1
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Huaijuan Zhou
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiqi Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine,
Rutgers University, Piscataway, NJ, USA
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| |
Collapse
|
2
|
Mu Y, Duan W, Dai Y, Sullivan PA, Deravi LF, Wang Y, Lee D. Colloidal synthesis of metallodielectric Janus matchsticks. Chem Commun (Camb) 2024; 60:5534-5537. [PMID: 38695749 DOI: 10.1039/d4cc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We present a gram-scale synthesis of metallodielectric Janus matchsticks, which feature a gold-coated silica sphere and a silica rod. SiO2 Janus matchsticks are synthesized in one batch by growing amine-functionalized SiO2 spheres at the end of SiO2 rods. Gold deposition on the spheres produces Au-SiO2 Janus matchsticks with an aspect ratio controlled by the rod length. The metallodielectric Janus matchsticks, produced by scalable colloidal synthesis, hold great potential as functional colloidal materials.
Collapse
Affiliation(s)
- Yijiang Mu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Wendi Duan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuxuan Dai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Patrick A Sullivan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| |
Collapse
|
3
|
Wang W. Open Questions of Chemically Powered Nano- and Micromotors. J Am Chem Soc 2023; 145:27185-27197. [PMID: 38063192 DOI: 10.1021/jacs.3c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
4
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
5
|
Wan J, Zhang Q, Liang J, Bustillo KC, Al Balushi ZY, Asta M, Zheng H. Visualizing Facets Asymmetry Induced Directional Movement of Cadmium Chloride Nanomotor. NANO LETTERS 2023; 23:10132-10139. [PMID: 37909501 DOI: 10.1021/acs.nanolett.3c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Nanomotors in solution have many potential applications. However, it has been a significant challenge to realize the directional motion of nanomotors. Here, we report cadmium chloride tetrahydrate (CdCl2·4H2O) nanomotors with remarkable directional movement under electron beam irradiation. Using in situ liquid phase transmission electron microscopy, we show that the CdCl2·4H2O nanoparticle with asymmetric surface facets moves through the liquid with the flat end in the direction of motion. As the nanomotor morphology changes, the speed of movement also changes. Finite element simulation of the electric field and fluid velocity distribution around the nanomotor assists the understanding of ionic self-diffusiophoresis as a driving force for the nanomotor movement; the nanomotor generates its own local ion concentration gradient due to different chemical reactivities on different facets.
Collapse
Affiliation(s)
- Jiawei Wan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Qiubo Zhang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jiayun Liang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zakaria Y Al Balushi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mark Asta
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Kang E, Lee W, Lee H. Comprehensive Understanding of Self-Propelled Janus Pt/Fe 2O 3 Micromotor Dynamics: Impact of Size, Morphology, and Surface Structure. J Phys Chem Lett 2023; 14:9811-9818. [PMID: 37889127 DOI: 10.1021/acs.jpclett.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing use of plastics has led to the accumulation of plastic waste in the oceans, resulting in significant global environmental challenges associated with microplastic pollution. Micromotors, capable of capturing and removing microplastics from aquatic systems, have emerged as a promising solution to addressing this problem. This research aims to analyze the factors affecting the speed of micromotors, including size, morphology, and surface structure, while elucidating the underlying mechanisms governing micromotor propulsion to develop efficient and ecofriendly micromotors. In this study, we systematically manipulate various parameters by modifying the synthesis method of hematite-based micromotors, subsequently comparing their propulsion speeds and uncovering the precise role of these parameters in determining the micromotor performance. Furthermore, we shed light on the intricate interplay between drag force and propulsive force, demonstrating how these forces vary under different H2O2 conditions. These findings provide valuable insights into the design of efficient micromotors tailored for dynamic aquatic environments.
Collapse
Affiliation(s)
- Eunbi Kang
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wanhee Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
7
|
Zhu M, Zhu L, You Y, Sun M, Jin F, Song Y, Zhang J, Xu X, Ji J, Du Y. Positive Chemotaxis of CREKA-Modified Ceria@Polydopamine Biomimetic Nanoswimmers for Enhanced Penetration and Chemo-photothermal Tumor Therapy. ACS NANO 2023; 17:17285-17298. [PMID: 37595091 DOI: 10.1021/acsnano.3c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Tumor interstitial pressure represents the greatest barrier against drug diffusion into the depth of the tumor. Biometric nanomotors highlight the possibility of enhanced deep penetration and improve cellular uptake. However, control of their directionality remains difficult to achieve. Herein, we report cysteine-arginine-glutamic acid-lysine-alanine (CREKA)-modified ceria@polydopamine nanobowls as tumor microenvironment-fueled nanoscale motors for positive chemotaxis into the tumor depth or toward tumor cells. Upon laser irradiation, this nanoswimmer rapidly depletes the tumor microenvironment-specific hydrogen peroxide (H2O2) in the nanobowl, contributing to a self-generated gradient and subsequently propulsion (9.5 μm/s at 46 °C). Moreover, the asymmetrical modification of CREKA on nanobowls could automatically reconfigure the motion direction toward tumor depth or tumor cells in response to receptor-ligand interaction, leading to a deep penetration (70 μm in multicellular spheroids) and enhanced antitumor effects over conventional nanomedicine-induced chemo-photothermal therapy (tumor growth inhibition rate: 84.2% versus 56.9%). Thus, controlling the direction of nanomotors holds considerable potential for improved antitumor responses, especially in solid tumors with high tumor interstitial pressure.
Collapse
Affiliation(s)
- Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Mingchen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
8
|
Žiemytė M, Escudero A, Díez P, Ferrer MD, Murguía JR, Martí-Centelles V, Mira A, Martínez-Máñez R. Ficin-Cyclodextrin-Based Docking Nanoarchitectonics of Self-Propelled Nanomotors for Bacterial Biofilm Eradication. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4412-4426. [PMID: 37332683 PMCID: PMC10269336 DOI: 10.1021/acs.chemmater.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/20/2023]
Abstract
Development of bioinspired nanomotors showing effective propulsion and cargo delivery capabilities has attracted much attention in the last few years due to their potential use in biomedical applications. However, implementation of this technology in realistic settings is still a barely explored field. Herein, we report the design and application of a multifunctional gated Janus platinum-mesoporous silica nanomotor constituted of a propelling element (platinum nanodendrites) and a drug-loaded nanocontainer (mesoporous silica nanoparticle) capped with ficin enzyme modified with β-cyclodextrins (β-CD). The engineered nanomotor is designed to effectively disrupt bacterial biofilms via H2O2-induced self-propelled motion, ficin hydrolysis of the extracellular polymeric matrix (EPS) of the biofilm, and controlled pH-triggered cargo (vancomycin) delivery. The effective synergic antimicrobial activity of the nanomotor is demonstrated in the elimination of Staphylococcus aureus biofilms. The nanomotor achieves 82% of EPS biomass disruption and a 96% reduction in cell viability, which contrasts with a remarkably lower reduction in biofilm elimination when the components of the nanomotors are used separately at the same concentrations. Such a large reduction in biofilm biomass in S. aureus has never been achieved previously by any conventional therapy. The strategy proposed suggests that engineered nanomotors have great potential for the elimination of biofilms.
Collapse
Affiliation(s)
- Miglė Žiemytė
- Genomics
& Health Department, FISABIO Foundation, 46020 València, Spain
| | - Andrea Escudero
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - Paula Díez
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - María D. Ferrer
- Genomics
& Health Department, FISABIO Foundation, 46020 València, Spain
- CIBER of
Epidemiology and Public Health (CIBERESP), Instituto Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Cami
de Vera s/n, 46022 València, Spain
| | - Jose R. Murguía
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, València, Universitat
Politècnica de València, Centro de Investigación
Príncipe Felipe, 46012 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - Alex Mira
- Genomics
& Health Department, FISABIO Foundation, 46020 València, Spain
- CIBER of
Epidemiology and Public Health (CIBERESP), Instituto Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Cami
de Vera s/n, 46022 València, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, València, Universitat
Politècnica de València, Centro de Investigación
Príncipe Felipe, 46012 València, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Cami
de Vera s/n, 46022 València, Spain
| |
Collapse
|
9
|
Keller S, Teora SP, Keskin A, Daris LJC, Samuels NAPE, Boujemaa M, Wilson DA. Spatial Control over Catalyst Positioning for Increased Micromotor Efficiency. Gels 2023; 9:gels9020164. [PMID: 36826334 PMCID: PMC9957166 DOI: 10.3390/gels9020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Motion is influenced by many different aspects of a micromotor's design, such as shape, roughness and the type of materials used. When designing a motor, asymmetry is the main requirement to take into account, either in shape or in catalyst distribution. It influences both speed and directionality since it dictates the location of propulsion force. Here, we combine asymmetry in shape and asymmetry in catalyst distribution to study the motion of soft micromotors. A microfluidic method is utilized to generate aqueous double emulsions, which upon UV-exposure form asymmetric microgels. Taking advantage of the flexibility of this method, we fabricated micromotors with homogeneous catalyst distribution throughout the microbead and micromotors with different degrees of catalyst localization within the active site. Spatial control over catalyst positioning is advantageous since less enzyme is needed for the same propulsion speed as the homogeneous system and it provides further confinement and compartmentalization of the catalyst. This proof-of-concept of our new design will make the use of enzymes as driving forces for motors more accessible, as well as providing a new route for compartmentalizing enzymes at interfaces without the need for catalyst-specific functionalization.
Collapse
|
10
|
Raj RR, Shields CW, Gupta A. Two-dimensional diffusiophoretic colloidal banding: optimizing the spatial and temporal design of solute sinks and sources. SOFT MATTER 2023; 19:892-904. [PMID: 36648425 DOI: 10.1039/d2sm01549h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we study a dipole system, i.e., one source and one sink, and discover that interdipole diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient of solute at the interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e., four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients.
Collapse
Affiliation(s)
- Ritu R Raj
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
| | - C Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
11
|
Fusi AD, Li Y, Llopis‐Lorente A, Patiño T, van Hest JCM, Abdelmohsen LKEA. Achieving Control in Micro-/Nanomotor Mobility. Angew Chem Int Ed Engl 2023; 62:e202214754. [PMID: 36413146 PMCID: PMC10107182 DOI: 10.1002/anie.202214754] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors' chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.
Collapse
Affiliation(s)
- Alexander D. Fusi
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Yudong Li
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - A. Llopis‐Lorente
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Institute of Molecular Recognition and Technological Development (IDM)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - Tania Patiño
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Jan C. M. van Hest
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Loai K. E. A. Abdelmohsen
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| |
Collapse
|
12
|
Cai L, Xu D, Zhang Z, Li N, Zhao Y. Tailoring Functional Micromotors for Sensing. RESEARCH 2023; 6:0044. [PMID: 37040517 PMCID: PMC10078326 DOI: 10.34133/research.0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Micromotors are identified as a promising candidate in the field of sensing benefiting from their capacity of autonomous movement. Here, a review on the development of tailoring micromotors for sensing is presented, covering from their propulsion mechanisms and sensing strategies to applications. First, we concisely summarize the propulsion mechanism of micromotors involving fuel-based propulsion and fuel-free propulsion introducing their principles. Then, emphasis is laid to the sensing stratagems of the micromotors including speed-based sensing strategy, fluorescence-based sensing strategy, and other strategies. We listed typical examples of different sensing stratagems. After that, we introduce the applications of micromotors in sensing fields including environmental science, food safety, and biomedical fields. Finally, we discuss the challenges and prospects of the micromotors tailored for sensing. We believe that this comprehensive review can help readers to catch the research frontiers in the field of sensing and thus to burst out new ideas.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zeyou Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute,University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
13
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
14
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
15
|
Lyu X, Chen J, Liu J, Peng Y, Duan S, Ma X, Wang W. Reversing a Platinum Micromotor by Introducing Platinum Oxide. Angew Chem Int Ed Engl 2022; 61:e202201018. [PMID: 35366368 DOI: 10.1002/anie.202201018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Understanding and controlling the swimming direction of a synthetic nano- and micromotor holds fundamental and applied significance. Here, we focus on platinum-containing Janus colloids that catalytically decompose H2 O2 into O2 , an archetypical model of chemical micromotor. We discover that platinum oxides (primarily PtO) are produced on Pt films sputter-coated in O2 plasma, and PtO reverses the motor possibly by self-electrophoresis. Using this knowledge, micromotors moving in either direction were fabricated by intentionally introducing or removing PtO. These findings challenge the conventional wisdom that a Pt micromotor is powered by Pt alone, and open up new avenues for controlling the swimming directions of a micro- and nanomachine.
Collapse
Affiliation(s)
- Xianglong Lyu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.,Current address: Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Jingyuan Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.,Current address: Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Shifang Duan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Lyu X, Chen J, Liu J, Peng Y, Duan S, Ma X, Wang W. Reversing A Platinum Micromotor by Introducing Platinum Oxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xianglong Lyu
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Jingyuan Chen
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Jiayu Liu
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Yixin Peng
- Harbin Institute of Technology Shenzhen School of Computer Science and Technology School of Materials Science and Engineering CHINA
| | - Shifang Duan
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Xing Ma
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Wei Wang
- Harbin Institute of Technology (Shenzhen) Xili University Town, HIT Campus Shenzhen CHINA
| |
Collapse
|
17
|
Surface Roughening of Pt-Polystyrene Spherical Janus Micromotors for Enhanced Motion Speed. MICROMACHINES 2022; 13:mi13040555. [PMID: 35457860 PMCID: PMC9029801 DOI: 10.3390/mi13040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022]
Abstract
Spherical Janus micromotors (SJMs) have attracted much attention, and their high-speed motion is highly desired due to their various potential applications. However, the conventional template-deposition method often leads to an active Pt coating with a smooth surface, which is unbeneficial to speed enhancement in terms of catalytic reaction. Here, a facile surface roughening method is presented to fabricate the Pt-polystyrene (PS) SJMs with rough Pt surface (or Ptr-PS SJMs) by plasma-etching the PS colloidal monolayer and then depositing Pt. The Ptr-PS SJMs can exhibit directional motion pushed by the Pt in the various H2O2 solutions, and they show much higher motion speeds than the Pt-PS SJMs with smooth Pt surfaces at the same H2O2 concentration. The Pt-pushed motion is related to the locally asymmetric catalytic reaction of the Pt coating on PS. The speed is also associated with the surface roughness of the Pt coating. The Pt film with a rough surface causes enhanced motion speed due to the improvement of reaction catalytic activity. This work presents a new route to enhancing the motor motion speed, which is of significance in designing micromotors with high-speed motion.
Collapse
|
18
|
Banno T, Sawada D, Toyota T. Construction of Supramolecular Systems That Achieve Lifelike Functions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2391. [PMID: 35407724 PMCID: PMC8999524 DOI: 10.3390/ma15072391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022]
Abstract
The Nobel Prize in Chemistry was awarded in 1987 and 2016 for research in supramolecular chemistry on the "development and use of molecules with structure-specific interactions of high selectivity" and the "design and production of molecular machines", respectively. This confirmed the explosive development of supramolecular chemistry. In addition, attempts have been made in systems chemistry to embody the complex functions of living organisms as artificial non-equilibrium chemical systems, which have not received much attention in supramolecular chemistry. In this review, we explain recent developments in supramolecular chemistry through four categories: stimuli-responsiveness, time evolution, dissipative self-assembly, and hierarchical expression of functions. We discuss the development of non-equilibrium supramolecular systems, including the use of molecules with precisely designed properties, to achieve functions found in life as a hierarchical chemical system.
Collapse
Affiliation(s)
- Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Daichi Sawada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
19
|
Bradley L, Lin X, Chen Y, Asadinamin M, Ai B, Zhao Y. Janus Particles with Flower-like Patches Prepared by Shadow Sphere Lithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13637-13644. [PMID: 34661420 DOI: 10.1021/acs.langmuir.1c02155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A general strategy for generating various Janus particles (JPs) based on shadow sphere lithography (SSL) by varying incident and azimuthal angles, as well as deposition numbers is introduced, forming well-identified flower-like patches on microsphere monolayers. An in-house simulation program is worked out to predict the patch morphology with complicated fabrication parameters. The predicted patch morphology matches quite well that of experimentally produced JPs. The relationships between patch shape/area/size/and incident angle/deposition numbers are quantitatively determined by calculating morphology and transmission spectrum correlations, which facilitated further implementation of SSL in fabricating more varieties of JPs. Such an SSL strategy can be used to create JPs with anticipated patch morphology and uniformity that may be used for self-assembly, drug delivery, or plasmonic sensors as well as exploring some fundamental principles relating to the properties of nanostructures.
Collapse
Affiliation(s)
- Layne Bradley
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Xiangxin Lin
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yanjun Chen
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Mona Asadinamin
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P.R. China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing 400044, P.R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Zhu X, Gao Y, Mhana R, Yang T, Hanson BL, Yang X, Gong J, Wu N. Synthesis and Propulsion of Magnetic Dimers under Orthogonally Applied Electric and Magnetic Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9151-9161. [PMID: 34292729 DOI: 10.1021/acs.langmuir.1c01329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anisotropic particles have been widely used to make micro/nanomotors that convert chemical, ultrasonic, electrical, or magnetic energy into mechanical energy. The moving directions of most colloidal motors are, however, difficult to control. For example, asymmetric dimers with two lobes of different sizes, ζ-potential, or chemical composition have shown rich propulsion behaviors under alternating current (AC) electric fields due to unbalanced electrohydrodynamic flow. While they always propel in a direction perpendicular to the applied electric field, their moving directions along the substrate are hard to control, limiting their applications for cargo delivery. Inspired by two separate engine and steering wheel systems in automobiles, we use orthogonally applied AC electric field and direct current (DC) magnetic field to control the dimer's speed and direction independently. To this end, we first synthesize magnetic dimers by coating dopamine-functionalized nanoparticles on geometrically asymmetric polystyrene dimers. We further characterize their static and dynamic susceptibilities by measuring the hysteresis diagram and rotation speed experimentally and comparing them with theoretical predictions. The synthesized dimers align their long axes quickly with a planar DC magnetic field, allowing us to control the particles' orientation accurately. The propulsion speed of the dimers, on the other hand, is tunable by an AC electric field applied perpendicularly to the substrate. As a result, we can direct the particle's motion with predesigned trajectories of complex shapes. Our bulk-synthesis approach has the potential to make other types of magnetically anisotropic particles. And the combination of electric and magnetic fields will help pave the way for the assembly of magnetically anisotropic particles into complex structures.
Collapse
Affiliation(s)
- Xingrui Zhu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yan Gao
- Department of Metallurgical and Material Science, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ramona Mhana
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Tao Yang
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Benjamin L Hanson
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xingfu Yang
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jingjing Gong
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
21
|
Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proc Natl Acad Sci U S A 2021; 118:2101807118. [PMID: 34183394 DOI: 10.1073/pnas.2101807118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.
Collapse
|
22
|
Sharan P, Nsamela A, Lesher-Pérez SC, Simmchen J. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007403. [PMID: 33949106 DOI: 10.1002/smll.202007403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 05/16/2023]
Abstract
This paper provides an updated review of recent advances in microfluidics applied to artificial and biohybrid microswimmers. Sharing the common regime of low Reynolds number, the two fields have been brought together to take advantage of the fluid characteristics at the microscale, benefitting microswimmer research multifold. First, microfluidics offer simple and relatively low-cost devices for high-fidelity production of microswimmers made of organic and inorganic materials in a variety of shapes and sizes. Microscale confinement and the corresponding fluid properties have demonstrated differential microswimmer behaviors in microchannels or in the presence of various types of physical or chemical stimuli. Custom environments to study these behaviors have been designed in large part with the help of microfluidics. Evaluating microswimmers in increasingly complex lab environments such as microfluidic systems can ensure more effective implementation for in-field applications. The benefits of microfluidics for the fabrication and evaluation of microswimmers are balanced by the potential use of microswimmers for sample manipulation and processing in microfluidic systems, a large obstacle in diagnostic and other testing platforms. In this review various ways in which these two complementary technology fields will enhance microswimmer development and implementation in various fields are introduced.
Collapse
Affiliation(s)
- Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
23
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|
24
|
Díez P, Lucena-Sánchez E, Escudero A, Llopis-Lorente A, Villalonga R, Martínez-Máñez R. Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS NANO 2021; 15:4467-4480. [PMID: 33677957 PMCID: PMC8719758 DOI: 10.1021/acsnano.0c08404] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Development of bioinspired nanomachines with an efficient propulsion and cargo-towing has attracted much attention in the last years due to their potential biosensing, diagnostics, and therapeutics applications. In this context, self-propelled synthetic nanomotors are promising carriers for intelligent and controlled release of therapeutic payloads. However, the implementation of this technology in real biomedical applications is still facing several challenges. Herein, we report the design, synthesis, and characterization of innovative multifunctional gated platinum-mesoporous silica nanomotors constituted of a propelling element (platinum nanodendrite face), a drug-loaded nanocontainer (mesoporous silica nanoparticle face), and a disulfide-containing oligo(ethylene glycol) chain (S-S-PEG) as a gating system. These Janus-type nanomotors present an ultrafast self-propelled motion due to the catalytic decomposition of low concentrations of hydrogen peroxide. Likewise, nanomotors exhibit a directional movement, which drives the engines toward biological targets, THP-1 cancer cells, as demonstrated using a microchip device that mimics penetration from capillary to postcapillary vessels. This fast and directional displacement facilitates the rapid cellular internalization and the on-demand specific release of a cytotoxic drug into the cytosol, due to the reduction of the disulfide bonds of the capping ensemble by intracellular glutathione levels. In the microchip device and in the absence of fuel, nanomotors are neither able to move directionally nor reach cancer cells and deliver their cargo, revealing that the fuel is required to get into inaccessible areas and to enhance nanoparticle internalization and drug release. Our proposed nanosystem shows many of the suitable characteristics for ideal biomedical destined nanomotors, such as rapid autonomous motion, versatility, and stimuli-responsive controlled drug release.
Collapse
Affiliation(s)
- Paula Díez
- Instituto
Interuniversitario de Investigacio′n de Reconocimiento Molecular
y Desarrollo Tecnolo′gico (IDM), Universitat Politècnica
de València, Universitat de València,
Spain, Camino de Vera s/n, 46022 València, Spain
- Unidad
Mixta UPV-CIPF de Investigacio′n en Mecanismos de Enfermedades
y Nanomedicina, Valencia, Universitat Politècnica
de València, Centro
de Investigacio′n Príncipe Felipe, 46012 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Elena Lucena-Sánchez
- Instituto
Interuniversitario de Investigacio′n de Reconocimiento Molecular
y Desarrollo Tecnolo′gico (IDM), Universitat Politècnica
de València, Universitat de València,
Spain, Camino de Vera s/n, 46022 València, Spain
- Unidad
Mixta UPV-CIPF de Investigacio′n en Mecanismos de Enfermedades
y Nanomedicina, Valencia, Universitat Politècnica
de València, Centro
de Investigacio′n Príncipe Felipe, 46012 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Andrea Escudero
- Instituto
Interuniversitario de Investigacio′n de Reconocimiento Molecular
y Desarrollo Tecnolo′gico (IDM), Universitat Politècnica
de València, Universitat de València,
Spain, Camino de Vera s/n, 46022 València, Spain
- Unidad
Mixta UPV-CIPF de Investigacio′n en Mecanismos de Enfermedades
y Nanomedicina, Valencia, Universitat Politècnica
de València, Centro
de Investigacio′n Príncipe Felipe, 46012 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Antoni Llopis-Lorente
- Instituto
Interuniversitario de Investigacio′n de Reconocimiento Molecular
y Desarrollo Tecnolo′gico (IDM), Universitat Politècnica
de València, Universitat de València,
Spain, Camino de Vera s/n, 46022 València, Spain
- Unidad
Mixta UPV-CIPF de Investigacio′n en Mecanismos de Enfermedades
y Nanomedicina, Valencia, Universitat Politècnica
de València, Centro
de Investigacio′n Príncipe Felipe, 46012 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Reynaldo Villalonga
- Nanosensors
& Nanomachines Group, Department of Analytical Chemistry, Faculty
of Chemistry, Complutense University of
Madrid, 28040 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigacio′n de Reconocimiento Molecular
y Desarrollo Tecnolo′gico (IDM), Universitat Politècnica
de València, Universitat de València,
Spain, Camino de Vera s/n, 46022 València, Spain
- Unidad
Mixta UPV-CIPF de Investigacio′n en Mecanismos de Enfermedades
y Nanomedicina, Valencia, Universitat Politècnica
de València, Centro
de Investigacio′n Príncipe Felipe, 46012 València, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- E-mail:
| |
Collapse
|
25
|
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of Immune Responses by Particle Size and Shape. Front Immunol 2021; 11:607945. [PMID: 33679696 PMCID: PMC7927956 DOI: 10.3389/fimmu.2020.607945] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.
Collapse
Affiliation(s)
- Maksim V. Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Shashi Thutupalli
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Cai L, Xu D, Chen H, Wang L, Zhao Y. Designing bioactive micro-/nanomotors for engineered regeneration. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
28
|
Hu L, Wang N, Tao K, Miao J, Kim YJ. Circular steering of gold–nickel–platinum micro-vehicle using singular off-center nanoengine. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2020. [DOI: 10.1007/s41315-020-00146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Toyota T, Sugiyama H, Hiroi S, Ito H, Kitahata H. Chemically artificial rovers based on self-propelled droplets in micrometer-scale environment. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Hu L, Wang N, Lim YD, Miao J. Chemical reaction dependency, magnetic field and surfactant effects on the propulsion of disk‐like micromotor and its application for
E. coli
transportation. NANO SELECT 2020. [DOI: 10.1002/nano.202000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Liangxing Hu
- School of Mechanical and Aerospace Engineering Nanyang Technological University Nanyang 639798 Singapore
| | - Nan Wang
- Department of Science and Math Singapore University of Technology and Design Singapore 487372 Singapore
| | - Yu Dian Lim
- Centre for Micro‐/Nano‐electronics (NOVITAS), School of Electrical and Electronics Engineering Nanyang Technological University Nanyang 639798 Singapore
| | - Jianmin Miao
- School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
31
|
Chang F, Ouhajji S, Townsend A, Sanogo Lacina K, van Ravensteijn BGP, Kegel WK. Controllable synthesis of patchy particles with tunable geometry and orthogonal chemistry. J Colloid Interface Sci 2020; 582:333-341. [PMID: 32827958 DOI: 10.1016/j.jcis.2020.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023]
Abstract
HYPOTHESIS Self-assembly using anisotropic colloidal building blocks may lead to superstructures similar to those found in molecular systems yet can have unique optical, electronic, and structural properties. To widen the spectrum of achievable superstructures and related properties, significant effort was devoted to the synthesis of new types of colloidal particles. Despite these efforts, the preparation of anisotropic colloids carrying chemically orthogonal anchor groups on distinct surface patches remains an elusive challenge. EXPERIMENTS We report a simple yet effective method for synthesizing patchy particles via seed-mediated heterogeneous nucleation. Key to this procedure is the use of 3-(trimethoxysilyl)propyl methacrylate (TPM) or 3-(trimethoxysilyl)propyl acrylate (TMSPA), which can form patches on a variety of functional polymer seeds via a nucleation and growth mechanism. FINDINGS A family of anisotropic colloids with tunable numbers of patches and patch arrangements were prepared. By continuously feeding TPM or TMSPA the geometry of the colloids could be adjusted accurately. Furthermore, the patches could be reshaped by selectively polymerizing and/or solvating the individual colloidal compartments. Relying on the chemically distinct properties of the TPM/TMSPA and seed-derived domains, both types of patches could be functionalized independently. Combining detailed control over the patch chemistry and geometry opens new avenues for colloidal self-assembly.
Collapse
Affiliation(s)
- Fuqiang Chang
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Samia Ouhajji
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Alice Townsend
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Kanvaly Sanogo Lacina
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Bas G P van Ravensteijn
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Willem K Kegel
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
32
|
Jamaluddin SJS, Khaothong K, Tinsley MR, Showalter K. Photochemical motion control of surface active Belousov-Zhabotinsky droplets. CHAOS (WOODBURY, N.Y.) 2020; 30:083143. [PMID: 32872820 DOI: 10.1063/5.0016252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Photochemical control of the motion of surface active Belousov-Zhabotinsky (BZ) droplets in an oil-surfactant medium is carried out with illumination intensity gradients. Droplet motion is analyzed under conditions of constant uniform illumination and a constant illumination gradient. Control of droplet motion is developed by testing different illumination gradients. Complex hypotrochoid target trajectories are tracked by BZ droplets illuminated with two-dimensional V-shaped gradients.
Collapse
Affiliation(s)
- Syed Jazli Syed Jamaluddin
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Kritsana Khaothong
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Mark R Tinsley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| |
Collapse
|
33
|
Gibbs JG. Shape- and Material-Dependent Self-Propulsion of Photocatalytic Active Colloids, Interfacial Effects, and Dynamic Interparticle Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6938-6947. [PMID: 31738561 DOI: 10.1021/acs.langmuir.9b02866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Active colloids powered by self-generated, local chemical concentration gradients exhibit dynamics that are a function of the particles' morphology and material properties. These characteristics also govern how the active colloids interact with surfaces, including other particles and nearby walls. Thus, by targeted design, the dynamic behavior, on average, can be engineered, despite a lack of "external" control such as an applied magnetic field. This allows for the development of new applications and the investigation of novel effects that arise when self-propelled active colloids have complex shapes and material composition. Here, we explore some of our recent work on this topic including the dynamics and interactions of photoactivated, self-propelled colloids with such multifaceted properties. We also delve into some special cases, such as a new variety of active particle-particle interaction that we recently developed, in which direct contact between the active colloids is forbidden, and the direction of propulsion for pairs of particles is correlated. The unifying theme of the work highlighted herein is the relationship between the physical, chemical, and material properties of active colloids and their motive behavior, the understanding of which opens up a wide range of new possibilities as we move toward the ultimate goal of realizing functional, man-made micro- and nanomachinery.
Collapse
|
34
|
Popescu MN. Chemically Active Particles: From One to Few on the Way to Many. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6861-6870. [PMID: 32233489 PMCID: PMC7331135 DOI: 10.1021/acs.langmuir.9b03973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Indexed: 06/01/2023]
Abstract
Chemically active particles suspended in a liquid solution can achieve self-motility by locally changing the chemical composition of the solution via catalytic reactions at their surfaces. They operate intrinsically out of equilibrium, continuously extracting free energy from the environment to power the dissipative self-motility. The effective interactions involving active particles are, in general, nonreciprocal and anisotropic, even if the particles have simple shapes (e.g., Janus spheres). Accordingly, for chemically active particles a very rich behavior of collective motion and self-assembly may be expected to emerge, including phenomena such as microphase separation in the form of kinetically stable, finite-sized aggregates. Here, I succinctly review a number of recent experimental studies that demonstrate the self-assembly of structures, involving chemically active Janus particles, which exhibit various patterns of motion. These examples illustrate concepts such as "motors made out of motors" (as suggestively named by Fischer [Fischer, P. Nat. Phys. 2018, 14, 1072]). The dynamics of assembly and structure formation observed in these systems can provide benchmark, in-depth testing of the current understanding of motion and effective interactions produced by chemical activity. Finally, one notes that these significant achievements are likely just the beginning of the field. Recently reported particles endowed with time-dependent chemical activity or switchable reaction mechanisms open the way for exciting developments, such as periodic reshaping of self-assembled structures based on man-made internal clocks.
Collapse
|
35
|
De Matteis V, Rizzello L, Cascione M, Liatsi-Douvitsa E, Apriceno A, Rinaldi R. Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1083. [PMID: 32486479 PMCID: PMC7353186 DOI: 10.3390/nano10061083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Abstract
: In the past years, there is a growing interest in the application of nanoscaled materials in cancer therapy because of their unique physico-chemical properties. However, the dark side of their usability is limited by their possible toxic behaviour and accumulation in living organisms. Starting from this assumption, the search for a green alternative to produce nanoparticles (NPs) or the discovery of green molecules, is a challenge in order to obtain safe materials. In particular, gold (Au NPs) and silver (Ag NPs) NPs are particularly suitable because of their unique physico-chemical properties, in particular plasmonic behaviour that makes them useful as active anticancer agents. These NPs can be obtained by green approaches, alternative to conventional chemical methods, owing to the use of phytochemicals, carbohydrates, and other biomolecules present in plants, fungi, and bacteria, reducing toxic effects. In addition, we analysed the use of green and stimuli-responsive polymeric bio-inspired nanovesicles, mainly used in drug delivery applications that have revolutionised the way of drugs supply. Finally, we reported the last examples on the use of metallic and Au NPs as self-propelling systems as new concept of nanorobot, which is able to respond and move towards specific physical or chemical stimuli in biological entities.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Loris Rizzello
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10–12, 08028 Barcelona, Spain; (L.R.); (A.A.)
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Eva Liatsi-Douvitsa
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK;
| | - Azzurra Apriceno
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10–12, 08028 Barcelona, Spain; (L.R.); (A.A.)
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| |
Collapse
|
36
|
Eloul S, Poon WCK, Farago O, Frenkel D. Reactive Momentum Transfer Contributes to the Self-Propulsion of Janus Particles. PHYSICAL REVIEW LETTERS 2020; 124:188001. [PMID: 32441974 DOI: 10.1103/physrevlett.124.188001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
We report simulations of a spherical Janus particle undergoing exothermic surface reactions around one pole only. Our model excludes self-phoretic transport by design. Nevertheless, net motion occurs from direct momentum transfer between solvent and colloid, with speed scaling as the square root of the energy released during the reaction. We find that such propulsion is dominated by the system's short-time response, when neither the time dependence of the flow around the colloid nor the solvent compressibility can be ignored. Our simulations agree reasonably well with previous experiments.
Collapse
Affiliation(s)
- Shaltiel Eloul
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Wilson C K Poon
- SUPA and School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Oded Farago
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Biomedical Engineering Department, Ben Gurion University, Be'er Sheva 84105, Israel
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
37
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
38
|
Xiao Z, Chen J, Duan S, Lv X, Wang J, Ma X, Tang J, Wang W. Bimetallic coatings synergistically enhance the speeds of photocatalytic TiO2 micromotors. Chem Commun (Camb) 2020; 56:4728-4731. [DOI: 10.1039/d0cc00212g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bimetallic cap containing sputtered silver is a better catalyst that significantly improves the performance of catalytically powered micromotors.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Jingyuan Chen
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Shifang Duan
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Xianglong Lv
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Jizhuang Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong 999077
- China
| | - Xing Ma
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
- Flexible Printed Electronic Technology Center
| | - Jinyao Tang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong 999077
- China
- State Key Laboratory of Synthetic Chemistry
| | - Wei Wang
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| |
Collapse
|
39
|
Zhao L, Xie S, Liu Y, Liu Q, Song X, Li X. Janus micromotors for motion-capture-lighting of bacteria. NANOSCALE 2019; 11:17831-17840. [PMID: 31552986 DOI: 10.1039/c9nr05503g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid and sensitive identification of bacteria has long been a major challenge in quality control, environmental monitoring and food safety. In the current study, the "motion-capture-lighting" strategy is proposed via integration of motion-enhanced capture of bacteria and capture-induced fluorescence turn-on of micromotors. Compared with the commonly used microtubes and microparticles, micromotors of flexible fiber rods could offer multiple interactions with the bacterial surface with less steric hindrance. Janus fiber rods (JFRs) are prepared by cryocutting of aligned fibers prepared by side-by-side electrospinning. Catalase is grafted on one side of JFRs to produce oxygen bubbles for propulsion of Janus micromotors (JMs), and mannose is conjugated on the other side for specific recognition of FimH proteins from fimbriae on the bacterial surface. The biphasic Janus structure of JFRs and the separate grafting of catalase and mannose on the opposite sides of JMs are confirmed after fluorescent labelling. JMs with aspect ratios of 0.5, 1, 2 and 4 are fabricated, and the aspect ratios of JMs show significant effects on the tracking trajectories and motion speed. JMs with the aspect ratio of 2 exhibit significantly higher magnitudes of mean square displacement (MSD) with a directional motion trajectory, leading to higher bacterial capture and larger fluorescence intensity changes. The bacteria capture leads to lighting up of JMs due to the aggregation-induced emission (AIE) effect of tetraphenylethene (TPE) derivatives. Under an ultraviolet lamp, the fluorescence color of JM suspensions turns from blue to bluish-green and to green after incubation with E. coli of 102 and 105 CFU mL-1, respectively. The fluorescence intensities of JM suspensions could be fitted to an equation versus bacterial concentrations, and the limit of detection (LOD) was around 45 CFU mL-1 within 1 min. Thus, this study demonstrates a motion-capture-lighting strategy for visual, rapid and real-time detection of bacteria without complicated sample pretreatment, expensive apparatus, and trained operators.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.
| | | | | | | | | | | |
Collapse
|
40
|
Chamolly A, Lauga E. Stochastic dynamics of dissolving active particles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:88. [PMID: 31300918 DOI: 10.1140/epje/i2019-11854-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
The design of artificial microswimmers has generated significant research interest in recent years, for promise in applications such as nanomotors and targeted drug-delivery. However, many current designs suffer from a common problem, namely the swimmers remain in the fluid indefinitely, posing risks of clogging and damage. Inspired by recently proposed experimental designs, we investigate mathematically the dynamics of degradable active particles. We develop and compare two distinct chemical models for the decay of a swimmer, taking into account the material composition and nature of the chemical or enzymatic reaction at its surface. These include a model for dissolution without a reaction, as well as models for a reacting swimmer studied in the limit of large and small Damköhler number. A new dimensionless parameter emerges that allows the classification of colloids into ballistic and diffusive type. Using this parameter, we perform an asymptotic analysis to derive expressions for colloid lifetimes and their total mean squared displacement from release and validate these by numerical Monte Carlo simulations of the associated Langevin dynamics. Supported by general scaling relationships, our theoretical results provide new insight into the experimental applicability of a wide range of designs for degradable active colloids.
Collapse
Affiliation(s)
- Alexander Chamolly
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK
| |
Collapse
|
41
|
Carenza LN, Gonnella G, Lamura A, Negro G, Tiribocchi A. Lattice Boltzmann methods and active fluids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:81. [PMID: 31250142 DOI: 10.1140/epje/i2019-11843-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 05/24/2023]
Abstract
We review the state of the art of active fluids with particular attention to hydrodynamic continuous models and to the use of Lattice Boltzmann Methods (LBM) in this field. We present the thermodynamics of active fluids, in terms of liquid crystals modelling adapted to describe large-scale organization of active systems, as well as other effective phenomenological models. We discuss how LBM can be implemented to solve the hydrodynamics of active matter, starting from the case of a simple fluid, for which we explicitly recover the continuous equations by means of Chapman-Enskog expansion. Going beyond this simple case, we summarize how LBM can be used to treat complex and active fluids. We then review recent developments concerning some relevant topics in active matter that have been studied by means of LBM: spontaneous flow, self-propelled droplets, active emulsions, rheology, active turbulence, and active colloids.
Collapse
Affiliation(s)
- Livio Nicola Carenza
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy.
| | - Antonio Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppe Negro
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Adriano Tiribocchi
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| |
Collapse
|
42
|
Fernández-Medina M, Qian X, Hovorka O, Städler B. Disintegrating polymer multilayers to jump-start colloidal micromotors. NANOSCALE 2019; 11:733-741. [PMID: 30565629 DOI: 10.1039/c8nr08071b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal systems with autonomous mobility are attractive alternatives to static particles for diverse applications. We present a complementary approach using pH-triggered disintegrating polymer multilayers for self-propulsion of swimmers. It is illustrated both experimentally and theoretically that homogenously coated swimmers exhibit higher velocity in comparison to their Janus-shaped counterparts. These swimmers show directional and random motion in microfluidic channels with a steep and shallow pH gradient, respectively. Further, a higher number of deposited polymer multilayers, steeper pH gradients and lower mass of the swimmers result in higher self-propulsion velocities. This new self-propulsion mechanism opens up unique opportunities to design, for instance, fast and yet biocompatible swimmers using the diverse tools of polymer chemistry to custom-synthesise the polymeric building blocks to assemble multilayers.
Collapse
Affiliation(s)
- Marina Fernández-Medina
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | |
Collapse
|
43
|
Jalilvand Z, Pawar AB, Kretzschmar I. Experimental Study of the Motion of Patchy Particle Swimmers Near a Wall. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15593-15599. [PMID: 30403351 DOI: 10.1021/acs.langmuir.8b03220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we demonstrate our ability to precisely tailor the surface activity of self-propelled active colloids by varying the size of the active area. The quasi two-dimensional autonomous motion of spherical patchy particle swimmers is studied in a chemical environment in the vicinity of a solid boundary. Oxidative decomposition of hydrogen peroxide into oxygen and water occurs only on a well-defined Pt-coated section of the polystyrene particle surface. The asymmetric distribution of product molecules interacting with the particle leads to the autonomous motion, which is characterized as the patch size varies from 11 to 25 to 50% of the particle surface area. The phoretic motion of patchy particle swimmers is analytically predicted by a model developed by Popescu et al. and shows good agreement with the experimentally observed velocities when the influence of the wall on the preferential rotational motion of the particles near the solid boundary is considered. The study illustrates the potential to precisely engineer the motion of particles by controlling their properties rather than depending on changes in the environment.
Collapse
Affiliation(s)
- Zohreh Jalilvand
- Department of Chemical Engineering , City College of the City University of New York (CUNY) , 140th Street & Convent Avenue , New York , New York 10031 , United States
| | - Amar B Pawar
- Department of Chemical Engineering , City College of the City University of New York (CUNY) , 140th Street & Convent Avenue , New York , New York 10031 , United States
| | - Ilona Kretzschmar
- Department of Chemical Engineering , City College of the City University of New York (CUNY) , 140th Street & Convent Avenue , New York , New York 10031 , United States
| |
Collapse
|
44
|
Chi Q, Wang Z, Tian F, You J, Xu S. A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme. MICROMACHINES 2018; 9:E537. [PMID: 30424470 PMCID: PMC6215315 DOI: 10.3390/mi9100537] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Micromotors are extensively applied in various fields, including cell separation, drug delivery and environmental protection. Micromotors with high speed and good biocompatibility are highly desirable. Bubble-driven micromotors, propelled by the recoil effect of bubbles ejection, show good performance of motility. The toxicity of concentrated hydrogen peroxide hampers their practical applications in many fields, especially biomedical ones. In this paper, the latest progress was reviewed in terms of constructing fast, bubble-driven micromotors which use biocompatible fuels, including low-concentration fuels, bioactive fluids, and enzymes. The geometry of spherical and tubular micromotors could be optimized to acquire good motility using a low-concentration fuel. Moreover, magnesium- and aluminum-incorporated micromotors move rapidly in water if the passivation layer is cleared in the reaction process. Metal micromotors demonstrate perfect motility in native acid without any external chemical fuel. Several kinds of enzymes, including catalase, glucose oxidase, and ureases were investigated to serve as an alternative to conventional catalysts. They can propel micromotors in dilute peroxide or in the absence of peroxide.
Collapse
Affiliation(s)
- Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhen Wang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Feifei Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Ji'an You
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China.
| | - Shuang Xu
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
45
|
Wu M, Koizumi Y, Nishiyama H, Tomita I, Inagi S. Buoyant force-induced continuous floating and sinking of Janus micromotors. RSC Adv 2018; 8:33331-33337. [PMID: 35548146 PMCID: PMC9086439 DOI: 10.1039/c8ra05844j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/20/2018] [Indexed: 11/21/2022] Open
Abstract
A novel bubble-induced ultrafast floating and sinking of micromotors based on the difference between buoyant force and gravity is proposed. Asymmetric micromotors were prepared by modification with Au and Pt layers for the two faces of glassy carbon beads (GCBs) by the bipolar electrodeposition technique. After the accumulation of enough oxygen bubbles by the decomposition of H2O2 at the Pt layer, the upward net force acting on the micromotor drove its movement to the air/solution interface. In order to reverse the direction of net force for the sinking of the micromotors, sodium dodecyl sulfate (SDS) was added into the fuel solution, which could facilitate the release of bubbles and decrease the diameter of the bubbles. However, the lifetime of the bubbles was increased significantly. After the addition of a small amount of salt, the lifetime of the bubbles was obviously reduced. As a consequence, the breakup of bubbles on the micromotor changed the direction of the net force from up to down which pulled the micromotor down to the bottom of the solution. The velocity of the micromotor was dependent on the net force exerted on the micromotor, leading to an ultrafast motion of the micromotor. It still reached 1.2 cm s-1 after 3 h. Moreover, the simple asymmetric deposition technique showed great promise for the further application of the micromotors in bioanalysis and environmental remediation.
Collapse
Affiliation(s)
- Meisheng Wu
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
- Department of Chemistry, College of Sciences, Nanjing Agricultural University 1 Weigang Nanjing 210095 P. R. China
| | - Yuki Koizumi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Hiroki Nishiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| |
Collapse
|
46
|
Hu L, Rehman S, Tao K, Miao J. Characterization on Three-Dimensional Trajectory of Disk-Like Gold-Nickel-Platinum Nanomotor Using Digital Holographic Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201801534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liangxing Hu
- School of Mechanical and Aerospace Engineering; Nanyang Technological University, 50 Nanyang Avenue; Singapore 639798
| | - Shakil Rehman
- Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way; Singapore 138602
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering; Northwestern Polytechnical University, Xi'an; China 710072
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering; Nanyang Technological University, 50 Nanyang Avenue; Singapore 639798
| |
Collapse
|
47
|
Wang LL, Chen L, Zhang J, Duan JM, Wang L, Silber-Li ZH, Zheng X, Cui HH. Efficient Propulsion and Hovering of Bubble-Driven Hollow Micromotors underneath an Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10426-10433. [PMID: 30091934 DOI: 10.1021/acs.langmuir.8b02249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bubble-driven micromotors have attracted substantial interest due to their remarkable self-motile and cargo-delivering abilities in biomedical or environmental applications. Here, we developed a hollow micromotor that experiences fast self-propulsion underneath an air-liquid interface by periodic bubble growth and collapse. The collapsing of a single microbubble induces a ∼1 m·s-1 impulsive jetting flow that instantaneously pushes the micromotor forward. Unlike previously reported micromotors propelled by the recoiling of bubbles, cavitation-induced jetting further utilizes the energy stored in the bubble to propel the micromotor and thus enhances the energy conversion efficiency by 3 orders of magnitude. Four different modes of propulsion are, for the first time, identified by quantifying the dependence of propulsion strength on microbubble size. Meanwhile, the vertical component of the jetting flow counteracts the buoyancy of the micromotor-bubble dimer and facilitates counterintuitive hovering underneath the air-liquid interface. This work not only enriches the understanding of the propulsion mechanism of bubble-driven micromotors but also gives insight into the physical aspects of cavitation bubble dynamics near the air-liquid interface on the microscale.
Collapse
Affiliation(s)
- Lei-Lei Wang
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Li Chen
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jing Zhang
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jin-Ming Duan
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Lei Wang
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Zhan-Hua Silber-Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics , Chinese Academy of Science , Beijing 100190 , China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics , Chinese Academy of Science , Beijing 100190 , China
| | - Hai-Hang Cui
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| |
Collapse
|
48
|
Safdar M, Khan SU, Jänis J. Progress toward Catalytic Micro- and Nanomotors for Biomedical and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703660. [PMID: 29411445 DOI: 10.1002/adma.201703660] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Indexed: 05/22/2023]
Abstract
Synthetic micro- and nanomotors (MNMs) are tiny objects that can autonomously move under the influence of an appropriate source of energy, such as a chemical fuel, magnetic field, ultrasound, or light. Chemically driven MNMs are composed of or contain certain reactive material(s) that convert chemical energy of a fuel into kinetic energy (motion) of the particles. Several different materials have been explored over the last decade for the preparation of a wide variety of MNMs. Here, the discovery of materials and approaches to enhance the efficiency of chemically driven MNMs are reviewed. Several prominent applications of the MNMs, especially in the fields of biomedicine and environmental science, are also discussed, as well as the limitations of existing materials and future research directions.
Collapse
Affiliation(s)
- Muhammad Safdar
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Shahid Ullah Khan
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| |
Collapse
|
49
|
|
50
|
Gregory DA, Ebbens SJ. Symmetrical Catalytically Active Colloids Collectively Induce Convective Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4307-4313. [PMID: 29561153 DOI: 10.1021/acs.langmuir.8b00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although much attention has focused on self-motile asymmetrical catalytically active "Janus" colloids as a route to enable new fluidic transport applications, the motion of symmetrical catalytically active colloids is less investigated. This is despite isotropically active colloids being more accessible and commonly used as supports for heterogeneous catalysis. Here, we addressed this by systematically investigating the motion of platinum-coated colloids capable of isotropically decomposing hydrogen peroxide. We observed the onset of collective convective flow as the colloidal volume fraction increased above a threshold. The ballistic velocities induced by the collective flow were quantified by particle tracking and were found to increase with the volume fraction. We also determined the associated increase in the Péclet number as evidence of the potential to use convection as a simple method to enhance mass transport rates. By determining the persistence lengths, we were able to correlate the magnitude of convective flow with the overall catalytic activity per unit volume. This suggests that the mechanism for the collective flow is driven by chemical activity-induced local density differences. Finally, we discussed these results in the context of potential new fluidic applications and highlighted the role that activity-induced convection may play in experiments designed to investigate self-motile catalytic systems.
Collapse
Affiliation(s)
- David A Gregory
- Department of Chemical and Biological Engineering , University of Sheffield , S3 1JD Sheffield , U.K
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering , University of Sheffield , S3 1JD Sheffield , U.K
| |
Collapse
|