1
|
Du J, Hou X, Zhu W, Zhou H, She X, Yang Q, Tsou C. Mechanically Robust and Electrically Conductive Hybrid Hydrogel Electrolyte Enabled by Simultaneous Dual In Situ Sol-Gel Technique and Free Radical Copolymerization. Macromol Rapid Commun 2024; 45:e2400404. [PMID: 39083305 DOI: 10.1002/marc.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Indexed: 11/09/2024]
Abstract
Mechanically robust and ionically conductive hydrogels poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonate-lithium)/TiO2/SiO2 (P(AM-co-AMPSLi)/TiO2/SiO2) with inorganic hybrid crosslinking are fabricated through dual in situ sol-gel reaction of vinyltriethoxysilane (VTES) and tetrabutyl titanate (TBOT), and in situ radical copolymerization of acrylamide (AM), 2-acrylamide-2-methylpropanesulfonate-lithium (AMPSLi), and vinyl-SiO2. Due to the introduction of the sulfonic acid groups and Li+ by the reaction of AMPS with Li2CO3, the conductivity of the ionic hydrogel can reach 0.19 S m-1. Vinyl-SiO2 and nano-TiO2 are used in this hybrid hydrogel as both multifunctional hybrid crosslinkers and fillers. The hybrid hydrogels demonstrate high tensile strength (0.11-0.33 MPa) and elongation at break (98-1867%), ultrahigh compression strength (0.28-1.36 MPa), certain fatigue resistance, self-healing, and self-adhesive properties, which are due to covalent bonds between TiO2 and SiO2, as well as P(AM-co-AMPSLi) chains and SiO2, and noncovalent bonds between TiO2 and P(AM-co-AMPSLi) chains, as well as the organic frameworks. Furthermore, the specific capacitance, energy density, and power density of the supercapacitors based on ionic hybrid hydrogel electrolytes are 2.88 F g-1, 0.09 Wh kg-1, and 3.07 kW kg-1 at a current density of 0.05 A g-1, respectively. Consequently, the ionic hybrid hydrogels show great promise as flexible energy storage devices.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Xinmeng Hou
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Wenli Zhu
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Hao Zhou
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Xiaohong She
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Qiaoling Yang
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Chihui Tsou
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| |
Collapse
|
2
|
Rovers MM, Rogkoti T, Bakker BK, Bakal KJ, van Genderen MHP, Salmeron-Sanchez M, Dankers PYW. Using a Supramolecular Monomer Formulation Approach to Engineer Modular, Dynamic Microgels, and Composite Macrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405868. [PMID: 39463044 DOI: 10.1002/adma.202405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides. Functionalization with a bioactive supramolecular cell-adhesive peptide induced selectivity of cells toward the bioactive microgels over non-active, non-functionalized versions. Importantly, the supramolecular microgels can also be applied as microscale building blocks into supramolecular bulk macrogels with tunable dynamic behavior: a robust and weak macrogel, where the micro- and macrogels are composed of similar molecular building blocks. In a robust macrogel, microgels act as modular micro-building blocks, introducing multi-compartmentalization, while in a weak macrogel, microgels reinforce and enhance mechanical properties. This work demonstrates the potential to modularly engineer higher-length-scale structures using small molecule supramolecular monomers, wherein microgels serve as versatile and modular micro-building units.
Collapse
Affiliation(s)
- Maritza M Rovers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Theodora Rogkoti
- Centre for the Cellular Microenvironment, University of Glasgow, Advanced Research Centre, 11 Chapel Lane, Glasgow, G11 6EW, UK
| | - Bram K Bakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Kalpit J Bakal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Marcel H P van Genderen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Advanced Research Centre, 11 Chapel Lane, Glasgow, G11 6EW, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
3
|
Smith AM, Flammang P. Analysis of the adhesive secreting cells of Arion subfuscus: insights into the role of microgels in a tough, fast-setting hydrogel glue. SOFT MATTER 2024; 20:4669-4680. [PMID: 38563822 DOI: 10.1039/d4sm00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The slug Arion subfuscus produces a tough, highly adhesive defensive secretion. This secretion is a flexible hydrogel that is toughened by a double network mechanism. While synthetic double network gels typically require extensive time to prepare, this slug creates a tough gel in seconds. To gain insight into how the glue forms a double-network hydrogel so rapidly, the secretory apparatus of this slug was analyzed. The goal was to determine how the major components of the glue were distributed and mixed. Most of the glue comes from two types of large unicellular glands; one secretes polyanionic polysaccharides in small, membrane-bound packets, the other secretes proteins that appear to form a cross-linked network. The latter gland shows distinct regions where cross-linking appears to be occurring. These regions are darker, more homogeneous and appear more solid than the rest of the secretory material. The enzyme catalase is highly abundant in these regions, as are basic proteins. These results suggest that a rapid oxidation event occurs in this protein-containing gland, triggering cross-linking before the glue is released. The cross-linked microgels would then join together after secretion to form a granular hydrogel. The polysaccharide-filled packets would be mixed and interspersed among these microgels and may contribute to joining them together. This is an unexpected and highly effective way to form a tough gel rapidly.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA.
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| |
Collapse
|
4
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
5
|
Di Caprio N, Davidson MD, Daly AC, Burdick JA. Injectable MSC Spheroid and Microgel Granular Composites for Engineering Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312226. [PMID: 38178647 PMCID: PMC10994732 DOI: 10.1002/adma.202312226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Many cell types require direct cell-cell interactions for differentiation and function; yet, this can be challenging to incorporate into 3-dimensional (3D) structures for the engineering of tissues. Here, a new approach is introduced that combines aggregates of cells (spheroids) with similarly-sized hydrogel particles (microgels) to form granular composites that are injectable, undergo interparticle crosslinking via light for initial stabilization, permit cell-cell contacts for cell signaling, and allow spheroid fusion and growth. One area where this is important is in cartilage tissue engineering, as cell-cell contacts are crucial to chondrogenesis and are missing in many tissue engineering approaches. To address this, granular composites are developed from adult porcine mesenchymal stromal cell (MSC) spheroids and hyaluronic acid microgels and simulations and experimental analyses are used to establish the importance of initial MSC spheroid to microgel volume ratios to balance mechanical support with tissue growth. Long-term chondrogenic cultures of granular composites produce engineered cartilage tissue with extensive matrix deposition and mechanical properties within the range of cartilage, as well as integration with native tissue. Altogether, a new strategy of injectable granular composites is developed that leverages the benefits of cell-cell interactions through spheroids with the mechanical stabilization afforded with engineered hydrogels.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Matthew D. Davidson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Andrew C. Daly
- Biomedical Engineering, University of Galway, Galway, Ireland
- CURAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
6
|
Yang Y, Xiao Y, Wu X, Deng J, Wei R, Liu A, Chai H, Wang R. Microgel-Crosslinked Thermo-Responsive Hydrogel Actuators with High Mechanical Properties and Rapid Response. Macromol Rapid Commun 2024; 45:e2300643. [PMID: 38225681 DOI: 10.1002/marc.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Smart hydrogels responsive to external stimuli are promising for various applications such as soft robotics and smart devices. High mechanical strength and fast response rate are particularly important for the construction of hydrogel actuators. Herein, tough hydrogels with rapid response rates are synthesized using vinyl-functionalized poly(N-isopropylacrylamide) (PNIPAM) microgels as macro-crosslinkers and N-isopropylacrylamide as monomers. The compression strength of the obtained PNIPAM hydrogels is up to 7.13 MPa. The response rate of the microgel-crosslinked hydrogels is significantly enhanced compared with conventional chemically crosslinked PNIPAM hydrogels. The mechanical strength and response rate of hydrogels can be adjusted by varying the proportion of monomers and crosslinkers. The lower critical solution temperature (LCST) of the PNIPAM hydrogels could be tuned by copolymerizing with ionic monomer sodium methacrylate. Thermo-responsive bilayer hydrogels are fabricated using PINPAM hydrogels with different LCSTs via a layer-by-layer method. The thermo-responsive fast swelling and shrinking properties of the two layers endow the bilayer hydrogel with anisotropic structures and asymmetric response characteristics, allowing the hydrogel to respond rapidly. The bilayer hydrogels are fabricated into clamps to grab small objects and flowers that mimicked the closure of petals, and it shows great application prospects in the field of actuators.
Collapse
Affiliation(s)
- Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, P. R. China
| | - Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| |
Collapse
|
7
|
Ohya Y, Dohi R, Seko F, Nakazawa Y, Mizuguchi KI, Shinzaki K, Yasui T, Ogawa H, Kato S, Yoshizaki Y, Murase N, Kuzuya A. Synthesis of Topological Gels by Penetrating Polymerization Using a Molecular Net. Angew Chem Int Ed Engl 2024; 63:e202317045. [PMID: 38191829 DOI: 10.1002/anie.202317045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Topological gels possess structures that are cross-linked only via physical constraints; ideally, no attractive intermolecular interactions act between their components, which yields interesting physical properties. However, most reported previous topological gels were synthesized based on supramolecular interlocked structures such as polyrotaxane, for which attractive intermolecular interactions are essential. Here, we synthesize a water-soluble "molecular net" (MN) with a large molecular weight and three-dimensional network structure using poly(ethylene glycol). When a water-soluble monomer (N-isopropylacrylamide) is polymerized in the presence of the MNs, the extending polymer chains penetrates the MNs to form an ideal topological MN gel with no specific attractive interactions between its components. The MN gels show unique physical properties as well a significantly high degree of swelling and high extensibility due to slipping of the physical cross-linking. We postulate this method to yield a new paradigm in gel science with unprecedented physical properties.
Collapse
Affiliation(s)
- Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Kansai University Medical Polymer Research Center, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Ryota Dohi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Fumika Seko
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Yuto Nakazawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Ken-Ichiro Mizuguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Kosei Shinzaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Takahiko Yasui
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Hiroaki Ogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Shizuka Kato
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Yuta Yoshizaki
- Organization for Research & Development of Innovative Science & Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Nobuo Murase
- Organization for Research & Development of Innovative Science & Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Kansai University Medical Polymer Research Center, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| |
Collapse
|
8
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
9
|
Li W, Wang X, Liu Z, Zou X, Shen Z, Liu D, Li L, Guo Y, Yan F. Nanoconfined polymerization limits crack propagation in hysteresis-free gels. NATURE MATERIALS 2024; 23:131-138. [PMID: 37884671 DOI: 10.1038/s41563-023-01697-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Consecutive mechanical loading cycles cause irreversible fatigue damage and residual strain in gels, affecting their service life and application scope. Hysteresis-free hydrogels within a limited deformation range have been created by various strategies. However, large deformation and high elasticity are inherently contradictory attributes. Here we present a nanoconfined polymerization strategy for producing tough and near-zero-hysteresis gels under a large range of deformations. Gels are prepared through in situ polymerization within nanochannels of covalent organic frameworks or molecular sieves. The nanochannel confinement and strong hydrogen bonding interactions with polymer segments are crucial for achieving rapid self-reinforcement. The rigid nanostructures relieve the stress concentration at the crack tips and prevent crack propagation, enhancing the ultimate fracture strain (17,580 ± 308%), toughness (87.7 ± 2.3 MJ m-3) and crack propagation strain (5,800%) of the gels. This approach provides a general strategy for synthesizing gels that overcome the traditional trade-offs of large deformation and high elasticity.
Collapse
Affiliation(s)
- Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yu Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| |
Collapse
|
10
|
Kaur K, Murphy CM. Advances in the Development of Nano-Engineered Mechanically Robust Hydrogels for Minimally Invasive Treatment of Bone Defects. Gels 2023; 9:809. [PMID: 37888382 PMCID: PMC10606921 DOI: 10.3390/gels9100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Injectable hydrogels were discovered as attractive materials for bone tissue engineering applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties. However, traditional hydrogels suffer from weak mechanical strength, limiting their use in heavy load-bearing areas. Thus, the fabrication of mechanically robust injectable hydrogels that are suitable for load-bearing environments is of great interest. Successful material design for bone tissue engineering requires an understanding of the composition and structure of the material chosen, as well as the appropriate selection of biomimetic natural or synthetic materials. This review focuses on recent advancements in materials-design considerations and approaches to prepare mechanically robust injectable hydrogels for bone tissue engineering applications. We outline the materials-design approaches through a selection of materials and fabrication methods. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone tissue regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
| |
Collapse
|
11
|
Jin B, Wu W, Yuan Z, Wang C. Tough and Robust Metallosupramolecular Hydrogels Enabled by Ti 3C 2T x MXene Nanosheets. Polymers (Basel) 2023; 15:4025. [PMID: 37836074 PMCID: PMC10575237 DOI: 10.3390/polym15194025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, many tough synthetic hydrogels have been created as promising candidates in fields such as smart electronic devices. In this paper, we propose a simple strategy to construct tough and robust hydrogels. Two-dimensional Ti3C2Tx MXene nanosheets and metal ions were introduced into poly(acrylamide-co-acrylic acid) hydrogels, the MXene nanosheets acted as multifunctional cross-linkers and effective stress-transfer centers, and physical cross-links were formed between Fe3+ and carboxylic acid. Under deformation, the coordination interactions exhibit reversible dissociation and reorganization properties, suggesting a novel mechanism of energy dissipation and stress redistribution. The design enabled the hydrogel to exhibit outstanding and balanced mechanical properties (tensile strength of up to 5.67 MPa and elongation at break of up to 508%). This study will facilitate the diverse applications of metallosupramolecular hydrogels.
Collapse
Affiliation(s)
- Biqiang Jin
- College of Science, Xichang University, Xichang 615000, China
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.Y.); (C.W.)
| | - Wenqiang Wu
- Sichuan Dowhon New Material Co., Ltd., Chengdu 610036, China
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.Y.); (C.W.)
| | - Changcheng Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.Y.); (C.W.)
| |
Collapse
|
12
|
Wang R, Lei Y, Zhu T, Fan R, Jiang Z, Sheng J. Fast Recovery Double-Network Hydrogels Based on Particulate Macro-RAFT Agents. ACS OMEGA 2023; 8:35619-35627. [PMID: 37810646 PMCID: PMC10551918 DOI: 10.1021/acsomega.3c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Synthetic hydrogels struggle to match the high strength, toughness, and recoverability of biological tissues under periodic mechanical loading. Although the hydrophobic polymer chain of polystyrene (PS) may initially collapse into a nanosphere upon contact with water, it has the ability to be elongated when it is subjected to an external force. To address this challenge, we employ the reversible addition-fragmentation chain transfer (RAFT) method to design a carboxyl-substituted polystyrene (CPS) which can form a covalently cross-linked network with four-armed amino-terminated polyethylene glycol (4-armed-PEG-NH2), and a ductile polyacrylamide network is introduced in order to prepare a double-network (DN) hydrogel. Our results demonstrate that the DN hydrogel exhibits exceptional mechanical properties (0.62 kJ m-2 fracture energy, 2510.89 kJ m-3 toughness, 0.43 MPa strength, and 820% elongation) when a sufficient external force is applied to fracture it. Moreover, when the DN hydrogel is subjected to a 200% strain, it displays superior recoverability (94.5%). This holds a significant potential in enhancing the mechanical performance of synthetic hydrogels and can have wide-ranging applications in fields such as tissue engineering for hydrophobic polymers.
Collapse
Affiliation(s)
- Runda Wang
- Key
Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices,
Department of Network Security and Information Technology, Yili Normal University, Yining 835000, P. R. China
- Department
of Electronics and Engineering, Yili Normal
University, Yining 835000, P. R. China
| | - Yiteng Lei
- Department
of Electronics and Engineering, Yili Normal
University, Yining 835000, P. R. China
| | - Tao Zhu
- National
Key Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Rong Fan
- Department
of Electronics and Engineering, Yili Normal
University, Yining 835000, P. R. China
| | - Zhongying Jiang
- Key
Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices,
Department of Network Security and Information Technology, Yili Normal University, Yining 835000, P. R. China
| | - Jie Sheng
- Department
of Electronics and Engineering, Yili Normal
University, Yining 835000, P. R. China
| |
Collapse
|
13
|
Kessler M, Yuan T, Kolinski JM, Amstad E. Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels. Macromol Rapid Commun 2023; 44:e2200864. [PMID: 36809684 DOI: 10.1002/marc.202200864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 02/23/2023]
Abstract
The stiffness and toughness of conventional hydrogels decrease with increasing degree of swelling. This behavior makes the stiffness-toughness compromise inherent to hydrogels even more limiting for fully swollen ones, especially for load-bearing applications. The stiffness-toughness compromise of hydrogels can be addressed by reinforcing them with hydrogel microparticles, microgels, which introduce the double network (DN) toughening effect into hydrogels. However, to what extent this toughening effect is maintained in fully swollen microgel-reinforced hydrogels (MRHs) is unknown. Herein, it is demonstrated that the initial volume fraction of microgels contained in MRHs determines their connectivity, which is closely yet nonlinearly related to the stiffness of fully swollen MRHs. Remarkably, if MRHs are reinforced with a high volume fraction of microgels, they stiffen upon swelling. By contrast, the fracture toughness linearly increases with the effective volume fraction of microgels present in the MRHs regardless of their degree of swelling. These findings provide a universal design rule for the fabrication of tough granular hydrogels that stiffen upon swelling and hence, open up new fields of use of these hydrogels.
Collapse
Affiliation(s)
- Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Tianyu Yuan
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - John M Kolinski
- Engineering Mechanics of Soft Interfaces Laboratory, Institute of Mechanical, Engineering, École Polytechnique Fédérale de Lausanne, (EPFL), Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
14
|
Wang J, Chen Z, Zhang W, Lei C, Li J, Hu X, Zhang F, Chen C. The physical and structural properties of acid-Ca 2+ induced casein-alginate/Ca 2+ double network gels. Int J Biol Macromol 2023; 245:125564. [PMID: 37385323 DOI: 10.1016/j.ijbiomac.2023.125564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
The design of protein or polysaccharide interpenetrating network gels according to their physicochemical properties is required to obtain the desired properties of hydrogels. In this study, a method was proposed to prepare casein-calcium alginate (CN-Alg/Ca2+) interpenetrating double-network gels by the release of calcium from a calcium retarder during acidification to form calcium-alginate (Alg/Ca2+) gel and casein (CN) acid gel. Compared with the casein-sodium alginate (CN-Alg) composite gel, the CN-Alg/Ca2+ dual gel network with an interpenetrating network gel structure has better water-holding capacity (WHC) and hardness. The rheology and microstructure results showed that the dual-network gels of CN and Alg/Ca2+ induced by gluconic acid-δ-sodium (GDL) and calcium ions were the network structure of the Alg/Ca2+ gel, which was the "first network", and the CN gel, which was the "second network". It was proven that the microstructure, texture characteristics, and WHC of the double-network gels could be regulated by changing the concentration of Alg in the double-network gels and that the 0.3 % CN-Alg/Ca2+ double gels showed the highest WHC and firmness values. The aim of this study was to provide useful information for the preparation of polysaccharide-protein mixed gels in the food industry or other fields.
Collapse
Affiliation(s)
- Jing Wang
- Chongqing Key Laboratory of Industry and Informatization, Chongqing Enterprise Technology Center, Recognized by Chongqing Government, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Zuguo Chen
- Chongqing Key Laboratory of Industry and Informatization, Chongqing Enterprise Technology Center, Recognized by Chongqing Government, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Chan Lei
- Chongqing Key Laboratory of Industry and Informatization, Chongqing Enterprise Technology Center, Recognized by Chongqing Government, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Jiamin Li
- Chongqing Key Laboratory of Industry and Informatization, Chongqing Enterprise Technology Center, Recognized by Chongqing Government, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Xiaofang Hu
- Chongqing Key Laboratory of Industry and Informatization, Chongqing Enterprise Technology Center, Recognized by Chongqing Government, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Feng Zhang
- Chongqing Key Laboratory of Industry and Informatization, Chongqing Enterprise Technology Center, Recognized by Chongqing Government, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China.
| | - Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| |
Collapse
|
15
|
Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E. Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance. J Mater Chem B 2023; 11:5416-5428. [PMID: 36825927 PMCID: PMC10682960 DOI: 10.1039/d2tb02825e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications. In this work, we developed a durable hydrogel coating using interpenetrating networks of polyether urethane diacrylamide (PEUDAm) and poly(N-acryloyl glycinamide) (pNAGA). First, diffusion-mediated redox initiation of PEUDAm was used to coat electrospun polyurethane fiber meshes with coating thickness controlled by the immersion time. The second network of pNAGA was then introduced to enhance damage resistance of the hydrogel coating. The durability, thromboresistance, and bioactivity of the resulting multilayer grafts were then assessed. The IPN hydrogel coatings displayed resistance to surgically-associated damage mechanisms and retained the anti-fouling nature of PEG-based hydrogels as indicated by reduced protein adsorption and platelet attachment. Moreover, incorporation of functionalized collagen into the IPN hydrogel coating conferred bioactivity that supported endothelial cell adhesion. Overall, this conformable and durable hydrogel coating provides an improved approach for cardiovascular device fabrication with targeted biological activity.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
16
|
Wang Y, Fang X, Li S, Pan H, Sun J. Complexation of Sulfonate-Containing Polyurethane and Polyacrylic Acid Enables Fabrication of Self-Healing Hydrogel Membranes with High Mechanical Strength and Excellent Elasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25082-25090. [PMID: 34935339 DOI: 10.1021/acsami.1c21002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Artificial hydrogel membranes with good biocompatibility are strongly needed in biological fields. The preparation of biocompatible hydrogel membranes simultaneously possessing high mechanical strength, excellent elasticity, and satisfactory self-healing properties remains a challenge. Herein, we demonstrate the preparation of such hydrogel membranes by complexation of sulfonate-containing polyurethane (SPU) and poly(acrylic acid) (PAA) in the presence of Zn2+ ions followed by swelling in water (denoted as SPU-PAA/Zn). Originating from the synergy of the coordination and hydrogen-bonding interactions and the reinforcement effect of the in situ formed hydrophobic domains, the SPU-PAA/Zn hydrogel membrane exhibits a high tensile strength of ∼7.1 MPa and a toughness of ∼30.4 MJ m-3. Moreover, the hydrogel membrane is highly elastic, which can restore to its initial state from an ∼500% strain within 40 min rest at room temperature without any external assistance. The dynamic noncovalent interactions and hydrophobic domains allow the fractured hydrogel membrane to heal and completely regain its original integrity and mechanical properties at room temperature. Both in vitro and in vivo tests confirm that the hydrogel membrane exhibits satisfactory biocompatibility and could be potentially used as a biological barrier membrane in surgical operations or artificial organs.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Siheng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Zhang R, Guo J, Yang X, Jiang X, Zhang L, Zhou J, Cao X, Duan B. Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15917-15927. [PMID: 36921089 DOI: 10.1021/acsami.2c18569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of the effective 3D printing strategy for diverse functional monomers is still challenging. Moreover, the conventional 3D printing hydrogels are usually soft and fragile due to the lack of an energy dissipation mechanism. Herein, a microsphere mediating ink preparation strategy is developed to provide tailored rheological behavior for various monomer direct ink writings. The chitosan microspheres are used as an exemplary material due to their tunable swelling ratio under the acid-drived electrostatic repulsion of the protonated amino groups. The rheological behaviors of the swollen chitosan microsphere (SCM) are independent on the monomer types, and various functional secondary polymers could be carried at a wide loading ratio by the acid driving. The SCM reinforces the hydrogel as the sacrificial bonds. With the adjustable composition, the 3D printing hydrogel mechanical properties are tunable in wide windows: strength (0.4-1.01 MPa), dissipated energy (0.11-3.25 MJ m-3), and elongation at break (47-626%). With the excellent printing and mechanical properties, the SCM inks enable multi-functional integration for soft device production, such as 4D printing robots and wearable strain sensors. We anticipate that this microsphere mediating 3D printing strategy can inspire new possibilities for the design of the robust hydrogels with a broad range of functionalities and mechanical performances.
Collapse
Affiliation(s)
- Rongrong Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Jinhua Guo
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xuefeng Yang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xueyu Jiang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Dou X, Wang H, Yang F, Shen H, Wang X, Wu D. One-Step Soaking Strategy toward Anti-Swelling Hydrogels with a Stiff "Armor". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206242. [PMID: 36683238 PMCID: PMC10037974 DOI: 10.1002/advs.202206242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Double-network (DN) hydrogels consisting of noncovalent interacting networks are highly desired due to their well-controlled compositions and environmental friendliness, but the low water resistance always impairs their mechanical strength. Here, an anti-swelling hydrogel possessing the core/shell architecture through rational regulation of multiple weak noncovalent interactions is prepared. A composite hydrogel consists of chitosan (CS) and poly(N-acryloyl 2-glycine) (PACG), readily forming the shell-structured DN hydrogel after soaking in a FeCl3 solution because of in situ formation of chain entanglements, hydrogen bonds, and ionic coordination. The produced DN hydrogels exhibit excellent anti-swelling behaviors and mechanical durability for over half a year, even in some strict situations. Taking the merits of noncovalent bonds in adjustability and reversibility, the swelling property of these hydrogels can be easily customized through control of the ion species and concentrations. A dynamically reversible transition from super-swelling to anti-swelling is realized by breaking up and rebuilding the metal-coordination complexes. This facile but efficient strategy of turning the noncovalent interactions and consequently the mechanics and anti-swelling properties is imperative to achieve the rational design of high-performance hydrogels with specific usage requirements and expand their applicability to a higher stage.
Collapse
Affiliation(s)
- Xueyu Dou
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Molecular and Nano ScienceShandong Normal UniversityJinan250014China
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hufei Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fei Yang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hong Shen
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Decheng Wu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
19
|
Deng W, Wei F, Hu J. Muscle Contraction-Inspired Tough Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8462-8470. [PMID: 36734606 DOI: 10.1021/acsami.2c20319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In many animals, tough skeletal muscle contraction occurs, producing a strong force through myofilaments attaching to and sliding on fibrous actin filaments. In contrast, the strength of typical synthetic hydrogels is facilitated mainly by polymeric chains. We propose a strategy for developing strong and tough hydrogels in which the side groups on polymeric chains strongly interact with dispersing medium. The hydrogels are fabricated with a polyacrylamide-alginate double network in a choline chloride saturated solution. The hydrogels are not only highly transparent, tough, fatigue-resistant, self-recovering, self-healing, and adhesive but also water-retentive, antifreezing, and conductive. The hydrogels are strengthened by hydrogen bonds in dispersing medium with a clathrate framework structure. This work may inspire the development of tough and conductive gels for applications of e-skins, soft robots, and intelligent devices.
Collapse
Affiliation(s)
- Weijun Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai201418, P. R. China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, P. R. China
| | - Fucheng Wei
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai201418, P. R. China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai201418, P. R. China
| |
Collapse
|
20
|
Kiyama R, Yoshida M, Nonoyama T, Sedlačík T, Jinnai H, Kurokawa T, Nakajima T, Gong JP. Nanoscale TEM Imaging of Hydrogel Network Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208902. [PMID: 36349878 DOI: 10.1002/adma.202208902] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, the authors succeed in direct visualization of the network structure of synthetic hydrogels with transmission electron microscopy (TEM) by developing a novel staining and network fixation method. Such a direct visualization is not carried out because sample preparation and obtaining sufficient contrast are challenging for these soft materials. TEM images reveal robust heterogeneous network architectures at mesh size scale and defects at micro-scale. TEM images also reveal the presence of abundant dangling chains on the surface of the hydrogel network. The real space structural information provides a comprehensive perspective that links bulk properties with a nanoscale network structure, including fracture, adhesion, sliding friction, and lubrication. The presented method has the potential to advance the field.
Collapse
Affiliation(s)
- Ryuji Kiyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masahiro Yoshida
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
21
|
Zhang Z, Hu Y, Ma H, Wang Y, Zhong S, Sheng L, Li X, Peng J, Li J, Zhai M. MXene/Gelatin/Polyacrylamide Nanocomposite Double Network Hydrogel with Improved Mechanical and Photothermal Properties. Polymers (Basel) 2022; 14:polym14235247. [PMID: 36501639 PMCID: PMC9739737 DOI: 10.3390/polym14235247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The development of smart hydrogel with excellent mechanical properties and photothermal conversion capability is helpful in expending its application fields. Herein, a MXene/gelatin/polyacrylamide (M/G/PAM) nanocomposite double network (NDN) hydrogel was synthesized by γ-ray radiation technology for the first time. Compared with gelatin/polyacrylamide double network hydrogel, the optimized resultant M3/G/PAM NDN hydrogel shows better mechanical properties (tensile strength of 634 ± 10 kPa, compressive strength of 3.44 ± 0.12 MPa at a compression ratio of 90%). The M3/G/PAM NDN hydrogel exhibits a faster heating rate of 30 °C min-1, stable photothermal ability, and mechanical properties even after 20 cycles of on-off 808 nm near-infrared (NIR) laser irradiation (1.0 W cm-2). Furthermore, the temperature of M3/G/PAM NDN hydrogel can be increased rapidly from 25 °C to 90 °C in 10 s and could reach 145 °C in 120 s under irradiation by focused NIR laser irradiation (56.6 W cm-2). The high mechanical property and photothermal properties of M/G/PAM hydrogel are ascribed to the formation of double network and uniform hydrogen bonding between MXene and gelatin and PAM polymers. This work paves the way for construction of photothermal hydrogels with excellent mechanical properties.
Collapse
Affiliation(s)
- Zeyu Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Hu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huiling Ma
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shouchao Zhong
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lang Sheng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (J.P.); (M.Z.); Tel.: +86-10-62757193 (J.P.); +86-10-62753794 (M.Z.)
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (J.P.); (M.Z.); Tel.: +86-10-62757193 (J.P.); +86-10-62753794 (M.Z.)
| |
Collapse
|
22
|
Zhang W, Chen S, Jiang W, Zhang Q, Liu N, Wang Z, Li Z, Zhang D. Double-network hydrogels for biomaterials: Structure-property relationships and drug delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Yasui T, Zheng Y, Nakajima T, Kamio E, Matsuyama H, Gong JP. Rate-Independent Self-Healing Double Network Hydrogels Using a Thixotropic Sacrificial Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoki Yasui
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido001-0021, Japan
- Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Eiji Kamio
- Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Hideto Matsuyama
- Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| |
Collapse
|
24
|
Yuan Z, Cao Z, Wu R, Xu Q, Xu H, Wu H, Jin B, Wu W, Zheng J, Wu J. Mechanically robust and rapidly degradable hydrogels for temporary water plugging in oilfields. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Zhenxing Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Rui Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Qiongjun Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Hu Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Haitao Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Biqiang Jin
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Wenqiang Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Jing Zheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| |
Collapse
|
25
|
Moser S, Feng Y, Yasa O, Heyden S, Kessler M, Amstad E, Dufresne ER, Katzschmann RK, Style RW. Hydroelastomers: soft, tough, highly swelling composites. SOFT MATTER 2022; 18:7229-7235. [PMID: 36102833 PMCID: PMC9516556 DOI: 10.1039/d2sm00946c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Inspired by the cellular design of plant tissue, we present an approach to make versatile, tough, highly water-swelling composites. We embed highly swelling hydrogel particles inside tough, water-permeable, elastomeric matrices. The resulting composites, which we call hydroelastomers, combine the properties of their parent phases. From their hydrogel component, the composites inherit the ability to highly swell in water. From the elastomeric component, the composites inherit excellent stretchability and fracture toughness, while showing little softening as they swell. Indeed, the fracture properties of the composite match those of the best-performing, tough hydrogels, exhibiting fracture energies of up to 10 kJ m-2. Our composites are straightforward to fabricate, based on widely-available materials, and can easily be molded or extruded to form shapes with complex swelling geometries. Furthermore, there is a large design space available for making hydroelastomers, since one can use any hydrogel as the dispersed phase in the composite, including hydrogels with stimuli-responsiveness. These features make hydroelastomers excellent candidates for use in soft robotics and swelling-based actuation, or as shape-morphing materials, while also being useful as hydrogel replacements in other fields.
Collapse
Affiliation(s)
- Simon Moser
- Department of Materials, ETH Zürich, Switzerland.
| | - Yanxia Feng
- Department of Materials, ETH Zürich, Switzerland.
| | - Oncay Yasa
- Department of Mechanical and Process Engineering, ETH Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Dong M, Jiao D, Zheng Q, Wu ZL. Recent progress in fabrications and applications of functional hydrogel films. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
27
|
Yuan ZY, Cao ZX, Wu R, Li H, Xu QJ, Wu HT, Zheng J, Wu JR. Ultra-robust Metallosupramolecular Hydrogels with Unprecedented Self-recoverability using Asymmetrically Distributed Carboxyl-Fe3+ Coordination Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Du H, Yuan T, Zhao R, Hirsch M, Kessler M, Amstad E. Reinforcing hydrogels with in situ formed amorphous CaCO 3. Biomater Sci 2022; 10:4949-4958. [PMID: 35861615 DOI: 10.1039/d2bm00322h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels are often employed for tissue engineering and moistening applications. However, they are rarely used for load-bearing purposes because of their limited stiffness and the stiffness-toughness compromise inherent to them. By contrast, nature uses hydrogel-based materials as scaffolds for load-bearing and protecting materials by mineralizing them. Inspired by nature, the stiffness or toughness of synthetic hydrogels has been increased by forming minerals, such as CaCO3, within them. However, the degree of hydrogel reinforcement achieved with CaCO3 remains limited. To address this limitation, we form CaCO3 biominerals in situ within a model hydrogel, poly(acrylamide) (PAM), and systematically investigate the influence of the size, structure, and morphology of the reinforcing CaCO3 on the mechanical properties of the resulting hydrogels. We demonstrate that especially the structure of CaCO3 and its affinity to the hydrogel matrix strongly influence the mechanical properties of mineralized hydrogels. For example, while the fracture energy of PAM hydrogels is increased 3-fold if reinforced with individual micro-sized CaCO3 crystals, it increases by a factor of 13 if reinforced with a percolating amorphous calcium carbonate (ACC) nano-structure that forms in the presence of a sufficient quantity of Mg2+. If PAM is further functionalized with acrylic acid (AA) that possesses a high affinity towards ACC, the stiffness of the hydrogel increases by a factor 50. These fundamental insights on the structure-mechanical property relationship of hydrogels that have been functionalized with in situ formed minerals has the potential to enable tuning the mechanical properties of mineralized hydrogels over a much wider range than what is currently possible.
Collapse
Affiliation(s)
- Huachuan Du
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tianyu Yuan
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ran Zhao
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Matteo Hirsch
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
29
|
Li W, Li L, Zheng S, Liu Z, Zou X, Sun Z, Guo J, Yan F. Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203049. [PMID: 35522456 DOI: 10.1002/adma.202203049] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long-term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because of the irreversible covalent crosslinked networks, it is a huge challenge to implement reversible mechanical interlocking and reorganize the polymer segments to realize the recycling and reuse of ionogels. Here, covalent crosslinking of host materials is replaced with entanglement. The entangled microdomains are used as physical crosslinking while introducing reversible bond interactions. The interpenetrating, entangled, and elastic microdomains of linear segments and covalent-network microspheres provide mechanical stability, eliminate stress concentration at the crack tip under load, and achieve unprecedented tear and fatigue resistance of ionogels in any load direction. Moreover, reversible entanglements and noncovalent interactions can be disentangled and recombined to achieve recycling and mechanical regeneration, and the recyclability of covalent-network microdomains is realized.
Collapse
Affiliation(s)
- Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
30
|
Singh N, Aery S, Juneja S, Kumari L, Lone MS, Dar AA, Pawar SV, Mehta SK, Dan A. Chitosan Hydrogels with Embedded Thermo- and pH-Responsive Microgels as a Potential Carrier for Controlled Release of Drugs. ACS APPLIED BIO MATERIALS 2022; 5:3487-3499. [PMID: 35729496 DOI: 10.1021/acsabm.2c00401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a promising strategy based on chitosan (CS) hydrogels and dual temperature- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels to facilitate release of a model drug, moxifloxacin (MFX). In this protocol, first, the microgels were prepared using a free radical copolymerization method, and subsequently, these carboxyl-group-rich soft particles were incorporated inside the hydrogel matrix using an EDC-NHS amidation method. Interestingly, the resulting microgel-embedded hydrogel composites (MG-HG) acting as a double barrier system largely reduced the drug release rate and prolonged the delivery time for up to 68 h, which was significantly longer than that obtained using microgels or hydrogels alone (20 h). On account of the dual-responsive features of the embedded microgels and the variation of water-solubility of drug molecules as a function of pH, MFX could be released in a controllable manner by regulating the temperature and pH of the delivery medium. The release kinetics followed a Korsmeyer-Peppas model, and the drug delivery mechanism was described by Fickian diffusion. Both the gel precursors and the hydrogel composites exhibited low cytotoxicity against mammalian cell lines (HeLa and HEK-293) and no deleterious hemolytic activity up to a certain higher concentration, indicating excellent biocompatibility of the materials. Thus, the unprecedented combination of modularity of physical properties caused by soft particle entrapment, unique macromolecular architecture, biocompatibility, and the general utility of the stimuli-responsive polymers offers a great promise to use these composite materials in drug delivery applications.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Shikha Aery
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Smayira Juneja
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Mohd Sajid Lone
- Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar - 190006, Jammu and Kashmir, India
| | - Aijaz Ahmad Dar
- Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar - 190006, Jammu and Kashmir, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Surinder K Mehta
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Abhijit Dan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| |
Collapse
|
31
|
Kessler M, Nassisi Q, Amstad E. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels? Macromol Rapid Commun 2022; 43:e2200196. [PMID: 35467048 DOI: 10.1002/marc.202200196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Rapid advances in the biomedical field increasingly often demand soft materials that can be processed into complex 3D shapes while being able to reliably bear significant loads. Granular hydrogels have the potential to serve as artificial tissues because they can be 3D printed into complex 3D shapes and their composition can be tuned over short length scales. Unfortunately, granular hydrogels are typically soft such that they cannot be used for load-bearing applications. To address this shortcoming, individual microgels can be connected through a percolating network, such that they introduce the double network toughening mechanism into granular hydrogels. However, the influence of the microgel size and concentration on the processing and toughness of microgel-reinforced hydrogels (MRHs) remains to be elucidated. Here, we demonstrate that processing and toughness depend on the inter-microgel connectivity, while the stress at break is solely dependent on the microgel size. These findings offer an in-depth understanding of how liquid- and paste-like precursors containing soft, deformable microgels can be processed into bulk microstructured soft materials and the effect of the size and concentration of these microgels on the mechanical properties of microgel reinforced hydrogels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Quentin Nassisi
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
32
|
Liu X, Wu J, Qiao K, Liu G, Wang Z, Lu T, Suo Z, Hu J. Topoarchitected polymer networks expand the space of material properties. Nat Commun 2022; 13:1622. [PMID: 35338139 PMCID: PMC8956700 DOI: 10.1038/s41467-022-29245-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/18/2022] [Indexed: 02/02/2023] Open
Abstract
Many living tissues achieve functions through architected constituents with strong adhesion. An Achilles tendon, for example, transmits force, elastically and repeatedly, from a muscle to a bone through staggered alignment of stiff collagen fibrils in a soft proteoglycan matrix. The collagen fibrils align orderly and adhere to the proteoglycan strongly. However, synthesizing architected materials with strong adhesion has been challenging. Here we fabricate architected polymer networks by sequential polymerization and photolithography, and attain adherent interface by topological entanglement. We fabricate tendon-inspired hydrogels by embedding hard blocks in topological entanglement with a soft matrix. The staggered architecture and strong adhesion enable high elastic limit strain and high toughness simultaneously. This combination of attributes is commonly desired in applications, but rarely achieved in synthetic materials. We further demonstrate architected polymer networks of various geometric patterns and material combinations to show the potential for expanding the space of material properties.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China
| | - Jingping Wu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China
| | - Keke Qiao
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China
| | - Guohan Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China
| | - Zhengjin Wang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China
| | - Tongqing Lu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA.
| | - Jian Hu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
33
|
Charlet A, Bono F, Amstad E. Mechanical reinforcement of granular hydrogels. Chem Sci 2022; 13:3082-3093. [PMID: 35414870 PMCID: PMC8926196 DOI: 10.1039/d1sc06231j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Granular hydrogels are composed of hydrogel-based microparticles, so-called microgels, that are densely packed to form an ink that can be 3D printed, injected or cast into macroscopic structures. They are frequently used as tissue engineering scaffolds because microgels can be made biocompatible and the porosity of the granular hydrogels enables a fast exchange of reagents, waste products, and if properly designed even the infiltration of cells. Most of these granular hydrogels can be shaped into appropriate macroscopic structures, yet, these structures are mechanically rather weak. The poor mechanical properties prevent the use of these structures as load-bearing materials and hence, limit their field of applications. The mechanical properties of granular hydrogels depend on the composition of microgels and the interparticle interactions. In this review, we discuss different strategies to assemble microparticles into granular hydrogels and highlight the influence of inter-particle connections on the stiffness and toughness of the resulting materials. Mechanically strong and tough granular hydrogels have the potential to open up new fields of their use and thereby to contribute to fast advances in these fields. In particular, we envisage them to be well-suited as soft actuators and robots, tissue replacements, and adaptive sensors.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Francesca Bono
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| |
Collapse
|
34
|
Charlet A, Hirsch M, Schreiber S, Amstad E. Recycling of Load-Bearing 3D Printable Double Network Granular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107128. [PMID: 35174951 DOI: 10.1002/smll.202107128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Sustainable materials, such as recyclable polymers, become increasingly important as they are often environmentally friendlier than their one-time-use counterparts. In parallel, the trend toward more customized products demands for fast prototyping methods which allow processing materials into 3D objects that are often only used for a limited amount of time yet, that must be mechanically sufficiently robust to bear significant loads. Soft materials that satisfy the two rather contradictory needs remain to be shown. Here, the authors introduce a material that simultaneously fulfills both requirements, a 3D printable, recyclable double network granular hydrogel (rDNGH). This hydrogel is composed of poly(2-acrylamido-2-methylpropane sulfonic acid) microparticles that are covalently crosslinked through a disulfide-based percolating network. The possibility to independently degrade the percolating network, with no harm to the primary network contained within the microgels, renders the recovery of the microgels efficient. As a result, the recycled material pertains a stiffness and toughness that are similar to those of the pristine material. Importantly, this process can be extended to the fabrication of recyclable hard plastics made of, for example, dried rDNGHs. The authors envision this approach to serve as foundation for a paradigm shift in the design of new sustainable soft materials and plastics.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| | - Matteo Hirsch
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| | - Sanjay Schreiber
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| |
Collapse
|
35
|
Kang B, Lang Q, Tu J, Bu J, Ren J, Lyu B, Gao D. Preparation and Properties of Double Network Hydrogel with High Compressive Strength. Polymers (Basel) 2022; 14:polym14050966. [PMID: 35267788 PMCID: PMC8912320 DOI: 10.3390/polym14050966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023] Open
Abstract
In this work, p–double network (p–DN) hydrogels were formed by the interpenetration of poly(2–acrylamide–2–methylpropanesulfonic acid–copolymer– acrylamide) microgel and polyacrylamide. The initial viscosity of prepolymer solution before hydrogel polymerization, mechanical properties, temperature and salt resistance of the hydrogels were studied. The results showed that the initial viscosity of the prepolymer was less than 30 mP·s, and the p–DN hydrogel not only exhibited high compressive stress (37.80 MPa), but the compressive strength of p–DN hydrogel could also reach 23.45 MPa after heating at 90 °C, and the compressive strength of p–DN hydrogel could reach 13.32 MPa after soaking for 24 h in the solution of 5W mineralization. In addition, the cyclic loading behavior of hydrogel was studied. The dissipation energy of p–DN hydrogel under 80% strain was 7.89 MJ/m3, which effectively dissipated energy. Meanwhile, p–DN hydrogel maintained its original form while breaking the pressure greater than 30 MPa, indicating excellent plugging performance.
Collapse
Affiliation(s)
- Bo Kang
- National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Field, Xi’an 710018, China; (B.K.); (Q.L.); (J.T.); (J.B.)
- Oil &Gas Technology Research Institute of Changqing Oilfield Co, Xi’an 710018, China
| | - Qingli Lang
- National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Field, Xi’an 710018, China; (B.K.); (Q.L.); (J.T.); (J.B.)
- The 3rd Oil Production Plant of Changqing Oilfield Co., Yinchuan 750001, China
| | - Jian Tu
- National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Field, Xi’an 710018, China; (B.K.); (Q.L.); (J.T.); (J.B.)
- The 10th Oil Production Plant of Changqing Oilfield Co., Qingcheng 745100, China
| | - Jun Bu
- National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Field, Xi’an 710018, China; (B.K.); (Q.L.); (J.T.); (J.B.)
- Oil &Gas Technology Research Institute of Changqing Oilfield Co, Xi’an 710018, China
| | - Jingjing Ren
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Xi’an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (J.R.); (B.L.); (D.G.)
| | - Bin Lyu
- National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Field, Xi’an 710018, China; (B.K.); (Q.L.); (J.T.); (J.B.)
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Xi’an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (J.R.); (B.L.); (D.G.)
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Xi’an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (J.R.); (B.L.); (D.G.)
| |
Collapse
|
36
|
Chang YA, Chou YN, Lin YJ, Chen WY, Chen CY, Lin HR. Microgel-reinforced PVA hydrogel with self-healing and hyaluronic acid drug-releasing properties. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1785460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yi-An Chang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ying-Nien Chou
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yiu-Jiuan Lin
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Wei-Yu Chen
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chuh-Yean Chen
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hong-Ru Lin
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
37
|
Tang J, Sun B, Yin Q, Yang M, Hu J, Wang T. 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation. J Mater Chem B 2021; 9:9183-9190. [PMID: 34698328 DOI: 10.1039/d1tb01694f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Magnetic hydrogels have demonstrated great potential in soft robots, drug delivery, and bioengineering, and their functions are usually determined by the deforming capability. However, most magnetic hydrogels are embedded with soft magnetic particles (e.g. Fe3O4), where the magnetic domains cannot be programmed and retained under external magnetic fields. Here, we present a strategy to prepare a microgel-reinforced magnetic hydrogel, embedded with hard magnetic NdFeB particles. These magnetic hydrogels show outstanding mechanical properties (ultimate stretching ratio >15 and fracture toughness >15 000 J m-2) and fast actuation speed under external magnetic fields. We use direct ink writing to fabricate magnetic hydrogels with sophisticated geometry and program their magnetization to achieve complex deformations. Fast, reversible, shape-changing structures have been demonstrated with printed magnetic hydrogels. It is hoped that this material system of hard magnetic hydrogels can open opportunities for wide applications.
Collapse
Affiliation(s)
- Jingda Tang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Bonan Sun
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Qianfeng Yin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Meng Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tiejun Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
38
|
Hao M, Wang Y, Li L, Lu Q, Sun F, Li L, Yang X, Li Y, Liu M, Feng S, Feng S, Zhang T. Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. SOFT MATTER 2021; 17:9057-9065. [PMID: 34581395 DOI: 10.1039/d1sm01027a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogel-based soft and stretchable materials with skin/tissue-like mechanical properties provide new avenues for the design and fabrication of wearable sensors. However, synthesizing multifunctional hydrogels that simultaneously possess excellent mechanical, electrical and electromagnetic interference (EMI) shielding effectiveness is still a great challenge. In this work, the freeze-casting method is employed to fabricate a multifunctional hydrogel by filling Fe3O4 clusters into poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) and polyvinyl alcohol (PVA) composite aqueous solution. The hydrogel possesses superior electrical and mechanical properties as well as great electromagnetic wave shielding properties. Benefiting from the high stretchability (∼904.5%) and fast sensing performance (response time ∼9 ms and self-recovery time ∼12 ms within the strain range ∼100%), the monitoring of human activities and manipulation of a remote-controlled toy car using the hydrogel-based stretchable strain sensors are successfully demonstrated. In addition, a great EMI shielding effectiveness with more than 46 dB in the frequencies of 8-12.5 GHz can be obtained, which provides an alternative strategy for designing next-generation EMI shielding materials. These results indicate that the multifunctional hydrogels can be used as flexible and stretchable sensing electronics requiring effective EMI shielding.
Collapse
Affiliation(s)
- Mingming Hao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China.
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yongfeng Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lianhui Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Qifeng Lu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fuqin Sun
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lili Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xianqing Yang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yue Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Mengyuan Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Sijia Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Ting Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China.
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| |
Collapse
|
39
|
Amstad E, Harrington MJ. From vesicles to materials: bioinspired strategies for fabricating hierarchically structured soft matter. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200338. [PMID: 34334030 DOI: 10.1098/rsta.2020.0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 06/13/2023]
Abstract
Certain organisms including species of mollusks, polychaetes, onychophorans and arthropods produce exceptional polymeric materials outside their bodies under ambient conditions using concentrated fluid protein precursors. While much is understood about the structure-function relationships that define the properties of such materials, comparatively less is understood about how such materials are fabricated and specifically, how their defining hierarchical structures are achieved via bottom-up assembly. Yet this information holds great potential for inspiring sustainable manufacture of advanced polymeric materials with controlled multi-scale structure. In the present perspective, we first examine recent work elucidating the formation of the tough adhesive fibres of the mussel byssus via secretion of vesicles filled with condensed liquid protein phases (coacervates and liquid crystals)-highlighting which design principles are relevant for bio-inspiration. In the second part of the perspective, we examine the potential of recent advances in drops and additive manufacturing as a bioinspired platform for mimicking such processes to produce hierarchically structured materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matthew J Harrington
- Dept. of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
40
|
Wang K, Wang H, Li J, Liang Y, Xie XQ, Liu J, Gu C, Zhang Y, Zhang G, Liu CS. Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour. MATERIALS HORIZONS 2021; 8:2520-2532. [PMID: 34870306 DOI: 10.1039/d1mh00725d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The current tough and stretchable gels with various integrated functions are mainly based on polymer hydrogels. By introducing a non-covalent supramolecular self-assembled network into a covalently cross-linked polymer network in the presence of eco-friendly and cost-effective deep eutectic solvents (DESs), we developed a new small molecule-based supramolecular-polymer double-network (SP-DN) eutectogel platform. This exciting material exhibits high stretchability and toughness (>18 000% areal strain), spontaneous self-healing ability, ultrafast (∼5 s) in situ underwater and low-temperature (-80 °C) adhesion, and unusual boiling water-resistance, as well as strong base-, strong acid- (even aqua regia), ultra-low-temperature- (liquid nitrogen, -196 °C), and high-temperature- (200 °C) resistance. All these outstanding properties strongly recommend the SP-DN eutectogels as a quasi-solid electrolyte for soft electrochromic devices, which exhibited exceptional flexibility and consistent electrochromic behaviours in harsh mechanical or temperature environments. The experimental and simulation results uncovered the assembly mechanism of the SP-DN eutectogels. Unlike polymer hydrogels, the obtained SP-DN eutectogels showed high molecular design freedom and structural versatility. The findings of this work offer a promising strategy for developing the next generation of mechanically robust and functionally integrated soft materials with high environmental adaptability.
Collapse
Affiliation(s)
- Kaifang Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Hai Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Yujia Liang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Xiao-Qiao Xie
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Junpeng Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chaonan Gu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Yunfei Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Guo Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
41
|
Fabrication of AuNPs into alginate biopolymer and functionalized by thiourea as a film shape probe for palladium(II) sensing. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
|
43
|
Printable homocomposite hydrogels with synergistically reinforced molecular-colloidal networks. Nat Commun 2021; 12:2834. [PMID: 33990593 PMCID: PMC8121785 DOI: 10.1038/s41467-021-23098-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG’s mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young’s modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs. Composites which are made up of a single polymer, and yet allow modulation of the mechanical properties of the matrix without stress concentration, are challenging to fabricate. Here, the authors design a selfreinforced homocomposite alginate hydrogel with enhanced mechanical properties incorporating soft dendritic alginate colloids in the matrix and demonstrate its application in extrusion printing.
Collapse
|
44
|
Ji D, Kim J. Recent Strategies for Strengthening and Stiffening Tough Hydrogels. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Donghwan Ji
- School of Chemical Engineering Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
- Department of Health Sciences and Technology Samsung Advanced Institute for Health Science and Technology (SAIHST) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
- Institute of Quantum Biophysics (IQB) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
| |
Collapse
|
45
|
Luo C, Wei N, Fu W. A highly elastic and sensitive sensor based on
GSP
/
HPAM
composited hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.50192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunhui Luo
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission North Minzu University Yinchuan China
| | - Ning Wei
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
| | - Weinxin Fu
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
| |
Collapse
|
46
|
Maiti C, Imani KBC, Yoon J. Recent Advances in Design Strategies for Tough and Stretchable Hydrogels. Chempluschem 2021; 86:601-611. [PMID: 33830663 DOI: 10.1002/cplu.202100074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Indexed: 01/08/2023]
Abstract
The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance.
Collapse
Affiliation(s)
- Chiranjit Maiti
- Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Kusuma Betha Cahaya Imani
- Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinhwan Yoon
- Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
47
|
Gan S, Bai S, Chen C, Zou Y, Sun Y, Zhao J, Rong J. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. Int J Biol Macromol 2021; 181:418-425. [PMID: 33781814 DOI: 10.1016/j.ijbiomac.2021.03.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023]
Abstract
Ionic conductive hydrogels with both high-performance in conductivity and mechanical properties have received increasing attention due to their unique potential in artificial soft electronics. Here, a dual physically cross-linked double network (DN) hydrogel with high ionic conductivity and tensile strength was fabricated by a facile approach. Hydroxypropyl cellulose (HPC) biopolymer fibers were embedded in a poly (vinyl alcohol)‑sodium alginate (PVA/SA) hydrogel, and then the prestretched PVA-HPC/SA composite hydrogel was immersed in a CaCl2 solution to prepare PVA-HPCT/SA-Ca DN hydrogels. The obtained composite hydrogel has an excellent tensile strength up to 1.4 MPa. Importantly, the synergistic effect of hydroxypropyl cellulose (HPC) and prestretching reduces the migration resistance of ions in the hydrogel, and the conductivity reaches 3.49 S/ m. In addition, these composite hydrogels are noncytotoxic, and they have a low friction coefficient and an excellent wear resistance. Therefore, PVA-HPCT/SA-Ca DN hydrogels have potential applications in nerve replacement materials and biosensors.
Collapse
Affiliation(s)
- Shuchun Gan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Shihang Bai
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Cheng Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yongliang Zou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
48
|
Li C, Zhou X, Zhu L, Xu Z, Tan P, Wang H, Chen G, Zhou X. Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels. SOFT MATTER 2021; 17:1566-1573. [PMID: 33346314 DOI: 10.1039/d0sm01703e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microgel-reinforced (MR) hydrogels are tough hydrogels with dispersed rigid microgels embedded in a continuous soft matrix. MR gels have the great potential to provide not only mechanical toughness but also the desired functional matrix by incorporation of various functional microgels. Understanding the toughening mechanism of the MR hydrogels is critical for the rational design of the desired functionally tough MR gels. However, our current knowledge of the toughening mechanism of MR gels mainly comes from the MR hydrogels with both chemically crosslinked dispersed microgels and a continuous matrix. Little is known about the hybrid MR gels with physically crosslinked microgels embedded in a chemically crosslinked matrix. Herein, we synthesize such hybrid MR hydrogels with the ionic crosslinked calcium alginate microgels incorporated into the chemically crosslinked polyacrylamide (PAAm) matrix. The alginate microgels show strong size and modulus effects on the toughening enhancement: the larger microgels could toughen the MR gels more than the small ones, and the microgels with medium modulus could maximize the toughness of the MR gels. By comparison of the mechanical performances of the MR and the corresponding double network (DN) hydrogels, we have proposed that the hybrid MR gels may have the same toughening mechanism as the bulk DN gel. This work tries to better understand the structure-property relationships of both MR and DN gels and help in the design of more functionally tough MR gels with the desired properties.
Collapse
Affiliation(s)
- Chun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaohu Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Lifei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ziyao Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Peng Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Haifei Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Guokang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
49
|
Long S, Ye Z, Jin Y, Huang J, Huang Y, Liao Y, Li X. High-Performance Photochromic Hydrogels for Rewritable Information Record. Macromol Rapid Commun 2021; 42:e2000701. [PMID: 33491838 DOI: 10.1002/marc.202000701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Indexed: 12/20/2022]
Abstract
Rewritable information record materials usually demand not only reversibly stimuli-responsive ability, but also strong mechanical properties. To achieve one photochromic hydrogel with super-strong mechanical strength, hydrophobic molecule spiropyran (SP) has been introduced into a copolymer based on ion-hybrid crosslink. The hydrogels exhibit both photoinduced reversible color changes and excellent mechanical properties, i.e., the tensile stress of 3.22 MPa, work of tension of 12.8 MJ m-3 , and modulus of elasticity of 8.6 MPa. Moreover, the SP-based Ca2+ crosslinked hydrogels can be enhanced further when exposed to UV-light via ionic interaction coordination between Ca2+ , merocyanine (MC) with polar copolymer chain. In particular, hydrogels have excellent reversible conversion behavior, which can be used to realize repeatable writing of optical information. Thus, the novel design is demonstrated to support future applications in writing repeatable optical information, optical displays, information storage, artificial intelligence systems, and flexible wearable devices.
Collapse
Affiliation(s)
- Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Zhihua Ye
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Yiqi Jin
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Jiacheng Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Yonggui Liao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| |
Collapse
|
50
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|