1
|
Gazaem MAH, Othman WNNW, Shah SAA, Salihu M, Zahari A, Sadiran SH, Salim F. New hydroxylated metabolite derived from the microbial biotransformation of 11α-acetoxyprogesterone by the endophytic fungus Phyllosticta sp. 16L1 and its cytotoxic activity. Steroids 2025; 216:109584. [PMID: 40024463 DOI: 10.1016/j.steroids.2025.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Biotransformations catalysed by microbes are promising approach for producing a vast library of structurally diverse chemical molecules with applications in the pharmaceutical industry. The biotransformation of 11α-acetoxyprogesterone (1) by Phyllosticta sp. 16L1 has not been previously reported. In this study, the biotransformation of 11α-acetoxyprogesterone (1) was performed for the first time using the Phyllosticta sp. 16L1 strain. After an 8-day fermentation period, a new biotransformation metabolite, named as 11α-acetoxy-16α-hydroxyprogesterone (16α-hydroxy-3,20-dioxopregn-4-en-11α-yl acetate) (2) was isolated from the culture broth, along with its known isomer, 11α-acetoxy-15α-hydroxyprogesterone (3). The structure determination of the biotransformed products relied on comprehensive spectroscopic data, encompassing 1D and 2D-NMR, as well as LCMS analyses. The cytotoxic activity of the two biotransformed metabolites was assessed against selective human cancer cell lines, including hepatocellular carcinoma (HepG2), triple-negative breast cancer (MDA-MB-231), colorectal adenocarcinoma (Caco-2), and lung adenocarcinoma (A549). The results demonstrated that both metabolites 2 and 3 exhibited cytotoxic effects on the evaluated cell lines. Metabolite 2 showed stronger cytotoxic potential, with IC50 values ranging from 6.65 to 27.75 μM, while metabolite 3 displayed lower potency, with IC50 values between 38.20 and 162.53 μM. Notably, both metabolites exhibited minimal toxicity towards the normal liver Chang cells. Molecular docking studies were conducted to predict the binding modes and affinities of the metabolites against two targets (PDB: 5EM8 and 6V6O), both in 2D and 3D representations, with binding energies ranging from -8.5 to -7.2 kcal/mol. The results revealed that metabolites 2 and 3 interacted with key clinically significant amino acid residues, Lys745 and Met793, through conventional hydrogen bonding.
Collapse
Affiliation(s)
- Mufeda Ahmed Hazea Gazaem
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Biology Department, Education College, Taiz University, Yemen
| | - Wan Nurul Nazneem Wan Othman
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Mustapha Salihu
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University Sokoto PMB 2346, Nigeria
| | - Azeana Zahari
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Hajar Sadiran
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Fatimah Salim
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
2
|
Ortiz-Rivero S, Peleteiro-Vigil A, Abete L, Lozano E, Hammer HS, Giacomo SD, Abad M, Boix L, Forner A, Reig M, Macias RIR, Pötz O, Marin JJG, Briz O. Sensitization of cholangiocarcinoma cells to chemotherapy through BCRP inhibition with β-caryophyllene oxide. Biomed Pharmacother 2024; 170:116038. [PMID: 38141281 DOI: 10.1016/j.biopha.2023.116038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that β-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.
Collapse
Affiliation(s)
- Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Ana Peleteiro-Vigil
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | | | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Mar Abad
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - Alejandro Forner
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria Reig
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oliver Pötz
- SIGNATOPE GmbH, Reutlingen, Germany; NMI Natural and Medical Sciences Institute, University of Tuebinegn, Reutlingen, Germany
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
4
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
6
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
7
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Girisa S, Henamayee S, Parama D, Rana V, Dutta U, Kunnumakkara AB. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. MOLECULAR BIOMEDICINE 2021; 2:21. [PMID: 35006466 PMCID: PMC8607382 DOI: 10.1186/s43556-021-00035-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the lethal diseases that arise due to the molecular alterations in the cell. One of those alterations associated with cancer corresponds to differential expression of Farnesoid X receptor (FXR), a nuclear receptor regulating bile, cholesterol homeostasis, lipid, and glucose metabolism. FXR is known to regulate several diseases, including cancer and cardiovascular diseases, the two highly reported causes of mortality globally. Recent studies have shown the association of FXR overexpression with cancer development and progression in different types of cancers of breast, lung, pancreas, and oesophagus. It has also been associated with tissue-specific and cell-specific roles in various cancers. It has been shown to modulate several cell-signalling pathways such as EGFR/ERK, NF-κB, p38/MAPK, PI3K/AKT, Wnt/β-catenin, and JAK/STAT along with their targets such as caspases, MMPs, cyclins; tumour suppressor proteins like p53, C/EBPβ, and p-Rb; various cytokines; EMT markers; and many more. Therefore, FXR has high potential as novel biomarkers for the diagnosis, prognosis, and therapy of cancer. Thus, the present review focuses on the diverse role of FXR in different cancers and its agonists and antagonists.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahu Henamayee
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Dey Parama
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Varsha Rana
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam, 781001, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
Takeda F, Oda M, Terasaki M, Ichimura Y, Kojima H, Saitoh H. Downregulated expression of intestinal P-glycoprotein in rats with cisplatin-induced acute kidney injury causes amplification of its transport capacity to maintain "gatekeeper" function. Toxicol Appl Pharmacol 2021; 423:115570. [PMID: 33965372 DOI: 10.1016/j.taap.2021.115570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
The expression of transporters on the apical and basal membranes of renal proximal tubular cells are down- or upregulated to various extents under cisplatin (CDDP)-induced acute kidney injury (AKI). However, little is known about the changes in transporters in tissues other than the kidney under CDDP-induced AKI. This study aimed to investigate the modulation of the expression/function of intestinal efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), in CDDP-induced AKI rats. On day 3 after the intraperitoneal administration of CDDP (5 mg/kg) to rats, the expression levels of P-gp and Bcrp were compared with those of normal rats. Further, the absorption of three P-gp substrates (6α-methylprednisolone, rhodamine 123, and gatifloxacin) was evaluated in both groups using conventional loop techniques. In the CDDP-induced AKI rats, P-gp expression in the ileum was markedly decreased to approximately 38% of that in the normal rats. However, no significant changes in Bcrp expression were observed in the AKI rats. In contrast with the reduction in P-gp expression in the AKI rats, the absorption of the three P-gp substrates remained almost the same or decreased in the AKI group. The addition of verapamil (a potent P-gp inhibitor) increased the absorption of the three P-gp substrates to the values obtained from the normal rats. In conclusion, our results suggested that P-gp expression is downregulated in rats with CDDP-induced AKI but that P-gp maintains its potency as a "gatekeeper" against the absorption of xenobiotics by amplifying its individual transport capacity under these conditions.
Collapse
Affiliation(s)
- Fuyo Takeda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masaru Terasaki
- Department of Health and Environmental Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroyuki Kojima
- Department of Health and Environmental Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| |
Collapse
|
10
|
Low HB, Wong ZL, Wu B, Kong LR, Png CW, Cho YL, Li CW, Xiao F, Xin X, Yang H, Loo JM, Lee FYX, Tan IBH, DasGupta R, Shen HM, Schwarz H, Gascoigne NRJ, Goh BC, Xu X, Zhang Y. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun 2021; 12:2284. [PMID: 33863904 PMCID: PMC8052345 DOI: 10.1038/s41467-021-22638-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Drug resistance is a major obstacle to the treatment of most human tumors. In this study, we find that dual-specificity phosphatase 16 (DUSP16) regulates resistance to chemotherapy in nasopharyngeal carcinoma, colorectal cancer, gastric and breast cancer. Cancer cells expressing higher DUSP16 are intrinsically more resistant to chemotherapy-induced cell death than cells with lower DUSP16 expression. Overexpression of DUSP16 in cancer cells leads to increased resistance to cell death upon chemotherapy treatment. In contrast, knockdown of DUSP16 in cancer cells increases their sensitivity to treatment. Mechanistically, DUSP16 inhibits JNK and p38 activation, thereby reducing BAX accumulation in mitochondria to reduce apoptosis. Analysis of patient survival in head & neck cancer and breast cancer patient cohorts supports DUSP16 as a marker for sensitivity to chemotherapy and therapeutic outcome. This study therefore identifies DUSP16 as a prognostic marker for the efficacy of chemotherapy, and as a therapeutic target for overcoming chemoresistance in cancer.
Collapse
Affiliation(s)
- Heng Boon Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Zhen Lim Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Bangyuan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun-Wei Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fengchun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Xin
- Department of Mathematics, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Fiona Yi Xin Lee
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Herbert Schwarz
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaohong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|
12
|
Wu Y, Liu L, Zhao Y, Zhao R. Polysaccharides of vinegar-baked radix bupleuri promote the hepatic targeting effect of oxymatrine by regulating the protein expression of HNF4α, Mrp2, and OCT1. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113471. [PMID: 33075440 DOI: 10.1016/j.jep.2020.113471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/26/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vinegar-baked Radix Bupleuri (VBRB) is a processed form of Bupleurum chinense DC. As a well-known meridian-guiding drug, it is traditionally used as a component of traditional Chinese medicine formulations indicated for the treatment of liver diseases. However, the liver targeting component in VBRB remains unclear. Therefore, this study aims to explore the efficacy and mechanism of PSS (polysaccharides in Vinegar-baked Radix Bupleuri) in enhancing liver targeting. MATERIALS AND METHODS Drug distribution of OM alone or combined with PSS was investigated in vivo. Relative uptake efficiency (RUE) and relative targeting efficiency (RTE) were calculated to evaluate liver targeting efficiency. The mRNA and protein expression of organic cation transporter 1 (OCT1), multi-drug resistance protein 2 (Mrp2), and hepatocyte nuclear factor 4α (HNF4α) in the liver were determined by q-PCR and Western blot. Then, AZT, the inhibitor of OCT1 and BI6015, the inhibitor of HNF4α were used to investigate regulatory mechanisms involved in the uptake of OM in the cell. At last, the role of PSS in the anti-hepatitis B virus (HBV) was explored on HepG2.2.15. RESULTS PSS increased the AUC of OM in the liver and increase the RUE and RTE in the liver which indicated a liver targeting enhancing effect. The mRNA and protein expression of OCT1 was increased while Mrp2 and HNF4α decreased. PSS could increase the uptake of OM in HepG2 by increasing the protein expression of HNF4α and OCT1, while inhibited Mrp2. Moreover, PSS combined with OM could enhance the anti-HBV effect of OM. CONCLUSION PSS enhanced the liver targeting efficiency and the underlying mechanism related to up-regulating the expression of OCT1 and HNF4α, while down-regulating of Mrp2. These results suggest that PSS may become a potential excipient and provide a new direction for new targeted research.
Collapse
Affiliation(s)
- Yayun Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Lijuan Liu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Ya Zhao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Ruizhi Zhao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China.
| |
Collapse
|
13
|
Omondi RO, Sibuyi NRS, Fadaka AO, Meyer M, Jaganyi D, Ojwach SO. Role of π-conjugation on the coordination behaviour, substitution kinetics, DNA/BSA interactions, and in vitro cytotoxicity of carboxamide palladium(II) complexes. Dalton Trans 2021; 50:8127-8143. [PMID: 34027534 DOI: 10.1039/d1dt00412c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatments of N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L1), N-(quinolin-8-yl)pyrazine-2-carboxamide (L2), N-(quinolin-8-yl)picolinamide (L3) and N-(quinolin-8-yl)quinoline-2-carboxamide (L4) with [PdCl2(NCMe)]2 afforded the corresponding Pd(ii) complexes, [Pd(L1)Cl] (PdL1); [Pd(L2)Cl] (PdL2); [Pd(L3)Cl] (PdL3); and [Pd(L4)Cl] (PdL4) in moderate yields. Structural characterisation of the compounds was achieved by NMR and FT-IR spectroscopies, elemental analyses and single crystal X-ray crystallography. The solid-state structures of complexes PdL2-PdL4 established the presence of one tridentate carboxamide and Cl ligands around the Pd(ii) coordination sphere, to give distorted square planar complexes. Electrochemical investigations of PdL1-PdL4 showed irreversible one-electron oxidation reactions. Kinetics reactivity of the complexes towards bio-molecules, thiourea (Tu), l-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, in tandem with the density functional theory (DFT) data. The complexes bind favourably to calf thymus (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions agrees with the substitution kinetics trends. The in vitro cytotoxic activities of PdL1-PdL4 were examined in cancer cell lines A549, PC-3, HT-29, Caco-2, and HeLa, and a normal cell line, KMST-6. Overall, PdL1 and PdL3 displayed potent cytotoxic effects on A549, PC-3 HT-29 and Caco-2 comparable to cisplatin. All the investigated complexes exhibited lower toxicity on normal cells than cisplatin.
Collapse
Affiliation(s)
- Reinner O Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | - Nicole R S Sibuyi
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Adewale O Fadaka
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Mervin Meyer
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Deogratius Jaganyi
- School of Pure and Applied Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya and Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Stephen O Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
14
|
Massaro C, Safadeh E, Sgueglia G, Stunnenberg HG, Altucci L, Dell’Aversana C. MicroRNA-Assisted Hormone Cell Signaling in Colorectal Cancer Resistance. Cells 2020; 10:cells10010039. [PMID: 33396628 PMCID: PMC7823834 DOI: 10.3390/cells10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Elham Safadeh
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| |
Collapse
|
15
|
Cellular Mechanisms Accounting for the Refractoriness of Colorectal Carcinoma to Pharmacological Treatment. Cancers (Basel) 2020; 12:cancers12092605. [PMID: 32933095 PMCID: PMC7563523 DOI: 10.3390/cancers12092605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) causes a high number (more than 800,000) of deaths worldwide each year. Better methods for early diagnosis and the development of strategies to enhance the efficacy of the therapeutic approaches used to complement or substitute surgical removal of the tumor are urgently needed. Currently available pharmacological armamentarium provides very moderate benefits to patients due to the high resistance of tumor cells to respond to anticancer drugs. The present review summarizes and classifies into seven groups the cellular and molecular mechanisms of chemoresistance (MOC) accounting for the failure of CRC response to the pharmacological treatment. Abstract The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).
Collapse
|
16
|
Dong R, Wang J, Gao X, Wang C, Liu K, Wu J, Liu Z, Sun H, Ma X, Meng Q. Yangonin protects against estrogen–induced cholestasis in a farnesoid X receptor-dependent manner. Eur J Pharmacol 2019; 857:172461. [DOI: 10.1016/j.ejphar.2019.172461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
|
17
|
Villanueva S, Zhang W, Zecchinati F, Mottino A, Vore M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr Med Chem 2019; 26:1155-1184. [PMID: 29589524 DOI: 10.2174/0929867325666180327092639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.
Collapse
Affiliation(s)
- Silvina Villanueva
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Wei Zhang
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| | - Felipe Zecchinati
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Aldo Mottino
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Mary Vore
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| |
Collapse
|
18
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Di Giacomo S, Briz O, Monte MJ, Sanchez-Vicente L, Abete L, Lozano E, Mazzanti G, Di Sotto A, Marin JJG. Chemosensitization of hepatocellular carcinoma cells to sorafenib by β-caryophyllene oxide-induced inhibition of ABC export pumps. Arch Toxicol 2019; 93:623-634. [PMID: 30659321 DOI: 10.1007/s00204-019-02395-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/10/2019] [Indexed: 01/16/2023]
Abstract
Several ATP-binding cassette (ABC) proteins reduce intracellular concentrations of antitumor drugs and hence weaken the response of cancer cells to chemotherapy. Accordingly, the inhibition of these export pumps constitutes a promising strategy to chemosensitize highly chemoresistant tumors, such as hepatocellular carcinoma (HCC). Here, we have investigated the ability of β-caryophyllene oxide (CRYO), a naturally occurring sesquiterpene component of many essential oils, to inhibit, at non-toxic doses, ABC pumps and improve the response of HCC cells to sorafenib. First, we have obtained a clonal subline (Alexander/R) derived from human hepatoma cells with enhanced multidrug resistance (MDR) associated to up-regulation (mRNA and protein) of MRP1 and MRP2. Analysis of fluorescent substrates export (flow cytometry) revealed that CRYO did not affect the efflux of fluorescein (MRP3, MRP4 and MRP5) but inhibited that of rhodamine 123 (MDR1) and calcein (MRP1 and MRP2). This ability was higher for CRYO than for other sesquiterpenes assayed. CRYO also inhibited sorafenib efflux, increased its intracellular accumulation (HPLC-MS/MS) and enhanced its cytotoxic response (MTT). For comparison, the effect of known ABC pumps inhibitors was also determined. They induced strong (diclofenac on MRPs), modest (verapamil on MDR1) or null (fumitremorgin C on BCRP) effect on sorafenib efflux and cytotoxicity. In the mouse xenograft model, the response to sorafenib treatment of subcutaneous tumors generated by mouse hepatoma Hepa 1-6/R cells, with marked MDR phenotype, was significantly enhanced by CRYO co-administration. In conclusion, at non-toxic dose, CRYO is able to chemosensitizating liver cancer cells to sorafenib by favoring its intracellular accumulation.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Oscar Briz
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J Monte
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Laura Sanchez-Vicente
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Elisa Lozano
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
20
|
Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases. Int J Mol Sci 2018; 19:ijms19113630. [PMID: 30453651 PMCID: PMC6274770 DOI: 10.3390/ijms19113630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Structural and functional studies have provided numerous insights over the past years on how members of the nuclear hormone receptor superfamily tightly regulate the expression of drug-metabolizing enzymes and transporters. Besides the role of the farnesoid X receptor (FXR) in the transcriptional control of bile acid transport and metabolism, this review provides an overview on how this metabolic sensor prevents the accumulation of toxic byproducts derived from endogenous metabolites, as well as of exogenous chemicals, in coordination with the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Decrypting this network should provide cues to better understand how these metabolic nuclear receptors participate in physiologic and pathologic processes with potential validation as therapeutic targets in human disabilities and cancers.
Collapse
|
21
|
Wu JJ, Zhu YF, Guo ZZ, Lou YM, He SG, Guan Y, Zhu LJ, Liu ZQ, Lu LL, Liu L. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:87-97. [PMID: 29277460 DOI: 10.1016/j.phymed.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/02/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Aconitum alkaloids from Aconitum species are often used to treat arthritis and rheumatic diseases but have the drawback of high toxicity. Identifying their pharmacokinetic behaviour is important for the safe clinical application of Aconitum species. Efflux transporters (ETs), including P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), have important functions in regulating the pharmacokinetic behaviours of drugs and in herb-herb or herb-drug interactions (HDIs). The Aconitum alkaloids regulate P-gp expression and function, but their effects on MRP2 and BCRP expression remain unknown. PURPOSE To determine the effects of three Aconitum alkaloids, aconitine (AC), benzoylaconine (BAC), and aconine, on MRP2 and BCRP. METHODS The levels of the protein and mRNA expression of MRP2 and BCRP in vivo and in vitro were measured via Western blotting and real-time PCR, respectively. Fluorescence signals of MRP2 and BCRP were detected via confocal fluorescence microscopy. A reporter assay using HepG2-C8 cells, which were generated by transfecting plasmids containing the antioxidant response element (ARE)-luciferin gene into HepG2 cells, was used to examine the ARE-luciferin activity. The transport activities of MRP2 and BCRP were tested via flow cytometry using substrate probes. RESULTS The Aconitum alkaloids significantly up-regulated MRP2 and BCRP expression, accompanied by a marked increase in nuclear factor E2-related factor-2 (Nrf2) expression in the jejunum, ileum, and colon of FVB mice, in the order AC < BAC < aconine. In the in vitro model, the Aconitum alkaloids increased MRP2 and BCRP expression in Caco-2 and LS174T cells, in the order AC < BAC < aconine. Additionally, these alkaloids promoted the translocation of Nrf2 from the cytoplasm to the nucleus and significantly increased ARE-luciferin activity in HepG2-C8 cells. Luteolin, a potent inhibitor of Nrf2, markedly prevented MRP2 and BCRP expression from being induced by the three Aconitum alkaloids. The efflux activity of MRP2 was also significantly increased in cells receiving the same treatment. CONCLUSIONS The tested Aconitum alkaloids significantly increased the expression of MRP2 and BCRP by activating the Nrf2-mediated signalling pathway and enhanced the efflux activity of MRP2. The potential for herb-herb interactions or HDIs exists when Aconitum species are co-administered with substrate drugs that are transported via MRP2 and BCRP. Therefore, the Aconitum alkaloids may be used as quality indicators for the herbs of Aconitum species.
Collapse
Affiliation(s)
- Jin-Jun Wu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuan-Feng Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhen-Zhen Guo
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yan-Mei Lou
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shu-Gui He
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yang Guan
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Li-Jun Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhong-Qiu Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Lin-Lin Lu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
22
|
Usefulness of the MRP2 promoter to overcome the chemoresistance of gastrointestinal and liver tumors by enhancing the expression of the drug transporter OATP1B1. Oncotarget 2018; 8:34617-34629. [PMID: 28423714 PMCID: PMC5470996 DOI: 10.18632/oncotarget.16119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/07/2017] [Indexed: 02/05/2023] Open
Abstract
Tumor response to chemotherapy is often limited by drug export through ABC proteins. To overcome this problem, here we have investigated the usefulness of inducing the expression of the multidrug uptake transporter OATP1B1 under the control of the MRP2 promoter (MRP2pr). Human hepatoma cells (Alexander) were transfected with MRP2pr fragments of different length fused to the firefly luciferase ORF in order to select the shortest fragment with the highest response to dexamethasone, which was subsequently used to generate the chimeric construct MRP2pr-OATP1B1-V5. Hepatoma cells transduced with MRP2pr-OATP1B1-V5 resulted in dexamethasone-sensitive inducible OATP1B1 expression and enhanced selective antitumor response to OATP1B1 substrates (paclitaxel, Bamet-R2 and Bamet-UD2). In human colon cancer cells LS174T/R, used as a model of endogenous chemoresistance due to MRP2 overexpression, MRP2pr-OATP1B1 induced OATP1B1 expression together with chemosensitivity to OATP1B1 substrates. In nude mice, xenografted tumors formed by LS174T/R cells transduced with MRP2pr-OATP1B1 plus treatment with dexamethasone were markedly sensitized to Bamet-UD2. In conclusion, the induced expression of anticancer drug uptake transporters, under the control of promoters of ABC proteins involved in chemoresistance, constitutes an interesting approach to overcome the poor response of cancer to chemotherapy due to reduced drug uptake and/or enhanced drug export.
Collapse
|
23
|
C-terminal truncated hepatitis B virus X protein promotes hepatocellular carcinogenesis through induction of cancer and stem cell-like properties. Oncotarget 2018; 7:24005-17. [PMID: 27006468 PMCID: PMC5029680 DOI: 10.18632/oncotarget.8209] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor relapse after chemotherapy typifies hepatocellular carcinoma (HCC) and is believed to be attributable to residual cancer stem cells (CSCs) that survive initial treatment. Chronic infection with hepatitis B virus (HBV) has long been linked to the development of HCC. Upon infection, random HBV genome integration can lead to truncation of hepatitis B virus X (HBx) protein at the C-terminus. The resulting C-terminal-truncated HBx (HBx-ΔC) was previously shown to confer enhanced invasiveness and diminished apoptotic response in HCC cells. Here, we found HBx-ΔC to promote the appearance of a CD133 liver CSC subset and confer cancer and stem cell-like features in HCC. HBx-ΔC was exclusively detected in HCC cell lines that were raised from patients presented with a HBV background with concomitant CD133 expression. Stable overexpression of the naturally occurring HBx-ΔC mutants, HBx-Δ14 or HBx-Δ35, in HCC cells Huh7 and immortalized normal liver cells MIHA resulted in a significant increase in the cells ability to self-renew, resist chemotherapy and targeted therapy, migrate and induce angiogenesis. MIHA cells with the mutants stably overexpressed also resulted in the induction of CD133, mediated through STAT3 activation. RNA sequencing profiling of MIHA cells with or without HBx-ΔC mutants stably overexpressed identified altered FXR activation. This, together with rescue experiments using a selective FXR inhibitor suggested that C-terminal truncated HBx can mediate cancer stemness via FXR activation. Collectively, we find C-terminal truncated HBx mutants to confer cancer and stem cell-like features in vitro and to play an important role in driving tumor relapse in HCC.
Collapse
|
24
|
Lajous H, Riva R, Lelièvre B, Tétaud C, Avril S, Hindré F, Boury F, Jérôme C, Lecomte P, Garcion E. Hybrid Gd3+/cisplatin cross-linked polymer nanoparticles enhance platinum accumulation and formation of DNA adducts in glioblastoma cell lines. Biomater Sci 2018; 6:2386-2409. [DOI: 10.1039/c8bm00346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New hybrid nanoparticles permitted MRI monitoring of a cisplatin infusion while enhancing drug accumulation and DNA adduct formation in glioblastoma cells.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Raphaël Riva
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance
- Laboratoire de pharmacologie-toxicologie
- CHU Angers
- F-49100 Angers
- France
| | - Clément Tétaud
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Sylvie Avril
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | | | - Frank Boury
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | | |
Collapse
|
25
|
Gao X, Fu T, Wang C, Ning C, Kong Y, Liu Z, Sun H, Ma X, Liu K, Meng Q. Computational discovery and experimental verification of farnesoid X receptor agonist auraptene to protect against cholestatic liver injury. Biochem Pharmacol 2017; 146:127-138. [DOI: 10.1016/j.bcp.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
|
26
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
27
|
Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 2017. [PMID: 27570424 DOI: 10.3748/wjg.vss.i30.6876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance develops in nearly all patients with colon cancer, leading to a decrease in the therapeutic efficacies of anticancer agents. This review provides an up-to-date summary on over-expression of ATP-binding cassette (ABC) transporters and evasion of apoptosis, two representatives of transport-based and non-transport-based mechanisms of drug resistance, as well as their therapeutic strategies. Different ABC transporters were found to be up-regulated in colon cancer, which can facilitate the efflux of anticancer drugs out of cancer cells and decrease their therapeutic effects. Inhibition of ABC transporters by suppressing their protein expressions or co-administration of modulators has been proven as an effective approach to sensitize drug-resistant cancer cells to anticancer drugs in vitro. On the other hand, evasion of apoptosis observed in drug-resistant cancers also results in drug resistance to anticancer agents, especially to apoptosis inducers. Restoration of apoptotic signals by BH3 mimetics or epidermal growth factor receptor inhibitors and inhibition of cancer cell growth by alternative cell death pathways, such as autophagy, are effective means to treat such resistant cancer types. Given that the drug resistance mechanisms are different among colon cancer patients and may change even in a single patient at different stages, personalized and specific combination therapy is proposed to be more effective and safer for the reversal of drug resistance in clinics.
Collapse
Affiliation(s)
- Tao Hu
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Li
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ying Gao
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Chi Hin Cho
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 2017; 30:15-27. [DOI: 10.1016/j.drup.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|
29
|
Seubwai W, Vaeteewoottacharn K, Kraiklang R, Umezawa K, Okada S, Wongkham S. Inhibition of NF-κB Activity Enhances Sensitivity to Anticancer Drugs in Cholangiocarcinoma Cells. Oncol Res 2016; 23:21-8. [PMID: 26802647 PMCID: PMC7842550 DOI: 10.3727/096504015x14424348426071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a dismal cancer. At present, there is no effective chemotherapeutic regimen for CCA. This may be due to the marked resistance of CCA to chemotherapy drugs, for which a mechanism remains unknown. Nuclear factor-κB (NF-κB) is constitutively activated in a variety of cancer cells, including CCA. It has been shown to play roles in growth, metastasis, and chemoresistance of cancer. In the present study, we examined whether NF-κB is involved in the chemoresistance of CCA and whether dehydroxymethylepoxyquinomicin (DHMEQ), an effective NF-κB inhibitor, can overcome the drug resistance of CCA. Two CCA cell lines, KKU-M213 and KKU-M214, were treated with DHMEQ and/or chemotherapeutic drugs. Cell viability, apoptosis, and the expressions of the ATP-binding cassette (ABC) transporters were compared. The combination of chemotherapy drugs, 5-fluorouracil, cisplatin, and doxorubicin, with DHMEQ significantly enhanced the cytotoxicity of all chemotherapeutic drugs compared to DHMEQ or drug alone. Furthermore, the mRNA level of ABCB1, a multidrug-resistant protein, was significantly decreased in the 5-fluorouracil combined with DHMEQ-treated cells. These findings suggest that the inhibition of NF-κB by DHMEQ enhanced the chemoresponsiveness of CCA cells, possibly by reducing the expression of ABC transporter. Inhibition of NF-κB may be a potential chemodrug-sensitizing strategy for chemoresistant cancer such as CCA.
Collapse
Affiliation(s)
- Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | |
Collapse
|
30
|
Sanchez-Vicente L, Herraez E, Briz O, Nogales R, Molina-Alcaide E, Marin JJG. Biodetection of potential genotoxic pollutants entering the human food chain through ashes used in livestock diets. Food Chem 2016; 205:81-8. [PMID: 27006217 DOI: 10.1016/j.foodchem.2016.02.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 02/21/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
Ash derived from energy generation is used as a source of minerals in livestock feeds. The microbial biosensor recApr-Luc2 was built to detect genotoxic hazard in recycled ash. Escherichia coli SOS gene (recA, lexA, dinI and umuC) expression in response to cisplatin-induced DNA damage led to the selection of the recA promoter. The biosensor required functional RecA expression to respond to genotoxic heavy metals (Cr>Cd≈Pb), and polluted ash induced a strong recApr-Luc2 response. In human liver and intestinal cells, heavy metals induced acute toxicity (Cr>Cd>Pb) at concentrations sufficient to activate recApr-Luc2. Cytostatic effects, including genotoxicity, were cell- and metal-dependent, apart from Cr. In agreement with the recApr-Luc2 bioassay, Cr had the strongest effect in all cells. In conclusion, recApr-Luc2 could be useful for evaluating the genotoxic risk of pollutants present in ash that might be concentrated in animal products and, thus, entering the human food chain.
Collapse
Affiliation(s)
- Laura Sanchez-Vicente
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Elisa Herraez
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | | | | | - Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| |
Collapse
|
31
|
Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 2016; 22:6876-6889. [PMID: 27570424 PMCID: PMC4974586 DOI: 10.3748/wjg.v22.i30.6876] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Drug resistance develops in nearly all patients with colon cancer, leading to a decrease in the therapeutic efficacies of anticancer agents. This review provides an up-to-date summary on over-expression of ATP-binding cassette (ABC) transporters and evasion of apoptosis, two representatives of transport-based and non-transport-based mechanisms of drug resistance, as well as their therapeutic strategies. Different ABC transporters were found to be up-regulated in colon cancer, which can facilitate the efflux of anticancer drugs out of cancer cells and decrease their therapeutic effects. Inhibition of ABC transporters by suppressing their protein expressions or co-administration of modulators has been proven as an effective approach to sensitize drug-resistant cancer cells to anticancer drugs in vitro. On the other hand, evasion of apoptosis observed in drug-resistant cancers also results in drug resistance to anticancer agents, especially to apoptosis inducers. Restoration of apoptotic signals by BH3 mimetics or epidermal growth factor receptor inhibitors and inhibition of cancer cell growth by alternative cell death pathways, such as autophagy, are effective means to treat such resistant cancer types. Given that the drug resistance mechanisms are different among colon cancer patients and may change even in a single patient at different stages, personalized and specific combination therapy is proposed to be more effective and safer for the reversal of drug resistance in clinics.
Collapse
|
32
|
Gonzalez-Sanchez E, Perez MJ, Nytofte NS, Briz O, Monte MJ, Lozano E, Serrano MA, Marin JJG. Protective role of biliverdin against bile acid-induced oxidative stress in liver cells. Free Radic Biol Med 2016; 97:466-477. [PMID: 27387768 DOI: 10.1016/j.freeradbiomed.2016.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
The accumulation of bile acids affects mitochondria causing oxidative stress. Antioxidant defense is accepted to include biotransformation of biliverdin (BV) into bilirubin (BR) through BV reductase α (BVRα). The mutation (c.214C>A) in BLVRA results in a non-functional enzyme (mutBVRα). Consequently, homozygous carriers suffering from cholestasis develop green jaundice. Whether BVRα deficiency reduces BV-dependent protection against bile acids is a relevant question because a screening of the mut-BLVRA allele (a) in 311 individuals in Greenland revealed that this SNP was relatively frequent in the Inuit population studied (1% a/a and 4.5% A/a). In three human liver cell lines an inverse correlation between BVRα expression (HepG2>Alexander>HuH-7) and basal reactive oxygen species (ROS) levels was found, however the ability of BV to reduce oxidative stress and cell death induced by deoxycholic acid (DCA) or potassium dichromate (PDC) was similar in these cells. The transduction of BVRα or mutBVRα in human placenta JAr cells with negligible BVRα expression or the silencing of endogenous BVRα expression in liver cells had no effect on DCA-induced oxidative stress and cell death or BV-mediated cytoprotection. DCA stimulated both superoxide anion and hydrogen peroxide production, whereas BV only inhibited the latter. DCA and other dihydroxy-bile acids, but not PDC, induced up-regulation of both BVRα and heme oxygenase-1 (HO-1) in liver cells through a FXR independent and BV insensitive mechanism. In conclusion, BV exerts direct and BVRα-independent antioxidant and cytoprotective effects, whereas bile acid accumulation in cholestasis stimulates the expression of enzymes favoring the heme biotransformation into BV and BR.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| | - Maria J Perez
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | | | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Maria A Serrano
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
33
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
34
|
Tan S, Shi H, Ba M, Lin S, Tang H, Zeng X, Zhang X. miR-409-3p sensitizes colon cancer cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int J Mol Med 2016; 37:1030-8. [PMID: 26935807 DOI: 10.3892/ijmm.2016.2492] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 01/19/2016] [Indexed: 11/06/2022] Open
Abstract
The chemoresistance of colon cancer cells limits the efficacy of chemotherapy. miR-409-3p has been shown to be downregulated in various types of cancer. In the present study, we examined the role of miR-409-3p in colon cancer as well as the effects of miR‑409-3p on the sensitivity of colon cancer cells to oxaliplatin. The expression of miR-409 was significantly downregulated in the human colon cancer cell lines compared with the normal colon epithelial cells. Importantly, the miR-409-3p expression levels were lower in human colon cancer patient samples than in normal colon tissues. Moreover, we observed a negative correlation between the miR‑409-3p levels and resistance to oxaliplatin: the oxaliplatin-resistant colon cancer cells exhibited significantly downregulated miR‑409-3p levels, but higher autophagic activity than the oxaliplatin-sensitive cells. Using bioinformatics analysis, we predicted that miR‑409-3p miRNA binds to the key autophagy gene encoding Beclin-1. Our findings indicated that the overexpression of miR‑409-3p inhibited Beclin-1 expression and autophagic activity by binding to the 3'-untranslated region of Beclin-1 mRNA. In addition, the overexpression of miR‑409-3p enhanced the chemosensitivity of the oxaliplatin-sensitive and oxaliplatin-resistant colon cancer cells. The restoration of Beclin-1 abrogated these effects of miR‑409-3p. In a xenograft model using nude mice, we examined the effects of miR‑409-3p on tumor growth during chemotherapy. miR‑409-3p overexpression sensitized the tumor to chemotherapy, while inhibiting chemotherapy-induced autophagy in a manner dependent on Beclin-1. The findings of our study suggest that miR-409-3p is capable of enhancing the chemosensitivity of colon cancer cells by inhibiting Beclin-1-mediated autophagy.
Collapse
Affiliation(s)
- Shifan Tan
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mingchen Ba
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Shengqv Lin
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Hongsheng Tang
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiaoqi Zeng
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiangliang Zhang
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
35
|
Walsh DR, Nolin TD, Friedman PA. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins. Pharmacol Rev 2016; 67:656-80. [PMID: 26092975 DOI: 10.1124/pr.115.010728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na(+)/H(+) exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development.
Collapse
Affiliation(s)
- Dustin R Walsh
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Thomas D Nolin
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Peter A Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| |
Collapse
|
36
|
Meng Q, Chen X, Wang C, Liu Q, Sun H, Sun P, Huo X, Liu Z, Yao J, Liu K. Protective Effects of Alisol B 23-Acetate Via Farnesoid X Receptor-Mediated Regulation of Transporters and Enzymes in Estrogen-Induced Cholestatic Liver Injury in Mice. Pharm Res 2015; 32:3688-98. [DOI: 10.1007/s11095-015-1727-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
|
37
|
Inherited variation in the ATP-binding cassette transporter ABCB1 and survival after chemotherapy for stage III-IV lung cancer. J Thorac Oncol 2015; 9:1264-71. [PMID: 25122423 DOI: 10.1097/jto.0000000000000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The ATP-binding cassette transporter gene ABCB1 and the glutathione S-transferase gene GSTP1 code for a multidrug resistance protein and for a detoxifying phase II metabolic enzyme, respectively, with substrate specificities that include chemotherapy drugs often used to treat lung cancer. METHODS We genotyped 11 ABCB1 and eight GSTP1 single nucleotide polymorphisms (SNPs) in 698 white lung cancer patients (all current or former cigarette smokers) and used log-rank test statistics and proportional hazards regression to evaluate associations between SNP genotype and survival. RESULTS Using data from all 698 cases, one SNP in ABCB1 (rs2235013) was statistically significantly associated with overall survival (p = 0.038, log-rank test). Chemotherapy and stage jointly (p = 0.025) significantly modified the association between rs2235013 and survival, with statistically significant (p = 0.013, log-rank test) association observed in the subgroup of stage III to IV lung cancer patients who received chemotherapy as part of their first course of treatment (n = 160; 93.1% nonsmall cell). Patients who inherited the minor T allele at ABCB1 rs2235013 experienced better overall survival and recurrence-free survival (hazard ratio, per minor T allele, [95% confidence interval]: 0.66 [0.49-0.90] and 0.55 [0.31-0.95], respectively; adjusted for year of diagnosis, sex, age at diagnosis, cigarette pack years, and stage). In addition, in the advanced stage chemotherapy-treated subgroup, four ABCB1 SNPs (rs6949448, rs2235046, rs1128503, and rs10276036) in mutual high linkage disequilibrium with rs2235013 and an independent ABCB1 SNP (rs1045642) showed statistically significant association (p < 0.05) with survival. CONCLUSIONS Inherited variation in ABCB1 may affect survival specifically in advanced stage lung cancer patients who receive chemotherapy.
Collapse
|
38
|
Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72:1631-50. [PMID: 25511198 PMCID: PMC11113650 DOI: 10.1007/s00018-014-1805-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
Abstract
Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Audrey Helleboid
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|
39
|
Liu B, Guo Z, Dong H, Daofeng T, Cai Q, Ji B, Zhang S, Wu L, Wang J, Wang L, Zhu X, Liu Y, Chen Q. LRIG1, human EGFR inhibitor, reverses multidrug resistance through modulation of ABCB1 and ABCG2. Brain Res 2015; 1611:93-100. [PMID: 25801120 DOI: 10.1016/j.brainres.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/16/2023]
Abstract
In our previous study, we have found that leucine-rich repeats and immunoglobulin-like domains 1(LRIG1) can improve the chemosensitivity in U251 cells whereas the role of LRIG1 in multidrug resistance (MDR) remains unknown. Here, we reported that LRIG1 can reverse MDR by inhibiting epidermal growth factor (EGF) receptor (EGFR) and secondary inhibiting ATP-binding cassette, sub-family B member 1(ABCB1) and ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2). Our data showed that the expression of LRIG1 was significantly higher in O6-methylguanine DNA methyltransferase (MGMT) Promoter Methylation positive glioblastoma tissues compared to MGMT Promoter Methylation negative glioblastoma tissues. In addition, we found that LRIG1 expression was significantly decreased in MDR cells U251/TMZ compared to U251cells. Our results demonstrated that over-expression of LRIG1 can reverse the MDR. The expression of ABCB1 and ABCG2 were markedly suppressed when LRIG1 was over-expressed, supporting the negative relationship between LRIG1 level and ABCB1 and ABCG2 level in human specimen. Furthermore, we found that LRIG1 downregulated ABCB1 and ABCG2 through suppressing EGFR expression. In case of EGFR knockdown, the effect of LRIG1 on regulating MDR, ABCB1 and ABCG2 was partially compromised. Our results, for the first time, showed that LRIG1 can reverse MDR in glioblastoma, by negatively regulating EGFR and secondary suppressing the levels of ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Baohui Liu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Zhentao Guo
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Huimin Dong
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Tian Daofeng
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Qiang Cai
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Baowei Ji
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Shenqi Zhang
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Liquan Wu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Junmin Wang
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Long Wang
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Xiaonan Zhu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Yue Liu
- Shiyan Taihe Hospital, Hubei University of Medicine, 32 South Renmin Street, Shiyan, Hubei 442000, China
| | - Qianxue Chen
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China.
| |
Collapse
|
40
|
LRIG1 Improves Chemosensitivity Through Inhibition of BCL-2 and MnSOD in Glioblastoma. Cell Biochem Biophys 2014; 71:27-33. [DOI: 10.1007/s12013-014-0139-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Namisaki T, Schaeffeler E, Fukui H, Yoshiji H, Nakajima Y, Fritz P, Schwab M, Nies AT. Differential expression of drug uptake and efflux transporters in Japanese patients with hepatocellular carcinoma. Drug Metab Dispos 2014; 42:2033-40. [PMID: 25231932 DOI: 10.1124/dmd.114.059832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Targeted chemotherapy for hepatocellular carcinoma (HCC) is impaired by intrinsic and/or acquired drug resistance. Because drugs used in HCC therapy (e.g., anthracyclines or the tyrosine kinase inhibitor sorafenib) are substrates of uptake and/or efflux transporters, variable expression of these transporters at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. In this study, the variability of expression of uptake transporters [organic cation transporter (OCT) 1 and OCT3] and efflux transporters [multidrug resistance 1 (MDR1)/P-glycoprotein, multidrug resistance protein (MRP) 1, MRP2, and breast cancer resistance protein (BCRP)], selected for their implication in transporting drugs used in HCC therapy, was investigated. HCC and corresponding nontumor tissue samples were collected from 24 Japanese patients at the time of surgery. Protein expression was determined by immunohistochemistry. Expression data were correlated with clinicopathological characteristics and patients' outcome (median follow-up, 53 months). Generally, expression was highly variable among individual tumor samples. Yet median expression of OCT1, OCT3, and MDR1 in HCC was significantly lower (1.4-, 2.7-, and 2-fold, respectively) than in nontumor tissue, while expression of MRP2 persisted and BCRP showed a trend of increased levels in HCC. Patients with low BCRP expression had significantly shorter overall and recurrence-free survival times. Results suggest different expression patterns of drug transporters in HCC, which are associated only in part with clinicopathological characteristics. Detailed information on expression of drug transporters in HCC may be promising for individualization and optimization of drug therapy for liver cancer.
Collapse
Affiliation(s)
- Tadashi Namisaki
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Hiroshi Fukui
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Hitoshi Yoshiji
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Yoshiyuki Nakajima
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Peter Fritz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| |
Collapse
|
42
|
Xie C, Pan Y, Hao F, Gao Y, Liu Z, Zhang X, Xie L, Jiang G, Li Q, Wang E. C-Myc participates in β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma cells. APMIS 2014; 122:1251-8. [PMID: 25131138 DOI: 10.1111/apm.12296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/26/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate c-Myc and β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Cisplatin sensitivity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay. β-Catenin and c-Myc protein expression following cisplatin treatment were determined using western blotting and immunofluorescence. Flow cytometry was performed to detect cell cycle and apoptosis in A549, A549/DDP, and c-Myc small interfering RNA (siRNA)-transfected A549/DDP cells before and after treatment with different doses of cisplatin. The median inhibitory concentration (IC50 ) in cisplatin-treated A549 and A549/DDP cells was 5.769 ± 0.24 μmol/L and 28.373 ± 0.96 μmol/L, respectively; the cisplatin resistance of A549 cells was about five times that of A549/DDP cells. Endogenous β-catenin and c-Myc expression in A549/DDP cells were higher than that in A549 cells, and were upregulated in A549/DDP cells (p < 0.05) and downregulated in A549 cells after 48 h cisplatin treatment (p < 0.05). β-catenin localization transferred from membrane/cytoplasmic/nuclear to cytoplasmic/nuclear, and c-Myc localization transferred from cytoplasmic/nuclear to nuclear in both cell lines following cisplatin treatment. The rate of apoptosis increased in a dose-dependent manner with cisplatin. After 48-h transfection with c-myc siRNA, A549/DDP cells were blocked in the S phase, and G0/G1-phase cells increased. Simultaneously, the apoptotic rate was increased (p < 0.05) and the IC50 decreased significantly (p < 0.05). C-myc, the downstream target gene of β-catenin, plays an important role in regulating cisplatin resistance in A549/DDP cells. C-Myc siRNA improved the sensitivity of A549/DDP cells to cisplatin.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gonzalez-Sanchez E, Marin JJG, Perez MJ. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm 2014; 11:1856-68. [PMID: 24824514 DOI: 10.1021/mp400732p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca , Salamanca, Spain
| | | | | |
Collapse
|
44
|
Wang XJ, Li Y, Luo L, Wang H, Chi Z, Xin A, Li X, Wu J, Tang X. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic Biol Med 2014; 70:68-77. [PMID: 24556415 DOI: 10.1016/j.freeradbiomed.2014.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/30/2014] [Accepted: 02/09/2014] [Indexed: 12/21/2022]
Abstract
Oxaliplatin is an important drug in the treatment of advanced metastatic colorectal cancer. NF-E2 p45-related factor 2 (Nrf2) is a key transcription factor that controls genes encoding cytoprotective and detoxifying enzymes through antioxidant-response elements (AREs) in their regulatory regions. Here, we report that oxaliplatin is an activator of the Nrf2 signaling pathway, with upregulation of ARE-driven genes and glutathione elevation. An injection of oxaliplatin into mice enhanced the expression of glutathione transferases and antioxidant enzymes in the small and large intestines of wild-type (WT) mice but not Nrf2(-/-) mice, indicating that oxaliplatin activates Nrf2 in vivo. Oxaliplatin failed to increase Nrf2 accumulation in non-small-cell lung cancer A549 cells, which harbor a dysfunctional somatic mutation of KEAP1. However, forced expression of WT mKeap1 restored the ability of oxaliplatin to activate the transcription factor. Cys(151) in Keap1 was required for the response stimulated by oxaliplatin. In addition, dichloro(1,2-diaminocyclohexane) platinum, a metabolite of oxaliplatin, was found to have the same effect in activating the ARE-gene battery as its parent drug, whereas another metabolite, oxalate, was ineffective. Moreover, two other platinum derivatives, cisplatin and carboplatin, had no effect on the Keap1/Nrf2 system. Furthermore, activation of Nrf2 by oxaliplatin reduced the sensitivity of colon cancer cells to therapeutic drugs. Conversely, knockdown of Nrf2 by Nrf2 siRNA reduced oxaliplatin-induced chemoresistance. Our study showed that oxaliplatin exerts protection against the cytotoxicity of anticancer drugs via Nrf2, indicating an important role of Nrf2 in oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Xiu Jun Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China.
| | - Yinyan Li
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Lin Luo
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Hongyan Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China; Department of Biochemistry and Genetics,School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Zhexu Chi
- Department of Biochemistry and Genetics,School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Ai Xin
- Department of Biochemistry and Genetics,School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Xin Li
- Department of Biochemistry and Genetics,School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Jiaguo Wu
- Division of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Xiuwen Tang
- Department of Biochemistry and Genetics,School of Medicine, Zhejiang University, Hangzhou 310058, People׳s Republic of China.
| |
Collapse
|
45
|
Marin JJG, Monte MJ, Blazquez AG, Macias RIR, Serrano MA, Briz O. The role of reduced intracellular concentrations of active drugs in the lack of response to anticancer chemotherapy. Acta Pharmacol Sin 2014; 35:1-10. [PMID: 24317012 PMCID: PMC3880477 DOI: 10.1038/aps.2013.131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022] Open
Abstract
A major difficulty in the treatment of cancers is the poor response of many tumors to pharmacological regimens. This situation can be accounted for by the existence of a variety of complex mechanisms of chemoresistance (MOCs), leading to reduced intracellular concentrations of active agents, changes in the molecular targets of the drugs, enhanced repair of drug-induced modifications in macromolecules, stimulation of anti-apoptotic mechanisms, and inhibition of pro-apoptotic mechanisms. The present review focuses on alterations in the expression and appearance of the genetic variants that affect the genes involved in reducing the amount of active agents inside tumor cells. These alterations can occur through two mechanisms: either by lowering uptake or enhancing efflux (so-called MOC-1a and MOC-1b, respectively), or by decreasing the activation of prodrugs or enhancing inactivation of active agents through their biotransformation (MOC-2). The development of chemosensitizers that are useful in implementing the pharmacological manipulation of these processes constitutes a challenge to modern pharmacology. Nevertheless, the important physiological roles of the most relevant genes involved in MOC-1a, MOC-1b, and MOC-2 make it difficult to prevent the side effects of chemosensitizers. A more attainable goal in this area of pharmacological enquiry is the identification of proteomic profiles that will permit oncologists to accurately predict a lack of response to a given regimen, which would be useful for adapting treatment to the personal situation of each patient.
Collapse
|
46
|
Li Y, Zhang X, Zhou H, Fan S, Wang Y, Zhang L, Ju L, Wu X, Wu H, Zhang Y. Metabonomics study on nephrotoxicity induced by intraperitoneal and intravenous cisplatin administration using rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS). RSC Adv 2014. [DOI: 10.1039/c3ra46920d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabonomics was used to find characteristics of nephrotoxicity induced by IP or IV injection of cisplatin.
Collapse
Affiliation(s)
- Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Xiuxiu Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Huifang Zhou
- Department of experimental teaching
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Simiao Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Yuming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Lu Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Liang Ju
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Xin Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Huanyu Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193, China
| |
Collapse
|
47
|
Gumulec J, Balvan J, Sztalmachova M, Raudenska M, Dvorakova V, Knopfova L, Polanska H, Hudcova K, Ruttkay-Nedecky B, Babula P, Adam V, Kizek R, Stiborova M, Masarik M. Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle. Int J Oncol 2013; 44:923-33. [PMID: 24366574 DOI: 10.3892/ijo.2013.2223] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/11/2013] [Indexed: 11/06/2022] Open
Abstract
Differences in the antioxidant system, apoptotic mechanism and in cell cycle between prostatic cell lines could partially elucidate the development of cisplatin resistance. The aim of this study was to identify the most characteristic parameter for a particular cell line and/or a particular cisplatin treatment using a general regression model and to assess whether it is possible to use measured parameters as markers of cisplatin resistance. This study integrates the results of viability, antioxidant, flow cytometric and quantitative PCR assays in order to characterize the resistance of prostate cancer to cisplatin. Cell growth using metabolic- (MTT) and impedance-based assays, the expression of key cell death signaling proteins (p53, Bax and Bcl-2), cell cycle, activity of antioxidant system-related proteins (superoxide dismutase, glutathione peroxidase, glutathione reductase and metallothionein) and free radical scavenging capacity assays [free radicals (FR), ferric reducing antioxidant power (FRAP), ABTS] were analyzed in the cell lines 22Rv1, PC-3 and PNT1A with respect to rising concentrations (0-150 µM) and different length of cisplatin treatment (12-72 h). The non-functional-p53 PC-3 cell line showed decreased BAX (p<0.05) and, in contrast to PNT1A and 22Rv1, no cisplatin-induced effects on cell cycle. All cell lines showed increasing levels of free radical scavenging activity by ABTS, FRAP and FR assays in a time- and dose-dependent manner (r>0.76 at p<0.001 for ABTS, FRAP and FR at p<0.001). PC-3 showed increased (p<0.05) levels of free radical scavenging activity by ABTS and FR methods. These findings, together with significantly elevated MT, decreased p53 and Bax indicate PC-3 to be cisplatin-resistant. The differences in the antioxidant system and apoptotic mechanisms in PC-3 cells may elucidate the development of cisplatin resistance and indicate that this cell line may be further studied as a model of cytostatic resistance.
Collapse
Affiliation(s)
- Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Marketa Sztalmachova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Veronika Dvorakova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Lucia Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Kristyna Hudcova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | | | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, CZ-612 42 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, CZ-128 40 Prague 2, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
48
|
De Mattia E, Dreussi E, Cecchin E, Toffoli G. Pharmacogenetics of the nuclear hormone receptors: the missing link between environment and drug effects? Pharmacogenomics 2013; 14:2035-54. [DOI: 10.2217/pgs.13.214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last decade, genetic variations in ABC/SLC transporters and phase I/II enzymes have raised pharmacogenetic markers as being predictive to the attention of researchers in the field of personalized medicine in oncology. However, it is becoming evident that the sequence variations in these genes cannot address by themselves the sharp interindividual variability in drug effects. Recently, nuclear receptors (NRs), including pregnane X receptor, constitutive androstane receptor, retinoid X receptor, farnesoid X receptor, liver X receptor, vitamin D receptor, peroxisome proliferator-activated receptors and HNF4A, have demonstrated key roles in regulating transporter and metabolic gene expression in response to xeno/endobiotics, as well as antineoplastic drugs. These findings attracted interest to the genetics of the NRs for their possible role in influencing the metabolism and pharmacological profiles of chemotherapeutics. In this review, we aim to summarize the most recent findings in the innovative field of NR pharmacogenetics and findings in how they could integrate with more traditional markers in order to improve drug treatment personalization.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Eva Dreussi
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Erika Cecchin
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| |
Collapse
|
49
|
Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem Pharmacol 2013; 86:926-39. [PMID: 23928191 DOI: 10.1016/j.bcp.2013.07.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
The farnesoid X receptor (FXR) is a key sensor in bile acid homeostasis. Although four human FXR isoforms have been identified, the physiological role of this diversity is poorly understood. Here we investigated their subcellular localization, agonist sensitivity and response of target genes. Measurement of mRNA revealed that liver predominantly expressed FXRα1(+/-), whereas FXRα2(+/-) were the most abundant isoforms in kidney and intestine. In all cases, the proportion of FXRα(1/2)(+) and FXRα(1/2)(-) isoforms, i.e., with and without a 12bp insert, respectively, was approximately 50%. When FXR was expressed in liver and intestinal cells the magnitude of the response to GW4064 and bile acids differs among FXR isoforms. In both cell types the strongest response was that of FXRα1(-). Different efficacy of bile acids species to activate FXR was found. The four FXR isoforms shared the order of sensitivity to bile acids species. When in FXR-deficient cells FXR was transfected, unconjugated, but not taurine- and glycine-amidated bile acids, were able to activate FXR. In contrast, human hepatocytes and cell lines showing an endogenous expression of FXR were sensitive to both unconjugated and conjugated bile acids. This suggests that to activate FXR conjugated, but not unconjugated, bile acids require additional component(s) of the intracellular machinery not related with uptake processes, which are missing in some tumor cells. In conclusion, cell-specific pattern of FXR isoforms determine the overall tissue sensitivity to FXR agonists and may be involved in the differential response of FXR target genes to FXR activation.
Collapse
|
50
|
Vaquero J, Briz O, Herraez E, Muntané J, Marin JJG. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2212-9. [PMID: 23680185 DOI: 10.1016/j.bbamcr.2013.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
The success of pharmacological treatments in primary liver cancers is limited by the marked efficacy of mechanisms of chemoresistance already present in hepatocytes. The role of the nuclear receptor FXR is unclear. Although, in non-treated liver tumors, its expression is reduced, the refractoriness to anticancer drugs is high. Moreover, the treatment with cisplatin up-regulates FXR. The aim of this study was to investigate whether FXR is involved in stimulating chemoprotection/chemoresistance in healthy and tumor liver cells. In human hepatocytes, the activation of FXR with the agonist GW4064 resulted in a significant protection against cisplatin-induced toxicity. In human hepatoma Alexander cells, with negligible endogenous expression of FXR, GW4064 also protected against cisplatin-induced toxicity, but only if they were previously transfected with FXR/RXR. Investigation of 109 genes potentially involved in chemoresistance revealed that only ABCB4, TCEA2, CCL14, CCL15 and KRT13 were up-regulated by FXR activation both in human hepatocytes and FXR/RXR-expressing hepatoma cells. In both models, cisplatin, even in the absence of FXR agonists, such as bile acids and GW4064, was able to up-regulate FXR targets genes, which was due to FXR-mediated trans-activation of response elements in the promoter region. FXR-dependent chemoprotection was also efficient against other DNA-damaging compounds, such as doxorubicin, mitomycin C and potassium dichromate, but not against non-genotoxic drugs, such as colchicine, paclitaxel, acetaminophen, artesunate and sorafenib. In conclusion, ligand-dependent and independent activation of FXR stimulates mechanisms able to enhance the chemoprotection of hepatocytes against genotoxic compounds and to reduce the response of liver tumor cells to certain pharmacological treatments.
Collapse
|