1
|
Xue T, Li J, Chen L, Li K, Hua Y, Yang Y, Dong F. Photocatalytic NO x removal and recovery: progress, challenges and future perspectives. Chem Sci 2024; 15:9026-9046. [PMID: 38903227 PMCID: PMC11186336 DOI: 10.1039/d4sc01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024] Open
Abstract
The excessive production of nitrogen oxides (NO x ) from energy production, agricultural activities, transportation, and other human activities remains a pressing issue in atmospheric environment management. NO x serves both as a significant pollutant and a potential feedstock for energy carriers. Photocatalytic technology for NO x removal and recovery has received widespread attention and has experienced rapid development in recent years owing to its environmental friendliness, mild reaction conditions, and high efficiency. This review systematically summarizes the recent advances in photocatalytic removal, encompassing NO x oxidation removal (including single and synergistic removal and NO3 - decomposition), NO x reduction to N2, and the emergent NO x upcycling into green ammonia. Special focus is given to the molecular understanding of the interfacial nitrogen-associated reaction mechanisms and their regulation pathways. Finally, the status and the challenges of photocatalytic NO x removal and recovery are critically discussed and future outlooks are proposed for their potential practical application.
Collapse
Affiliation(s)
- Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Jing Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Lvcun Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Kanglu Li
- School of Environmental Science and Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Ying Hua
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
- Synergy Innovation Institute of GDUT Shantou 515041 Guangdong China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| |
Collapse
|
2
|
Jiang H, Bao F, Wang J, Chen J, Zhu Y, Huang D, Chen C, Zhao J. Direct Formation of Electronic Excited NO 2 Contributes to the High Yield of HONO during Photosensitized Renoxification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11144-11151. [PMID: 37462617 DOI: 10.1021/acs.est.3c01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Photosensitized renoxification of HNO3 is found to produce HONO in an unexpectedly high yield, which has been considered an important source for atmospheric HONO. Conventionally, the production of HONO is ascribed to the secondary photolysis of the primarily formed NO2. In this study, by using humic acid (HA) as a model environmental photosensitizer, we provide evidence of the direct formation of NO2 in its electronic excited state (NO2*) as a key intermediate during the photosensitizing renoxification of HNO3. Moreover, the high HONO yield originates from the heterogeneous reaction of the primarily formed NO2* with the co-adsorbed water molecules on HA. Such a mechanism is supported by the increase of the product selectivity of HONO with relative humidity. Further luminescence measurements demonstrate clearly the occurrence of an electronic excited state (NO2*) from photolysis of adsorbed HNO3 on HA. This work deepens our understanding of the formation of atmospheric HONO and gives insight into the transformation of RNS.
Collapse
Affiliation(s)
- Hongyu Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengxia Bao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Now at: Max Plank Institute for Chemistry, Mainz 55128, Germany
| | - Jinzhao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhua Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yifan Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Di Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Cao Q, Chu B, Zhang P, Ma Q, Ma J, Liu Y, Liu J, Zhao Y, Zhang H, Wang Y, He H. Effects of SO 2 on NH 4NO 3 Photolysis: The Role of Reducibility and Acidic Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37235870 DOI: 10.1021/acs.est.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nitrate photolysis is a vital process in secondary NOx release into the atmosphere. The heterogeneous oxidation of SO2 due to nitrate photolysis has been widely reported, while the influence of SO2 on nitrate photolysis has rarely been investigated. In this study, the photolysis of nitrate on different substrates was investigated in the absence and presence of SO2. In the photolysis of NH4NO3 on the membrane without mineral oxides, NO, NO2, HONO, and NH3 decreased by 17.1, 6.0, 12.6, and 57.1% due to the presence of SO2, respectively. In the photolysis of NH4NO3 on the surface of mineral oxides, SO2 also exhibited an inhibitory effect on the production of NOx, HONO, and NH3 due to its reducibility and acidic products, while the increase in surface acidity due to the accumulation of abundant sulfate on TiO2 and MgO promoted the release of HONO. On the photoactive oxide TiO2, HSO3-, generated by the uptake of SO2, could compete for holes with nitrate to block nitrate photolysis. This study highlights the interaction between the heterogeneous oxidation of SO2 and nitrate photolysis and provides a new perspective on how SO2 affects the photolysis of nitrate absorbed on the photoactive oxides.
Collapse
Affiliation(s)
- Qing Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
4
|
Cui P, Chen Z, Fan F, Yin C, Song A, Li T, Zhang H, Liang Y. Soil texture is an easily overlooked factor affecting the temperature sensitivity of N 2O emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160648. [PMID: 36502980 DOI: 10.1016/j.scitotenv.2022.160648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As a potent greenhouse gas, soil nitrous oxide (N2O) is strongly stimulated by rising temperature, triggering a positive feedback effect of global warming. However, its temperature sensitivity varies greatly among soils with different physical and chemical characteristics, while associated mechanisms remain unknown. Here we performed a meta-analysis of the effect of warming on N2O emission and found distinctions in the response of N2O to temperature increase in soils with different textures. Then, we conducted an incubation experiment on 11 arable soils with varying textures sampled across China. The results show that the temperature sensitivity of N2O emissions was lower as soil texture became more clayey and was consistent with the outcome of meta-analysis. Further analysis was conducted by classifying the soils into clay and loam subgroups. As shown in the clay soil subgroup, N2O emission was significantly correlated with both inorganic nitrogen contents and potential denitrification and nitrification activities. Correlation analysis and partial least square (PLS) path model revealed that temperature mediated N2O emission by regulating nosZ gene abundance indirectly. In loam soils, however, the indirect effect of temperature on N2O production was achieved mainly through nirS gene abundance. Additionally, soil DON content strongly correlated with N2O emission in both subgroups and affected N2O emissions by influencing the abundance of denitrifiers under warming conditions. Our findings suggest that (i) soil texture was an important factor affecting temperature sensitivity of N2O emission and (ii) variable efficacy of warming in soil N2O production might originate from the enriching DON and nitrate content and its different indirect effects on nirS- or nosZ-type denitrifiers.
Collapse
Affiliation(s)
- Peiyuan Cui
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of crop cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhixuan Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of crop cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Fenliang Fan
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chang Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Alin Song
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of crop cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
DeYoung JL, Shaw SK. Host surface orientation impacts environmental film accumulations. CHEMOSPHERE 2022; 307:135823. [PMID: 35973506 DOI: 10.1016/j.chemosphere.2022.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Two environmental films were passively collected in different orientations (vertical or horizontal) at the same location over two months. We characterized these films using bright field microscopy, total dissolved species analysis, pH analysis, vibrational interfacial spectroscopy, and contact angle goniometry. Results show that horizontal films have significantly higher surface coverage than the vertical samples (+50%). The vertical and horizontal films also show different particle morphologies but the particle size distributions are not statistically different. Vertical surfaces have smaller, less compact particulate suggesting particle adsorption depends on the surface area in contact with the parent substrate. Horizontal surfaces also generate more total dissolved solid material per unit area when washed with water (+61%). The dissolved solids from the vertical substrate are more acidic per unit mass, suggesting increased pH active species like nitrate, sulfate, or organic acids. Vibrational spectroscopy provides evidence of nitrates and sulfates in both films, but spectroscopic profiles show these ions are present in different forms. Contact angle goniometry measurements show horizontal films are more hydrophilic than vertical films, despite being deposited on the same substrate material. We also report significantly different hydrogen bonding environments for condensed water between the two films. Our results suggest that environmental films deposited on vertical vs horizontal surfaces will have significantly different characteristics, informing models for deposition and impacts to human and environmental health.
Collapse
|
6
|
Wang H, Sun Y, Dong F. Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light. Angew Chem Int Ed Engl 2022; 61:e202209201. [DOI: 10.1002/anie.202209201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hong Wang
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Yanjuan Sun
- School of Resources and Environmental University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| |
Collapse
|
7
|
Jin S, Kong L, Yang K, Wang C, Xia L, Wang Y, Tan J, Wang L. Combined effects of high relative humidity and ultraviolet irradiation: Enhancing the production of gaseous NO 2 from the photolysis of NH 4NO 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156480. [PMID: 35675886 DOI: 10.1016/j.scitotenv.2022.156480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Free radicals and nitrogen-containing species produced by nitrate photolysis can affect various atmospheric chemical processes, and thereby the photochemical behavior of atmospheric nitrate aerosols has been attracting much attention. However, the photolysis mechanism of NH4NO3 and its products under different atmospheric conditions remain unclear. In this study, the effects of relative humidity (RH), pH, NH3, ultraviolet (UV) light intensity and halogen ions (Cl-, Br- and I-) on the photolysis of particulate NH4NO3 have been investigated through a flow tube reactor. The results show that RH can significantly enhance the production of gaseous NO2 from the photolysis of NH4NO3 when RH is higher than its deliquescence RH, but almost no NO2 is generated under dry conditions. Under high RH and UV light, the main product of NH4NO3 photolysis is NO2, rather than NO and HONO, and another main species HNO3 which mainly comes from the hydrolysis of product NO2 in the gas path was detected. Almost no NO2 and HNO3 are produced under high RH without UV light or low RH with UV light, showing the combined effect of high RH and UV irradiation on the photolysis of NH4NO3. In addition, under high RH, the lower the pH and the stronger the light intensity, the higher the NO2 production. Furthermore, surprising yields of NO and HONO are detected in the presence of halogen ions, especially in the presence of I-, indicating the important role of halogen ion in the nitrate photolysis. These results provide new insights into the photolysis of atmospheric nitrate aerosols, and may contribute to elucidating the formation and migration of atmospheric nitrate aerosols and the potential mechanisms of the occurrence and evolution of atmospheric pollution and ozone pollution.
Collapse
Affiliation(s)
- Shengyan Jin
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China; Shanghai Institute of Eco-Chongming (SIEC), No.3663 Northern Zhongshan Road, Shanghai 200062, China.
| | - Kejing Yang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Chao Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
8
|
Pandit S, Grassian VH. Gas-Phase Nitrous Acid (HONO) Is Controlled by Surface Interactions of Adsorbed Nitrite (NO 2-) on Common Indoor Material Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12045-12054. [PMID: 36001734 PMCID: PMC9454260 DOI: 10.1021/acs.est.2c02042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO) is a household pollutant exhibiting adverse health effects and a major source of indoor OH radicals under a variety of lighting conditions. The present study focuses on gas-phase HONO and condensed-phase nitrite and nitrate formation on indoor surface thin films following heterogeneous hydrolysis of NO2, in the presence and absence of light, and nitrate (NO3-) photochemistry. These thin films are composed of common building materials including zeolite, kaolinite, painted walls, and cement. Gas-phase HONO is measured using an incoherent broadband cavity-enhanced ultraviolet absorption spectrometer (IBBCEAS), whereby condensed-phase products, adsorbed nitrite and nitrate, are quantified using ion chromatography. All of the surface materials used in this study can store nitrogen oxides as nitrate, but only thin films of zeolite and cement can act as condensed-phase nitrite reservoirs. For both the photo-enhanced heterogeneous hydrolysis of NO2 and nitrate photochemistry, the amount of HONO produced depends on the material surface. For zeolite and cement, little HONO is produced, whereas HONO is the major product from kaolinite and painted wall surfaces. An important result of this study is that surface interactions of adsorbed nitrite are key to HONO formation, and the stronger the interaction of nitrite with the surface, the less gas-phase HONO produced.
Collapse
|
9
|
Wang H, Sun Y, Dong F. Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hong Wang
- University of Electronic Science and Technology of China Institute of Fundamental and Frontier Sciences CHINA
| | - Yanjuan Sun
- University of Electronic Science and Technology of China School of Resources and Environmental CHINA
| | - Fan Dong
- University of Electronic Science and Technology of China State Key Laboratory of Electronic Thin Films and Integrated Devices Chengdu, China 610054 Chengdu CHINA
| |
Collapse
|
10
|
Pandit S, Mora Garcia SL, Grassian VH. HONO Production from Gypsum Surfaces Following Exposure to NO 2 and HNO 3: Roles of Relative Humidity and Light Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9761-9772. [PMID: 34236834 DOI: 10.1021/acs.est.1c01359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrous acid (HONO) is a toxic household pollutant and a major source of indoor OH radicals. The high surface-to-volume ratio and diverse lighting conditions make the indoor photochemistry of HONO complex. This study demonstrates surface uptake of NO2 and gaseous HNO3 followed by gas-phase HONO generation on gypsum surfaces, model system for drywall, under reaction conditions appropriate for an indoor air environment. Tens of parts per billion of steady-state HONO are detected under these experimental conditions. Mechanistic insight into this heterogeneous photochemistry is obtained by exploring the roles of material compositions, relative humidities, and light sources. NO2 and HNO3 are adsorbed onto drywall surfaces, which can generate HONO under illumination and under dark conditions. Photoenhanced HONO generation is observed for illumination with a solar simulator as well as with the common indoor light sources such as compact fluorescence light and incandescent light bulbs. Incandescent light sources release more HONO and NO2 near the light source compared to the solar radiation. Overall, HONO production on the gypsum surface increases with the increase of RH up to 70% relative humidity; above that, the gaseous HONO level decreases due to surface loss. Heterogeneous hydrolysis of NO2 is predicted to be the dominant HONO generation channel, where NO2 is produced through the photolysis of surface-adsorbed nitrates. This hydrolysis reaction predominantly occurs in the first layer of surface-adsorbed water.
Collapse
Affiliation(s)
- Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephanie L Mora Garcia
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Ma Q, Zhong C, Ma J, Ye C, Zhao Y, Liu Y, Zhang P, Chen T, Liu C, Chu B, He H. Comprehensive Study about the Photolysis of Nitrates on Mineral Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8604-8612. [PMID: 34132529 DOI: 10.1021/acs.est.1c02182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrates formed on mineral dust through heterogeneous reactions in high NOx areas can undergo photolysis to regenerate NOx and potentially interfere in the photochemistry in the downwind low NOx areas. However, little is known about such renoxification processes. In this study, photolysis of various nitrates on different mineral oxides was comprehensively investigated in a flow reactor and in situ diffuse reflectance Fourier-transform infrared spectroscopy (in situ DRIFTS). TiO2 was found much more reactive than Al2O3 and SiO2 with both NO2 and HONO as the two major photolysis products. The yields of NO2 and HONO depend on the cation basicity of the nitrate salts or the acidity of particles. As such, NH4NO3 is much more productive than other nitrates like Fe(NO3)3, Ca(NO3)2, and KNO3. SO2 and water vapor promote the photodegradation by increasing the surface acidity due to the photoinduced formation of H2SO4/sulfate and H+, respectively. O2 enables the photo-oxidation of NOx to regenerate nitrate and thus inhibits the NOx yield. Overall, our results demonstrated that the photolysis of nitrate can be accelerated under complex air pollution conditions, which are helpful for understanding the transformation of nitrate and the nitrogen cycle in the atmosphere.
Collapse
Affiliation(s)
- Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Zhong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiang Ye
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, Center for Environment and Health, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yaqi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wang T, Liu Y, Deng Y, Cheng H, Yang Y, Zhang L. Photochemical reaction of NO2 on photoactive mineral dust: Mechanism and irradiation intensity dependence. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Xu W, Yang W, Han C, Yang H, Xue X. Significant influences of TiO 2 crystal structures on NO 2 and HONO emissions from the nitrates photolysis. J Environ Sci (China) 2021; 102:198-206. [PMID: 33637244 DOI: 10.1016/j.jes.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1-20 wt.%), irradiation intensity (80-400 W/m2) and temperature (278-308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.
Collapse
Affiliation(s)
- Wenwen Xu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
14
|
Shi Q, Tao Y, Krechmer JE, Heald CL, Murphy JG, Kroll JH, Ye Q. Laboratory Investigation of Renoxification from the Photolysis of Inorganic Particulate Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:854-861. [PMID: 33393757 DOI: 10.1021/acs.est.0c06049] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrogen oxides (NOx) play a key role in regulating the oxidizing capacity of the atmosphere through controlling the abundance of O3, OH, and other important gas and particle species. Some recent studies have suggested that particulate nitrate, which is conventionally considered as the ultimate oxidation product of NOx, can undergo "renoxification" via photolysis, recycling NOx and HONO back to the gas phase. However, there are large discrepancies in estimates of the importance of this channel, with reported renoxification rate constants spanning three orders of magnitude. In addition, previous laboratory studies derived the rate constant using bulk particle samples collected on substrates instead of suspended particles. In this work, we study renoxification of suspended submicron particulate sodium and ammonium nitrate through controlled laboratory photolysis experiments using an environmental chamber. We find that, under atmospherically relevant wavelengths and relative humidities, particulate inorganic nitrate releases NOx and HONO less than 10 times as rapidly as gaseous nitric acid, putting our measurements on the low end of recently reported renoxification rate constants. To the extent that our laboratory conditions are representative of the real atmosphere, renoxification from the photolysis of inorganic particulate nitrate appears to play a limited role in contributing to the NOx and OH budgets in remote environments. These results are based on simplified model systems; future studies should investigate renoxification of more complex aerosol mixtures that represent a broader spectrum of aerosol properties to better constrain the photolysis of ambient aerosols.
Collapse
Affiliation(s)
- Qianwen Shi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Ye Tao
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jordan E Krechmer
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Colette L Heald
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jennifer G Murphy
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qing Ye
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, Donaldson DJ, Farmer DK, Jimenez JL, McNeill VF, Morrison GC, O'Brien RE, Shiraiwa M, Vance ME, Wells JR, Xiong W. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem 2020; 6:3203-3218. [PMID: 32984643 PMCID: PMC7501779 DOI: 10.1016/j.chempr.2020.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical reactions on indoor surfaces play an important role in air quality in indoor environments, where humans spend 90% of their time. We focus on the challenges of understanding the complex chemistry that takes place on indoor surfaces and identify crucial steps necessary to gain a molecular-level understanding of environmental indoor surface chemistry: (1) elucidate key surface reaction mechanisms and kinetics important to indoor air chemistry, (2) define a range of relevant and representative surfaces to probe, and (3) define the drivers of surface reactivity, particularly with respect to the surface composition, light, and temperature. Within the drivers of surface composition are the roles of adsorbed/absorbed water associated with indoor surfaces and the prevalence, inhomogeneity, and properties of secondary organic films that can impact surface reactivity. By combining laboratory studies, field measurements, and modeling we can gain insights into the molecular processes necessary to further our understanding of the indoor environment.
Collapse
Affiliation(s)
- Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, North Yorkshire YO10 5NG, UK
| | - Douglas B Collins
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D James Donaldson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jose L Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel E O'Brien
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23185, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Bao F, Jiang H, Zhang Y, Li M, Ye C, Wang W, Ge M, Chen C, Zhao J. The Key Role of Sulfate in the Photochemical Renoxification on Real PM 2.5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3121-3128. [PMID: 32084312 DOI: 10.1021/acs.est.9b06764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The active nitrogen species (HONO, NO, and NO2) have important impacts on the atmospheric oxidative capacity and the transformation of many atmospheric species. In this study, a fast photochemical renoxification rate of adsorbed HNO3/NO3- to active nitrogen species (HONO, NO, and NO2) was detected on real urban PM2.5, and sulfate was found to play a key role in this process. Different from the reported direct photolysis pathway, the photochemical reaction of HNO3/NO3- on PM2.5 is dominated by a photosensitizing mechanism. Acidic protons are proved to be essential for this pathway. The role of sulfate, because of the nonvolatility of its conjugated acid, is to conserve the necessary acidic protons when interacting with HNO3 and thus maintain its photoreactivity. This work implies that sulfate will have important implications in atmospheric nitrogen cycling by accelerating the release of nitrogen oxides from photochemical renoxification of HNO3/NO3- adsorbed on ambient particulates and thus can cause major environmental problems.
Collapse
Affiliation(s)
- Fengxia Bao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongyu Jiang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meng Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunxiang Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weigang Wang
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Maofa Ge
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
17
|
Yang N, Tsona NT, Cheng S, Wang Y, Wu L, Ge M, Du L. Effects of NO 2 and SO 2 on the heterogeneous reaction of acetic acid on α-Al 2O 3 in the presence and absence of simulated irradiation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:408-417. [PMID: 31994557 DOI: 10.1039/c9em00550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of NO2 and SO2 on the atmospheric heterogeneous reaction of acetic acid on α-Al2O3 in the presence and absence of simulated irradiation were investigated at ambient conditions by using the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique. The experiment was divided into two parts: the heterogeneous reaction experiment and the pre-adsorption reaction experiment under light and dark conditions. In the heterogeneous reaction experiment, solar radiation stimulates the formation of more acetate and nitrate. At the same time, it can promote the partial conversion of sulfites to sulfates in the heterogeneous reaction of SO2 on α-Al2O3 particles. It can be seen that solar radiation plays a significant role in the heterogeneous reactions of inorganic and organic gases on mineral particles. In the pre-adsorption reaction experiment, the pre-adsorbed nitrate, sulfite or sulfate have conspicuous inhibition influence on the formation of acetate in the presence and absence of simulated irradiation. This indicates that the role of pre-adsorbed species should be given more attention for the heterogeneous reaction of acetic acid on the surface of α-Al2O3 particles. When α-Al2O3 particles were pre-adsorbed by different species, simulated irradiation could facilitate the growth of different amounts of acetate. It was found that the extent to which solar radiation contributes to heterogeneous reactions of different kinds of gases on different mineral particles is different. This further emphasizes the complexities of the heterogeneous conversion processes of atmospheric trace gases on the surface of mineral aerosols, promoting a better understanding of the effects of solar radiation and pre-adsorption on the heterogeneous reaction in the atmosphere.
Collapse
Affiliation(s)
- Ning Yang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shumin Cheng
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingyan Wu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, 46 Zhong Guan Cun S. Ave., Beijing 100081, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
18
|
Alves MR, Fang Y, Wall KJ, Vaida V, Grassian VH. Chemistry and Photochemistry of Pyruvic Acid Adsorbed on Oxide Surfaces. J Phys Chem A 2019; 123:7661-7671. [DOI: 10.1021/acs.jpca.9b06563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Alves
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Yuan Fang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kristin J. Wall
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Vicki H. Grassian
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Abstract
Indoor surfaces provide a plentiful and varied substrate on which multiphase reactions can occur which can be important to the chemical makeup of the indoor environment. Here, we attempt to characterise real indoor surface films via water uptake behaviour and ionic composition. We show that water uptake by indoor films is different than that observed outdoors, and can vary according to room use, building characteristics, and season. Similarly, preliminary investigation into the ionic composition of the films showed that they varied according to the room in which they were collected. This study highlights the importance of different types of soiling to multiphase chemistry, especially those reactions controlled by relative humidity or adsorbed water.
Collapse
|
20
|
Ostaszewski CJ, Stuart NM, Lesko DMB, Kim D, Lueckheide MJ, Navea JG. Effects of Coadsorbed Water on the Heterogeneous Photochemistry of Nitrates Adsorbed on TiO2. J Phys Chem A 2018; 122:6360-6371. [DOI: 10.1021/acs.jpca.8b04979] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Natalie M. Stuart
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Daniel M. B. Lesko
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Deborah Kim
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Matthew J. Lueckheide
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Juan G. Navea
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| |
Collapse
|
21
|
Bao F, Li M, Zhang Y, Chen C, Zhao J. Photochemical Aging of Beijing Urban PM 2.5: HONO Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6309-6316. [PMID: 29715433 DOI: 10.1021/acs.est.8b00538] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photochemical aging represents an important transformation process of aerosol particles in the atmosphere, which greatly influences the physicochemical properties and the environmental impact of aerosols. In this work, we find that Beijing urban PM2.5 aerosol particles release substantial HONO, a significant precursor of •OH radicals, into the gas phase during the photochemical aging process. The generation of HONO exhibits a high correlation with the amount of nitrate in PM2.5. The formation rate of HONO becomes gradually decreased with the irradiation time, but can be restored by introducing the acidic proton, indicative of the essential role of the acidic proton in the HONO production. Other environmental factors such as relative humidity, light intensity, and reaction temperature also possess important influences on HONO production. The normalized photolysis rate constant for HONO ( JHNO3→HONO) is in the range of 1.22 × 10-5 s-1 ∼ 4.84 × 10-4 s-1, which is 1-3 orders of magnitude higher than the reported photolysis rate constant of gaseous HNO3. The present study implies that the photochemical aging of Beijing PM2.5 is an important atmospheric HONO production source.
Collapse
Affiliation(s)
- Fengxia Bao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Meng Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Yue Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| |
Collapse
|
22
|
Wang T, Zhu C, Liu H, Xu Y, Zou X, Xu B, Chen T. Performance of selective catalytic reduction of NO with NH 3 over natural manganese ore catalysts at low temperature. ENVIRONMENTAL TECHNOLOGY 2018; 39:317-326. [PMID: 28278084 DOI: 10.1080/09593330.2017.1300190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Natural manganese ore catalysts for selective catalytic reduction (SCR) of NO with NH3 at low temperature in the presence and absence of SO2 and H2O were systematically investigated. The physical and chemical properties of catalysts were characterized by X-ray diffraction, Brunauer-Emmett-Teller (BET) specific surface area, NH3 temperature-programmed desorption (NH3-TPD) and NO-TPD methods. The results showed that natural manganese ore from Qingyang of Anhui Province had a good low-temperature activity and N2 selectivity, and it could be a novel catalyst in terms of stability, good efficiency, good reusability and lower cost. The NO conversion exceeded 85% between 150°C and 300°C when the initial NO concentration was 1000 ppm. The activity was suppressed by adding H2O (10%) or SO2 (100 or 200 ppm), respectively, and its activity could recover while the SO2 supply is cut off. The simultaneous addition of H2O and SO2 led to the increase of about 100% in SCR activity than bare addition of SO2. The formation of the amorphous MnOx, high concentration of lattice oxygen and surface-adsorbed oxygen groups and a lot of reducible species as well as adsorption of the reactants brought about excellent SCR performance and exhibited good SO2 and H2O resistance.
Collapse
Affiliation(s)
- Tao Wang
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
- b Institute of Atmospheric Environment and Pollution Control , Hefei University of Technology , Hefei , People's Republic of China
| | - Chengzhu Zhu
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
- b Institute of Atmospheric Environment and Pollution Control , Hefei University of Technology , Hefei , People's Republic of China
| | - Haibo Liu
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
| | - Yongpeng Xu
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
- b Institute of Atmospheric Environment and Pollution Control , Hefei University of Technology , Hefei , People's Republic of China
| | - Xuehua Zou
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
| | - Bin Xu
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
| | - Tianhu Chen
- a School of Resource and Environmental Engineering , Hefei University of Technology , Hefei , People's Republic of China
| |
Collapse
|
23
|
Baker AR, Kanakidou M, Altieri KE, Daskalakis N, Okin GS, Myriokefalitakis S, Dentener F, Uematsu M, Sarin MM, Duce RA, Galloway JN, Keene WC, Singh A, Zamora L, Lamarque JF, Hsu SC, Rohekar SS, Prospero JM. Observation- and Model-Based Estimates of Particulate Dry Nitrogen Deposition to the Oceans. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:8189-8210. [PMID: 29151838 PMCID: PMC5685536 DOI: 10.5194/acp-17-8189-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995 - 2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes, however these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux are therefore very difficult to validate for dry deposition. Here the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the TM4-ECPL (TM4) model: ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3- and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model - observation ratios, weighted by grid-cell area and numbers of observations, (RA,n) were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 over-estimates NO3- concentrations (RA,n = 1.4 - 2.9) and under-estimates NH4+ concentrations (RA,n = 0.5 - 0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA,n = 0.6 - 2.6 for NO3-, 0.6 - 3.1 for NH4+). Values of RA,n for NHx CalDep - ModDep comparisons were approximately double the corresponding values for NH4+ CalDep - ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model - observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species concentrations and this cannot be achieved if model products only report dry deposition flux over the ocean.
Collapse
Affiliation(s)
- Alex R. Baker
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Maria Kanakidou
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, PO Box 2208, Heraklion 70013, Greece
| | - Katye E. Altieri
- Department of Oceanography, University of Cape Town, South Africa
| | - Nikos Daskalakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, PO Box 2208, Heraklion 70013, Greece
| | - Gregory S. Okin
- Department of Geography, University of California at Los Angeles, California, USA
| | - Stelios Myriokefalitakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, PO Box 2208, Heraklion 70013, Greece
- now at IMAU, University of Utrecht, 3584 CC Utrecht, Netherlands
| | - Frank Dentener
- European Commission, Joint Research Centre, Ispra, Italy
| | - Mitsuo Uematsu
- Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Manmohan M. Sarin
- Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009, India
| | - Robert A. Duce
- Departments of Oceanography and Atmospheric Sciences, Texas A&M University, College Station, Texas, USA
| | - James N. Galloway
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - William C. Keene
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Arvind Singh
- Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009, India
| | - Lauren Zamora
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - Jean-Francois Lamarque
- NCAR Earth System Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Shih-Chieh Hsu
- Research Center for Environmental Changes, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shital S. Rohekar
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- now at School of Physics, Astronomy and Maths, University of Hertfordshire, Hatfield, UK
| | - Joseph M. Prospero
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida, USA
| |
Collapse
|
24
|
Doane TA. A survey of photogeochemistry. GEOCHEMICAL TRANSACTIONS 2017; 18:1. [PMID: 28246525 PMCID: PMC5307419 DOI: 10.1186/s12932-017-0039-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/28/2017] [Indexed: 05/08/2023]
Abstract
The participation of sunlight in the natural chemistry of the earth is presented as a unique field of study, from historical observations to prospects for future inquiry. A compilation of known reactions shows the extent of light-driven interactions between naturally occurring components of land, air, and water, and provides the backdrop for an outline of the mechanisms of these phenomena. Catalyzed reactions, uncatalyzed reactions, direct processes, and indirect processes all operate in natural photochemical transformations, many of which are analogous to well-known biological reactions. By overlaying photochemistry and surface geochemistry, complementary approaches can be adopted to identify natural photochemical reactions and discern their significance in the environment.
Collapse
Affiliation(s)
- Timothy A. Doane
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616-5270 USA
| |
Collapse
|
25
|
George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov S. Heterogeneous photochemistry in the atmosphere. Chem Rev 2015; 115:4218-58. [PMID: 25775235 PMCID: PMC4772778 DOI: 10.1021/cr500648z] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Christian George
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - Markus Ammann
- Laboratory
of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Barbara D’Anna
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - D. J. Donaldson
- Department
of Chemistry and Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sergey
A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
26
|
Zhao J, Zhu C, Lu J, Zou J, Peng S, Chen T. 308nm photochemical reaction of gaseous HNO3 and benzene on α-Fe2O3 surfaces. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Lesko DMB, Coddens EM, Swomley HD, Welch RM, Borgatta J, Navea JG. Photochemistry of nitrate chemisorbed on various metal oxide surfaces. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp02903a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric aerosols are known to provide an important surface for gas–solid interfaces that can lead to heterogeneous reactions impacting tropospheric chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Jaya Borgatta
- Chemistry Department
- Skidmore College
- Saratoga Springs
- USA
| | - Juan G. Navea
- Chemistry Department
- Skidmore College
- Saratoga Springs
- USA
| |
Collapse
|
28
|
Montesinos VN, Quici N, Destaillats H, Litter MI. Nitric oxide emission during the reductive heterogeneous photocatalysis of aqueous nitrate with TiO2. RSC Adv 2015. [DOI: 10.1039/c5ra17914a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the first time, nitric oxide (NO), a precursor of nitrogen dioxide (a NIOSH-listed pollutant), has been found to be one of the final products of the photocatalytic reduction of nitrate in water using TiO2 and formic acid as a hole scavenger.
Collapse
Affiliation(s)
- V. Nahuel Montesinos
- Gerencia Química, Comisión Nacional de Energía Atómica
- 1650 San Martín
- Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas
- 1033 Ciudad Autónoma de Buenos Aires
| | - Natalia Quici
- Gerencia Química, Comisión Nacional de Energía Atómica
- 1650 San Martín
- Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas
- 1033 Ciudad Autónoma de Buenos Aires
| | - Hugo Destaillats
- Indoor Environment Department Group
- Energy Technologies Area
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Marta I. Litter
- Gerencia Química, Comisión Nacional de Energía Atómica
- 1650 San Martín
- Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas
- 1033 Ciudad Autónoma de Buenos Aires
| |
Collapse
|
29
|
Madaan N, Diwan A, Linford MR. Fluorine plasma treatment of bare and nitrilotris(methylene)triphosphonic acid (NP) protected aluminum: an XPS and ToF-SIMS study. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nitesh Madaan
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT 84602 USA
| | - Anubhav Diwan
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT 84602 USA
| | - Matthew R. Linford
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT 84602 USA
| |
Collapse
|
30
|
Nishino N, Hollingsworth SA, Stern AC, Roeselová M, Tobias DJ, Finlayson-Pitts BJ. Interactions of gaseous HNO3 and water with individual and mixed alkyl self-assembled monolayers at room temperature. Phys Chem Chem Phys 2014; 16:2358-67. [PMID: 24352159 PMCID: PMC4000124 DOI: 10.1039/c3cp54118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major removal processes for gaseous nitric acid (HNO3) in the atmosphere are dry and wet deposition onto various surfaces. The surface in the boundary layer is often covered with organic films, but the interaction of gaseous HNO3 with them is not well understood. To better understand the factors controlling the uptake of gaseous nitric acid and its dissociation in organic films, studies were carried out using single component and mixtures of C8 and C18 alkyl self-assembled monolayers (SAMs) attached to a germanium (Ge) attenuated total reflectance (ATR) crystal upon which a thin layer of SiOx had been deposited. For comparison, diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies were also carried out using a C18 SAM attached to the native oxide layer on the surface of silicon powder. These studies show that the alkyl chain length and order/disorder of the SAMs does not significantly affect the uptake or dissociation/recombination of molecular HNO3. Thus, independent of the nature of the SAM, molecular HNO3 is observed up to 70-90% relative humidity. After dissociation, molecular HNO3 is regenerated on all SAM surfaces when water is removed. Results of molecular dynamics simulations are consistent with experiments and show that defects and pores on the surfaces control the uptake, dissociation and recombination of molecular HNO3. Organic films on surfaces in the boundary layer will certainly be more irregular and less ordered than SAMs studied here, therefore undissociated HNO3 may be present on surfaces in the boundary layer to a greater extent than previously thought. The combination of this observation with the results of recent studies showing enhanced photolysis of nitric acid on surfaces suggests that renoxification of deposited nitric acid may need to be taken into account in atmospheric models.
Collapse
Affiliation(s)
- Noriko Nishino
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Scott A. Hollingsworth
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA, 92697-2025, USA
| | - Abraham C. Stern
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Martina Roeselová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | | |
Collapse
|
31
|
Nanayakkara CE, Jayaweera PM, Rubasinghege G, Baltrusaitis J, Grassian VH. Surface Photochemistry of Adsorbed Nitrate: The Role of Adsorbed Water in the Formation of Reduced Nitrogen Species on α-Fe2O3 Particle Surfaces. J Phys Chem A 2013; 118:158-66. [DOI: 10.1021/jp409017m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Gayan Rubasinghege
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonas Baltrusaitis
- Photocatalytic
Synthesis Group, Faculty of Science and Engineering, University of Twente, 7500
AE, Enschede, The Netherlands
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
32
|
Gankanda A, Grassian VH. Nitrate Photochemistry in NaY Zeolite: Product Formation and Product Stability under Different Environmental Conditions. J Phys Chem A 2013; 117:2205-12. [DOI: 10.1021/jp312247m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aruni Gankanda
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52246, United States
| | - Vicki H. Grassian
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52246, United States
| |
Collapse
|
33
|
Rosseler O, Sleiman M, Montesinos VN, Shavorskiy A, Keller V, Keller N, Litter MI, Bluhm H, Salmeron M, Destaillats H. Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.). J Phys Chem Lett 2013; 4:536-41. [PMID: 26281751 DOI: 10.1021/jz302119g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3(-), adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3(-) conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3(-) in the vicinity of coadsorbed K(+) cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.
Collapse
Affiliation(s)
- Olivier Rosseler
- †Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Material Sciences Division, Chemical Sciences Division and Advanced Light Source, Berkeley, California, United States
- ‡Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Strasbourg, France
| | - Mohamad Sleiman
- †Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Material Sciences Division, Chemical Sciences Division and Advanced Light Source, Berkeley, California, United States
| | - V Nahuel Montesinos
- §Comisión Nacional de Energía Atómica, Gerencia Química, San Martín, Pcia. de Buenos Aires, Argentina
- ∥Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- ⊥INQUIMAE, DQIAQyF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Andrey Shavorskiy
- †Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Material Sciences Division, Chemical Sciences Division and Advanced Light Source, Berkeley, California, United States
| | - Valerie Keller
- ‡Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Strasbourg, France
| | - Nicolas Keller
- ‡Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Strasbourg, France
| | - Marta I Litter
- §Comisión Nacional de Energía Atómica, Gerencia Química, San Martín, Pcia. de Buenos Aires, Argentina
- ∥Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hendrik Bluhm
- †Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Material Sciences Division, Chemical Sciences Division and Advanced Light Source, Berkeley, California, United States
| | - Miquel Salmeron
- †Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Material Sciences Division, Chemical Sciences Division and Advanced Light Source, Berkeley, California, United States
- #Materials Science Division, Lawrence Berkeley National Laboratory and Materials Science and Engineering Department, University of California, Berkeley, California, United States
| | - Hugo Destaillats
- †Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Material Sciences Division, Chemical Sciences Division and Advanced Light Source, Berkeley, California, United States
| |
Collapse
|
34
|
Ma J, Liu Y, Han C, Ma Q, Liu C, He H. Review of heterogeneous photochemical reactions of NOy on aerosol - A possible daytime source of nitrous acid (HONO) in the atmosphere. J Environ Sci (China) 2013; 25:326-334. [PMID: 23596953 DOI: 10.1016/s1001-0742(12)60093-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As an important precursor of hydroxyl radical, nitrous acid (HONO) plays a key role in the chemistry of the lower atmosphere. Recent atmospheric measurements and model calculations show strong enhancement for HONO formation during daytime, while they are inconsistent with the known sources in the atmosphere, suggesting that current models are lacking important sources for HONO. In this article, heterogeneous photochemical reactions of nitric acid/nitrate anion and nitrogen oxide on various aerosols were reviewed and their potential contribution to HONO formation was also discussed. It is demonstrated that HONO can be formed by photochemical reaction on surfaces with deposited HNO3, by photocatalytic reaction of NO2 on TiO2 or TiO2-containing materials, and by photochemical reaction of NO2 on soot, humic acids or other photosensitized organic surfaces. Although significant uncertainties still exist in the exact mechanisms and the yield of HONO, these additional sources might explain daytime observations in the atmosphere.
Collapse
Affiliation(s)
- Jinzhu Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | |
Collapse
|
35
|
Rubasinghege G, Grassian VH. Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chem Commun (Camb) 2013; 49:3071-94. [DOI: 10.1039/c3cc38872g] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
|
37
|
Chen H, Nanayakkara CE, Grassian VH. Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem Rev 2012; 112:5919-48. [DOI: 10.1021/cr3002092] [Citation(s) in RCA: 614] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haihan Chen
- Departments
of Chemical and Biochemical Engineering and §Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Charith E. Nanayakkara
- Departments
of Chemical and Biochemical Engineering and §Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Vicki H. Grassian
- Departments
of Chemical and Biochemical Engineering and §Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
38
|
Baltrusaitis J, Hatch C, Orlando R. Electronic properties and reactivity of simulated Fe(3+) and Cr(3+) substituted α-Al(2)O(3) (0001) surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:18857-18856. [PMID: 23411748 PMCID: PMC3568980 DOI: 10.1021/jp3053899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metal oxide based minerals naturally contain transition metal impurities isomorphically substituted into the structure that can alter the structural and electronic properties as well as the reactivity of these metal oxides. Natural α-Al(2)O(3) (corundum) can contain up to 9.17% (w/w) Fe(2)O(3) and 1.81% (w/w) of Cr(2)O(3.) Here we report on changes in the structural and electronic properties of undoped and doped α-Al(2)O(3) (0001) surfaces using periodic density functional theory (DFT) methods with spin unrestricted B3LYP functional and a local atomic basis set. Both structural and electronic properties are altered upon doping. Implications for doping effects on photochemical processes are discussed.As metal oxides are major components of the environment, including atmospheric mineral aerosol, DFT was also used to study the effect of transition metal impurities on gas/surface interactions of a model acidic atmospheric gas molecule, carbon monoxide (CO). The theoretical results indicated that the presence of Fe(3+) and Cr(3+) impurities substituted on the outer layer of natural corundum surfaces reduces the propensity toward CO adsorption relative to the undoped surface. However, CO-surface interactions resemble that of bulk α-Al(2)O(3) when the impurity is substituted below the first surface layer. The presence and location of the mineral dopant was found to significantly alter the structural and electronic properties and gas/surface interactions studied here.
Collapse
Affiliation(s)
- Jonas Baltrusaitis
- Departments of Chemistry and Chemical/Biochemical Engineering, 76 EMRB, University of Iowa, Iowa City IA 52242, USA
| | - Courtney Hatch
- Department of Chemistry, Hendrix College, 1600 Washington Ave., Conway AR 72032, USA
| | - Roberto Orlando
- Theoretical Chemistry Group, University of Torino, Torino, Italy
| |
Collapse
|
39
|
Tribe L, Hinrichs R, Kubicki JD. Adsorption of Nitrate on Kaolinite Surfaces: A Theoretical Study. J Phys Chem B 2012; 116:11266-73. [DOI: 10.1021/jp3053295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lorena Tribe
- Division of
Science, The Pennsylvania State University, Berks Campus, Reading,
Pennsylvania 19610, United States
| | - Ryan Hinrichs
- Department of Chemistry, Drew University, Madison, New Jersey 07950, United
States
| | - James D. Kubicki
- Department of Geosciences and the Earth & Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
40
|
Styler SA, Donaldson DJ. Heterogeneous photochemistry of oxalic acid on Mauritanian sand and Icelandic volcanic ash. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8756-63. [PMID: 22816795 DOI: 10.1021/es300953t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Teragram quantities of crustal and volcanic aerosol are released into the atmosphere on an annual basis. Although these substrates contain photoactive metal oxides, little is known about the role that they may play in catalyzing the heterogeneous phototransformation of semivolatile organic species. In the present study, we have investigated oxalic acid photochemistry at the surface of Fe(2)O(3), TiO(2), Mauritanian sand, and Icelandic volcanic ash in the presence and absence of oxygen using a photochemical Knudsen cell reactor. Illumination of all sample types resulted in the production of gas-phase CO(2). In the case of Mauritanian sand, the production of gas-phase CO(2) scaled with the loss of surface oxalic acid. In the absence of oxygen, the production of CO(2) by the sand and ash films scaled with the absorption spectrum of iron oxalate, which suggests that the reaction is at least in part iron-mediated. The presence of oxygen suppressed CO(2) production at the Fe(2)O(3) surface, enhanced CO(2) production at the Mauritanian sand surface, and did not have a net effect upon CO(2) production at the Icelandic ash surface. These different oxygen dependencies imply that oxalic acid photochemistry at the authentic surfaces under study was not solely iron-mediated. Experiments at the TiO(2) surface, which showed enhanced CO(2) production from oxalic acid in the presence of oxygen, suggest that Ti-mediated photochemistry played an important role. In summary, these results provide evidence that solid-phase aerosol photochemistry may influence the atmospheric lifetime of oxalic acid in arid regions, where its removal via wet deposition is insignificant.
Collapse
Affiliation(s)
- Sarah A Styler
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Rubasinghege G, Grassian VH. Surface-Catalyzed Chlorine and Nitrogen Activation: Mechanisms for the Heterogeneous Formation of ClNO, NO, NO2, HONO, and N2O from HNO3 and HCl on Aluminum Oxide Particle Surfaces. J Phys Chem A 2012; 116:5180-92. [DOI: 10.1021/jp301488b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gayan Rubasinghege
- Department of Chemistry, University of Iowa, Iowa City, Iowa
52242, United States
| | - Vicki H. Grassian
- Department of Chemistry, University of Iowa, Iowa City, Iowa
52242, United States
| |
Collapse
|
42
|
Bedjanian Y, El Zein A. Interaction of NO2 with TiO2 Surface Under UV Irradiation: Products Study. J Phys Chem A 2012; 116:1758-64. [DOI: 10.1021/jp210078b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS,
45071 Orléans Cedex 2, France
| | - Atallah El Zein
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS,
45071 Orléans Cedex 2, France
| |
Collapse
|
43
|
Nishino N, Finlayson-Pitts BJ. Thermal and photochemical reactions of NO2 on chromium(iii) oxide surfaces at atmospheric pressure. Phys Chem Chem Phys 2012; 14:15840-8. [DOI: 10.1039/c2cp42292a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Noriko Nishino
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | |
Collapse
|
44
|
Rubasinghege G, Spak SN, Stanier CO, Carmichael GR, Grassian VH. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2691-7. [PMID: 21370856 DOI: 10.1021/es103295v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.
Collapse
Affiliation(s)
- Gayan Rubasinghege
- Department of Chemistry, Center for Global and Regional Environmental Research, University of Iowa, Iowa City Iowa 52242, United States
| | | | | | | | | |
Collapse
|
45
|
Chen H, Navea JG, Young MA, Grassian VH. Heterogeneous Photochemistry of Trace Atmospheric Gases with Components of Mineral Dust Aerosol. J Phys Chem A 2011; 115:490-9. [DOI: 10.1021/jp110164j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haihan Chen
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Juan G. Navea
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Mark A. Young
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Vicki H. Grassian
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
46
|
Raff JD, Szanyi J, Finlayson-Pitts BJ. Thermal and photochemical oxidation of self-assembled monolayers on alumina particles exposed to nitrogen dioxide. Phys Chem Chem Phys 2011; 13:604-11. [DOI: 10.1039/c0cp01041c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Monge ME, George C, D’Anna B, Doussin JF, Jammoul A, Wang J, Eyglunent G, Solignac G, Daële V, Mellouki A. Ozone Formation from Illuminated Titanium Dioxide Surfaces. J Am Chem Soc 2010; 132:8234-5. [DOI: 10.1021/ja1018755] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- María Eugenia Monge
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Christian George
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Barbara D’Anna
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Jean-François Doussin
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Adla Jammoul
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Junnan Wang
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Grégory Eyglunent
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Géraldine Solignac
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Véronique Daële
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| | - Abdelwahid Mellouki
- IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, CNRS UMR 5256, Université Lyon 1. 2, Av. Albert Einstein, F-69626 Villeurbanne Cedex, France, LISA Laboratoire interuniversitaire des systèmes atmosphériques, Universités Paris Est Créteil et Paris Diderot, CNRS UMR 7583, 61 Av. du Général de Gaulle, 94010 Créteil, France, and ICARE Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS - UPR3021, 1C, Av. de la recherche scientifique, 45071 Orléans Cedex 02,
| |
Collapse
|
48
|
Rubasinghege G, Lentz RW, Scherer MM, Grassian VH. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Proc Natl Acad Sci U S A 2010; 107:6628-33. [PMID: 20360560 PMCID: PMC2872379 DOI: 10.1073/pnas.0910809107] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of recent studies have shown that iron dissolution in Fe-containing dust aerosol can be linked to source material (mineral or anthropogenic), mineralogy, and iron speciation. All of these factors need to be incorporated into atmospheric chemistry models if these models are to accurately predict the impact of Fe-containing dusts into open ocean waters. In this report, we combine dissolution measurements along with spectroscopy and microscopy to focus on nanoscale size effects in the dissolution of Fe-containing minerals in low-pH environments and the importance of acid type, including HNO(3), H(2)SO(4), and HCl, on dissolution. All of these acids are present in the atmosphere, and dust particles have been shown to be associated with nitrate, sulfate, and/or chloride. These measurements are done under light and dark conditions so as to simulate and distinguish between daytime and nighttime atmospheric chemical processing. Both size (nano- versus micron-sized particles) and anion (nitrate, sulfate, and chloride) are found to play significant roles in the dissolution of alpha-FeOOH under both light and dark conditions. The current study highlights these important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol.
Collapse
|
49
|
Monge ME, D'Anna B, George C. Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces—an air quality remediation process? Phys Chem Chem Phys 2010; 12:8991-8. [DOI: 10.1039/b925785c] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|