1
|
Bentley SA, Laeverenz-Schlogelhofer H, Anagnostidis V, Cammann J, Mazza MG, Gielen F, Wan KY. Phenotyping single-cell motility in microfluidic confinement. eLife 2022; 11:e76519. [PMID: 36416411 PMCID: PMC9683786 DOI: 10.7554/elife.76519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
The movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell. Comparing two model species - Chlamydomonas reinhardtii (freshwater, 2 cilia), and Pyramimonas octopus (marine, 8 cilia), we detail their highly-stereotyped yet contrasting swimming behaviours and environmental interactions. By measuring the rates and probabilities with which cells transition between a trio of motility states (smooth-forward swimming, quiescence, tumbling or excitable backward swimming), we reconstruct the control network that underlies this gait switching dynamics. A simplified model of cell-roaming in circular confinement reproduces the observed long-term behaviours and spatial fluxes, including novel boundary circulation behaviour. Finally, we establish an assay in which pairs of droplets are fused on demand, one containing a trapped cell with another containing a chemical that perturbs cellular excitability, to reveal how aneural microorganisms adapt their locomotor patterns in real-time.
Collapse
Affiliation(s)
- Samuel A Bentley
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Hannah Laeverenz-Schlogelhofer
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| | - Vasileios Anagnostidis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Jan Cammann
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
| | - Fabrice Gielen
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Kirsty Y Wan
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| |
Collapse
|
2
|
Zhang JM, Ji Q, Duan H. Three-Dimensional Printed Devices in Droplet Microfluidics. MICROMACHINES 2019; 10:E754. [PMID: 31690055 PMCID: PMC6915402 DOI: 10.3390/mi10110754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
Droplet microfluidics has become the most promising subcategory of microfluidics since it contributes numerous applications to diverse fields. However, fabrication of microfluidic devices for droplet formation, manipulation and applications is usually complicated and expensive. Three-dimensional printing (3DP) provides an exciting alternative to conventional techniques by simplifying the process and reducing the cost of fabrication. Complex and novel structures can be achieved via 3DP in a simple and rapid manner, enabling droplet microfluidics accessible to more extensive users. In this article, we review and discuss current development, opportunities and challenges of applications of 3DP to droplet microfluidics.
Collapse
Affiliation(s)
- Jia Ming Zhang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| | - Qinglei Ji
- Department of Production Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
- CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Abstract
Materials science is a fast-evolving area that aims to uncover functional materials with ever more sophisticated properties and functions. For this to happen, new methodologies for materials synthesis, optimization, and preparation are desired. In this context, microfluidic technologies have emerged as a key enabling tool for a low-cost and fast prototyping of materials. Their ability to screen multiple reaction conditions rapidly with a small amount of reagent, together with their unique physico-chemical characteristics, have made microfluidic devices a cornerstone technology in this research field. Among the different microfluidic approaches to materials synthesis, the main contenders can be classified in two categories: continuous-flow and segmented-flow microfluidic devices. These two families of devices present very distinct characteristics, but they are often pooled together in general discussions about the field with seemingly little awareness of the major divide between them. In this perspective, we outline the parallel evolution of those two sub-fields by highlighting the key differences between both approaches, via a discussion of their main achievements. We show how continuous-flow microfluidic approaches, mimicking nature, provide very finely-tuned chemical gradients that yield highly-controlled reaction–diffusion (RD) areas, while segmented-flow microfluidic systems provide, on the contrary, very fast homogenization methods, and therefore well-defined super-saturation regimes inside arrays of micro-droplets that can be manipulated and controlled at the milliseconds scale. Those two classes of microfluidic reactors thus provide unique and complementary advantages over classical batch synthesis, with a drive towards the rational synthesis of out-of-equilibrium states for the former, and the preparation of high-quality and complex nanoparticles with narrow size distributions for the latter.
Collapse
|
4
|
Cheng WL, Sadr R, Dai J, Han A. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels. Biomed Microdevices 2018; 20:72. [DOI: 10.1007/s10544-018-0310-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Abstract
We present a microfluidic chip that enables electrofusion of cells in microdroplets, with exchange of nuclear components. It is shown, to our knowledge for the first time, electrofusion of two HL60 cells, inside a microdroplet. This is the crucial intermediate step for controlled hybridoma formation where a B cell is electrofused with a myeloma cell. We use a microfluidic device consisting of a microchannel structure in PDMS bonded to a glass substrate through which droplets with two differently stained HL60 cells are transported. An array of six recessed platinum electrode pairs is used for electrofusion. When applying six voltage pulses of 2–3 V, the membrane electrical field is about 1 MV/cm for 1 ms. This results in electrofusion of these cells with a fusion yield of around 5%. The operation with individual cell pairs, the appreciable efficiency and the potential to operate in high-throughput (up to 500 cells sec−1) makes the microdroplet fusion technology a promising platform for cell electrofusion, which has the potential to compete with the conventional methods. Besides, this platform is not restricted to cell fusion but is also applicable to various other cell-based assays such as single cell analysis and differentiation assays.
Collapse
|
6
|
González-Estefan JH, Gonidec M, Daro N, Marchivie M, Chastanet G. Extreme downsizing in the surfactant-free synthesis of spin-crossover nanoparticles in a microfluidic flow-focusing junction. Chem Commun (Camb) 2018; 54:8040-8043. [DOI: 10.1039/c8cc02232a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new surfactant-free, flow-focusing droplet microfluidic approach was developed as an important alternative to existing synthesis techniques for the preparation of spin crossover nanoparticles.
Collapse
|
7
|
Cochrane WG, Hackler AL, Cavett VJ, Price AK, Paegel BM. Integrated, Continuous Emulsion Creamer. Anal Chem 2017; 89:13227-13234. [PMID: 29124927 DOI: 10.1021/acs.analchem.7b03070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.
Collapse
Affiliation(s)
- Wesley G Cochrane
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amber L Hackler
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Valerie J Cavett
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander K Price
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
8
|
MacConnell AB, Price AK, Paegel BM. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening. ACS COMBINATORIAL SCIENCE 2017; 19:181-192. [PMID: 28199790 PMCID: PMC5350604 DOI: 10.1021/acscombsci.6b00192] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
DNA-encoded synthesis
is rekindling interest in combinatorial compound
libraries for drug discovery and in technology for automated and quantitative
library screening. Here, we disclose a microfluidic circuit that enables
functional screens of DNA-encoded compound beads. The device carries
out library bead distribution into picoliter-scale assay reagent droplets,
photochemical cleavage of
compound from the bead, assay incubation, laser-induced fluorescence-based
assay detection, and fluorescence-activated droplet sorting to isolate
hits. DNA-encoded compound beads (10-μm diameter) displaying
a photocleavable positive control inhibitor pepstatin A were mixed
(1920 beads, 729 encoding sequences) with negative control beads (58 000
beads, 1728 encoding sequences) and screened for cathepsin D inhibition
using a biochemical enzyme activity assay. The circuit sorted 1518
hit droplets for collection following 18 min incubation over a 240
min analysis. Visual inspection of a subset of droplets (1188 droplets)
yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative
control beads). Using template barcoding strategies, it was possible
to count hit collection beads (1863) using next-generation sequencing
data. Bead-specific barcodes enabled replicate counting, and the false
discovery rate was reduced to 2.6% by only considering hit-encoding
sequences that were observed on >2 beads. This work represents
a complete
distributable small molecule discovery platform, from microfluidic
miniaturized automation to ultrahigh-throughput hit deconvolution
by sequencing.
Collapse
Affiliation(s)
- Andrew B. MacConnell
- Department
of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander K. Price
- Department
of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M. Paegel
- Department
of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
9
|
Chen X, Ren C. A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv 2017. [DOI: 10.1039/c7ra02336g] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developing a microfluidic chip with multiple functions is highly demanded for practical applications, such as chemical analysis, diagnostics, particles synthesis and drug screening.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Mechanical and Mechatronics Engineering
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| | - Carolyn L. Ren
- Department of Mechanical and Mechatronics Engineering
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| |
Collapse
|
10
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Controlling molecular transport in minimal emulsions. Nat Commun 2016; 7:10392. [PMID: 26797564 PMCID: PMC4735829 DOI: 10.1038/ncomms10392] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. Emulsion droplets have many biotechnological applications, such as parallelized single cell analysis. Here, Gruner et al. introduce the concept of the minimal emulsions in a microfluidic device that allows full control of molecular transport between emulsion droplets.
Collapse
|
12
|
Brouzes E, Kruse T, Kimmerling R, Strey HH. Rapid and continuous magnetic separation in droplet microfluidic devices. LAB ON A CHIP 2015; 15:908-19. [PMID: 25501881 PMCID: PMC4323160 DOI: 10.1039/c4lc01327a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Collapse
Affiliation(s)
- Eric Brouzes
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | | | | | | |
Collapse
|
13
|
Dressler OJ, Yang T, Chang SI, Choo J, Wootton RCR, deMello AJ. Continuous and low error-rate passive synchronization of pre-formed droplets. RSC Adv 2015. [DOI: 10.1039/c5ra08044d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A microfluidic droplet-handling architecture for the synchronization of asynchronous, mis-matched, pre-formed droplet streams is demonstrated.
Collapse
Affiliation(s)
- O. J. Dressler
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - T. Yang
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - S.-I. Chang
- Department of Biochemistry
- Chungbuk National University
- Cheongju
- South Korea
| | - J. Choo
- Department of BionanoTechnology
- Hanyang University
- Ansan 426-791
- South Korea
| | - R. C. R. Wootton
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - A. J. deMello
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| |
Collapse
|
14
|
Huang X, Hui W, Hao C, Yue W, Yang M, Cui Y, Wang Z. On-site formation of emulsions by controlled air plugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:758-765. [PMID: 24030982 DOI: 10.1002/smll.201202659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 07/12/2013] [Indexed: 06/02/2023]
Abstract
Air plugs are usually undesirable in microfluidic systems because of their detrimental effect on the system's stability and integrity. By controlling the wetting properties as well as the topographical geometry of the microchannel, it is reported herein that air plugs can be generated in pre-defined locations to function as a unique valve, allowing for the on-site formation of various emulsions including single-component droplets, composite droplets with droplet-to-droplet concentration gradient, blood droplets, paired droplets, as well as bubble arrays without the need for precious flow control, a difficult task with conventional droplet microfluidics. Moreover, the self-generated air valve can be readily deactivated (turned off) by the introduction of an oil phase, allowing for the on-demand release of as-formed droplets for downstream applications. It is proposed that the simple, yet versatile nature of this technique can act as an important method for droplet microfluidics and, in particular, is ideal for the development of affordable lab-on-a-chip systems without suffering from scalability and manufacturing challenges that typically confound the conventional droplet microfluidics.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Schoeman RM, Kemna EW, Wolbers F, van den Berg A. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device. Electrophoresis 2013; 35:385-92. [DOI: 10.1002/elps.201300179] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Rogier M. Schoeman
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology; University of Twente; Enschede The Netherlands
| | - Evelien W.M. Kemna
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology; University of Twente; Enschede The Netherlands
| | - Floor Wolbers
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology; University of Twente; Enschede The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology; University of Twente; Enschede The Netherlands
| |
Collapse
|
16
|
Sun X, Tang K, Smith RD, Kelly RT. Controlled dispensing and mixing of pico- to nanoliter volumes using on-demand droplet-based microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2013; 15:117-126. [PMID: 23935562 PMCID: PMC3736999 DOI: 10.1007/s10404-012-1133-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present an integrated droplet-on-demand microfluidic platform for dispensing, mixing, incubating, extracting and analyzing by mass spectrometry pico- to nanoliter-sized droplets. All of the functional components are successfully integrated for the first time into a monolithic microdevice. Droplet generation is accomplished using computer-controlled pneumatic valves. Controlled actuation of valves for different aqueous streams enables accurate dosing and rapid mixing of reagents within droplets in either the droplet generation area or in a region of widening channel cross-section. Following incubation, which takes place as droplets travel in the oil stream, the droplet contents are extracted to an aqueous channel for subsequent ionization at an integrated nanoelectrospray emitter. Using the integrated platform, rapid enzymatic digestions of a model protein were carried out in droplets and detected on-line by nanoelectrospray ionization mass spectrometry.
Collapse
Affiliation(s)
| | | | - Richard D. Smith
- Biological Sciences Division
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
| | - Ryan T. Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
| |
Collapse
|
17
|
van Steijn V, Korczyk PM, Derzsi L, Abate AR, Weitz DA, Garstecki P. Block-and-break generation of microdroplets with fixed volume. BIOMICROFLUIDICS 2013; 7:24108. [PMID: 24404013 PMCID: PMC3637280 DOI: 10.1063/1.4801637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/28/2013] [Indexed: 05/06/2023]
Abstract
We introduce a novel type of droplet generator that produces droplets of a volume set by the geometry of the droplet generator and not by the flow rates of the liquids. The generator consists of a classic T-junction with a bypass channel. This bypass directs the continuous fluid around the forming droplets, so that they can fill the space between the inlet of the dispersed phase and the exit of the bypass without breaking. Once filled, the dispersed phase blocks the exit of the bypass and is squeezed by the continuous fluid and broken off from the junction. We demonstrate the fixed-volume droplet generator for (i) the formation of monodisperse droplets from a source of varying flow rates, (ii) the formation of monodisperse droplets containing a gradation of solute concentration, and (iii) the parallel production of monodisperse droplets.
Collapse
Affiliation(s)
- Volkert van Steijn
- School of Engineering and Applied Sciences/Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ; Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Piotr M Korczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland ; Institute of Fundamental Technological Research, PAS, Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158, USA
| | - David A Weitz
- School of Engineering and Applied Sciences/Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Joensson HN, Andersson Svahn H. Tröpfchen-Mikrofluidik für die Einzelzellanalyse. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Joensson HN, Andersson Svahn H. Droplet Microfluidics-A Tool for Single-Cell Analysis. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201200460] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Xu L, Lee H, Panchapakesan R, Oh KW. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. LAB ON A CHIP 2012; 12:3936-42. [PMID: 22814673 DOI: 10.1039/c2lc40456g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We propose a robust droplet fusion and sorting method for two parallel trains of droplets that is relatively insensitive to frequency and phase mismatch. Conventional methods of droplet fusion require an extremely precise control of aqueous/oil flows for perfect frequency matching between two trains of droplets. In this work, by combining our previous two methods (i.e., droplet synchronization using railroad-like channels and manipulation of shape-dependent droplets using guiding tracks), we realized an error-free droplet fusion/sorting device for the two parallel trains of droplets. If droplet pairs are synchronized through a railroad-like channel, they are electrically fused and the fused droplets transit to a middle guiding track to flow in a middle channel; otherwise non-synchronized non-fused droplets will be discarded into the side waste channels by flowing through their own guiding tracks. The simple droplet synchronization, fusion, and sorting technology will have widespread application in droplet-based chemical or biological experiments, where two trains of the chemically or biologically treated or pre-formed droplets yield a train of 100% one-to-one fused droplets at the desired outlet channel by sorting all the non-synchronized non-fused droplets into waste outlets.
Collapse
Affiliation(s)
- Linfeng Xu
- SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical Engineering, University at Buffalo, The State University of New York (SUNY at Buffalo), Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
21
|
Taly V, Pekin D, Abed AE, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012; 18:405-16. [DOI: 10.1016/j.molmed.2012.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
|
22
|
You I, Kang SM, Lee S, Cho YO, Kim JB, Lee SB, Nam YS, Lee H. Polydopamine Microfluidic System toward a Two-Dimensional, Gravity-Driven Mixing Device. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
You I, Kang SM, Lee S, Cho YO, Kim JB, Lee SB, Nam YS, Lee H. Polydopamine Microfluidic System toward a Two-Dimensional, Gravity-Driven Mixing Device. Angew Chem Int Ed Engl 2012; 51:6126-30. [DOI: 10.1002/anie.201200329] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Indexed: 11/09/2022]
|
24
|
Abstract
Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.
Collapse
Affiliation(s)
- Jean-Christophe Baret
- Droplets, Membranes and Interfaces, MPI for Dynamics and Self-organization, Am Fassberg 17, 37077 Goettingen, Germany.
| |
Collapse
|
25
|
Abstract
This book chapter aims at providing an overview of all the aspects and procedures needed to develop a droplet-based workflow for single-cell analysis (see Fig. 10.1). The surfactant system used to stabilize droplets is a critical component of droplet microfluidics; its properties define the type of droplet-based assays and workflows that can be developed. The scope of this book chapter is limited to fluorinated surfactant systems that have proved to generate extremely stable droplets and allow to easily retrieve the encapsulated material. The formulation section discusses how the experimental parameters influence the choice of the surfactant system to use. The circuit design section presents recipes to design and integrate different droplet modules into a whole assay. The fabrication section describes the manufacturing of microfluidic chip including the surface treatment which is pivotal in droplet microfluidics. Finally, the last section reviews the experimental setup for fluorescence detection with an emphasis on cell injection and incubation.
Collapse
Affiliation(s)
- Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
26
|
Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:016601. [PMID: 22790308 DOI: 10.1088/0034-4885/75/1/016601] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.
Collapse
Affiliation(s)
- Ralf Seemann
- Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
27
|
|
28
|
Lee DH, Lee W, Um E, Park JK. Microbridge structures for uniform interval control of flowing droplets in microfluidic networks. BIOMICROFLUIDICS 2011; 5:34117-341179. [PMID: 22662043 PMCID: PMC3364831 DOI: 10.1063/1.3625604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/26/2011] [Indexed: 05/10/2023]
Abstract
Precise temporal control of microfluidic droplets such as synchronization and combinatorial pairing of droplets is required to achieve a variety range of chemical and biochemical reactions inside microfluidic networks. Here, we present a facile and robust microfluidic platform enabling uniform interval control of flowing droplets for the precise temporal synchronization and pairing of picoliter droplets with a reagent. By incorporating microbridge structures interconnecting the droplet-carrying channel and the flow control channel, a fluidic pressure drop was derived between the two fluidic channels via the microbridge structures, reordering flowing droplets with a defined uniform interval. Through the adjustment of the control oil flow rate, the droplet intervals were flexibly and precisely adjustable. With this mechanism of droplet spacing, the gelation of the alginate droplets as well as control of the droplet interval was simultaneously achieved by additional control oil flow including calcified oleic acid. In addition, by parallel linking identical microfluidic modules with distinct sample inlet, controlled synchronization and pairing of two distinct droplets were demonstrated. This method is applicable to facilitate and develop many droplet-based microfluidic applications, including biological assay, combinatorial synthesis, and high-throughput screening.
Collapse
|
29
|
Gu H, Duits MHG, Mugele F. Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 2011; 12:2572-97. [PMID: 21731459 PMCID: PMC3127135 DOI: 10.3390/ijms12042572] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 04/02/2011] [Indexed: 01/06/2023] Open
Abstract
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Collapse
Affiliation(s)
- Hao Gu
- Physics of Complex Fluids, Faculty of Science and Technology, IMPACT and MESA + Institutes, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; E-Mails: (M.H.G.D.); (F.M.)
| | - Michel H. G. Duits
- Physics of Complex Fluids, Faculty of Science and Technology, IMPACT and MESA + Institutes, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; E-Mails: (M.H.G.D.); (F.M.)
| | - Frieder Mugele
- Physics of Complex Fluids, Faculty of Science and Technology, IMPACT and MESA + Institutes, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; E-Mails: (M.H.G.D.); (F.M.)
| |
Collapse
|
30
|
Joensson HN, Uhlén M, Svahn HA. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking. LAB ON A CHIP 2011; 11:1305-10. [PMID: 21321749 DOI: 10.1039/c0lc00688b] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a novel method for passive separation of microfluidic droplets by size at high throughput using deterministic lateral displacement (DLD). We also show that droplets containing Saccharomyces cerevisiae shrink significantly during incubation while droplets containing only yeast media retain or slightly increase their size. We demonstrate the DLD device by sorting out shrunken yeast-cell containing droplets from 31% larger diameter droplets which were generated at the same time containing only media, present at a >40-fold excess. This demonstrates the resolving power of droplet separation by DLD and establishes that droplets can be separated for a biological property of the droplet contents discriminated by a change of the physical properties of the droplet. Thus suggesting that this technique may be used for e.g. clonal selection. The same device also separates 11 µm from 30 µm droplets at a rate of 12,000 droplets per second, more than twofold faster than previously demonstrated passive hydrodynamic separation devices.
Collapse
Affiliation(s)
- Haakan N Joensson
- Div of Nanobiotechnology, Royal Institute of Technology, KTH, Albanova University Center, SE-10691 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Vyawahare S, Griffiths AD, Merten CA. Miniaturization and parallelization of biological and chemical assays in microfluidic devices. ACTA ACUST UNITED AC 2011; 17:1052-65. [PMID: 21035727 DOI: 10.1016/j.chembiol.2010.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/31/2010] [Accepted: 09/07/2010] [Indexed: 12/29/2022]
Abstract
Microfluidic systems are an attractive solution for the miniaturization of biological and chemical assays. The typical sample volume can be reduced up to 1 million-fold, and a superb level of spatiotemporal control is possible, facilitating highly parallelized assays with drastically increased throughput and reduced cost. In this review, we focus on systems in which multiple reactions are spatially separated by immobilization of reagents on two-dimensional arrays, or by compartmentalization in microfabricated reaction chambers or droplets. These systems have manifold applications, and some, such as next-generation sequencing are already starting to transform biology. This is likely the first step in a biotechnological transformation comparable to that already brought about by the microprocessor in electronics. We discuss both current applications and likely future impacts in areas such as the study of single cells/single organisms and high-throughput screening.
Collapse
Affiliation(s)
- Saurabh Vyawahare
- Microfluidics Laboratory, Physical Sciences-Oncology Center, Physics Department, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
32
|
Stapleton JA, Swartz JR. Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS One 2010; 5:e15275. [PMID: 21151915 PMCID: PMC2997796 DOI: 10.1371/journal.pone.0015275] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/03/2010] [Indexed: 01/10/2023] Open
Abstract
Background [FeFe] hydrogenase enzymes catalyze the formation and dissociation of molecular hydrogen with the help of a complex prosthetic group composed of common elements. The development of energy conversion technologies based on these renewable catalysts has been hindered by their extreme oxygen sensitivity. Attempts to improve the enzymes by directed evolution have failed for want of a screening platform capable of throughputs high enough to adequately sample heavily mutated DNA libraries. In vitro compartmentalization (IVC) is a powerful method capable of screening for multiple-turnover enzymatic activity at very high throughputs. Recent advances have allowed [FeFe] hydrogenases to be expressed and activated in the cell-free protein synthesis reactions on which IVC is based; however, IVC is a demanding technique with which many enzymes have proven incompatible. Methodology/Principal Findings Here we describe an extremely high-throughput IVC screen for oxygen-tolerant [FeFe] hydrogenases. We demonstrate that the [FeFe] hydrogenase CpI can be expressed and activated within emulsion droplets, and identify a fluorogenic substrate that links activity after oxygen exposure to the generation of a fluorescent signal. We present a screening protocol in which attachment of mutant genes and the proteins they encode to the surfaces of microbeads is followed by three separate emulsion steps for amplification, expression, and evaluation of hydrogenase mutants. We show that beads displaying active hydrogenase can be isolated by fluorescence-activated cell-sorting, and we use the method to enrich such beads from a mock library. Conclusions/Significance [FeFe] hydrogenases are the most complex enzymes to be produced by cell-free protein synthesis, and the most challenging targets to which IVC has yet been applied. The technique described here is an enabling step towards the development of biocatalysts for a biological hydrogen economy.
Collapse
Affiliation(s)
- James A. Stapleton
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - James R. Swartz
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hong J, Choi M, Edel JB, deMello AJ. Passive self-synchronized two-droplet generation. LAB ON A CHIP 2010; 10:2702-9. [PMID: 20717573 DOI: 10.1039/c005136e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe the use of two passive components to achieve controllable and alternating droplet generation in a microfluidic device. The approach overcomes the problems associated with irregularities in channel dimensions and fluid flow rates, and allows precise pairing of alternating droplets in a high-throughput manner. We study droplet generation and self-synchronization in a quantitative fashion by using high-speed image analysis.
Collapse
Affiliation(s)
- Jongin Hong
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
34
|
Theberge A, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew Chem Int Ed Engl 2010; 49:5846-68. [DOI: 10.1002/anie.200906653] [Citation(s) in RCA: 833] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
|
36
|
Baret JC, Kleinschmidt F, El Harrak A, Griffiths AD. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6088-93. [PMID: 19292501 DOI: 10.1021/la9000472] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In classical emulsification processes, surfactants play two roles: first, they reduce the interfacial tension, facilitating droplet deformation and rupture, and second, they reduce droplet coalescence. Here, we use a microfluidic emulsification system to completely uncouple these two processes, allowing stabilization against coalescence to be studied quantitatively and independently of droplet formation. We demonstrate that, in addition to the classical effect of stabilization by an increase of surfactant concentration, the dynamics of adsorption of surfactant at the water-oil interface is a key element for droplet stabilization. Microfluidic emulsification devices can therefore be tailored to improve emulsification while decreasing the concentration of surfactant by increasing the time before the droplets first come into contact.
Collapse
Affiliation(s)
- Jean-Christophe Baret
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, CNRS UMR 7006, Strasbourg, France.
| | | | | | | |
Collapse
|