Ingold Building, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Thomas
Young Centre, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Sanjayan Sathasivam
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Andreas Kafizas
- Grantham Institute,
Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Mahdi Alqahtani
- Electronic
& Electrical Engineering, University
College London, Torrington
Place, London WC1E 7JE, U.K.
- Materials
Science Research Institute, King Abdulaziz
City for Science and Technology (KACST), Riyadh 11442-6086, Saudi Arabia
| | - Carlos Sotelo-Vazquez
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - John Buckeridge
- School
of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, U.K.
| | - Jiang Wu
- Electronic
& Electrical Engineering, University
College London, Torrington
Place, London WC1E 7JE, U.K.
- University
of Electronic Science and Technology of China, North Jianshe Road, Chengdu 610054, China
| | - Sean P. Nair
- Department
of Microbial Diseases, UCL Eastman Dental
Institute, 256 Gray’s
Inn Road, London WC1X 8LD, U.K.
| | - David O. Scanlon
- Department
of Chemistry, Christopher Ingold Building, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Thomas
Young Centre, University College London, Gower Street, London WC1E 6BT, U.K.
- Diamond Light Source Ltd., Diamond House, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ivan P. Parkin
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|