1
|
Fine-Shamir N, Dahan A. Ethanol-based solubility-enabling oral drug formulation development: Accounting for the solubility-permeability interplay. Int J Pharm 2024; 653:123893. [PMID: 38346600 DOI: 10.1016/j.ijpharm.2024.123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
The aim of the current work was to investigate the key factors that govern the success/failure of an ethanol-based solubility-enabling oral drug formulation, including the effects of the ethanol on the solubility of the drug, the permeability across the intestinal membrane, the drug's dissolution in the aqueous milieu of the gastrointestinal tract (GIT), and the resulting solubility-permeability interplay. The concentration-dependent effects of ethanol-based vehicles on the solubility, the in-vitro Caco-2 permeability, the in-vivo rat permeability, and the biorelevant dissolution of the BCS class II antiepileptic drug carbamazepine were studied, and a predictive model describing the solubility-permeability relationship was developed. Significant concentration-dependent solubility increase of CBZ was obtained with increasing ethanol levels, that was accompanied by permeability decrease, both in Caco-2 and in rat perfusion studies, demonstrating a tradeoff between the increased solubility afforded by the ethanol and a concomitant permeability decrease. When ethanol absorption was accounted for, an excellent agreement was achieved between the predicted permeability and the experimental data. Biorelevant dissolution studies revealed that minimal ethanol levels of 30 % and 50 % were needed to fully dissolve 1 and 5 mg CBZ dose respectively, with no drug precipitation.In conclusion, key factors to be accounted for when developing ethanol-based formulation include the drug's solubility, permeability, the solubility-permeability interplay, and the drug dose intended to be delivered. Only the minimal amount of ethanol sufficient to solubilize the drug dose throughout the GIT should be used, and not more than that, to avoid unnecessarily permeability loss, and to maximize overall drug absorption.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
2
|
Denninger A, Becker T, Westedt U, Wagner KG. Advanced In Vivo Prediction by Introducing Biphasic Dissolution Data into PBPK Models. Pharmaceutics 2023; 15:1978. [PMID: 37514164 PMCID: PMC10386266 DOI: 10.3390/pharmaceutics15071978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus®, similar to extended-release dissolution profiles. Thus, a mechanistic dissolution/precipitation model of the assessed drug products was not required. The developed elimination/distribution models were used to simulate the pharmacokinetics of the evaluated drug products and compared with available human data. In essence, an in vitro to in vivo extrapolation (IVIVE) was successfully developed. Organic partitioning profiles obtained from the BiPHa+ dissolution analysis enabled highly accurate predictions of the pharmacokinetic behavior of the investigated drug products. In addition, PBPK models of (pro-)drugs with pronounced first-pass metabolism enabled adjustment of the solely passive diffusion predicting organic partitioning profiles, and increased prediction accuracy further.
Collapse
Affiliation(s)
- Alexander Denninger
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
- Corden Pharma GmbH, Otto-Hahn-Strasse, 68723 Plankstadt, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| |
Collapse
|
3
|
Baier V, Paini A, Schaller S, Scanes CG, Bone AJ, Ebeling M, Preuss TG, Witt J, Heckmann D. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species. ENVIRONMENT INTERNATIONAL 2022; 169:107547. [PMID: 36179644 DOI: 10.1016/j.envint.2022.107547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Physiologically-based kinetic (PBK) models are effective tools for designing toxicological studies and conducting extrapolations to inform hazard characterization in risk assessment by filling data gaps and defining safe levels of chemicals. In the present work, a generic avian PBK model for male and female birds was developed using PK-Sim and MoBi from the Open Systems Pharmacology Suite (OSPS). The PBK model includes an ovulation model (egg development) to predict concentrations of chemicals in eggs from dietary exposure. The model was parametrized for chicken (Gallus gallus), bobwhite quail (Colinus virginianus) and mallard duck (Anas platyrhynchos) and was tested with nine chemicals for which in vivo studies were available. Time-concentration profiles of chemicals reaching tissues and egg compartment were simulated and compared to in vivo data. The overall accuracy of the PBK model predictions across the analyzed chemicals was good. Model simulations were found to be in the range of 22-79% within a 3-fold and 41-89% were within 10- fold deviation of the in vivo observed data. However, for some compounds scarcity of in-vivo data and inconsistencies between published studies allowed only a limited goodness of fit evaluation. The generic avian PBK model was developed following a "best practice" workflow describing how to build a PBK model for novel species. The credibility and reproducibility of the avian PBK models were scored by evaluation according to the available guidance documents from WHO (2010), and OECD (2021), to increase applicability, confidence and acceptance of these in silico models in chemical risk assessment.
Collapse
Affiliation(s)
- Vanessa Baier
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | - Alicia Paini
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | | | - Colin G Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States; Department of Biological Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Audrey J Bone
- Bayer Crop Science, Chesterfield, MO 63017, United States
| | | | | | | | | |
Collapse
|
4
|
Wang W, Ouyang D. Opportunities and challenges of physiologically based pharmacokinetic modeling in drug delivery. Drug Discov Today 2022; 27:2100-2120. [PMID: 35452792 DOI: 10.1016/j.drudis.2022.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an important in silico tool to bridge drug properties and in vivo PK behaviors during drug development. Over the recent decade, the PBPK method has been largely applied to drug delivery systems (DDS), including oral, inhaled, transdermal, ophthalmic, and complex injectable products. The related therapeutic agents have included small-molecule drugs, therapeutic proteins, nucleic acids, and even cells. Simulation results have provided important insights into PK behaviors of new dosage forms, which strongly support drug regulation. In this review, we comprehensively summarize recent progress in PBPK applications in drug delivery, which shows large opportunities for facilitating drug development. In addition, we discuss the challenges of applying this methodology from a practical viewpoint.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
5
|
Thakore SD, Sirvi A, Joshi VC, Panigrahi SS, Manna A, Singh R, Sangamwar AT, Bansal AK. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int J Pharm 2021; 607:120958. [PMID: 34332060 DOI: 10.1016/j.ijpharm.2021.120958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Supersaturating drug delivery systems (SDDS) enhance the oral absorption of poorly water-soluble drugs by achieving a supersaturated state in the gastrointestinal tract. The maintenance of a supersaturated state is decided by the complex interplay among inherent properties of drug, excipients and physiological conditions of gastrointestinal tract. The biopharmaceutical advantage through SDDS can be mechanistically investigated by coupling biopredictive dissolution testing with physiologically based absorption modeling (PBAM). However, the development of biopredictive dissolution methods possess challenges due to concurrent dissolution, supersaturation, precipitation, and possible redissolution of precipitates during gastrointestinal transit of SDDS. In this comprehensive review, our effort is to critically assess the current state-of-knowledge and provide future directions for PBAM of SDDS. The review outlines various methods used to retrieve physiologically relevant values for input parameters like solubility, dissolution, precipitation, lipid-digestion and permeability of SDDS. SDDS-specific parameterization includes solubility values corresponding to apparent physical form, dissolution in physiologically relevant volumes with biorelevant media, and transfer experiments to incorporate precipitation kinetics. Interestingly, the lack of experimental permeability values and modification of absorption flux through SDDS possess the additional challenge for its PBAM. Supersaturation triggered permeability modifications are reported to fit the observed plasma concentration-time profile. Hence, the experimental insights on good fitting with modified permeability can be potential area of future research for the development of in vitro methods to reliably predict oral absorption of SDDS.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Vikram C Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Sanjali S Panigrahi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arijita Manna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
6
|
Fine-Shamir N, Beig A, Dahan A. Adequate formulation approach for oral chemotherapy: Etoposide solubility, permeability, and overall bioavailability from cosolvent- vs. vitamin E TPGS-based delivery systems. Int J Pharm 2021; 597:120295. [PMID: 33497706 DOI: 10.1016/j.ijpharm.2021.120295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable-to-oral conversions for anticancer drugs represent an important trend. The goal of this research was to investigate the suitability of formulation approaches for anticancer oral drug delivery, aiming to reveal mechanistic insights that may guide oral chemotherapy development. TPGS vs. PEG-400 were studied as oral formulations for the anticancer drug etoposide, accounting for drug solubility, biorelevant dissolution, permeability, solubility-permeability interplay, and overall bioavailability. Increased etoposide solubility was demonstrated with both excipients. Biorelevant dissolution revealed that TPGS or PEG-400, but not aqueous suspension, allowed complete dissolution of the entire drug dose. Both TPGS and PEG-400 resulted in decreased in-vitro etoposide permeability across artificial membrane, i.e. solubility-permeability tradeoff. While PEG-400 resulted in the same solubility-permeability tradeoff also in-vivo, TPGS showed the opposite trend: the in-vivo permeability of etoposide was markedly increased in the presence of TPGS. This increased permeability was similar to the drug permeability under P-gp inhibition. Rat PK study demonstrated significantly higher etoposide bioavailability from TPGS vs. PEG-400 or suspension (AUC of 72, 41, and 26 µg·min/mL, respectively). All in all, TPGS-based delivery system allows overcoming the solubility-permeability tradeoff, increasing systemic etoposide exposure. Since poor solubility and strong efflux are common to many anticancer agents, this work can aid in the development of better oral delivery approach for chemotherapeutic drugs.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
7
|
The tangential flow absorption model (TFAM) – A novel dissolution method for evaluating the performance of amorphous solid dispersions of poorly water-soluble actives. Eur J Pharm Biopharm 2020; 154:74-88. [DOI: 10.1016/j.ejpb.2020.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022]
|
8
|
Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO. In Vitro and In Vivo Behaviors of KinetiSol and Spray-Dried Amorphous Solid Dispersions of a Weakly Basic Drug and Ionic Polymer. Mol Pharm 2020; 17:2789-2808. [DOI: 10.1021/acs.molpharmaceut.0c00108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Scott V. Jermain
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Michael B. Lowinger
- Merck Research Laboratories (MRL), Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Daniel J. Ellenberger
- DisperSol Technologies, LLC, 111 West Cooperative Way, Building 2, Suite 200, Georgetown, Texas 78626, United States
| | - Dave A. Miller
- DisperSol Technologies, LLC, 111 West Cooperative Way, Building 2, Suite 200, Georgetown, Texas 78626, United States
| | - Yongchao Su
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
- Merck Research Laboratories (MRL), Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Robert O. Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Zhang S, Cui D, Xu J, Wang J, Wei Q, Xiong S. Bile acid transporter mediated STC/Soluplus self-assembled hybrid nanoparticles for enhancing the oral drug bioavailability. Int J Pharm 2020; 579:119120. [PMID: 32035254 DOI: 10.1016/j.ijpharm.2020.119120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
The nano-particulate system for oral delivery faces a big challenge across the gastrointestinal bio-barriers. The aim was to explore the potential applications of bile acid transporter mediated the self-assembled hybrid nanoparticles (SHNPs) of sodium taurocholate (STC) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) for augmenting the oral delivery of poorly water-soluble drugs. Felodipine (FLDP) was chosen as a model drug. The self-assembly of STC with Soluplus to load FLDP and the microstructure of the SHNPs were confirmed using molecular simulation, STC determination by high performance liquid chromatography (HPLC) and transmission electron microscope. Results showed that STC was integrated with Soluplus on the surface of nanoparticles by hydrophobic interactions. The permeability of FLDP loaded STC/Soluplus SHNPs was STC dependent in the ileum, which was inhibited by the higher concentrations of STC and the inhibitor of apical sodium-dependent bile acid transporter (ASBT). STC/Soluplus (1:9) SHNPs significantly improved the drug loading of FLDP, achieved the highest permeability of FLDP and realized 1.6-fold of the area under the curve (AUC) of Soluplus self-assembled nanoparticles (SNPs). A water-quenching fluorescent probe P4 was loaded into the STC/Soluplus SHNPs, which verified that the SHNPs were transferred intactly across the ileum. In conclusion, STC/Soluplus SHNPs via ASBT are a potential strategy for enhancing the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Dongmei Cui
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Jiawei Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Jiandong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Qi Wei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Subin Xiong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China; Shanghai Anbison Laboratory Co., Ltd., 889 Yishan Road, Shanghai 200233, PR China.
| |
Collapse
|
10
|
The solubility, permeability and the dose as key factors in formulation development for oral lipophilic drugs: Maximizing the bioavailability of carbamazepine with a cosolvent-based formulation. Int J Pharm 2020; 582:119307. [PMID: 32276090 DOI: 10.1016/j.ijpharm.2020.119307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
The purpose of this research was to investigate drug dose, solubility, permeability, and their interplay, as key factors in oral formulation development for lipophilic drugs. A PEG400-based formulation was studied for five doses of the lipophilic drug carbamazepine, accounting for biorelevant dissolution of the dose in the GIT, and in-vivo bioavailability in rats. With the three lower doses (10, 25 and 50 mg/kg), complete in-vitro dissolution was achieved and maintained throughout the experiment with this formulation, while significant precipitation was obtained with higher doses (100 and 200 mg/kg). Likewise, the studied formulation allowed complete bioavailability in-vivo with the three lower doses, while the same formulation allowed only 76% and 42% bioavailability for the 100 and 200 mg/kg doses, respectively. There was good correlation between the in-vitro and in-vivo results. In conclusion, this work demonstrates that the dose is a crucial factor in formulation development; while a given formulation may be optimal for a certain drug dose, it may no longer be optimal for higher doses of the same drug. Hence, the solubility, the permeability, and their interplay, have to be considered in light of the drug dose intended to be administered in order to achieve successful oral formulation development.
Collapse
|
11
|
A Rational Design of a Biphasic DissolutionSetup-Modelling of Biorelevant Kinetics for a Ritonavir Hot-Melt Extruded Amorphous Solid Dispersion. Pharmaceutics 2020; 12:pharmaceutics12030237. [PMID: 32155962 PMCID: PMC7150762 DOI: 10.3390/pharmaceutics12030237] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Biphasic dissolution systems achieved good predictability for the in vivo performance of several formulations of poorly water-soluble drugs by characterizing dissolution, precipitation, re-dissolution, and absorption. To achieve a high degree of predictive performance, acceptor media, aqueous phase composition, and the apparatus type have to be carefully selected. Hence, a combination of 1-decanol and an optimized buffer system are proposed as a new, one-vessel biphasic dissolution method (BiPHa+). The BiPHa+ was developed to combine the advantages of the well-described biorelevance of the United States Pharmacopeia (USP) apparatus II coupled with USP apparatus IV and a small-scale, one-vessel method. The BiPHa+ was designed for automated medium addition and pH control of the aqueous phase. In combination with the diode array UV-spectrophotometer, the system was able to determine the aqueous and the organic medium simultaneously, even if scattering or overlapping of spectra occurred. At controlled hydrodynamic conditions, the relative absorption area, the ratio between the organic and aqueous phase, and the selected drug concentrations were identified to be the discriminating factors. The performance of a hot-melt extruded ritonavir-containing amorphous solid dispersion (ritonavir-ASD) was compared in fasted-state dissolution media leading to different dissolution-partitioning profiles depending on the content of bile salts. An advanced kinetic model for ASD-based well described all phenomena from dispersing of the ASD to the partitioning of the dissolved ritonavir into the organic phase.
Collapse
|
12
|
Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of In Vivo Predictive Dissolution Media Using Drug Substance and Physiological Properties. AAPS JOURNAL 2020; 22:34. [PMID: 31989343 PMCID: PMC6985051 DOI: 10.1208/s12248-020-0417-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/04/2020] [Indexed: 12/20/2022]
Abstract
The rate and extent of drug dissolution in the gastrointestinal (GI) tract are highly dependent upon drug physicochemical properties and GI fluid properties. Biorelevant dissolution media (BDM), which aim to facilitate in vitro prediction of in vivo dissolution performance, have evolved with our understanding of GI physiology. However, BDM with a variety of properties and compositions are available, making the choice of dissolution medium challenging. In this tutorial, we describe a simple and quantitative methodology for selecting practical, yet physiologically relevant BDM representative of fasted humans for evaluating dissolution of immediate release formulations. Specifically, this methodology describes selection of pH, buffer species, and concentration and evaluates the importance of including bile salts and phospholipids in the BDM based upon drug substance log D, pKa, and intrinsic solubility. The methodology is based upon a mechanistic understanding of how three main factors affect dissolution, including (1) drug ionization at gastrointestinal pH, (2) alteration of surface pH by charged drug species, and (3) drug solubilization in mixed lipidic aggregates comprising bile salts and phospholipids. Assessment of this methodology through testing and comparison with literature reports showed that the recommendations correctly identified when a biorelevant buffer capacity or the addition of bile salts and phospholipids to the medium would appreciably change the drug dissolution profile. This methodology can enable informed decisions about when a time, complexity, and/or cost-saving buffer is expected to lead to physiologically meaningful in vitro dissolution testing, versus when a more complex buffer would be required.
Collapse
Affiliation(s)
- Deanna M Mudie
- Global Research and Development, Lonza, Bend, Oregon, 97703, USA.
| | - Nasim Samiei
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Derrick J Marshall
- Global Research and Development, Lonza, Bend, Oregon, 97703, USA.,Pivotal Drug Product Technologies, Amgen, Cambridge, Massachusetts, 02141, USA
| | - Gregory E Amidon
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48103, USA
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| |
Collapse
|
13
|
Gesenberg C, Mathias NR, Xu Y, Crison J, Savant I, Saari A, Good DJ, Hemenway JN, Narang AS, Schartman RR, Zheng N, Buzescu A, Patel J. Utilization of In Vitro, In Vivo and In Silico Tools to Evaluate the pH-Dependent Absorption of a BCS Class II Compound and Identify a pH-Effect Mitigating Strategy. Pharm Res 2019; 36:164. [DOI: 10.1007/s11095-019-2698-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
|
14
|
Gadgil P, Alleyne C, Feng KI, Hu M, Gindy M, Buevich AV, Fauty S, Salituro G, Wen J, Li Y, Nofsinger R, Sawyer TK, Buist N. Assessing the Utility of In Vitro Screening Tools for Predicting Bio-Performance of Oral Peptide Delivery. Pharm Res 2019; 36:151. [DOI: 10.1007/s11095-019-2682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022]
|
15
|
Fine-Shamir N, Dahan A. Methacrylate-Copolymer Eudragit EPO as a Solubility-Enabling Excipient for Anionic Drugs: Investigation of Drug Solubility, Intestinal Permeability, and Their Interplay. Mol Pharm 2019; 16:2884-2891. [PMID: 31120762 DOI: 10.1021/acs.molpharmaceut.9b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this work was to investigate the use of the dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) in oral solubility-enabling formulations for anionic lipophilic drugs, aiming to guide optional formulation design and maximize oral bioavailability. We have studied the solubility, the permeability, and their interplay, using the low-solubility nonsteroidal anti-inflammatory drug mefenamic acid as a model drug. Then, we studied the biorelevant solubility enhancement of mefenamic acid from EPO-based formulations throughout the gastrointestinal tract (GIT), using the pH-dilution dissolution method. EPO allowed a profound and linear solubility increase of mefenamic acid, from 10 μg/mL without EPO to 9.41 mg/mL in the presence of 7.5% EPO (∼940-fold; 37 °C); however, a concomitant decrease of the drug permeability was obtained, both in vitro and in vivo in rats, indicating a solubility-permeability trade-off. In the absence of an excipient, the unstirred water layer (UWL) adjacent to the GI membrane was found to hinder the permeability of the drug, accounting for this UWL effect and revealing that the true membrane permeability allowed good prediction of the solubility-permeability trade-off as a function of EPO level using a direct relationship between the increased solubility afforded by a given EPO level and the consequent decreased permeability. Biorelevant dissolution studies revealed that EPO levels of 0.05 and 0.1% were insufficient to dissolve mefenamic acid dose during the entire dissolution time course, whereas 0.5 and 1% EPO allowed complete solubility with no drug precipitation. In conclusion, EPO may serve as a potent solubility-enabling excipient for BCS class II/IV acidic drugs; however, it should be used carefully. It is prudent to use the minimal EPO amounts just sufficient to dissolve the drug dose throughout the GIT and not more than that. Excess amounts of EPO provide no solubility gain and cause further permeability loss, jeopardizing the overall success of the formulation. This work may help the formulator to hit the optimal solubility-permeability balance, maximizing the oral bioavailability afforded by the formulation.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| |
Collapse
|
16
|
Ullrich A, Schiffter HA. The influence of polymer excipients on the dissolution and recrystallization behavior of ketoconazole: Application, variation and practical aspects of a pH shift method. Eur J Pharm Biopharm 2018; 133:20-30. [PMID: 30261267 DOI: 10.1016/j.ejpb.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
The formulation of amorphous solid dispersions (ASDs) is an effective way to improve the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). The combination of an amorphous state of the drug and the presence of crystallization-inhibiting polymers retains a high amount of dissolved API over time. ASDs with ketoconazole and different polymers were manufactured by spray drying and their characteristics as well as performance were analyzed. Dissolution tests with a change of the dissolution medium from 0.1 M HCl to phosphate buffer at pH 6.8 to simulate pH conditions for instant release formulations, and a direct dissolution of the ASDs in phosphate buffer pH 6.8 to simulate conditions for an enteric formulation, were performed. All ASDs with API contents between 25 and 50% by weight were completely X-ray amorphous. Varying dissolution behaviors between medium change and direct dissolution occurred. It was possible to identify the superior ASD-compositions for both types of tests. The acidic polymers methacrylic acid-ethyl acrylate copolymer, hypromellose acetate succinate and the solubilizer macrogolglycerol hydroxystearate showed the best performances. The combination of the acidic polymers with macrogolglycerol hydroxystearate showed an improved dissolution behavior at higher API contents. The optimization of such formulations with different release-patterns plays an important role for the enhancement of the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Alexander Ullrich
- Institute of Pharmaceutics, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - Heiko A Schiffter
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Germany.
| |
Collapse
|
17
|
Keen JM, LaFountaine JS, Hughey JR, Miller DA, McGinity JW. Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs. AAPS PharmSciTech 2018; 19:1998-2008. [PMID: 29192405 DOI: 10.1208/s12249-017-0903-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
The formulation factors relevant to developing immediate and controlled release dosage forms containing poorly soluble drugs dispersed in amorphous systems are poorly understood. While the utility of amorphous solid dispersions is becoming apparent in the pharmaceutical marketplace, literature reports tend to concentrate on the development of solid dispersion particulates, which then must be formulated into a tablet. Amorphous solid dispersions of itraconazole in high molecular weight hydroxypropyl methylcellulose were prepared by KinetiSol® Dispersing and tablets were formulated to immediately disintegrate or control the release of itraconazole. Formulated tablets were evaluated by two non-sink dissolution methodologies and the dosage form properties that controlled the gelling tendency of the dispersion carrier, hydroxypropyl methylcellulose, were investigated. Selected formulations were evaluated in an exploratory beagle dog pharmacokinetic study; the results of which indicate potential for a prolonged absorption phase relative to the commercially extruded control.
Collapse
|
18
|
Investigating the Impact of Drug Crystallinity in Amorphous Tacrolimus Capsules on Pharmacokinetics and Bioequivalence Using Discriminatory In Vitro Dissolution Testing and Physiologically Based Pharmacokinetic Modeling and Simulation. J Pharm Sci 2018; 107:1330-1341. [DOI: 10.1016/j.xphs.2017.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
|
19
|
Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid – Case Study of GDC-0810. Pharm Res 2018; 35:37. [DOI: 10.1007/s11095-018-2347-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
20
|
Warnken Z, Puppolo M, Hughey J, Duarte I, Jansen-Varnum S. In Vitro–In Vivo Correlations of Carbamazepine Nanodispersions for Application in Formulation Development. J Pharm Sci 2018; 107:453-465. [DOI: 10.1016/j.xphs.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
21
|
Puppolo MM, Hughey JR, Dillon T, Storey D, Jansen-Varnum S. Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance. AAPS PharmSciTech 2017; 18:2841-2853. [PMID: 28560506 DOI: 10.1208/s12249-017-0783-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023] Open
Abstract
The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.
Collapse
|
22
|
Emami Riedmaier A, Lindley DJ, Hall JA, Castleberry S, Slade RT, Stuart P, Carr RA, Borchardt TB, Bow DAJ, Nijsen M. Mechanistic Physiologically Based Pharmacokinetic Modeling of the Dissolution and Food Effect of a Biopharmaceutics Classification System IV Compound-The Venetoclax Story. J Pharm Sci 2017; 107:495-502. [PMID: 28993217 DOI: 10.1016/j.xphs.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Venetoclax, a selective B-cell lymphoma-2 inhibitor, is a biopharmaceutics classification system class IV compound. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption and disposition of an amorphous solid dispersion formulation of venetoclax in humans. A mechanistic PBPK model was developed incorporating measured amorphous solubility, dissolution, metabolism, and plasma protein binding. A middle-out approach was used to define permeability. Model predictions of oral venetoclax pharmacokinetics were verified against clinical studies of fed and fasted healthy volunteers, and clinical drug interaction studies with strong CYP3A inhibitor (ketoconazole) and inducer (rifampicin). Model verification demonstrated accurate prediction of the observed food effect following a low-fat diet. Ratios of predicted versus observed Cmax and area under the curve of venetoclax were within 0.8- to 1.25-fold of observed ratios for strong CYP3A inhibitor and inducer interactions, indicating that the venetoclax elimination pathway was correctly specified. The verified venetoclax PBPK model is one of the first examples mechanistically capturing absorption, food effect, and exposure of an amorphous solid dispersion formulated compound. This model allows evaluation of untested drug-drug interactions, especially those primarily occurring in the intestine, and paves the way for future modeling of biopharmaceutics classification system IV compounds.
Collapse
Affiliation(s)
| | - David J Lindley
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | - Jeffrey A Hall
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | | | - Russell T Slade
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | - Patricia Stuart
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | - Robert A Carr
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | | | - Daniel A J Bow
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | - Marjoleen Nijsen
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| |
Collapse
|
23
|
Xu H, Vela S, Shi Y, Marroum P, Gao P. In Vitro Characterization of Ritonavir Drug Products and Correlation to Human in Vivo Performance. Mol Pharm 2017; 14:3801-3814. [DOI: 10.1021/acs.molpharmaceut.7b00552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Xu
- NCE-Formulation
Sciences, Drug Product Development and ‡Clinical Pharmacology and Pharmacometrics, Abbvie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Socrates Vela
- NCE-Formulation
Sciences, Drug Product Development and ‡Clinical Pharmacology and Pharmacometrics, Abbvie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Yi Shi
- NCE-Formulation
Sciences, Drug Product Development and ‡Clinical Pharmacology and Pharmacometrics, Abbvie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Patrick Marroum
- NCE-Formulation
Sciences, Drug Product Development and ‡Clinical Pharmacology and Pharmacometrics, Abbvie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Ping Gao
- NCE-Formulation
Sciences, Drug Product Development and ‡Clinical Pharmacology and Pharmacometrics, Abbvie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| |
Collapse
|
24
|
Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci 2017; 12:532-541. [PMID: 32104366 PMCID: PMC7032198 DOI: 10.1016/j.ajps.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022] Open
Abstract
Polysaccharide-based polymers were used to produce nanoparticles of poorly soluble antiviral drugs using a rapid precipitation process. The structure-property relationships of four novel cellulose acetate-based polymers were studied for their solubility enhancement of poorly soluble drugs. Particles were purified by dialysis, and dried powders were recovered after freeze-drying. The particle diameters were 150–200 nm. The target drug loading in the particles was 25 wt%, and the drug loading efficiencies were 80–96%. The effects of the formulation process and nanoparticle properties on drug solubility were investigated. All nanoparticles afforded increased solubility and faster release compared to pure drugs. Drug release was a function of the relative hydrophobicity (or solubility parameters) of the polymers.
Collapse
Affiliation(s)
- Sonal Mazumder
- Department of Chemical Engineering, Birla Institute of Science and Technology, Pilani, Rajasthan 333031, India
| | - Ashish Kumar Dewangan
- Department of Chemical Engineering, Birla Institute of Science and Technology, Pilani, Rajasthan 333031, India
| | - Naresh Pavurala
- Oak Ridge Associated Universities, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
25
|
Chiang PC, Pang J, Liu J, Salphati L. An Investigation of Oral Exposure Variability and Formulation Strategy: A Case Study of PI3Kδ Inhibitor and Physiologically Based Pharmacokinetic Modeling in Beagle Dogs. J Pharm Sci 2017; 107:466-475. [PMID: 28652157 DOI: 10.1016/j.xphs.2017.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
It is well acknowledged that drugs with poor aqueous solubility are often associated with poor oral absorption. Fortunately, drugs with a basic pKa can take advantage of solubilization in the stomach under the acidic environment to improve exposure. Consequently, high in vivo variability is often observed when stomach pH is altered. When issue encountered, enabling formulations are often used to solve the problem. However, each enabling formulation has its limitations and the situation can be further complicated by other absorption distribution metabolism elimination parameters. Therefore, formulation strategies need to consider various scenarios in order to be effective. Compound 1 is a potent phosphoinositide 3-kinase delta inhibitor with poor intrinsic solubility and 2 basic pKas. It was dosed as a suspension in dogs and found to have mediocre oral bioavailability with high variability. It was hypothesized that this variability was caused by their stomach pH variability. Pharmacokinetic modeling suggested that the issue could be improved with particle size reduction. Meanwhile, it was found that although the Madin-Darby canine kidney permeability was reasonable, Madin-Darby canine kidney transfected with human MDR1 gene (MDCK-MDR1) suggested that Compound 1 is an efflux transporter substrate. Findings were integrated into the design for in vivo studies in dogs. Data obtained from those studies allowed us to quickly narrow down the formulation approaches.
Collapse
Affiliation(s)
- Po-Chang Chiang
- Department of SMPS, Genentech, 1 DNA Way, South San Francisco, California 94080.
| | - Jodie Pang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Jia Liu
- Department of SMPS, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Laurent Salphati
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080
| |
Collapse
|
26
|
Fine-Shamir N, Beig A, Zur M, Lindley D, Miller JM, Dahan A. Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility–Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred Water Layer. Mol Pharm 2017; 14:2138-2146. [DOI: 10.1021/acs.molpharmaceut.7b00275] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Noa Fine-Shamir
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avital Beig
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moran Zur
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - David Lindley
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | | | - Arik Dahan
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Prediction of Ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci 2017; 100:42-55. [DOI: 10.1016/j.ejps.2016.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
|
28
|
Beig A, Miller JM, Lindley D, Dahan A. Striking the Optimal Solubility-Permeability Balance in Oral Formulation Development for Lipophilic Drugs: Maximizing Carbamazepine Blood Levels. Mol Pharm 2016; 14:319-327. [PMID: 27981848 DOI: 10.1021/acs.molpharmaceut.6b00967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this research was to investigate the performance of cosolvent based solubility-enabling formulations in oral delivery of lipophilic drugs, accounting for the gastrointestinal tract (GIT) luminal solubilization processes, the solubility-permeability interplay, and the overall in vivo systemic absorption. The poorly soluble antiepileptic agent carbamazepine was formulated in three cosolvent-based formulations: 20%, 60%, and 100% PEG-400, and the apparent solubility and rat permeability of the drug in these formulations were evaluated. The performance of the formulations in the dynamic GIT environment was assessed utilizing the biorelevant pH-dilution method. Then, the overall in vivo drug exposure was investigated following oral administration to rats. The three formulations showed dramatic solubility and permeability differences; the 100% PEG-400 provided the highest solubility enhancement and the 20% the poorest, while the exact opposite was evident from the permeability point of view. The dissolution results indicated that the 20% PEG-400 formulation crashes quickly following oral administration, but both the 60% and the 100% PEG-400 formulations allowed full solubilization of the dose throughout the entire GIT-like journey. The best in vivo performing formulation was the 60% PEG-400 (Fsys > 90%), followed by the 100% PEG-400 (Fsys = 76%), and the 20% PEG-400 formulation (Fsys ≈ 60%). In conclusion, this work demonstrates the in vivo solubility-permeability trade-off in oral delivery of lipophilic drugs; when a solubility-enabling formulation is developed, minimal threshold solubility should be targeted, that is just enough to allow solubilization of the drug dose throughout the GIT, while excess solubilizer should be avoided.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Jonathan M Miller
- AbbVie Incorporation , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David Lindley
- AbbVie Incorporation , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|
29
|
Lu E, Li S, Wang Z. Biorelevant test for supersaturable formulation. Asian J Pharm Sci 2016; 12:9-20. [PMID: 32104309 PMCID: PMC7032141 DOI: 10.1016/j.ajps.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/27/2016] [Accepted: 10/01/2016] [Indexed: 11/22/2022] Open
Abstract
Supersaturable formulation can generate supersaturation after dissolution, providing kinetic advantage in vivo. However, the supersaturation may precipitate before being absorbed, which makes it difficult to ensure and predict its in vivo performance. The traditional USP method is typically for Quality Control (QC) purpose and cannot be used to predict the formulation in vivo performance. Therefore, there is generally a lack of a predictive biorelevant testing method. In this review, different types of supersaturable formulations are described, including amorphous dispersions, polymorphs, salts/co-crystals, weak base and supersaturable solubilized formulations. Different kinds of in vitro dissolution methods for supersaturable formulations are also reviewed and discussed. Most of the methods take the physiology of gastrointestinal (GI) track into consideration, allowing reasonable prediction of the in vivo performance of supersaturable formulation. However, absorbing drug from GI track into blood stream is a complicate process, which can be affected by different in vivo processes such as transporter and metabolism. These factors cannot be captured by the in vitro testing. Thus, combining in vitro biorelevant dissolution methods with physiology-based pharmacokinetic modeling is a better way for the product development of supersaturable formulation.
Collapse
Affiliation(s)
- Enxian Lu
- Shanghai Aucta Pharmaceuticals Co., Ltd., No. 3377 Kangxin Road. SIMZ Pudong, Shanghai 201318, China
| | - Shoufeng Li
- Shanghai Aucta Pharmaceuticals Co., Ltd., No. 3377 Kangxin Road. SIMZ Pudong, Shanghai 201318, China
| | - Zhongqin Wang
- Shanghai Aucta Pharmaceuticals Co., Ltd., No. 3377 Kangxin Road. SIMZ Pudong, Shanghai 201318, China
| |
Collapse
|
30
|
Fong SYK, Bauer-Brandl A, Brandl M. Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opin Drug Deliv 2016; 14:403-426. [DOI: 10.1080/17425247.2016.1218465] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Mitra A, Zhu W, Kesisoglou F. Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations. Mol Pharm 2016; 13:3206-15. [PMID: 27442959 DOI: 10.1021/acs.molpharmaceut.6b00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amitava Mitra
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| | - Wei Zhu
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| | - Filippos Kesisoglou
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
32
|
Gobeau N, Stringer R, De Buck S, Tuntland T, Faller B. Evaluation of the GastroPlus™ Advanced Compartmental and Transit (ACAT) Model in Early Discovery. Pharm Res 2016; 33:2126-39. [PMID: 27278908 DOI: 10.1007/s11095-016-1951-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the oral exposure predictions obtained early in drug discovery with a generic GastroPlus Advanced Compartmental And Transit (ACAT) model based on the in vivo intravenous blood concentration-time profile, in silico properties (lipophilicity, pKa) and in vitro high-throughput absorption-distribution-metabolism-excretion (ADME) data (as determined by PAMPA, solubility, liver microsomal stability assays). METHODS The model was applied to a total of 623 discovery molecules and their oral exposure was predicted in rats and/or dogs. The predictions of Cmax, AUClast and Tmax were compared against the observations. RESULTS The generic model proved to make predictions of oral Cmax, AUClast and Tmax within 3-fold of the observations for rats in respectively 65%, 68% and 57% of the 537 cases. For dogs, it was respectively 77%, 79% and 85% of the 124 cases. Statistically, the model was most successful at predicting oral exposure of Biopharmaceutical Classification System (BCS) class 1 compounds compared to classes 2 and 3, and was worst at predicting class 4 compounds oral exposure. CONCLUSION The generic GastroPlus ACAT model provided reasonable predictions especially for BCS class 1 compounds. For compounds of other classes, the model may be refined by obtaining more information on solubility and permeability in secondary assays. This increases confidence that such a model can be used in discovery projects to understand the parameters limiting absorption and extrapolate predictions across species. Also, when predictions disagree with the observations, the model can be updated to test hypotheses and understand oral absorption.
Collapse
Affiliation(s)
- N Gobeau
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland.
- Medicines for Malaria Venture, Route de Pré-Bois 20, PO Box 1826, 1215, Geneva 15, Switzerland.
| | - R Stringer
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - S De Buck
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - T Tuntland
- Metabolism and Pharmacokinetics (MAP) Department, Genomics Institute of the Novartis Foundation, Novartis Institutes for Biomedical Research, San Diego, California, USA
| | - B Faller
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
33
|
Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing. Eur J Pharm Biopharm 2016; 101:72-81. [DOI: 10.1016/j.ejpb.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/21/2022]
|
34
|
Jakubiak P, Wagner B, Grimm HP, Petrig-Schaffland J, Schuler F, Alvarez-Sánchez R. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption. Mol Pharm 2016; 13:586-98. [DOI: 10.1021/acs.molpharmaceut.5b00808] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Paulina Jakubiak
- Roche Pharmaceutical Research
and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Björn Wagner
- Roche Pharmaceutical Research
and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Hans Peter Grimm
- Roche Pharmaceutical Research
and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Franz Schuler
- Roche Pharmaceutical Research
and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Rubén Alvarez-Sánchez
- Roche Pharmaceutical Research
and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
35
|
Matsui K, Tsume Y, Amidon GE, Amidon GL. In Vitro Dissolution of Fluconazole and Dipyridamole in Gastrointestinal Simulator (GIS), Predicting in Vivo Dissolution and Drug–Drug Interaction Caused by Acid-Reducing Agents. Mol Pharm 2015; 12:2418-28. [DOI: 10.1021/acs.molpharmaceut.5b00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kazuki Matsui
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
- Pharmacokinetics
and Safety Laboratory, Discovery Research, Pharmaceutical Research
Center, Mochida Pharmaceutical Company Limited, 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Yasuhiro Tsume
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Gregory E. Amidon
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Gordon L. Amidon
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
36
|
Wuelfing WP, Daublain P, Kesisoglou F, Templeton A, McGregor C. Preclinical Dose Number and Its Application in Understanding Drug Absorption Risk and Formulation Design for Preclinical Species. Mol Pharm 2015; 12:1031-9. [DOI: 10.1021/mp500504q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Pierre Daublain
- Discovery Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Boston, Massachusetts 02115, United States
| | | | | | - Caroline McGregor
- Discovery Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
37
|
Role of Self-Association and Supersaturation in Oral Absorption of a Poorly Soluble Weakly Basic Drug. Pharm Res 2015; 32:2579-94. [DOI: 10.1007/s11095-015-1645-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/02/2015] [Indexed: 10/23/2022]
|
38
|
Mosquera-Giraldo LI, Taylor LS. Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir. Mol Pharm 2015; 12:496-503. [PMID: 25541813 DOI: 10.1021/mp500573z] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.
Collapse
Affiliation(s)
- Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
39
|
Discovery Formulations: Approaches and Practices in Early Preclinical Development. DISCOVERING AND DEVELOPING MOLECULES WITH OPTIMAL DRUG-LIKE PROPERTIES 2015. [DOI: 10.1007/978-1-4939-1399-2_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Terebetski JL, Cummings JJ, Fauty SE, Michniak-Kohn B. Combined use of crystalline sodium salt and polymeric precipitation inhibitors to improve pharmacokinetic profile of ibuprofen through supersaturation. AAPS PharmSciTech 2014; 15:1334-44. [PMID: 24920524 DOI: 10.1208/s12249-014-0163-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/23/2014] [Indexed: 01/11/2023] Open
Abstract
To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.
Collapse
|
41
|
Nokhodchi A, Asare-Addo K. Drug release from matrix tablets: physiological parameters and the effect of food. Expert Opin Drug Deliv 2014; 11:1401-18. [DOI: 10.1517/17425247.2014.924498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Salmani JMM, Lv H, Asghar S, Zhou J. Amorphous solid dispersion with increased gastric solubility in tandem with oral disintegrating tablets: a successful approach to improve the bioavailability of atorvastatin. Pharm Dev Technol 2014; 20:465-72. [PMID: 24490758 DOI: 10.3109/10837450.2014.882938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Serious efforts have been made to overcome the bioavailability problems of ever increasing number of poorly soluble drugs, including atorvastatin (ATO); however, enhancing its gastric solubility has not received much attention. OBJECTIVES To improve the bioavailability of ATO by increasing its gastric solubility in a stable oral disintegration tablet (ODT) formulation. MATERIALS AND METHODS Amorphous solid dispersion (ASD) of ATO with Eudragit® EPO was used as API in ODT formulation. Characterization using Differential scanning calorimetry, Powder X-ray diffraction, Fourier transform infrared drug-polymer interaction simulated by molecular modeling, solubility, dissolution and stability studies together with in vivo evaluation. RESULTS AND DISCUSSION In ASD there was uniform distribution of drug in the polymer and it retained the amorphous nature without any chemical interactions except the possibility of hydrogen bond formation, with substantially higher gastric solubility. The dissolution profile of the ODT containing ASD was significantly improved >90% within 15 min compared with 25% of plain ATO formulation. In vivo results showed an overall enhancement in the apparent bioavailability (83% and 434% more than Lipitor® and plain amorphous ATO tablets, respectively). Combining the ASD with ODT presents a reliable solution to overcome the low solubility and bioavailability problems of ATO in a simple, robust and cost effective formulation.
Collapse
Affiliation(s)
- Jumah Masoud M Salmani
- Department of Pharmaceutics, China Pharmaceutical University , Nanjing , People's Republic of China
| | | | | | | |
Collapse
|
43
|
Regulatory Considerations in Development of Amorphous Solid Dispersions. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4939-1598-9_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Mathias NR, Xu Y, Patel D, Grass M, Caldwell B, Jager C, Mullin J, Hansen L, Crison J, Saari A, Gesenberg C, Morrison J, Vig B, Raghavan K. Assessing the Risk of pH-Dependent Absorption for New Molecular Entities: A Novel in Vitro Dissolution Test, Physicochemical Analysis, and Risk Assessment Strategy. Mol Pharm 2013; 10:4063-73. [DOI: 10.1021/mp400426f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Neil R. Mathias
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - Yan Xu
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - Dhaval Patel
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - Michael Grass
- Bend Research Inc., 64550
Research Road, Bend, Oregon 97701, United States
| | - Brett Caldwell
- Bend Research Inc., 64550
Research Road, Bend, Oregon 97701, United States
| | - Casey Jager
- Bend Research Inc., 64550
Research Road, Bend, Oregon 97701, United States
| | - Jim Mullin
- Bend Research Inc., 64550
Research Road, Bend, Oregon 97701, United States
| | - Luke Hansen
- Bend Research Inc., 64550
Research Road, Bend, Oregon 97701, United States
| | - John Crison
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - Amy Saari
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - Christoph Gesenberg
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - John Morrison
- Preclinical
Candidate Optimization Department, Bristol-Myers Squibb Co., Wallingford, Connecticut 06492, United States
| | - Balvinder Vig
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| | - Krishnaswamy Raghavan
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co., New Brunswick, New Jersey 08903, United States
| |
Collapse
|
45
|
Beig A, Miller JM, Dahan A. The interaction of nifedipine with selected cyclodextrins and the subsequent solubility-permeability trade-off. Eur J Pharm Biopharm 2013; 85:1293-9. [PMID: 23770429 DOI: 10.1016/j.ejpb.2013.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 01/19/2023]
Abstract
The purpose of this study was to investigate the interaction of 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 2,6-dimethyl-β-cyclodextrin (DMβCD) with the lipophilic drug nifedipine and to investigate the subsequent solubility-permeability interplay. Solubility curves of nifedipine with HPβCD and DMβCD in MES buffer were evaluated using phase solubility methods. Then, the apparent permeability of nifedipine was investigated as a function of increasing HPβCD/DMβCD concentration in the hexadecane-based PAMPA model. The interaction with nifedipine was CD dependent; significantly higher stability constant was obtained for DMβCD in comparison with HPβCD. Moreover, nifedipine displays different type of interaction with these CDs; a 1:1 stoichiometric inclusion complex was apparent with HPβCD, while 1:2 stoichiometry was apparent for DMβCD. In all cases, decreased apparent intestinal permeability of nifedipine as a function of increasing CD level and nifedipine apparent solubility was obtained. A quasi-equilibrium mass transport analysis was developed to explain this solubility-permeability interplay; the model enabled excellent quantitative prediction of nifedipine's permeability as a function of CD concentrations. This work demonstrates that when using CDs in solubility-enabling formulations, a trade-off exists between solubility increase and permeability decrease that must not be overlooked. This trade-off was found to be independent of the type of CD-drug interaction. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
46
|
Gao Y, Olsen KW. Molecular Dynamics of Drug Crystal Dissolution: Simulation of Acetaminophen Form I in Water. Mol Pharm 2013; 10:905-17. [DOI: 10.1021/mp4000212] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Gao
- Department
of Chemistry, Loyola University Chicago, 1032 W. Sheridan Road, Chicago,
Illinois 60660, United States
- Pharmaceutics, Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth W. Olsen
- Department
of Chemistry, Loyola University Chicago, 1032 W. Sheridan Road, Chicago,
Illinois 60660, United States
| |
Collapse
|
47
|
Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller JM. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS JOURNAL 2012; 15:347-53. [PMID: 23242514 DOI: 10.1208/s12248-012-9445-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022]
Abstract
The purposes of this study were to assess the efficiency of different nifedipine amorphous solid dispersions (ASDs) in achieving and maintaining supersaturation and to investigate the solubility-permeability interplay when increasing the apparent solubility via ASD formulations. Spray-dried ASDs of nifedipine in three different hydrophilic polymers, hydroxypropyl methylcellulose acetate succinate (HPMC-AS), copovidone, and polyvinylpyrrolidone (PVP), were prepared and characterized by powder X-ray diffraction and differential scanning calorimetry. The ability of these formulations to achieve and maintain supersaturation over 24 h was assessed. Then, nifedipine's apparent intestinal permeability was investigated as a function of increasing supersaturation in the parallel artificial membrane permeability assay model and in the single-pass rat intestinal perfusion model. The efficiency of the different ASDs to achieve and maintain supersaturation of nifedipine was found to be highly polymer dependent; while a dispersion in HPMC-AS enabled supersaturation 20× that of the crystalline aqueous solubility, a dispersion in copovidone enabled 10×, and PVP allowed supersaturation of only 5× that of the crystalline solubility. Nifedipine flux across the intestine from supersaturated solutions was increased, and the apparent intestinal permeability was constant, irrespective of the degree of supersaturation or the polymer being used. In conclusion, while with other solubility-enabling approaches (e.g., surfactants, cyclodextrins, cosolvents), it is not enough to increase the apparent solubility, but to strike the optimal solubility-permeability balance, which limits the chances for successful drug delivery, the amorphous form emerges as a more advantageous strategy, in which higher apparent solubility (i.e., supersaturation) will be readily translated into higher drug flux and overall absorption.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | | | |
Collapse
|
48
|
Rose JP. Effective absorption modeling in relative bioavailability study risk assessment. AAPS JOURNAL 2012; 14:895-903. [PMID: 22965626 DOI: 10.1208/s12248-012-9402-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022]
Abstract
Absorption modeling is an excellent strategic fit to perform a risk assessment for relative bioavailability (RBA) studies as it provides direct input into the question that is at the core of the RBA decision, namely, how does the absorption of the test drug product compare to the reference and is it likely to be different enough to justify an RBA study. The main limitation to absorption modeling in risk assessment is the inherent uncertainty associated with modeling. The extent to which the absorption modeling is integrated into the risk assessment should depend on the level of confidence in the modeling. It is difficult, however, to quantify the level of confidence on a case by case basis. The effective application of absorption modeling for RBA risk assessment therefore requires a general understanding of when modeling is expected to be reliable and also how to build reliability directly into the modeling. This paper describes a framework for effective modeling in RBA risk assessment that is based on four fundamental building blocks: (1) relate severity of drug product change and API properties to reliability of modeling, (2) use critical model variables to express the critical differences in the drug products, (3) generate a fraction-absorbed response surface expressed in terms of the critical model variables to evaluate the relative performance of the drug products, and (4) tie the first three building blocks together by following good model building practices that assure the highest quality model is built. The building blocks are demonstrated by a simple but common example of a change in solid state from free base to HCl salt.
Collapse
Affiliation(s)
- John P Rose
- Pharmaceutical Sciences Research and Development, Eli Lilly & Company, 1223 W. Morris St. Lilly Technology Center, Indianapolis, Indiana 46221, USA.
| |
Collapse
|
49
|
Mathias NR, Crison J. The use of modeling tools to drive efficient oral product design. AAPS J 2012; 14:591-600. [PMID: 22644702 PMCID: PMC3385810 DOI: 10.1208/s12248-012-9372-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022] Open
Abstract
Modeling and simulation of drug dissolution and oral absorption has been increasingly used over the last decade to understand drug behavior in vivo based on the physicochemical properties of Active Pharmaceutical Ingredients (API) and dosage forms. As in silico and in vitro tools become more sophisticated and our knowledge of physiological processes has grown, model simulations can provide a valuable confluence, tying-in in vitro data with in vivo data while offering mechanistic insights into clinical performance. To a formulation scientist, this unveils not just the parameters that are predicted to significantly impact dissolution/absorption, but helps probe explanations around drug product performance and address specific in vivo mechanisms. In formulation, development, in silico dissolution-absorption modeling can be effectively used to guide: API selection (form comparison and particle size properties), influence clinical study design, assess dosage form performance, guide strategy for dosage form design, and breakdown clinically relevant conditions on dosage form performance (pH effect for patients on pH-elevating treatments, and food effect). This minireview describes examples of these applications in guiding product development including those with strategies to mitigate observed clinical exposure liability or mechanistically probe product in vivo performance attributes.
Collapse
Affiliation(s)
- Neil R Mathias
- Drug Product Science & Technology Department, Bristol-Myers Squibb Co, New Brunswick, New Jersey 08903, USA.
| | | |
Collapse
|
50
|
Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS JOURNAL 2012; 14:703-13. [PMID: 22798021 DOI: 10.1208/s12248-012-9389-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 11/30/2022]
Abstract
With the increasing number of poorly water-soluble compounds in contemporary drug discovery pipelines, the concept of supersaturation as an effective formulation approach for enhancing bioavailability is gaining momentum. This is intended to design the formulation to yield significantly high intraluminal concentrations of the drug than the thermodynamic equilibrium solubility through achieving supersaturation and thus to enhance the intestinal absorption. The major challenges faced by scientists developing supersaturatable formulations include controlling the rate and degree of supersaturation with the application of polymeric precipitation inhibitor and maintenance of post-administration supersaturation. This review is intended to cover publications on this topic since April 2009. Scientific publications associated with characterization of supersaturatable systems and related preclinical and clinical pharmacokinetics (PK) studies are reviewed. Specifically, this review will address issues related to assessing the performance of supersaturatable systems including: (1) Diversified approaches for developing supersaturatable formulations, (2) meaningful in vitro test methods to evaluate supersaturatable formulations, and (3) in vivo PK study cases which have demonstrated direct relevance between the supersaturation state and the exposure observed in animal models and human subjects.
Collapse
Affiliation(s)
- Ping Gao
- Global Pharmaceutical Sciences NCF-LC, GPRD, Abbott Laboratories, R4P7, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | |
Collapse
|