1
|
Acharya C, Mishra S, Chaurasia SK, Pandey BK, Dhar R, Pandey JK. Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications. Biometals 2024:10.1007/s10534-024-00642-w. [PMID: 39377881 DOI: 10.1007/s10534-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.
Collapse
Affiliation(s)
- Chinmayee Acharya
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India
| | - Sonam Mishra
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Sandeep Kumar Chaurasia
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| | - Bishnu Kumar Pandey
- Department of Physics, SPM College, University of Allahabad, Prayagraj, 211013, India
| | - Ravindra Dhar
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Jitendra Kumar Pandey
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| |
Collapse
|
2
|
Zhang R, Luo D, Jaber M, Zhang H, Kong X. In-Situ and Green Synthesis of Silk Fibroin-Silver Nanoparticles Composite Microfibers for Enhanced Antibacterial Applications. Chempluschem 2024:e202400478. [PMID: 39261401 DOI: 10.1002/cplu.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The antibacterial properties of modified silk fibroin microfibers (SF MFs) have been widely studied. Among various modifications, integration of silver nanoparticles (Ag NPs) and SF MFs has garnered significant attention due to the broad-spectrum antibacterial activities and long-term antibacterial effect of Ag nanomaterials. However, the traditional introduction of reducing agents or other additives during the synthesis of Ag-SF composite MFs potentially affects their structure and antibacterial properties. Facile, green and effective methods for the preparation of Ag-SF MFs with enhanced antibacterial properties are therefore highly desired. In this study, Ag NPs were uniformly in-situ deposited onto the optimized SF MFs by adjusting the pH and duration conditions under the guidance of green chemistry. The loaded Ag NPs have a good dispersibility and an average size of ~10 nm. The stability of SF MFs after the deposition of Ag NPs and the crystalline features of the loaded Ag NPs have been carefully investigated. Moreover, antibacterial experiments confirmed that Ag-SF MFs exhibited superior antibacterial activities. After co-incubating Ag-SF MFs with L929 cells, the cell viability reached 90 %, demonstrating the great biocompatibility of the modified fibers. This green in-situ synthetic method will promote the further medical use of Ag-SF MFs in antibacterial fields.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
| | - Dandan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
| | - Mohammad Jaber
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310000, PR China
| |
Collapse
|
3
|
Gündoğdu G, Yılmaz Topuzlu E, Mutlu F, Ertekin UE, Okur HI. Oil-in-Water Emulsions Probed Using Fluorescence Multivariate-Curve-Resolution Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13116-13121. [PMID: 38861700 PMCID: PMC11494642 DOI: 10.1021/acs.langmuir.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
Hydrophobic surfaces in contact with aqueous media are omnipresent in nature. A plethora of key biological and physiological processes occur at the interface of immiscible fluids. Besides its fundamental importance, probing such interfaces is rather challenging, especially when one medium is bathed in the other. Herein, we demonstrate a fluorescence-based method that probes the oil-water interface and interfacial processes through surface dielectric perturbations. The fluorescence response of Nile Red is measured in hexadecane in water nanoemulsions. Three major spectral components appear: two from the bulk liquid media (hexadecane and water) and a distinct band at around 640 nm due to the interfacial component. Such spectra are deconvoluted using the multivariate-curve-resolution algorithm, and interface-correlated fluorescence spectra are attained. The influence of anionic sodium dodecylbenzenesulfonate (SDBS) and cationic cetyltrimethylammonium bromide (CTAB) surfactants on the oil-water interface is elucidated with concentration-dependent measurements. A charge-dependent spectral shift is observed. The interface correlated band at 641 nm for bare hexadecane nanoemulsions red shifts in the presence of anionic surfactants, indicating an apparent dielectric increase. In contrast, the same band gradually blue shifts with increasing cationic surfactant concentration, indicating an apparent interface dielectric decrease. Such a method can be utilized to probe alterations at interfaces beyond the oil/water interface.
Collapse
Affiliation(s)
- Gülsüm Gündoğdu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
- Department
of Energy Science and Technology, Faculty of Science, Turkish-German University, Istanbul 34820, Turkey
| | - Ezgi Yılmaz Topuzlu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| | - Ferhat Mutlu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Umay E. Ertekin
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Halil I. Okur
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Youn J, Kang P, Crowe J, Thornsbury C, Kim P, Qin Z, Lee J. Tripeptide-Assisted Gold Nanocluster Formation for Fe 3+ and Cu 2+ Sensing. Molecules 2024; 29:2416. [PMID: 38893292 PMCID: PMC11173388 DOI: 10.3390/molecules29112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Fluorescent gold nanoclusters (AuNCs) have shown promise as metal ion sensors. Further research into surface ligands is crucial for developing sensors that are both selective and sensitive. Here, we designed simple tripeptides to form fluorescent AuNCs, capitalizing on tyrosine's reduction capability under alkaline conditions. We investigated tyrosine's role in both forming AuNCs and sensing metal ions. Two tripeptides, tyrosine-cysteine-tyrosine (YCY) and serine-cysteine-tyrosine (SCY), were used to form AuNCs. YCY peptides produced AuNCs with blue and red fluorescence, while SCY peptides produced blue-emitting AuNCs. The blue fluorescence of YCY- and SCY-AuNCs was selectively quenched by Fe3+ and Cu2+, whereas red-emitting YCY-AuNC fluorescence remained stable with 13 different metal ions. The number of tyrosine residues influenced the sensor response. DLS measurements revealed different aggregation propensities in the presence of various metal ions, indicating that chelation between the peptide and target ions led to aggregation and fluorescence quenching. Highlighting the innovation of our approach, our study demonstrates the feasibility of the rational design of peptides for the formation of fluorescent AuNCs that serve as highly selective and sensitive surface ligands for metal ion sensing. This method marks an advancement over existing methods due to its dual capability in both synthesizing gold nanoclusters and detecting analytes, specifically Fe3+ and Cu2+.
Collapse
Affiliation(s)
- Jonghae Youn
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.Y.); (P.K.)
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (Z.Q.)
| | - Peiyuan Kang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (Z.Q.)
| | - Justin Crowe
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA; (J.C.); (C.T.)
| | - Caleb Thornsbury
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA; (J.C.); (C.T.)
| | - Peter Kim
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.Y.); (P.K.)
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (Z.Q.)
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA; (J.C.); (C.T.)
| |
Collapse
|
6
|
Paul D, Aamir L, Yunus G, Kuddus M, Rathore D. Selectivity of an Ag/BTO-Based Nanocomposite as a Gas Sensor Between NO 2 and SO 2 Gases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15362-15368. [PMID: 37846757 DOI: 10.1021/acs.langmuir.3c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The novel Ag/BTO/TiO2 nanocomposite was assessed for its gas-sensing capabilities toward hazardous gases NO2 and SO2. It exhibited p-type behavior with increasing resistance for SO2 with a response and recovery time of ∼5 and ∼2 s, respectively, switching to n-type behavior when exposed to NO2 with a response and recovery time of ∼20 and ∼250 s, respectively. Analyte gas concentrations from 0 to 220 ppm were taken for analysis. Selectivity analysis at room temperature revealed NO2's superior response of ∼20% above 180 ppm, compared to SO2's < 3% response at 180 ppm. NO2(VC) achieved its highest response (∼45%) at 30 ppm and remained constant above 80 ppm, while SO2(VC) peaked at ∼30% at 60 ppm but declined with increasing flow rates. Further, the increasing temperature led to an amplified response for NO2, whereas SO2 showed an increase in response after 180 °C. SO2(VC) exhibited a significant response of ∼70% from 140 °C onward. Additionally, NO2(VC) showed distinct peaks at 160, 250, and 290 °C with responses of 50, 65, and 80%, respectively. The calculated limit of detection values were 236 ppm for NO2, 644.07 ppm for SO2, 401.32 ppm for NO2(VC), and 496.86 ppm for SO2(VC).
Collapse
Affiliation(s)
- Dipanjan Paul
- Amity School of Applied Sciences, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Lubna Aamir
- Department of Physics, College of Science for Girls, Aja Campus, University of Hail, P.O. Box No. 2440, 8145 Ha'il, Saudi Arabia
| | - Ghazala Yunus
- Department of Basic Science, College of Preparatory Year, University of Hail, P.O. Box No. 2440, 8145 Ha'il, Saudi Arabia
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, P.O. Box No. 2440, 8145 Ha'il, Saudi Arabia
| | - Deepshikha Rathore
- Amity School of Applied Sciences, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| |
Collapse
|
7
|
Paul D, Aamir L, Aslam A, Rathore D. p-/n-Type Switching in the Ag/BTO/TiO 2 Nanocomposite as a Gas Sensor toward Ethanol, Liquefied Petroleum Gas, and Ammonia. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11879-11887. [PMID: 37562969 DOI: 10.1021/acs.langmuir.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A novel Ag/BTO/TiO2 nanocomposite was prepared using chemical reduction and sol-gel techniques followed by sintering at ∼950 °C to grow rutile TiO2 and remove organic materials and hydroxyl groups. The structural, optical, morphological, dielectric, and gas-sensing properties were investigated using X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and inductance, capacitance, and resistance meter, respectively. The surface plasmon resonance peak of Ag was observed at 428 nm, and the absorption edge of the Ag/BTO/TiO2 nanocomposite was observed at 235 nm, with an energy bandgap of 5.42 eV. The dielectric constant is lower at 25 °C and becomes highest at 350 °C and low frequency. The percentage response is better toward ammonia than ethanol and liquefied petroleum gas (LPG) at 25 °C, while it is greater, ∼87%, for LPG at a higher temperature. The p-/n-type switching and vice versa were recorded in the whole gas-sensing measurement. During response-recovery time, the device performed as n type for ethanol and ammonia and p type for LPG, with a very fast response time of ∼4 s for all gases. The recovery time for ethanol was achieved at 20-25 s, while for LPG and ammonia, it was ∼60 s. Moreover, the negative and positive activation energies also confirm the switching behavior in the novel Ag/BTO/TiO2 nanocomposite.
Collapse
Affiliation(s)
- Dipanjan Paul
- Amity School of Applied Sciences, Amity University Rajasthan, Jaipur, Rajasthan 303002, India
| | - Lubna Aamir
- Department of Physics, College of Science for Girls, Aja Campus, University of Ha'il, Post Office Box 2440, Ha'il 8145, Saudi Arabia
| | - Afia Aslam
- Department of Physics, College of Science for Girls, Aja Campus, University of Ha'il, Post Office Box 2440, Ha'il 8145, Saudi Arabia
| | - Deepshikha Rathore
- Amity School of Applied Sciences, Amity University Rajasthan, Jaipur, Rajasthan 303002, India
| |
Collapse
|
8
|
Figat AM, Bartosewicz B, Liszewska M, Budner B, Norek M, Jankiewicz BJ. α-Amino Acids as Reducing and Capping Agents in Gold Nanoparticles Synthesis Using the Turkevich Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314886 DOI: 10.1021/acs.langmuir.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amino acid-capped gold nanoparticles (AuNPs) are a promising tool for various applications, including therapeutics and diagnostics. Most often, amino acids are used to cap AuNPs synthesized with other reducing agents. However, only a few studies have been dedicated to using α-amino acids as reducing and capping agents in AuNPs synthesis. Hence, there are still several gaps in understanding their role in reducing gold salts. Here, we used 20 proteinogenic α-amino acids and one non-proteinogenic α-amino acid in analogy to sodium citrate as reducing and capping agents in synthesizing AuNPs using the Turkevich method. Only four of the twenty-one investigated amino acids have not yielded gold nanoparticles. The shape, size distribution, stability, and optical properties of synthesized nanoparticles were characterized by scanning electron microscopy, differential centrifugal sedimentation, the phase analysis light scattering technique, and UV-vis spectroscopy. The physicochemical characteristics of synthesized AuNPs varied with the amino acid used for the reduction. We proposed that in the initial stage of gold salts reduction most of the used α-amino acids behave similarly to citrate in the Turkevich method. However, their different physicochemical properties resulting from differences in their chemical structures significantly influence the outcomes of reactions.
Collapse
Affiliation(s)
- Aleksandra M Figat
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Malwina Liszewska
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Bogusław Budner
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Małgorzata Norek
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Bartłomiej J Jankiewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| |
Collapse
|
9
|
Reveguk ZV, Sych TS, Polyanichko AM, Chuiko YV, Buglak AA, Kononov AI. Rapid and selective colorimetric determination of L-DOPA in human serum with silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122810. [PMID: 37182251 DOI: 10.1016/j.saa.2023.122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
L-DOPA, or l-3,4-dihydroxyphenylalanine is an aromatic amino acid, which plays a significant role in human metabolism as a precursor of important neurotransmitters. We develop a fast and simple colorimetric method for the detection of L-DOPA in biological fluids. The method is based on the reduction of silver ions with L-DOPA and the subsequent formation of L-DOPA stabilized silver nanoparticles (Ag NPs). In this novel approach, L-DOPA works as both reducing and stabilizing agent, which provides selectivity and simplifies the procedure. HR-TEM images show very narrow Ag NPs distribution with an average size of 24 nm. Such sensor design is suggested for the first time. We also calculate vertical ionization potential, vertical electron affinity, and Gibbs free energy change of different ionic forms of L-DOPA and amino acids at the M06-2X/def2-TZVP level for the gas phase in comparison with that of silver. A model of silver ions reduction by aromatic amino acids is proposed: the ionic forms with charge -1 are suggested to reduce silver ions. High selectivity against aromatic amino acids, dopamine and serotonin is achieved by tuning pH and involving two L-DOPA forms with charged both hydroxyphenolate and carboxylate groups in the stabilization of uniform-sized Ag NPs. The method is applicable for the determination of L-DOPA in human serum with the 50 nM limit of detection and the linear range up to 5 μM. Ag NPs formation and coloring the solution proceeds in a few minutes. The suggested colorimetric method has potential application in clinical trials.
Collapse
Affiliation(s)
- Zakhar V Reveguk
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia.
| | - Tomash S Sych
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander M Polyanichko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Yana V Chuiko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey A Buglak
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia; Institute of Physics, Kazan Federal University, 420008 Kazan, Russia.
| | - Alexei I Kononov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
10
|
Boas D, Remennik S, Reches M. Peptide-capped Au and Ag nanoparticles: Detection of heavy metals and photochemical core/shell formation. J Colloid Interface Sci 2023; 631:66-76. [DOI: 10.1016/j.jcis.2022.10.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
11
|
Ditta SA, Yaqub A, Tanvir F, Rashid M, Ullah R, Zubair M, Ali S, Anjum KM. Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: toxicity profiling and antioxidant potential. JOURNAL OF MATERIALS SCIENCE 2023; 58:2814-2837. [PMID: 36743265 PMCID: PMC9888356 DOI: 10.1007/s10853-023-08209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Biomolecules-based surface modifications of nanomaterials may yield effective and biocompatible nanoconjugates. This study was designed to evaluate gold nanoconjugates (AuNCs) for their altered antioxidant potential. Gold nanoparticles (AuNPs) and their conjugates gave SPR peaks in the ranges of 512-525 nm, with red or blueshift for different conjugates. Cys-AuNCs demonstrated enhanced (p < 0.05) and Gly-AuNCs (p > 0.05) displayed reduced DPPH activity. Gly-AuNCs and Tyr-AuNCs displayed enhanced ferric-reducing power and hydrogen peroxide scavenging activity, respectively. Cadmium-intoxicated mice were exposed to gold nanomaterials, and the level of various endogenous parameters, i.e., CAT, GST, SOD, GSH, and MTs, was evaluated. GSH and MTs in liver tissues of the cadmium-exposed group (G2) were elevated (p < 0.05), while other groups showed nonsignificance deviations than the control group. It is concluded that these nanoconjugates might provide effective nanomaterials for biomedical applications. However, more detailed studies for their safety profiling are needed before their practical applications.
Collapse
Affiliation(s)
- Sarwar Allah Ditta
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, 56300 Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Muhammad Zubair
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| | - Shaista Ali
- Department of Chemistry, Government College University, Lahore, 54000 Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| |
Collapse
|
12
|
Hu D, Li T, Liang W, Wang Y, Feng M, Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J Control Release 2023; 353:303-316. [PMID: 36402235 DOI: 10.1016/j.jconrel.2022.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Silk sericin is a class of protein biopolymers produced by silkworms. Increasing attention has been paid to silk sericin for biomedical applications in the last decade, not only because of its excellent biocompatibility and biodegradability but also due to the pharmacological activities stemming from its unique amino acid compositions. In this review, the biological properties of silk sericin, including curing specific diseases and promoting tissue regeneration, as well as underlying mechanisms are summarized. We consider the antioxidant activity of silk sericin as a fundamental property, which could account for partial biological activities, despite the exact mechanisms of silk sericin's effect remaining unknown. Based on the reactive groups on silk sericin, approaches of bottom-up fabrication of silk sericin-based biomaterials are highlighted, including non-covalent interactions and chemical reactions (reduction, crosslinking, bioconjugation, and polymerization). We then briefly present the cutting-edge advances of silk sericin-based biomaterials applied in tissue engineering and drug delivery. The challenges of silk sericin-based biomaterials are proposed. With more bioactivities and underlying mechanisms of silk sericin uncovered, it is going to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen'an Liang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Min Feng
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
13
|
Simultaneous square wave voltammetry detection of azo dyes using silver nanoparticles assembled on carbon nanofibers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Double functionalized haemocompatible silver nanoparticles control cell inflammatory homeostasis. PLoS One 2022; 17:e0276296. [PMID: 36269783 PMCID: PMC9586410 DOI: 10.1371/journal.pone.0276296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Infection, trauma, and autoimmunity trigger tissue inflammation, often leading to pain and loss of function. Therefore, approaches to control inflammation based on nanotechnology principles are being developed in addition to available methods. The metal-based nanoparticles are particularly attractive due to the ease of synthesis, control over physicochemical properties, and facile surface modification with different types of molecules. Here, we report curcumin conjugated silver (Cur-Ag) nanoparticles synthesis, followed by their surface functionalization with isoniazid, tyrosine, and quercetin, leading to Cur-AgINH, Cur-AgTyr, and Cur-AgQrc nanoparticles, respectively. These nanoparticles possess radical scavenging capacity, haemocompatibility, and minimal cytotoxicity to macrophages. Furthermore, the nanoparticles inhibited the secretion of pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interleukin-1β from macrophages stimulated by lipopolysaccharide (LPS). The findings reveal that the careful design of surface corona of nanoparticles could be critical to increasing their efficacy in biomedical applications.
Collapse
|
15
|
Osorio Echavarría J, Gómez Vanegas NA, Orozco CPO. Chitosan/carboxymethyl cellulose wound dressings supplemented with biologically synthesized silver nanoparticles from the ligninolytic fungus Anamorphous Bjerkandera sp. R1. Heliyon 2022; 8:e10258. [PMID: 36060464 PMCID: PMC9437809 DOI: 10.1016/j.heliyon.2022.e10258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/08/2021] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Chitosan (CHI) and carboxymethyl cellulose (CMC) are naturally sourced materials with excellent physical, chemical, and biological properties, which make them a promising tool for the development of different medical devices. In this research, CHI-CMC wound dressings were manufactured, by using different colloidal suspensions of silver nanoparticles (AgNPs) synthesized from the ligninolytic fungus Anamorphous Bjerkandera sp. R1, called CS and SN. Transmission electron microscopy (TEM), UV-Vis spectroscopy, and dynamic light scattering (DLS) analysis were used to characterize AgNPs. The wound dressings were characterized, by scanning electron microscopy (SEM), optical microscopy and their mechanical, antimicrobial, and biological properties were evaluated. The results of the different characterizations revealed the formation of spherical AgNPs with a mean size between 10 and 70 nm for the different mixtures worked. The mechanical properties of CHI-CMS-AgNPs doped with CS and SN suspensions showed superior mechanical properties with respect to CHI-CMC wound dressings. Compared to the latter, CHI-CMC-AgNPs wound dressings yielded better antibacterial activity against the pathogen Escherichia coli. In biological assays, it was observed that manufactured CHI-CMC-AgNPs wound dressings were not toxic when in contact with human skin fibroblasts (Detroit). This study, then, suggests that this type of wound dressings with a chitosan matrix and carboxymethyl cellulose doped with biologically synthesized nanoparticles from the fungus Bjerkandera sp., may be an ideal alternative for the manufacture of new wound dressings.
Collapse
Affiliation(s)
- Jerónimo Osorio Echavarría
- Bioprocess Group, Department of Chemical Engineering, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
- Corresponding author.
| | - Natalia Andrea Gómez Vanegas
- Bioprocess Group, Department of Chemical Engineering, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
| | - Claudia Patricia Ossa Orozco
- Biomaterials Research Group, Bioengineering Program, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
| |
Collapse
|
16
|
Fluorescence Quenching of Tyrosine-Ag Nanoclusters by Metal Ions: Analytical and Physicochemical Assessment. Int J Mol Sci 2022; 23:ijms23179775. [PMID: 36077173 PMCID: PMC9456322 DOI: 10.3390/ijms23179775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Abstract
A new synthesis method is described for the first time to produce silver nanoclusters (AgNCs) by using the tyrosine (Tyr) amino acid. Several important parameters (e.g., molar ratios, initial pH, reaction time etc.) were optimized to reach the highest yield. The formed Tyr-AgNCs show characteristic blue emission at λem = 410 nm, and two dominant fluorescence lifetime components were deconvoluted (τ1 ~ 3.7 and τ2 ~ 4.9 ns). The NCs contained metallic cores stabilized by dityrosine. For possible application, the interactions with several metal ions from the tap water and wastewater were investigated. Among the studied cations, four different ions (Cu2+, Ni2+, Fe3+, and Rh3+) had a dominant effect on the fluorescence of NCs. Based on the detected quenching processes, the limit of detection of the metal ions was determined. Static quenching (formation of a non-luminescent complex) was observed in all cases by temperature-dependent measurements. The calculated thermodynamic parameters showed that the interactions are spontaneous ranked in the following order of strength: Cu2+ > Fe3+ > Rh3+ > Ni2+. Based on the sign and relations of the standard enthalpy (ΔH°) and entropy changes (ΔS°), the dominant forces were also identified.
Collapse
|
17
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
18
|
Aguilera-Juárez A, Hernández-Adame L, Ruíz-Gómez MÁ, Monreal-Escalante E, Reyes-Becerril M, Rosales-Mendoza S, Pereyra HGS, Angulo C. LptD-antigen system on gold nanoparticles: an innovative strategy in the nanovaccine development. NANOTECHNOLOGY 2022; 33:295602. [PMID: 35395652 DOI: 10.1088/1361-6528/ac659b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Nanovaccine development is a growing research field in which the development of new carriers and bioconjugation approaches is a priority. In this sense, this report describes for the first time, the development of a novel conjugate that consists of gold nanoparticles (AuNPs) obtained by a one-step synthesis using an immunogenic peptide of the Lipopolysaccharide-assembly protein LptD fromVibrio parahaemolyticusbacteria as a reducing and capping agent. The resultingLptD@AuNPscompounds were fully characterized and the results showed the high capacity of the peptide to form complexes and reduce gold ions. The reaction yield estimated was higher than 83% and the chemical integrity of the peptide on the NP surface revealed a tyrosine amino acid bonding on the AuNP surface. Furthermore, theLptD@AuNPsystem showed high colloidal stability in a wide pH range (3-11 pH values), where the hydrodynamic diameter and Zeta potential behavior were strongly influenced by the functional groups of the antigenic peptide. The cytotoxicity assays showed that the obtained system is safe for mouse leukocytes, while immunized mice withLptD@AuNPsproduced specific IgG antibodies. These encouraging results revealed the efficacy of some antigenic peptides as reducers and capping agents, in addition, opening the path to determine immunogenicity and immunoprotective efficacy of theLptD@AuNPsystem against the disease induced byVibrio parahaemolyticus.
Collapse
Affiliation(s)
- Ana Aguilera-Juárez
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Luis Hernández-Adame
- CONACYT- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Miguel Ángel Ruíz-Gómez
- CONACYT-CINVESTAV-IPN Unidad Mérida, Departamento de Física Aplicada, Mérida, Yucatán C.P. 97310, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
- CONACYT- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr Manuel Nava Núm. 6, Zona Universitaria., San Luis Potosí, S. L. P., C. P. 78210, Mexico
| | - Héctor Gabriel Silva Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, Camino a la Presa San José 2055, Col. Lomas 4 sección, 78216, San Luis Potosí, SLP, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| |
Collapse
|
19
|
Ghalei S, Handa H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. MATERIALS TODAY. CHEMISTRY 2022; 23:100673. [PMID: 34901586 PMCID: PMC8664245 DOI: 10.1016/j.mtchem.2021.100673] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
20
|
Hossain N, Nizamuddin S, Selvakannan P, Griffin G, Madapusi S, Shah K. The effect of KOH activation and Ag nanoparticle incorporation on rice husk-based porous materials for wastewater treatment. CHEMOSPHERE 2022; 291:132760. [PMID: 34740697 DOI: 10.1016/j.chemosphere.2021.132760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Major agricultural solid waste, rice husk (RH)-based mesoporous materials were prepared by potassium hydroxide (KOH) treatment of RH and RH hydrochar (RHH) produced at 180 °C with 20 min reaction time. In this study, RH was treated with three different methods: RH activation by KOH (KOH-RH), RH activation by KOH-aqueous silver (Ag)-shell nanoparticle (AgNP) incorporation followed calcination at 550 °C for 2 h (AgNP-KOH-RH) and hydrothermally carbonized RH activation by KOH (KOH-RHH). The main objective of this study was to determine the effect of KOH activation with different synthesis approaches and compare the characterization results of RH based porous material to identify the potential adsorbent application for wastewater treatment. Therefore, after activation in different methods, all interactive properties such as elemental, chemical, structural, morphological, and thermal analyses were investigated comprehensively for all samples. The crystallinity peak intensity around 22°λ at the angle of diffraction of 2θ confirmed the presence of silica, higher stability of the material, and removal of organic components during the KOH activation. AgNP-KOH-RH and KOH-RHH presented high porosity on the outer surface. The presence of negligible volatile matter in KOH-RHH by TGA demonstrated the decomposition of organic compound. Very high ratio of aromatic carbon and lignin content by FTIR and XPS analysis in both AgNP-KOH-RH and KOH-RHH showed these two samples have improved stability. Very high negative surface charge (zeta potential) in AgNP-KOH-RH (-43.9 mV) and KOH-RHH (-43.1 mV) indicated the enhanced water holding capacity. Surface area for all experimented porous materials has been enhanced after KOH activation, where KOH-RHH demonstrated the maximum surface area value, 27.87 m2/g. However, AgNP-KOH-RH presented maximum pore diameter, 18.16 nm, and pore volume, 0.12 cm3/g. Hence, it can be concluded that both KOH-RHH and AgNP-KOH-RH have the potential to be implemented as wastewater adsorbents.
Collapse
Affiliation(s)
- Nazia Hossain
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Sabzoi Nizamuddin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Gregory Griffin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Srinivasan Madapusi
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia; Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, P.O. Box No. - 345055, Dubai, United Arab Emirates
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
21
|
Buglak AA, Kononov AI. Silver Cluster Interactions with Tyrosine: Towards Amino Acid Detection. Int J Mol Sci 2022; 23:634. [PMID: 35054820 PMCID: PMC8775517 DOI: 10.3390/ijms23020634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Tyrosine (Tyr) is involved in the synthesis of neurotransmitters, catecholamines, thyroid hormones, etc. Multiple pathologies are associated with impaired Tyr metabolism. Silver nanoclusters (Ag NCs) can be applied for colorimetric, fluorescent, and surface-enhanced Raman spectroscopy (SERS) detection of Tyr. However, one should understand the theoretical basics of interactions between Tyr and Ag NCs. Thereby, we calculated the binding energy (Eb) between Tyr and Agnq (n = 1-8; q = 0-2) NCs using the density functional theory (DFT) to find the most stable complexes. Since Ag NCs are synthesized on Tyr in an aqueous solution at pH 12.5, we studied Tyr-1, semiquinone (SemiQ-1), and Tyr-2. Ag32+ and Ag5+ had the highest Eb. The absorption spectrum of Tyr-2 significantly red-shifts with the attachment of Ag32+, which is prospective for colorimetric Tyr detection. Ag32+ interacts with all functional groups of SemiQ-1 (phenolate, amino group, and carboxylate), which makes detection of Tyr possible due to band emergence at 1324 cm-1 in the vibrational spectrum. The ground state charge transfer between Ag and carboxylate determines the band emergence at 1661 cm-1 in the Raman spectrum of the SemiQ-1-Ag32+ complex. Thus, the prospects of Tyr detection using silver nanoclusters were demonstrated.
Collapse
Affiliation(s)
- Andrey A. Buglak
- The Faculty of Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | | |
Collapse
|
22
|
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. EMERGENT MATERIALS 2022; 5:1593-1615. [PMID: 35005431 PMCID: PMC8724657 DOI: 10.1007/s42247-021-00335-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 05/02/2023]
Abstract
Over the past few years, nanotechnology has been attracting considerable research attention because of their outstanding mechanical, electromagnetic and optical properties. Nanotechnology is an interdisciplinary field comprising nanomaterials, nanoelectronics, and nanobiotechnology, as three areas which extensively overlap. The application of metal nanoparticles (MNPs) has drawn much attention offering significant advances, especially in the field of medicine by increasing the therapeutic index of drugs through site specificity preventing multidrug resistance and delivering therapeutic agents efficiently. Apart from drug delivery, some other applications of MNPs in medicine are also well known such as in vivo and in vitro diagnostics and production of enhanced biocompatible materials and nutraceuticals. The use of metallic nanoparticles for drug delivery systems has significant advantages, such as increased stability and half-life of drug carrier in circulation, required biodistribution, and passive or active targeting into the required target site. Green synthesis of MNPs is an emerging area in the field of bionanotechnology and provides economic and environmental benefits as an alternative to chemical and physical methods. Therefore, this review aims to provide up-to-date insights on the current challenges and perspectives of MNPs in drug delivery systems. The present review was mainly focused on the greener methods of metallic nanocarrier preparations and its surface modifications, applications of different MNPs like silver, gold, platinum, palladium, copper, zinc oxide, metal sulfide and nanometal organic frameworks in drug delivery systems.
Collapse
Affiliation(s)
- V. Chandrakala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| |
Collapse
|
23
|
Badgujar HF, Kumar U. Green Approach Towards Morphology-Controlled Synthesis of Zein-Functionalized TiO 2 Nanoparticles for Cosmeceutical Application. Eur J Pharm Sci 2021; 167:106010. [PMID: 34537374 DOI: 10.1016/j.ejps.2021.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Biomolecular approaches for synthesis of inorganic nanoparticle are very popular among researchers and exhibit significant shape-directing morphologies in classified condition. The proteins are the most abundant macromolecules and employed for the hybrid synthesis as well as shape-directing agent. The present study is designed to investigate the potential role of a plant protein 'zein' to synthesize hybrid TiO2 nanoparticles. This versatile amphiphilic protein paves a unique path towards shape directing synthesis and act as template in the biomineralization process. The structural changes occurred in protein structure is thoroughly characterized using the circular dichroism (CD) and FTIR spectroscopy. UV, XPS and HRTEM analysis confirms the presence of zein on the nanoparticle surface. The proposed approach provides finely engineered nano-cuboidal (22.75±5.07 nm) geometry with homogenous dispersion, curved edged cuboids (403.51±0.05 nm) and spherical (97.85±0.62 nm) shaped from different modification, as evidenced by TEM. We also discussed in-vitro method for the detection of antimicrobial activity of nanocuboids against acne causing microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Streptococcus agalactiae. Our results demonstrate that hybrid nanocuboids could be an efficient green material and provide cognitive antimicrobial evidence that could be deployed for cosmeceutical application.
Collapse
Affiliation(s)
- Hina F Badgujar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
24
|
Ditta SA, Yaqub A, Tanvir F, Ullah R, Rashid M, Bilal M. Histopathological evaluation of amino acid capped silver nanoconjugates in albino mice. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various molecules may modify the surface chemistry of commonly used nanomaterials (NMs), resulting in the synthesis of novel and safer NMs. The current study was delineated to evaluate the in vivo toxicity profiling of the silver nanoconjugates (AgNCs) conjugated with different amino acids. The L-glycine capped-AgNCs exhibited toxicity and caused tissue damage, while L-cystine- and L-tyrosine-capped AgNCs showed protective effects against cadmium-induced toxicity. L-cystine-capped AgNCs performed well as compared to other amino-acid AgNCs. The level of serum creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and blood urea increased (p < 0.05) in G2, G3 and G5 in comparison to G1 (control group), while an increase in bilirubin for G2 was statistically non-significant (p > 0.05). The ALT and AST elevated (p < 0.05) in G4; however, other serological parameters in G4 and G6 did not show any noticeable change in their values. Histological analysis showed disturbed and deformed cellular structures in liver and kidney tissues of G2, G3 and G5. However, G4 and G6 samples demonstrated minute changes in comparison to G1. It is concluded that L-cystine- and L-tyrosine-capped AgNCs exhibited protective effects and should be tested further for developing safer nanoconjugates for biomedical uses.
Collapse
Affiliation(s)
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Bilal
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
25
|
Kim J, Lee K, Nam YS. Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Sood A, Arora V, Kumari S, Sarkar A, Kumaran SS, Chaturvedi S, Jain TK, Agrawal G. Imaging application and radiosensitivity enhancement of pectin decorated multifunctional magnetic nanoparticles in cancer therapy. Int J Biol Macromol 2021; 189:443-454. [PMID: 34425122 DOI: 10.1016/j.ijbiomac.2021.08.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
In this contribution, we report the fabrication of multifunctional nanoparticles with gold shell over an iron oxide nanoparticles (INPs) core. The fabricated system combines the magnetic property of INPs and the surface plasmon resonance of gold. The developed nanoparticles are coated with thiolated pectin (TPGINs), which provides stability to the nanoparticles dispersion and allows the loading of hydrophobic anticancer drugs. Curcumin (Cur) is used as the model drug and an encapsulation efficiency of approximately 80% in TPGINs is observed. Cytotoxicity study with HeLa cells shows that Cur-loaded TPGINs have better viability percent (~30%) than Cur alone (~40%) at a dose of 30 μg of TPGINs. Further, annexin V-PI assay demonstrated the enhanced anticancer activity of Cur-loaded TPGINs via induction of apoptosis. The use of TPGINs leads to a significant enhancement in generating reactive oxygen species (ROS) in HeLa cells through improved radiosensitization by gamma irradiation (0.5 Gy). TPGINs are further evaluated for imparting contrast in magnetic resonance imaging (MRI) with the r2 relaxivity in the range of 11.06-13.94 s-1 μg-1 mL when measured at 7 Tesla. These experimental results indicate the potential of TPGINs for drug delivery and MR imaging.
Collapse
Affiliation(s)
- Ankur Sood
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Varun Arora
- University School of Basic and Applied Sciences (USBAS), Guru Gobind Singh Indraprastha University (GGSIPU), Sector 16-C, Dwarka, New Delhi 110078, India
| | - Sadhana Kumari
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Ankita Sarkar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, New Delhi, India
| | - Tapan K Jain
- University School of Basic and Applied Sciences (USBAS), Guru Gobind Singh Indraprastha University (GGSIPU), Sector 16-C, Dwarka, New Delhi 110078, India.
| | - Garima Agrawal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India; Advanced Materials Research Center (AMRC), Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
27
|
Chugh G, Singh BR, Adholeya A, Barrow CJ. Role of proteins in the biosynthesis and functioning of metallic nanoparticles. Crit Rev Biotechnol 2021; 42:1045-1060. [PMID: 34719294 DOI: 10.1080/07388551.2021.1985957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proteins are known to play important roles in the biosynthesis of metallic nanoparticles (NPs), which are biological substitutes for conventionally used chemical capping and stabilizing agents. When a pristine nanoparticle comes in contact with a biological media or system, a bimolecular layer is formed on the surface of the nanoparticle and is primarily composed of proteins. The role of proteins in the biosynthesis and further uptake, translocation, and bio-recognition of nanoparticles is documented in the literature. But, a complete understanding has not been achieved concerning the mechanism for protein-mediated nanoparticle biosynthesis and the role proteins play in the interaction and recognition of nanoparticles, aiding its uptake and assimilation into the biological system. This review critically evaluates the knowledge and gaps in the protein-mediated biosynthesis of nanoparticles. In particular, we review the role of proteins in multiple facets of metallic nanoparticle biosynthesis, the interaction of proteins with metallic nanoparticles for recognition and interaction with cells, and the toxic potential of protein-nanoparticle complexes when presented to the cell.
Collapse
Affiliation(s)
- Gaurav Chugh
- Discipline of Microbiology, School of Natural Sciences, and The Ryan Institute, National University of Ireland Galway, Galway, Ireland.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Braj Raj Singh
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
28
|
Fundamental Methods for the Phase Transfer of Nanoparticles. Molecules 2021; 26:molecules26206170. [PMID: 34684750 PMCID: PMC8539479 DOI: 10.3390/molecules26206170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The utilization of nanoparticles for a variety of applications has raised much interest in recent years as new knowledge has emerged in nanochemistry. New and diverse methods for synthesis, characterization, and application of these particles have been discovered with differing degrees of ease and reproducibility. Post-synthetic modification of nanoparticles is often a required step to facilitate their use in applications. The reaction conditions and chemical environment for the nanoparticle synthesis may not support or may conflict with further reactions. For this reason, it is beneficial to have phase transfer methods for nanoparticles to allow for their dispersion in a variety of solvents. Phase transfer methods are often limited in the types and sizes of particles that can be effectively dispersed in an immiscible solvent. Currently, general transfer methods for a wide variety of nanoparticles have not been identified. New routes for phase transfer allow for utilization of a larger range of particles in applications which were previously limited by solubility and reactivity issues. In this work, we will describe the fundamental methods for the phase transfer of metallic nanoparticles. We will look at the major problems and pitfalls of these methods. The applications of phase transfer will also be reviewed, mainly focusing on catalysis and drug delivery.
Collapse
|
29
|
Mulvee M, Vasiljevic N, Mann S, Patil AJ. Stimuli-Responsive Nucleotide-Amino Acid Hybrid Supramolecular Hydrogels. Gels 2021; 7:gels7030146. [PMID: 34563032 PMCID: PMC8482081 DOI: 10.3390/gels7030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
The ability to assemble chemically different gelator molecules into complex supramolecular hydrogels provides excellent opportunities to construct functional soft materials. Herein, we demonstrate the formation of hybrid nucleotide–amino acid supramolecular hydrogels. These are generated by the silver ion (Ag+)-triggered formation of silver–guanosine monophosphate (GMP) dimers, which undergo self-assembly through non-covalent interactions to produce nanofilaments. This process results in a concomitant pH reduction due to the abstraction of a proton from the guanine residue, which triggers the in situ gelation of a pH-sensitive amino acid, N-fluorenylmethyloxycarbonyl tyrosine (FY), to form nucleotide–amino acid hybrid hydrogels. Alterations in the supramolecular structures due to changes in the assembly process are observed, with the molar ratio of Ag:GMP:FY affecting the assembly kinetics, and the resulting supramolecular organisation and mechanical properties of the hydrogels. Higher Ag:GMP stoichiometries result in almost instantaneous gelation with non-orthogonal assembly of the gelators, while at lower molar ratios, orthogonal assembly is observed. Significantly, by increasing the pH as an external stimulus, nanofilaments comprising FY can be selectively disassembled from the hybrid hydrogels. Our results demonstrate a simple approach for the construction of multicomponent stimuli-responsive supramolecular hydrogels with adaptable network and mechanical properties.
Collapse
Affiliation(s)
- Matthew Mulvee
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK;
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
| | - Natasa Vasiljevic
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
- School of Physics, University of Bristol, Bristol BS8 1TS, UK
| | - Stephen Mann
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK;
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
- Correspondence: (S.M.); (A.J.P.)
| | - Avinash J. Patil
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK;
- Correspondence: (S.M.); (A.J.P.)
| |
Collapse
|
30
|
Chakraborty S, Sagarika P, Rai S, Sahi C, Mukherjee S. Tyrosine-Templated Dual-Component Silver Nanomaterials Exhibit Photoluminescence and Versatile Antimicrobial Properties through ROS Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36938-36947. [PMID: 34328721 DOI: 10.1021/acsami.1c10520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of small molecules in the preparation of metal nanomaterials generates considerable interest in the fields from materials science to interdisciplinary sciences. In this study, a small amino acid, l-tyrosine (Tyr), has been used as a ligand precursor for the preparation of silver nanomaterials (AgNMs) comprising a dual system: smaller silver nanoclusters (responsible exclusively for the photophysical properties) and larger silver nanoparticles (responsible exclusively for the antimicrobial properties). The luminescent properties of this AgNM system substantiate the role played by Tyr as a capping and a reducing agent outside the protein environment. An interesting feature of this report is the promising antimicrobial properties of the AgNMs against Saccharomyces cerevisiae, Candida albicans, Escherichia coli, and Bacillus cereus cell lines. The importance of this work is that this investigation demonstrates the combating ability of our AgNM system against pathogenic strains (C. albicans and B. cereus) as well. Moreover, the mechanistic aspects of the antimicrobial activity of the AgNMs were elucidated using various methods, such as propidium iodide staining, monitoring reactive oxygen species generation, leakage of proteins, DNA cleavage, etc. We propose that AgNM-mediated cytotoxicity in S. cerevisiae stems from the generation of singlet oxygen (1O2) species that create oxidative stress, disrupting the cell membrane and thereby resulting in leakage of proteins from the cells. This study can pave the way toward elucidating the role of a small molecule, Tyr, in the formation of NMs and describes the use of new NMs in potential antimicrobial applications.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Preeti Sagarika
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
31
|
|
32
|
Rehan M, El-Naggar ME, Al-Enizi AM, Alothman AA, Nafady A, Abdelhameed RM. Development of silk fibers decorated with the in situ synthesized silver and gold nanoparticles: antimicrobial activity and creatinine adsorption capacity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zhao X, Zhou L, Xu X, Ai C, Zhao P, Yan L, Jiang C, Shi J. Recovery of Ag + by cyclic lipopeptide iturin A and corresponding chain peptide: reaction mechanisms, kinetics, toxicity reduction, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142988. [PMID: 33129541 DOI: 10.1016/j.scitotenv.2020.142988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Iturin A, a cyclic lipopeptide produced by Bacillus subtilis, has great potential in removal of Ag+ from water, but the mechanisms and kinetic remain unclear. By comparison with the chain peptide (CP) that has the same amino acid sequence as iturin A, the mechanisms were found as iturin A reduced Ag+ to Ag0 and formed silver nanoparticles (AgNPs) via the groups of Ar-OH, CO, -NH-, O=C-O, and -C(CH).The cycle peptide fraction played an important role for the faster formation of AgNPs by iturin A than by CP. The overall Ag+ removal process by iturin A and CP could be well described by a Freundlich isotherm, with the equilibrium Ag+ removal capacity ranging from 58.41 to 61.03 mg/g within 293.15-333.15 K for iturin A. With the application of iturin A, the overall removal rate of Ag+ reached 91.8% in wastewater, the formed AgNPs could be easily recovered via charging the direct electric current, and the toxicity of Ag+ to paddy growth was greatly reduced.
Collapse
Affiliation(s)
- Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Liangfu Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Chongyang Ai
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Pengpeng Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
34
|
Ahire J, Bhanage BM. Solar energy-controlled shape selective synthesis of zinc oxide nanomaterials and its catalytic application in synthesis of glycerol carbonate. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Lin H, Lee J, Han J, Lee C, Seo S, Tan S, Lee HM, Choi EJ, Strano MS, Yang Y, Maruyama S, Jeon I, Matsuo Y, Oh J. Denatured M13 Bacteriophage-Templated Perovskite Solar Cells Exhibiting High Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000782. [PMID: 33101847 PMCID: PMC7578877 DOI: 10.1002/advs.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Indexed: 06/01/2023]
Abstract
The M13 bacteriophage, a nature-inspired environmentally friendly biomaterial, is used as a perovskite crystal growth template and a grain boundary passivator in perovskite solar cells. The amino groups and carboxyl groups of amino acids on the M13 bacteriophage surface function as Lewis bases, interacting with the perovskite materials. The M13 bacteriophage-added perovskite films show a larger grain size and reduced trap-sites compared with the reference perovskite films. In addition, the existence of the M13 bacteriophage induces light scattering effect, which enhances the light absorption particularly in the long-wavelength region around 825 nm. Both the passivation effect of the M13 bacteriophage coordinating to the perovskite defect sites and the light scattering effect intensify when the M13 virus-added perovskite precursor solution is heated at 90 °C prior to the film formation. Heating the solution denatures the M13 bacteriophage by breaking their inter- and intra-molecular bondings. The denatured M13 bacteriophage-added perovskite solar cells exhibit an efficiency of 20.1% while the reference devices give an efficiency of 17.8%. The great improvement in efficiency comes from all of the three photovoltaic parameters, namely short-circuit current, open-circuit voltage, and fill factor, which correspond to the perovskite grain size, trap-site passivation, and charge transport, respectively.
Collapse
Affiliation(s)
- Hao‐Sheng Lin
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Jong‐Min Lee
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Jiye Han
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Changsoo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seungju Seo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
| | - Shaun Tan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Eun Jung Choi
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Michael S. Strano
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Yang Yang
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Shigeo Maruyama
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Energy NanoEngineering LaboratoryNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8564Japan
| | - Il Jeon
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
- Department of Chemistry EducationGraduate School of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsPusan National University63‐2 Busandaehak‐roBusan46241Republic of Korea
| | - Yutaka Matsuo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Institutes of Innovation for Future SocietyNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Jin‐Woo Oh
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| |
Collapse
|
36
|
Biosynthesis, Characterization, and Biological Activities of Procyanidin Capped Silver Nanoparticles. J Funct Biomater 2020; 11:jfb11030066. [PMID: 32961705 PMCID: PMC7564108 DOI: 10.3390/jfb11030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.
Collapse
|
37
|
Li X, Cao X, Xiong J, Ge J. Enzyme-Metal Hybrid Catalysts for Chemoenzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902751. [PMID: 31468669 DOI: 10.1002/smll.201902751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/10/2019] [Indexed: 05/21/2023]
Abstract
Enzyme-metal hybrid catalysts (EMHCs), which combine enzymatic and metal catalysis, provide tremendous possibilities for new chemoenzymatic cascade reactions. Here, an overview of the representative achievements in the design of EMHCs and their applications in chemoenzymatic cascade reactions are presented. The preparation of hybrid catalysts is classified into two categories: coimmobilized enzyme-metal heterogeneous catalysts and carrier-free enzyme-metal bioconjugates. Examples of one-pot chemoenzymatic cascade processes catalyzed by the hybrid catalysts are then provided as potential applications. Finally, the limitations and future perspectives of EMHCs are discussed.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xun Cao
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiarong Xiong
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Lekamge S, Miranda AF, Abraham A, Ball AS, Shukla R, Nugegoda D. The toxicity of coated silver nanoparticles to the alga Raphidocelis subcapitata. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2430-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
39
|
|
40
|
Shevale V, Dhodamani AG, Delekar SD. Catalytic Reclamation of Silver Present in Photographic Waste Using Magnetically Separable TiO 2@CuFe 2O 4 Nanocomposites and Thereof Its Use in Antibacterial Activity. ACS OMEGA 2020; 5:1098-1108. [PMID: 31984266 PMCID: PMC6977080 DOI: 10.1021/acsomega.9b03260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
In the present investigation, the silver present in photographic waste is reclaimed catalytically using magnetically separable TiO2@CuFe2O4 nanocomposites (NCs), and further, the recovered silver nanoparticles [Ag(0) NPs] are tested against the representative bacteria for the antibacterial activity. Initially, a series of the different composites between TiO2 nanoparticles and CuFe2O4 nanoparticles are synthesized by a sol-gel "ex situ" method to enhance the catalytic activity of bare nanomaterials toward the visible region of the electromagnetic spectrum. X-ray diffraction reveals the presence of characteristic patterns for the tetragonal structure in the bare materials or TiO2@CuFe2O4 NCs; however, the dominance in the phase as well as intensity of the respective XRD reflections in the NCs is observed according to the content of TiO2 or CuFe2O4 in the NCs. Field-emission electron microscopic images show the uniform spherical particles for the representative TiO2@CuFe2O4 NCs, which is also confirmed through the HRTEM images. The magnetically separable behavior of the representative TiO2@CuFe2O4 NCs is confirmed through the VSM measurements, which also shows the superparamagnetic properties due to the S-shaped nature of the hysteresis loop. Thereafter, a photoconversion reaction of Ag(I) ions to Ag(0) NPs as a model reaction is carried out using the different TiO2@CuFe2O4 NCs under visible light irradiation, and hence, the higher catalytic recovery of Ag(0) NPs is observed for a composite containing 10 wt % TiO2 and 90 wt % CuFe2O4 than that of other NCs or the bare one alone. The optimized protocol of the model reaction is adopted for reclaiming Ag(0) NPs from photographic waste. The progress of the catalytic reclamation reaction is monitored using UV-visible, and then sizes of the recovered Ag(0) NPs are confirmed through the HRTEM images. Thereafter, the recovered Ag(0) NPs are tested for complete photoinactivation of Escherichia coli bacteria within 120 min.
Collapse
|
41
|
Filip J, Wechsler P, Stastny J, Malkova V, Minarik A, Vinter S, Osicka J. Simplified synthesis of silver nanoparticles on graphene oxide and their applications in electrocatalysis. NANOTECHNOLOGY 2020; 32:025502. [PMID: 32932247 DOI: 10.1088/1361-6528/abb8a4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work the possibility of synthesizing in situ silver nanoparticles (AgNPs) on graphene oxide (GO) surfaces without commonly used additional reducing or alkalizing agents or increased temperature was investigated. Using diverse microscopic (atomic force microscopy, transmission electron microscopy) and spectroscopic methods, it was proved that very small AgNPs were formed on GO by simple incubation for 2 h in a mixture of GO dispersion and AgNO3. The prepared nanomaterial (GO_Ag) was also assessed using electrochemical methods, and it exhibited electrochemical behavior similar to the GO_Ag nanomaterial prepared with a help of citric acid as a reducing agent. Furthermore, it was found that (i) the electrochemical reduction of the GO_Ag on the electrode surface decreased the voltammetric response even though this step increased the surface conductivity and (ii) GO_Ag can be employed for the sensing of chlorides with a detection limit of 79 μM and a linear range of up to 10 mM. It could also provide an electrochemical response toward the chloroacetanilide herbicide metazachlor. Hence, the reducing capabilities of GO were proved to be applicable for in situ synthesis of metal nanoparticles with the highest possible simplification, and the as-prepared nanomaterials could be employed for fabrication of different electrochemical sensors.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín 76001, Czech Republic
| | - Philipp Wechsler
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zürich, Switzerland
| | - Josef Stastny
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín 76001, Czech Republic
| | - Veronika Malkova
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín 76001, Czech Republic
| | - Antonin Minarik
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Stepan Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín 76001, Czech Republic
| | - Josef Osicka
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
42
|
Lekamge S, Miranda AF, Pham B, Ball AS, Shukla R, Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1207-1222. [PMID: 31900064 DOI: 10.1080/15287394.2019.1710887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) transform in the environment which result in alterations to their physicochemical properties. However, the effects of aging on the toxicity of NPs to aquatic organisms remain to be determined. Further the reports that have been published present contradictory results. The aim of this study was to examine the stability of differently coated silver nanoparticles (AgNPs) in media and the influence of aging of these NP on potential toxicity to freshwater shrimp Paratya australiensis. Coating-dependent changes in the stability of AgNP were observed with aging. Curcumin (C) coated AgNPs were stable, while tyrosine (T) coated AgNPs and epigallocatechin gallate (E) coated AgNPs aggregated in the P. australiensis medium. Increased lipid peroxidation and catalase activity was noted in P. australiensis exposed to AgNPs, suggesting oxidative stress was associated with NP exposure. The enhanced oxidative stress initiated by aged C-AgNPs suggests that aging of these NPs produced different toxicological responses. In summary, data suggest that coating-dependent alterations in NPs, together with aging affect both persistence and subsequent toxicity of NPs to freshwater organisms. Thus, the coating-dependent fate and toxicity of AgNPs together with the effect of their aging need to be considered in assessing the environmental risk of AgNPs to aquatic organisms.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| |
Collapse
|
43
|
Changanaqui K, Brillas E, Alarcón H, Sirés I. ZnO/TiO2/Ag2Se nanostructures as photoelectrocatalysts for the degradation of oxytetracycline in water. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135194] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Manikkaraja C, Mahboob S, Al-Ghanim KA, Rajesh D, Selvaraj K, Sivakumar M, Al-Misned F, Ahmed Z, Archunan G. A novel method to detect bovine sex pheromones using l-tyrosine-capped silver nanoparticles: Special reference to nanosensor based estrus detection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111747. [PMID: 31884348 DOI: 10.1016/j.jphotobiol.2019.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022]
Abstract
In the present study, a simple and a selective colorimetric method for pheromone detection to diagnose estrus in cattle was established based on the l-tyrosine functionalized silver nanoparticles (l-TyrAgNPs). The synthesized silver nanoparticles was spotted by color change (colorless to pale yellow) due to surface plasmon resonance (SPR). In order to confirm, Ag nanoparticles was characterized by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) and zeta potential, X-ray diffraction (XRD) and UV- Vis spectrophotometer. It was found that the pre-colored Ag colloids could be turned from yellow to reddish-brown by the addition of the sex pheromones such as acetic acid or propionic acid, which may have potential application in the colorimetric sensor. The augmented optical nature of nanoparticles furnishes a suitable base to develop a colorimetric sensor for bovine sex pheromones detection. In addition, the computational analyses are critically required to validate residual interactions of bovine odorant-binding protein (OBP) with pheromones. The method was successfully applied to the detection of acetic acid or propionic acid using a biological molecule l-Tyr AgNPs. These results clearly indicate that the biosynthesis of l-Tyr AgNPs can be used as a promising colorimetric sensor for accurate time of estrus prediction in bovine.
Collapse
Affiliation(s)
- Chidhambaram Manikkaraja
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Durairaj Rajesh
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 APT, France
| | - Kumaresan Selvaraj
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Muthusamy Sivakumar
- Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Govindaraju Archunan
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
45
|
Lekamge S, Miranda AF, Trestrail C, Pham B, Ball AS, Shukla R, Nugegoda D. The Toxicity of Nonaged and Aged Coated Silver Nanoparticles to Freshwater Alga Raphidocelis subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2371-2382. [PMID: 31403715 DOI: 10.1002/etc.4549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/08/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The transformation of coated silver nanoparticles (AgNPs) and their impacts on aquatic organisms require further study. The present study investigated the role of aging on the transformation of differently coated AgNPs and their sublethal effects on the freshwater alga Raphidocelis subcapitata. The stability of AgNPs was evaluated over 32 d, and the results indicated that transformation of AgNPs occurred during the incubation; however, coating-specific effects were observed. Fresh AgNPs increased reactive oxygen species (ROS) formation, whereas aged AgNPs induced excessive ROS generation compared with their fresh counterparts. Increased ROS levels caused increased lipid peroxidation (LPO) in treatment groups exposed to both fresh and aged NPs, although LPO was comparatively higher in algae exposed to aged AgNPs. The observed increase in catalase (CAT) activity of algal cells was attributed to early stress responses induced by excessive intracellular ROS generation, and CAT levels were higher in the aged NP treatment groups. In conclusion, AgNPs increased ROS levels and LPO in algae and caused the activation of antioxidant enzymes such as CAT. Overall, the results suggest that aging and coating of AgNPs have major impacts on AgNP transformation in media and their effects on algae. Environ Toxicol Chem 2019;38:2371-2382. © 2019 SETAC.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Charlene Trestrail
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Victoria, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
46
|
Chauhan PS, Kumarasamy M, Sosnik A, Danino D. Enhanced Thermostability and Anticancer Activity in Breast Cancer Cells of Laccase Immobilized on Pluronic-Stabilized Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39436-39448. [PMID: 31580644 DOI: 10.1021/acsami.9b11877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Laccases are multi-copper oxidase enzymes having widespread applications in various biotechnological fields. However, low stability of free enzymes restricts their industrial use. Development of effective methods to preserve and even increase the enzymatic activity is critical to maximize their use, though this remains a challenge. In the present study we immobilized Trametes versicolor laccase on pH-responsive (and charge-switchable) Pluronic-stabilized silver nanoparticles (AgNPsTrp). Our results demonstrate that colloidal stabilization of AgNPsTrp with the amphiphilic copolymer Pluronic F127 enhances enzyme activity (AgNPsTrpF1 + Lac6) by changing the active site microenvironment, which is confirmed by circular dichroism (CD) and fluorescence spectroscopy. Detailed kinetic and thermodynamic studies reveal a facile strategy to improve the protein quality by lowering the activation energy and expanding the temperature window for substrate hydrolysis. The immobilized nanocomposite did not show any change in flow behavior which indirectly suggests that the enzyme stability is maintained, and the enzyme did not aggregate or unfold upon immobilization. Finally, assessing the anticancer efficacy of this nanocomposite in breast cancer MCF-7 cells shows the inhibition of cell proliferation through β-estradiol degradation and cells apoptosis. To understand the molecular mechanism involved in this process, semi qRT-PCR experiments were performed, which indicated significant decrease in the mRNA levels of anti-apoptotic genes, for example, BCL-2 and NF-kβ, and increase in the mRNA level of pro-apoptotic genes like p53 in treated cells, compared to control. Overall, this study offers a completely new strategy for tailoring nano-bio-interfaces with improved activity and stability of laccase.
Collapse
|
47
|
Harisha KS, Parushuram N, Asha S, Suma SB, Narayana B, Sangappa Y. Eco-synthesis of gold nanoparticles by Sericin derived from Bombyx mori silk and catalytic study on degradation of methylene blue. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2019.1666951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K. S. Harisha
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, India
| | - N. Parushuram
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, India
| | - S. Asha
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, India
| | - S. B. Suma
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, India
| | - B. Narayana
- Department of Chemistry, Mangalore University, Mangalagangotri, Mangalore, India
| | - Y. Sangappa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, India
| |
Collapse
|
48
|
El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JSM, Zou X, Halabi MF, Sarhan W, Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 2019; 9:24539-24559. [PMID: 35527869 PMCID: PMC9069627 DOI: 10.1039/c9ra02225b] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles (NPs) are new inspiring clinical targets that have emerged from persistent efforts with unique properties and diverse applications. However, the main methods currently utilized in their production are not environmentally friendly. With the aim of promoting a green approach for the synthesis of NPs, this review describes eco-friendly methods for the preparation of biogenic NPs and the known mechanisms for their biosynthesis. Natural plant extracts contain many different secondary metabolites and biomolecules, including flavonoids, alkaloids, terpenoids, phenolic compounds and enzymes. Secondary metabolites can enable the reduction of metal ions to NPs in eco-friendly one-step synthetic processes. Moreover, the green synthesis of NPs using plant extracts often obviates the need for stabilizing and capping agents and yields biologically active shape- and size-dependent products. Herein, we review the formation of metallic NPs induced by natural extracts and list the plant extracts used in the synthesis of NPs. In addition, the use of bacterial and fungal extracts in the synthesis of NPs is highlighted, and the parameters that influence the rate of particle production, size, and morphology are discussed. Finally, the importance and uniqueness of NP-based products are illustrated, and their commercial applications in various fields are briefly featured.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre Box 574 SE-751 23 Uppsala Sweden +46 18 4714207
- College of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges Medina 42541 Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Egypt
- Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology Stockholm Sweden
| | - Shaden A M Khalifa
- Clinical Research Centre, Karolinska University Hospital Huddinge Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE 106 91 Stockholm Sweden
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Afzal Shah
- Department of Chemistry, College of Science, University of Bahrain Sakhir 32038 Bahrain
| | - Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Faiza Jan Iftikhar
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University Ismailia 41522 Egypt
| | - Abdelfatteh Omri
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Nahid H Hajrahand
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Jamal S M Sabir
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Xiaobo Zou
- College of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
| | - Mohammed F Halabi
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges Medina 42541 Saudi Arabia
| | | | - Weisheng Guo
- Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University Guangzhou 510260 China +86-020-34153830
| |
Collapse
|
49
|
Dynamic interactions between peroxidase-mimic silver NanoZymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water. Anal Chim Acta 2019; 1083:157-165. [PMID: 31493806 DOI: 10.1016/j.aca.2019.07.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
With growing environmental and health concerns over persistent organic compounds such as organophosphates, regulatory bodies have imposed strict regulations for their use and monitoring in water bodies. Although conventional analytical tools exist for the detection of organophosphorus pesticides, new strategies need to be developed to fulfil the ASSURED (affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable to end users) criteria of the World Health Organisation. One such strategy is to employ the ability of certain nanoparticles to mimic the enzymatic activity of natural enzymes to develop optical sensors. We show that the intrinsic peroxidase-mimic NanoZyme activity of tyrosine-capped silver nanoparticles (Ag-NanoZyme) can be exploited for highly specific and rapid detection of chlorpyrifos, an organophosphorus pesticide. The underlying working principle of the proposed aptasensor is based on the dynamic non-covalent interaction of the chlorpyrifos specific aptamer (Chl) with the NanoZyme (sensor probe) vs. the pesticide target (analyte). The incorporation of the Chl aptamer ensures high specificity leading to a colorimetric response specifically in the presence of chlorpyrifos, while the sensor remains unresponsive to other pesticides from organophosphate and non-organophosphate groups. The robustness of the sensor to work directly in environmental samples was established by evaluating its ability to detect chlorpyrifos in river water samples. The excellent recovery rates demonstrate the sensor robustness, while the simplicity, and rapid sensor response (2 min) to detect the presence of chlorpyrifos highlights the capabilities of the proposed colorimetric sensing system.
Collapse
|
50
|
Sub-ppt level voltammetric sensor for Hg2+ detection based on nafion stabilized l-cysteine-capped Au@Ag core-shell nanoparticles. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04298-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|