1
|
Lou H, Wu Y, Kuczera K, Schöneich C. Coarse-Grained Molecular Dynamics Simulation of Heterogeneous Polysorbate 80 Surfactants and their Interactions with Small Molecules and Proteins. Mol Pharm 2024; 21:5041-5052. [PMID: 39208298 DOI: 10.1021/acs.molpharmaceut.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polysorbate 80 (PS80) is widely used in pharmaceutical formulations, and its commercial grades exhibit certain levels of structural heterogeneity. The objective of this study was to apply coarse-grained molecular dynamics simulations to better understand the effect of PS80 heterogeneity on micelle self-assembly, the loading of hydrophobic small molecules into the micelle core, and the interactions between PS80 and a protein, bovine serum albumin (BSA). Four representative PS80 variants with different head and tail structures were studied. Our simulations found that PS80 structural heterogeneity could affect blank micelle properties such as solvent-accessible surface area, aggregation number, and micelle aspect ratio. It was also found that hydrophobic small molecules such as ethinyl estradiol preferentially partitioned into the PS80 micelle core and PS80 dioleates formed a more hydrophobic core compared to PS80 monooleates. Furthermore, multiple PS80 molecules could bind to BSA, and PS80 heterogeneity profoundly changed the binding ratio as well as the surfactant-protein contact area.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
2
|
Cocoș FI, Anuța V, Popa L, Ghica MV, Nica MA, Mihăilă M, Fierăscu RC, Trică B, Nicolae CA, Dinu-Pîrvu CE. Development and Evaluation of Docetaxel-Loaded Nanostructured Lipid Carriers for Skin Cancer Therapy. Pharmaceutics 2024; 16:960. [PMID: 39065657 PMCID: PMC11279931 DOI: 10.3390/pharmaceutics16070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This study focuses on the design, characterization, and optimization of nanostructured lipid carriers (NLCs) loaded with docetaxel for the treatment of skin cancer. Employing a systematic formulation development process guided by Design of Experiments (DoE) principles, key parameters such as particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were optimized to ensure the stability and drug-loading efficacy of the NLCs. Combined XRD and cryo-TEM analysis were employed for NLC nanostructure evaluation, confirming the formation of well-defined nanostructures. In vitro kinetics studies demonstrated controlled and sustained docetaxel release over 48 h, emphasizing the potential for prolonged therapeutic effects. Cytotoxicity assays on human umbilical vein endothelial cells (HUVEC) and SK-MEL-24 melanoma cell line revealed enhanced efficacy against cancer cells, with significant selective cytotoxicity and minimal impact on normal cells. This multidimensional approach, encompassing formulation optimization and comprehensive characterization, positions the docetaxel-loaded NLCs as promising candidates for advanced skin cancer therapy. The findings underscore the potential translational impact of these nanocarriers, paving the way for future preclinical investigations and clinical applications in skin cancer treatment.
Collapse
Affiliation(s)
- Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mirela Mihăilă
- Center of Immunology, Ștefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania;
- Faculty of Pharmacy, Titu Maiorescu University, 16 Gheorghe Sincai Blvd, 040314 Bucharest, Romania
| | - Radu Claudiu Fierăscu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
3
|
Gohar F, Sayed M, Shah NS, Rehman F, Gul I, Hussain S, Iqbal J, Gul S, Khan Q. Catalytic degradation of carbamazepine by surface-modified zerovalent copper via the activation of peroxymonosulphate: mechanism, degradation pathways and ecotoxicity. ENVIRONMENTAL TECHNOLOGY 2024; 45:3586-3599. [PMID: 37259947 DOI: 10.1080/09593330.2023.2220889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In this research work, surface-modified nano zerovalent copper (nZVC) was prepared using a simple borohydride reduction method. The spectroscopic and crystallographic results revealed the successful synthesis of surface-modified nano zerovalent copper (nZVC) using solvents such as ethanol (ETOH), ethylene glycol (EG) and tween80 (T80). The as-synthesized material was fully characterized for morphological surface and crystal structural properties. The results indicated that EG provides an excellent synthesis environment to nZVC compared to ETOH and T80 in terms of good dispersion, high surface area and excellent catalytic properties. The catalytic efficiency of nZVC/EG was investigated alone and with peroxymonosulphate (PMS) in the absence of light. The degradation results demonstrated that the involvement of PMS synergistically boosted the catalytic efficiency of synthesized nZVC/EG material. Furthermore, the degradation products (DPs) of CBZ were determined by GC-MS and subsequently, the degradation pathways were proposed. The ecotoxicity analysis of the DPs was also explored. The proposed (nZVC/EG/PMS) system is economical and efficient and thus could be applied for the degradation of CBZ from an aquatic system after altering the degradation pathways in such a way that results in harmless products.
Collapse
Affiliation(s)
- Faryal Gohar
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Murtaza Sayed
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Faiza Rehman
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Ikhtiar Gul
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Sajjad Hussain
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore, Lahore, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Saman Gul
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Qaiser Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
4
|
Kudłacik-Kramarczyk S, Drabczyk A, Przybyłowicz A, Krzan M. Linseed Oil-Based Oleogel Vehicles for Hydrophobic Drug Delivery-Physicochemical and Applicative Properties. Pharmaceutics 2024; 16:600. [PMID: 38794262 PMCID: PMC11125216 DOI: 10.3390/pharmaceutics16050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, a methodology for synthesizing oleogels based on linseed oil and emulsifiers, such as beeswax and Tween 20 and Tween 80, was developed. Linseed oil served as the main oil phase, while beeswax acted as a gelling and emulsifying agent. Tween compounds are non-ionic surfactants composed of hydrophobic and hydrophilic parts, allowing for the formation of a stable system with promising properties. Surface wetting analysis of the obtained oleogels, FT-IR spectroscopy, and determination of relative and absolute humidity over time, as well as optical microscope analysis and rheological analysis of the obtained oleogels, were conducted as part of the research. The results indicate that increasing the amount of Tween 20 decreases the hydrophilicity of the oleogel, while Tween 80 exhibits the opposite effect. Surface energy analysis suggests that a higher content of Tween 20 may lead to a reduction in the surface energy of the oleogels, which may indicate greater material stability. Changes in relative humidity and FT-IR spectral analysis confirm the influence of emulsifiers on the presence of characteristic functional groups in the structure of the oleogels. Additionally, microscopic analysis suggests that an emulsifier with a longer hydrophobic tail leads to a denser material structure.
Collapse
Affiliation(s)
- Sonia Kudłacik-Kramarczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland; (A.P.); (M.K.)
| | - Anna Drabczyk
- CBRTP SA—Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A St., 00-645 Warsaw, Poland
| | - Alicja Przybyłowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland; (A.P.); (M.K.)
- Faculty of Mechanical Engineering, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland; (A.P.); (M.K.)
| |
Collapse
|
5
|
Li J, Amador C, Wilson MR. Computational predictions of interfacial tension, surface tension, and surfactant adsorption isotherms. Phys Chem Chem Phys 2024; 26:12107-12120. [PMID: 38587476 DOI: 10.1039/d3cp06170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
All-atom (AA) molecular dynamics (MD) simulations are employed to predict interfacial tensions (IFT) and surface tensions (ST) of both ionic and non-ionic surfactants. The general AMBER force field (GAFF) and variants are examined in terms of their performance in predicting accurate IFT/ST, γ, values for chosen water models, together with the hydration free energy, ΔGhyd, and density, ρ, predictions for organic bulk phases. A strong correlation is observed between the quality of ρ and γ predictions. Based on the results, the GAFF-LIPID force field, which provides improved ρ predictions is selected for simulating surfactant tail groups. Good γ predictions are obtained with GAFF/GAFF-LIPID parameters and the TIP3P water model for IFT simulations at a water-triolein interface, and for GAFF/GAFF-LIPID parameters together with the OPC4 water model for ST simulations at a water-vacuum interface. Using a combined molecular dynamics-molecular thermodynamics theory (MD-MTT) framework, a mole fraction of C12E6 molecule of 1.477 × 10-6 (from the experimental critical micelle concentration, CMC) gives a simulated surface excess concentration, ΓMAX, of 76 C12E6 molecules at a 36 nm2 water-vacuum surface (3.5 × 10-10 mol cm-2), which corresponds to a simulated ST of 35 mN m-1. The results compare favourably with an experimental ΓMAX of C12E6 of 3.7 × 10-10 mol cm-2 (80 surfactants for a 36 nm2 surface) and experimental ST of C12E6 of 32 mN m-1 at the CMC.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| | - Carlos Amador
- Newcastle Innovation Centre, Procter & Gamble Ltd, Newcastle Upon Tyne, NE12 9BZ, UK
| | - Mark R Wilson
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Fukuyama M, Mizuguchi T, Santivongskul P, Ono Y, Kasuya M, Inagawa A, Hibara A. Kinetic description of water transport during spontaneous emulsification induced by Span 80. NANOSCALE 2024; 16:4056-4062. [PMID: 38345086 DOI: 10.1039/d3nr06121c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Spontaneous emulsification is a phenomenon that forms nanometer-sized droplets (nanodroplets) without the application of any external force, and the mechanism has been actively studied for application to various technologies. In this study, we analyzed the kinetics of spontaneous emulsification induced by Span 80. The measurement of water concentration in Span 80 hexadecane solution indicated that the chemical potential of water in the nanodroplets decreased as the amount of water in the nanodroplets decreased. Based on this result, water transport between the aqueous phase and nanodroplets in which the chemical potential of water was controlled was quantitatively investigated by using a microfluidic device. The results demonstrate that the kinetics of water transport during spontaneous emulsification induced by Span 80 was described by a model of osmotic transport through an organic liquid film between the aqueous phase and nanodroplets.
Collapse
Affiliation(s)
- Mao Fukuyama
- Institution of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan.
| | - Tomoko Mizuguchi
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Piangrawee Santivongskul
- Institution of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan.
| | - Yuri Ono
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Motohiro Kasuya
- Faculty of Production Systems Engineering and Sciences, Komatsu University, Nu 1-3, Yonchoumemachi, Komatsu, Ishikawa 923-0971, Japan
| | - Arinori Inagawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Akihide Hibara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
7
|
Yuan D, Long Y, Liu D, Zhou F, Liu C, Chen L, Pan Y. Ecological impact of surfactant Tween-80 on plankton: High-scale analyses reveal deeper hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169176. [PMID: 38086477 DOI: 10.1016/j.scitotenv.2023.169176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The ecological risks of surfactants have been largely neglected because of their low toxicity. Multiscale studies have indicated that even if a pollutant causes no acute toxicity in a test species, it may alter interspecific interactions and community characteristics through sublethal impacts on test organisms. Therefore, we investigated the lethal and sublethal responses of the plankton species Scenedesmus quadricauda, Chlorella vulgaris, and Daphnia magna, to surfactant Tween-80. Then, high-scale responses in grazer life-history traits and stability of the D. magna-larval damselfly system were further explored. The results showed that discernible adverse effects on the growth or survival of the three plankton species were evident only at exceptionally high concentrations (≥100 mg L-1). However, 10 mg L-1 of Tween-80 notably affected the MDA concentration in grazer species, simultaneously displaying a tendency to diminish grazer's heartbeat and swimming frequency. Furthermore, Tween-80 reduced the grazer reproductive capacity and increased its predation risk by larval damselflies, which ultimately jeopardized the stability of the D. magna-larval damselfly system at much lower concentrations (10-100 fold lower) than the individual-scale responses. This study provides evidence that high-scale traits are far more sensitive to Tween-80, compared with individual-scale traits for plankton organisms, suggesting that the ecological risks of Tween-80 demand careful reassessment. SYNOPSIS: The concentration of Tween-80 needed to induce changes in community characteristics is markedly lower than that needed to produce individual-scale consequences. Thus, high-scale analyses have broad implications for understanding the hazardous effects of surfactants compared with an individual-scale analysis.
Collapse
Affiliation(s)
- Duanyang Yuan
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Yaoyue Long
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China
| | - Dan Liu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Fangjie Zhou
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China
| | - Change Liu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China
| | - Ying Pan
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China.
| |
Collapse
|
8
|
Singh RP, Kaur T. HRMAS-NMR and simulation study of the self-assembly of surfactants on carbon nanotubes. Phys Chem Chem Phys 2023; 25:12900-12913. [PMID: 37165884 DOI: 10.1039/d2cp03762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polyethoxylated surfactants, such as those of the Tween and Pluronic series, are commonly used to disperse carbon nanotubes (CNTs) and other nanoparticles. However, the current understanding of the nature of interactions between these surfactants and CNTs is limited. The nature of the interactions between surfactants (Tween-80 [T80] and Pluronic F68 [PF68]) and CNTs was investigated using high-resolution magic angle spinning nuclear magnetic resonance (HRMAS-NMR) and coarse-grained molecular dynamics (MD) simulations. HRMAS-NMR revealed that T80 molecules interact with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) via the oleyl chain, whereas PF68 molecules interact with the surface of SWCNTs and MWCNTs via the polypropylene oxide residues. The polyethylene oxide chains were oriented towards the external aqueous environment. The HRMAS-NMR results were supported by MD simulations, and the latter provided further insights into the nature of the interactions.
Collapse
Affiliation(s)
- Raman Preet Singh
- Department of Pharmaceutical Sciences, Government Polytechnic College for Girls, Patiala, PB, 147 001, India.
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, PB, 147 001, India
| |
Collapse
|
9
|
Luz AM, Barbosa G, Manske C, Tavares FW. Tween-80 on Water/Oil Interface: Structure and Interfacial Tension by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3255-3265. [PMID: 36825990 DOI: 10.1021/acs.langmuir.2c03001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surfactants are used in many fields of the chemical industry in a wide range of applications. Generally, surfactants on water/oil interfaces reduce interfacial tension, enabling the formation of emulsions or providing greater stability to the emulsion formed. Although molecular dynamics has been extensively used and has achieved remarkable success in describing thermodynamic and molecular properties of systems with surface-active compounds, the traditional molecular simulation force fields considerably constrain the system size and the time scale of simulations. Here, we propose a coarse-grained model of polysorbate 80, a nonionic surfactant commercially known as Tween-80. Based on the proposed coarse-grained model, we evaluate the influence of the more internal ethylene oxide chain on the properties of the water/Tween-80/decane system. We verify with the simulation results that the model can reproduce the expected decrease in interfacial tension as the surfactant quantity increases in the simulations. Furthermore, we observe changes in the surfactant orientation as their quantity in the interface increases, indicating a preferential orientation for these molecules in the adsorption layer. We also assessed the partition coefficient of the surfactant between the two bulk phases by performing free energy calculations, which showed a higher affinity of Tween-80 surfactants with the water phase.
Collapse
Affiliation(s)
- Arthur Mussi Luz
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Gabriel Barbosa
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carla Manske
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Frederico Wanderley Tavares
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
- Programa de Engenharia Química - PEQ/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| |
Collapse
|
10
|
Bejarano JVP, Fajardo-Rojas F, Alvarez O, Burgos JC, Reyes LH, Pradilla D. Novel Biosurfactants: Rationally Designed Surface-Active Peptides and in silico Evaluation at the Decane-Water Interface. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharm Res 2022; 39:167-188. [PMID: 35013849 DOI: 10.1007/s11095-021-03159-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Surfactants are increasingly being added to amorphous solid dispersion (ASDs) formulations to enhance processability and release performance. The goal of the current work was to investigate the impact of cationic, anionic and non-ionic surfactants on the rate and extent of clopidogrel (CPD) release from copovidone-based ASDs. METHODS CPD release was evaluated for ASDs with different drug loadings using a surface normalized intrinsic dissolution apparatus. Studies were also carried out using dynamic light scattering, zeta potential measurements, and nuclear magnetic resonance spectroscopy to probe the impact of surfactants on drug-rich nanodroplet physical stability and clopidogrel-surfactant interactions. RESULTS CPD ASDs showed good release for drug loadings as high as 40%, before the release fell off a cliff at higher drug loadings. Only sodium dodecyl sulfate, added at a 5% level, was able to improve the release at 50% drug loading, with other surfactants proving to be ineffective. However, some of the surfactants evaluated did show some benefits in improving nanodroplet stability against size enlargement. Ionic and non-ionic surfactants were observed to interact differently with CPD-rich nanodroplets, and variations in the kinetics and morphology of water-induced phase separation were noted in the presence and absence of surfactants in ASD films. CONCLUSIONS In summary, addition of surfactants to ASD formulations may lead to some improvements in formulation performance, but predictive capabilities and mechanisms of surfactant effect still require further studies.
Collapse
|
12
|
Guruge AG, Warren DB, Benameur H, Ford L, Williams HD, Jannin V, Pouton CW, Chalmers DK. Computational and Experimental Models of Type III Lipid-Based Formulations of Loratadine Containing Complex Nonionic Surfactants. Mol Pharm 2021; 18:4354-4370. [PMID: 34807627 DOI: 10.1021/acs.molpharmaceut.1c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III lipid-based formulations (LBFs) combine poorly water-soluble drugs with oils, surfactants, and cosolvents to deliver the drugs into the systemic circulation. However, the solubility of the drug can be influenced by the colloidal phases formed in the gastrointestinal tract as the formulation is dispersed and makes contact with bile and other materials present within the GI tract. Thus, an understanding of the phase behavior of LBFs in the gut is critical for designing efficient LBFs. Molecular dynamics (MD) simulation is a powerful tool for the study of colloidal systems. In this study, we modeled the internal structures of five type III LBFs of loratadine containing poly(ethylene oxide) nonionic surfactants polysorbate 80 and polyoxyl hydrogenated castor oil (Kolliphor RH40) using long-timescale MD simulations (0.4-1.7 μs). We also conducted experimental investigations (dilution of formulations with water) including commercial Claritin liquid softgel capsules. The simulations show that LBFs form continuous phase, water-swollen reverse micelles, and bicontinuous and phase-separated systems at different dilutions, which correlate with the experimental observations. This study supports the use of MD simulation as a predictive tool to determine the fate of LBFs composed of medium-chain lipids, polyethylene oxide surfactants, and polymers.
Collapse
Affiliation(s)
- Amali G Guruge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Dallas B Warren
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Leigh Ford
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hywel D Williams
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vincent Jannin
- Lonza Pharma Sciences, 10 Rue Timken, Colmar 68027, France
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Callender SP, Wettig SD. Phase Behavior of Non‐Ionic
Surfactant‐Medium
Chain
Triglyceride‐Water
Microemulsion Systems. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shannon P. Callender
- School of Pharmacy University of Waterloo 200 University Ave. W. Waterloo Ontario N2L 3G1 Canada
| | - Shawn D. Wettig
- School of Pharmacy University of Waterloo 200 University Ave. W. Waterloo Ontario N2L 3G1 Canada
- Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave. W. Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
14
|
Wang W, Vela S, Gao P. Characterization of the Partition Rate of 2-Naphthol (NAP) and Ritonavir (RTV) Across the Water-Octanol Interface and the Influence of Common Pharmaceutical Excipients. J Pharm Sci 2020; 109:2553-2566. [PMID: 32473214 DOI: 10.1016/j.xphs.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
The partition rate of 2 model compounds, 2-naphthol (NAP) and ritonavir (RTV), across the water-octanol (W/O) interface was determined from aqueous solutions with and without the presence of a variety of common pharmaceutical excipients. The NAP molecule was present as either a unionized species in the phosphate buffer solution or as an anion in 0.01 M NaOH solution while RTV was present as dications in 0.1 M HCl. Excipients examined include different type of polymers (e.g., PVP-VA, HPMC, HPMCAS, PVP, PEG 8000), small molecules (e.g., glucose, lactose, maltoheptaose), and surfactants (e.g., Tween 80 and SDS). A noticeable to significant reduction of the partition rate of both NAP and RTV across the W/O interface was observed with aqueous media containing 0.01-0.1 μg/mL polymers including PVP-VA, HPMC, and HPMCAS. Reduction of NAP and RTV partition rate associated with such extremely low concentration of polymers in the aqueous media affirms the presence of a surface excess of adsorbed excipients at the W/O interface. Pi values of NAP and RTV across the W/O interface are found to be sensitive to (1) the molecule surface area, molecular weight and the degree of the polymerization of these pharmaceutical excipients, and (2) the ionization state of the model compound.
Collapse
Affiliation(s)
- Weili Wang
- Drug Product Development, Abbvie Inc, 1 North Waukegan Road, North Chicago, Illinois 60064
| | - Socrates Vela
- Drug Product Development, Abbvie Inc, 1 North Waukegan Road, North Chicago, Illinois 60064
| | - Ping Gao
- Drug Product Development, Abbvie Inc, 1 North Waukegan Road, North Chicago, Illinois 60064.
| |
Collapse
|
15
|
Xu C, Wang H, Wang D, Zhu X, Zhu Y, Bai X, Yang Q. Improvement of Foaming Ability of Surfactant Solutions by Water-Soluble Polymers: Experiment and Molecular Dynamics Simulation. Polymers (Basel) 2020; 12:polym12030571. [PMID: 32143492 PMCID: PMC7182889 DOI: 10.3390/polym12030571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/04/2022] Open
Abstract
Aqueous foam is widely used in fire extinguishing and dust suppression technologies. Improving the foaming ability is the key to reducing the added concentration of foaming agents as well as the economic cost. In this work, the effect of a water-soluble polymer (polyvinyl alcohol, PVA) on the foaming ability of anionic surfactant (sodium dodecyl ether sulfate, SDES) was studied by an experiment and molecular dynamics simulation. The experimental results showed that PVA greatly improves the foaming ability of SDES solutions when the surfactant concentration is less than 0.1%, which is attributed to the fact that the polymer can enhance the stability of bubble films and reduce the bubble rupture rate during the foam generation process. The simulation results indicate that PVA can enhance the hydration of surfactant head groups and contribute to the formation of a three-dimensional hydrogen bond network between surfactants, polymers, and water molecules, thus greatly improving the stability of bubble liquid films. The above results suggest that water-soluble polymers can be used to improve the foaming ability of surfactant solutions by enhancing the bubble film stability, which is beneficial as it reduces the added concentration of foaming agents in aqueous foam applications.
Collapse
Affiliation(s)
- Chaohang Xu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China;
| | - Hetang Wang
- Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education, Xuzhou 221116, China; (D.W.); (Y.Z.)
- Correspondence: ; Tel.: +86-151-5001-3592
| | - Deming Wang
- Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education, Xuzhou 221116, China; (D.W.); (Y.Z.)
| | - Xiaolong Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China;
| | - Yunfei Zhu
- Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education, Xuzhou 221116, China; (D.W.); (Y.Z.)
| | - Xing Bai
- School of Urban and Environment, Yunnan University of Finance and Economics, Kunming 650221, China;
| | - Quanlin Yang
- Academic Journal Center, Xi’an University of Science and Technology, Xi’an 710054, China;
| |
Collapse
|
16
|
Investigating molecular mechanism for the stability of ternary systems containing cetrimide, fatty alcohol and water by using computer simulation. J Mol Graph Model 2020; 95:107500. [DOI: 10.1016/j.jmgm.2019.107500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
|
17
|
Ríos-López M, Mendez-Bermúdez JG, Vázquez-Sánchez MI, Domínguez H. Surface tension calculations of the cationic (CTAB) and the zwitterionic (SB3-12) surfactants using new force field models: a computational study. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1656349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marlene Ríos-López
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, México
| | | | | | - Hector Domínguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, México
| |
Collapse
|
18
|
Hundi P, Shahsavari R. Deep Learning to Speed up the Development of Structure-Property Relations For Hexagonal Boron Nitride and Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900656. [PMID: 30968576 DOI: 10.1002/smll.201900656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Structure-property maps play a key role in accelerated materials discovery. The current norm for developing these maps includes computationally expensive physics-based simulations. Here, the capabilities of deep learning agents are explored such as convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) to predict structure-property relations and reduce dependence on simulations. This study contains simulated hexagonal boron nitride (h-BN) microstructures damaged by various levels of radiation and temperature, with the objective to predict their residual strengths from the final atomic positions. By developing low dimensional physical descriptors to statistically describe the defects, these results show that purpose-specific microstructure representation can help in achieving a good prediction accuracy at low computational cost. Furthermore, the adaptability of the trained deep learning agents is explored to predict structure-property maps of other 2D materials using transfer learning. It is shown that in order to achieve good predictions accuracy (≈95% R2 ), an agent that is training for the first time ("learning from scratch") requires 23-45% of simulated data, whereas an agent adapting to a different material ("transfer learning") requires only about 10% or less. This suggests that transfer learning is a potential game changer in material discovery and characterization approaches.
Collapse
Affiliation(s)
- Prabhas Hundi
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Rouzbeh Shahsavari
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
- C-Crete Technologies LLC, Stafford, TX, 77477, USA
| |
Collapse
|
19
|
Arrabito G, Errico V, De Ninno A, Cavaleri F, Ferrara V, Pignataro B, Caselli F. Oil-in-Water fL Droplets by Interfacial Spontaneous Fragmentation and Their Electrical Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4936-4945. [PMID: 30875226 DOI: 10.1021/acs.langmuir.8b04316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inkjet printing is here employed for the first time as a method to produce femtoliter-scale oil droplets dispersed in water. In particular, picoliter-scale fluorinated oil (FC40) droplets are printed in the presence of perfluoro-1-octanol surfactant at a velocity higher than 5 m/s. Femtoliter-scale oil droplets in water are spontaneously formed through a fragmentation process at the water/air interface using minute amounts of nonionic surfactant (down to 0.003% v/v of Tween 80). This fragmentation occurs by a Plateau-Rayleigh mechanism at a moderately high Weber number (101). A microfluidic chip with integrated microelectrodes allows droplets characterization in terms of number and diameter distribution (peaked at about 3 μm) by means of electrical impedance measurements. These results show an unprecedented possibility to scale oil droplets down to the femtoliter scale, which opens up several perspectives for a tailored oil-in-water emulsion fabrication for drug encapsulation, pharmaceutic preparations, and cellular biology.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry , University of Palermo , Palermo 90128 , Italy
| | | | - Adele De Ninno
- Institute for Photonics and Nanotechnologies , Italian National Research Council , Roma 00185 , Italy
| | - Felicia Cavaleri
- Department of Physics and Chemistry , University of Palermo , Palermo 90128 , Italy
| | - Vittorio Ferrara
- Department of Chemical Sciences , University of Catania , Catania 95125 , Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry , University of Palermo , Palermo 90128 , Italy
| | | |
Collapse
|
20
|
Ramos MC, Horta VAC, Horta BAC. Molecular Dynamics Simulations of PAMAM and PPI Dendrimers Using the GROMOS-Compatible 2016H66 Force Field. J Chem Inf Model 2019; 59:1444-1457. [DOI: 10.1021/acs.jcim.8b00911] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mayk C. Ramos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Vitor A. C. Horta
- Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| |
Collapse
|
21
|
Wang L, Sun N, Wang Z, Han H, Yang Y, Liu R, Hu Y, Tang H, Sun W. Self-assembly of mixed dodecylamine–dodecanol molecules at the air/water interface based on large-scale molecular dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
A molecular dynamics simulation of the structure of sodium lauryl ether sulfate and poly(vinyl alcohol) at the air/water interface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Xu H, Wang W, Shi Y, Gao P. Characterization of the Partition Rate of Ibuprofen Across the Water-Octanol Interface and the Influence of Common Pharmaceutical Excipients. J Pharm Sci 2019; 108:525-537. [DOI: 10.1016/j.xphs.2018.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
24
|
Estimating Metabolic Equilibrium Constants: Progress and Future Challenges. Trends Biochem Sci 2018; 43:960-969. [DOI: 10.1016/j.tibs.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/03/2023]
|
25
|
Szymczyk K, Zdziennicka A, Jańczuk B. Adsorption and Aggregation Properties of Some Polysorbates at Different Temperatures. J SOLUTION CHEM 2018; 47:1824-1840. [PMID: 30524153 PMCID: PMC6244871 DOI: 10.1007/s10953-018-0823-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022]
Abstract
Measurements of the surface tension of aqueous solutions of polysorbates (Tween 20, Tween 60 and Tween 80) at 293, 303 and 313 K were made. On the basis of the obtained results the Gibbs surface excess concentration of the Tweens at the water–air interface and critical micelle concentrations were determined. Knowing the Gibbs surface excess concentration and taking into account the difference between the limiting area occupied by water and Tween molecules at the water–air interface, the fraction occupied by Tween molecules was established. The limiting area occupied by the Tween molecule was calculated by applying the Joos equation. The area determined in such a way was confirmed by the calculations of cross section of Tween molecules based on the bond lengths and the angles between them as well as the average distance between the molecules, taking into account their different conformations. This area was used for calculation of the standard Gibbs energy of adsorption using the Langmuir equation. The standard Gibbs energy of Tweens adsorption at the water–air interface was also calculated from the hydrophobic part of Tween molecule–water interface tension and that of hydrophobic part. Using the determined values of standard Gibbs energy of adsorption at different temperatures, the standard enthalpy and entropy values were deduced. The standard thermodynamic functions of micellization were also determined and compared to the Gibbs energy of Tween molecules interactions through the water phase.
Collapse
Affiliation(s)
- Katarzyna Szymczyk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Anna Zdziennicka
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
26
|
Arsiccio A, McCarty J, Pisano R, Shea JE. Effect of Surfactants on Surface-Induced Denaturation of Proteins: Evidence of an Orientation-Dependent Mechanism. J Phys Chem B 2018; 122:11390-11399. [DOI: 10.1021/acs.jpcb.8b07368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andrea Arsiccio
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - James McCarty
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Liang X, Guo C, Liu S, Dang Z, Wei Y, Yi X, Abel S. Cosolubilization of phenanthrene and pyrene in surfactant micelles: Experimental and atomistic simulations studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Effect of Polysorbates on Solids Wettability and Their Adsorption Properties. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Tan L, Pratt LR, Chaudhari MI. Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface. J Phys Chem B 2018; 122:3378-3383. [PMID: 29215284 DOI: 10.1021/acs.jpcb.7b10336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10-2 s (into the squalane) and 3 × 102 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.
Collapse
Affiliation(s)
- L Tan
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - M I Chaudhari
- Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
30
|
Ríos-López M, Mendez-Bermúdez JG, Domínguez H. New Force Field Parameters for the Sodium Dodecyl Sulfate and Alpha Olefin Sulfonate Anionic Surfactants. J Phys Chem B 2018; 122:4558-4565. [DOI: 10.1021/acs.jpcb.8b01452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marlene Ríos-López
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Jose Guillermo Mendez-Bermúdez
- Centro Universitario de los Valles, Universidad de Guadalajara (UdG), Carretera Guadalajara-Ameca Km 45.4, Ameca 46600, Jalisco, Mexico
| | - Hector Domínguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| |
Collapse
|
31
|
Wang L, Hu Y, Liu R, Liu J, Sun W. Synergistic adsorption of DDA/alcohol mixtures at the air/water interface: A molecular dynamics simulation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Reverse micellar extraction of lactoferrin from its synthetic solution using CTAB/ n-heptanol system. Journal of Food Science and Technology 2017; 54:3630-3639. [PMID: 29051658 DOI: 10.1007/s13197-017-2824-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022]
Abstract
The partitioning of Lactoferrin (LF) into the reverse micellar phase formed by a cationic surfactant, cetyltrimethylammonium bromide (CTAB) in n-heptanol from the synthetic solution of LF was studied. The solubilization behaviour of LF into the reverse micellar phase and back extraction using a fresh stripping phase were improved by studying the effect of processing parameters, including surfactant concentration, solution pH, electrolyte salt concentration and addition of alcohol as co-solvent. Forward extraction of 100% was achieved at CTAB concentration of 50 mM in n-heptanol solvent, pH of 10 and 1 M NaCl. The electrostatic force and hydrophobic interaction have major influence on LF extraction during forward and back extraction respectively. The size of the reverse micelles and their corresponding water content were measured at different operating conditions to assess their role on the LF extraction. The present reverse micellar system has potential to solubilise almost all the LF into the reverse micelles during forward extraction and could able to allow back extraction from the reverse micellar phase with addition of small amount of co-solvent.
Collapse
|
33
|
Sresht V, Lewandowski EP, Blankschtein D, Jusufi A. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8319-8329. [PMID: 28749139 DOI: 10.1021/acs.langmuir.7b01073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.
Collapse
Affiliation(s)
- Vishnu Sresht
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric P Lewandowski
- Corporate Strategic Research, ExxonMobil Research & Engineering Company , 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Arben Jusufi
- Corporate Strategic Research, ExxonMobil Research & Engineering Company , 1545 Route 22 East, Annandale, New Jersey 08801, United States
| |
Collapse
|
34
|
Indelicato S, Bongiorno D, Calabrese V, Perricone U, Almerico AM, Ceraulo L, Piazzese D, Tutone M. Micelles, Rods, Liposomes, and Other Supramolecular Surfactant Aggregates: Computational Approaches. Interdiscip Sci 2017; 9:392-405. [PMID: 28478537 DOI: 10.1007/s12539-017-0234-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Surfactants are an interesting class of compounds characterized by the segregation of polar and apolar domains in the same molecule. This peculiarity makes possible a whole series of microscopic and macroscopic effects. Among their features, their ability to segregate particles (fluids or entire domains) and to reduce the surface/interfacial tension is the utmost important. The interest in the chemistry of surfactants never weakened; instead, waves of increasing interest have occurred every time a new field of application of these molecules has been discovered. All these special characteristics depend largely on the ability of surfactants to self-assemble and constitute supramolecular structures where their chemical properties are amplified. The possibility to obtain structural and energy information and, above all, the possibility of forecast the self-organizing mechanisms of surfactants have had a significant boost via computational chemistry. The molecular dynamics models, initially coarse-grained and subsequently (with the increasing computer power) using more accurate models, allowed, over the years, to better understand different aspects of the processes of dispersion, self-assembly, segregation of surfactant. Moreover, several other aspects have been investigated as the effect of the counterions of many ionic surfactants in defining the final supramolecular structures, the mobility of side chains, and the capacity of some surfactant to envelope entire proteins. This review constitutes a perspective/prospective view of these results. On the other hand, some comparison of in silico results with experimental information recently acquired through innovative analytical techniques such as ion mobility mass spectrometry which have been introduced.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy.
| |
Collapse
|
35
|
Kotula AP, Anna SL. Insoluble layer deposition and dilatational rheology at a microscale spherical cap interface. SOFT MATTER 2016; 12:7038-7055. [PMID: 27478885 DOI: 10.1039/c5sm03133h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dilatational properties of insoluble monolayers are important for understanding the mechanics of biological systems and consumer products, but isolating the dilatational response of an interface is challenging due to the difficulties in separating dilatation from shear and other deformation modes. Oscillations of a microscale bubble radius are useful for generating purely dilatational flows, but the current deposition methods for insoluble layers onto fluid interfaces are not easily scaled down. In this paper, we describe a miscible solvent exchange procedure for generating insoluble layers at an air-water interface pinned at the tip of a capillary tens of micrometers in diameter. We show that the amount of surfactant adsorbed at the interface can be controlled by the initial concentration dissolved in isopropanol (the starting solvent) and the volumetric flow rate of solvent exchange. Surface pressure-area isotherms and dilatational moduli are measured concurrently for three insoluble surfactants: palmitic acid (PA), dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). The isotherms measured on the microscale interface compare well with previous experiments performed on a Langmuir trough. However, the magnitudes of the dilatational moduli differ from those measured on either Langmuir trough or pendant drop apparatuses. Several possible reasons for the observed differences are discussed. A comparison of the dilatational modulus with the Gibbs elasticity is used to determine the presence of dilatational extra stresses at the interface. The isotherm and dilatational modulus of the insoluble component of the industrial surfactant Tween 80 are measured using this approach. The methods developed here also open the possibility for future study of the important role of finite size effects on microstructure formation and the resulting interfacial mechanics.
Collapse
Affiliation(s)
- Anthony P Kotula
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Shelley L Anna
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Zhang Z, Avij P, Perkins MJ, Liyana-Arachchi TP, Field JA, Valsaraj KT, Hung FR. Combined Experimental and Molecular Simulation Investigation of the Individual Effects of Corexit Surfactants on the Aerosolization of Oil Spill Matter. J Phys Chem A 2016; 120:6048-58. [DOI: 10.1021/acs.jpca.6b04988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zenghui Zhang
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Paria Avij
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Matt J. Perkins
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Jennifer A. Field
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kalliat T. Valsaraj
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Francisco R. Hung
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
37
|
Horta BAC, Merz PT, Fuchs PFJ, Dolenc J, Riniker S, Hünenberger PH. A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set. J Chem Theory Comput 2016; 12:3825-50. [DOI: 10.1021/acs.jctc.6b00187] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno A. C. Horta
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Pascal T. Merz
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Patrick F. J. Fuchs
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jozica Dolenc
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Chemistry,
Biology and Pharmacy Information Center, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
38
|
Wang L, Liu R, Hu Y, Sun W. pH effects on adsorption behavior and self-aggregation of dodecylamine at muscovite/aqueous interfaces. J Mol Graph Model 2016; 67:62-8. [DOI: 10.1016/j.jmgm.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
39
|
Posocco P, Perazzo A, Preziosi V, Laurini E, Pricl S, Guido S. Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Adv 2016. [DOI: 10.1039/c5ra24262b] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smaller Span molecules occupy the free spaces between bulkier Tween molecules thus lowering interfacial tension as compared to those obtained for single surfactant systems.
Collapse
Affiliation(s)
- P. Posocco
- Molecular Simulation Engineering Laboratory (MOSE)
- Department of Engineering and Architecture (DEA)
- University of Trieste
- 34127 Trieste
- Italy
| | - A. Perazzo
- Department of Chemical
- Materials and Production Engineering
- University of Napoli Federico II
- 80125 Napoli
- Italy
| | - V. Preziosi
- Department of Chemical
- Materials and Production Engineering
- University of Napoli Federico II
- 80125 Napoli
- Italy
| | - E. Laurini
- Molecular Simulation Engineering Laboratory (MOSE)
- Department of Engineering and Architecture (DEA)
- University of Trieste
- 34127 Trieste
- Italy
| | - S. Pricl
- Molecular Simulation Engineering Laboratory (MOSE)
- Department of Engineering and Architecture (DEA)
- University of Trieste
- 34127 Trieste
- Italy
| | - S. Guido
- Department of Chemical
- Materials and Production Engineering
- University of Napoli Federico II
- 80125 Napoli
- Italy
| |
Collapse
|
40
|
Mobasheri M, Attar H, Rezayat Sorkhabadi SM, Khamesipour A, Jaafari MR. Solubilization Behavior of Polyene Antibiotics in Nanomicellar System: Insights from Molecular Dynamics Simulation of the Amphotericin B and Nystatin Interactions with Polysorbate 80. Molecules 2015; 21:E6. [PMID: 26712721 PMCID: PMC6273564 DOI: 10.3390/molecules21010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/23/2023] Open
Abstract
Amphotericin B (AmB) and Nystatin (Nys) are the drugs of choice for treatment of systemic and superficial mycotic infections, respectively, with their full clinical potential unrealized due to the lack of high therapeutic index formulations for their solubilized delivery. In the present study, using a coarse-grained (CG) molecular dynamics (MD) simulation approach, we investigated the interaction of AmB and Nys with Polysorbate 80 (P80) to gain insight into the behavior of these polyene antibiotics (PAs) in nanomicellar solution and derive potential implications for their formulation development. While the encapsulation process was predominantly governed by hydrophobic forces, the dynamics, hydration, localization, orientation, and solvation of PAs in the micelle were largely controlled by hydrophilic interactions. Simulation results rationalized the experimentally observed capability of P80 in solubilizing PAs by indicating (i) the dominant kinetics of drugs encapsulation over self-association; (ii) significantly lower hydration of the drugs at encapsulated state compared with aggregated state; (iii) monomeric solubilization of the drugs; (iv) contribution of drug-micelle interactions to the solubilization; (v) suppressed diffusivity of the encapsulated drugs; (vi) high loading capacity of the micelle; and (vii) the structural robustness of the micelle against drug loading. Supported from the experimental data, our simulations determined the preferred location of PAs to be the core-shell interface at the relatively shallow depth of 75% of micelle radius. Deeper penetration of PAs was impeded by the synergistic effects of (i) limited diffusion of water; and (ii) perpendicular orientation of these drug molecules with respect to the micelle radius. PAs were solvated almost exclusively in the aqueous poly-oxyethylene (POE) medium due to the distance-related lack of interaction with the core, explaining the documented insensitivity of Nys solubilization to drug-core compatibility in detergent micelles. Based on the obtained results, the dearth of water at interior sites of micelle and the large lateral occupation space of PAs lead to shallow insertion, broad radial distribution, and lack of core interactions of the amphiphilic drugs. Hence, controlled promotion of micelle permeability and optimization of chain crowding in palisade layer may help to achieve more efficient solubilization of the PAs.
Collapse
Affiliation(s)
- Meysam Mobasheri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
| | - Hossein Attar
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
- Tofigh Daru Research and Engineering Company (TODACO), Tehran 1397116359, Iran.
| | - Seyed Mehdi Rezayat Sorkhabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran.
- Department of Toxicology and Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran 193956466, Iran.
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran 1416613675, Iran.
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box: 91775-1365, Mashhad 917751365, Iran.
| |
Collapse
|
41
|
Yuan F, Larson RG. Multiscale Molecular Dynamics Simulations of Model Hydrophobically Modified Ethylene Oxide Urethane Micelles. J Phys Chem B 2015; 119:12540-51. [PMID: 26337615 DOI: 10.1021/acs.jpcb.5b04895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The flower-like micelles of various aggregation numbers of a model hydrophobically modified ethylene oxide urethane (HEUR) molecule, C16E45C16, and their corresponding starlike micelles, containing the surfactants C16E22 and C16E23, were studied by atomistic and coarse-grained molecular dynamic (MD) simulations. We used free energies from umbrella sampling to calculate the size distribution of micelle sizes and the average time for escape of a hydrophobic group from the micelle. Using the coarse-grained MARTINI force field, the most probable size of the model HEUR molecule was thereby determined to be about 80 hydrophobes per micelle and the average hydrophobe escape time to be about 0.1 s, both of which are consistent with previous experimental studies. Atomistic simulations reveal that hydrogen bond formation and the mean lifetime of hydration waters of the poly(ethylene oxide) (or PEO) groups are location-dependent in the HEUR micelle, with PEO groups immediately adjacent to the C16 groups forming the fewest hydrogen bonds with water and having hydration waters with longer lifetimes than those of the PEO groups located further away from the C16 groups.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Chemical Engineering and ‡Departments of Mechanical Engineering, Biomedical Engineering, and Macromolecular Science and Engineering Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ronald G Larson
- Department of Chemical Engineering and ‡Departments of Mechanical Engineering, Biomedical Engineering, and Macromolecular Science and Engineering Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Huston KJ, Larson RG. Reversible and Irreversible Adsorption Energetics of Poly(ethylene glycol) and Sorbitan Poly(ethoxylate) at a Water/Alkane Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7503-7511. [PMID: 26079039 DOI: 10.1021/acs.langmuir.5b00398] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We simulate poly(ethylene glycol) (PEG) oligomers and model Tween 80 (polyoxyethylene sorbitan monooleate) molecules at water/alkane interfaces. Using the weighted histogram analysis method (WHAM), including an extension of WHAM to two reaction coordinates to remove hysteresis, we calculate interfacial potentials of mean force (PMFs) for PEG and Tween 80 using three force fields: the atomistic GROMOS 53a6OXY+D and two coarse-grained (CG) MARTINI force fields. Because the force fields have not yet been validated for PEO adsorption to hydrophobic interfaces, we calculate PMFs for alcohol ethoxylates C12E2 and C12E8 and find that they agree with semiempirical results of Mulqueen and Blankschtein [Langmuir 2002, 18 (2), 365-376] for the GROMOS 53a6OXY+D force field, whereas for both MARTINI force fields, PEO adsorbs too weakly to a clean hydrophobic interface. One MARTINI force field incorrectly shows depletion rather than adsorption to a clean hydrophobic interface. We find that the adsorption free energy for PEG oligomers at a clean, planar water/alkane interface is around 1.3 kBT per monomer for the atomistic force field but is less than half of this for the two CG force fields. With the newly validated GROMOS 53a6OXY+D force field, we bracket the dilute adsorption free energy for a model Tween 80 molecule at the clean water/squalane interface. We also calculate the pressure-area isotherm. We exploit these data with the Nikas-Mulqueen-Blankschtein (NMB) theory and a simple transport model to demonstrate a transition from irreversible to reversible adsorption with increasing surface coverage, consistent with experimental results of Reichert and Walker [Langmuir 2013, 29 (6), 1857-1867].
Collapse
Affiliation(s)
- Kyle J Huston
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
43
|
Kirby SM, Anna SL, Walker LM. Sequential adsorption of an irreversibly adsorbed nonionic surfactant and an anionic surfactant at an oil/aqueous interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4063-4071. [PMID: 25798716 DOI: 10.1021/la504969v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aerosol-OT (AOT) and Tween 80 are two of the main surfactants in commercial dispersants used in response to oil spills. Understanding how multicomponent surfactant systems interact at oil/aqueous interfaces is crucial for improving both dispersant design and application efficacy. This is true of many multicomponent formulations; a lack of understanding of competition for the oil/water interface hinders formulation optimization. In this study, we have characterized the sequential adsorption behavior of AOT on squalane/aqueous interfaces that have been precoated with Tween 80. A microtensiometer is used to measure the dynamic interfacial tension of the system. Tween 80 either partially or completely irreversibly adsorbs to squalane/aqueous interfaces when rinsed with deionized water. These Tween 80 coated interfaces are then exposed to AOT. AOT adsorption increases with AOT concentration for all Tween 80 coverages, and the resulting steady-state interfacial tension values are interpreted using a Langmuir isotherm model. In the presence of 0.5 M NaCl, AOT adsorption significantly increases due to counterion charge screening of the negatively charged head groups. The presence of Tween 80 on the interface inhibits AOT adsorption, reducing the maximum surface coverage as compared to a clean interface. Tween 80 persists on the interface even after exposure to high concentrations of AOT.
Collapse
Affiliation(s)
- Stephanie M Kirby
- Department of Chemical Engineering, Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shelley L Anna
- Department of Chemical Engineering, Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lynn M Walker
- Department of Chemical Engineering, Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
44
|
Nguyen CV, Phan CM, Ang HM, Nakahara H, Shibata O, Moroi Y. Molecular dynamics investigation on adsorption layer of alcohols at the air/brine interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:50-56. [PMID: 25494904 DOI: 10.1021/la504471q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alcohols are a significant group of surfactants which have been employed extensively in industry to improve the interfacial effects. Recently, the change in surface potential (ΔV) of two isomeric hexanols, methyl isobutyl carbinol (MIBC) and 1-hexanol, was investigated by using an ionizing (241)Am electrode. It clearly showed the opposite effects between MIBC and 1-hexanol in the interfacial zone: one enhanced the presence of cations, whereas the other enhanced the presence of anions. This study employs molecular dynamics simulation to provide new insights into the interactions between alcohol molecules and ions as well as water at the molecular level. The results qualitatively agreed with the experimental data and verified the significance of MIBC branching structure on the molecular arrangement within the interfacial zone. The results also highlighted the role of the second water layer on the interfacial properties.
Collapse
Affiliation(s)
- Cuong V Nguyen
- Department of Chemical Engineering, Curtin University , Perth WA 6845, Australia
| | | | | | | | | | | |
Collapse
|