1
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Peptides as carriers of active ingredients: A review. Curr Res Food Sci 2023; 7:100592. [PMID: 37766891 PMCID: PMC10519830 DOI: 10.1016/j.crfs.2023.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive compounds are highly valuable in the fields of food and medicine, but their application is limited due to easy deterioration after oral or skin administration. In recent years, the use of peptides as delivery systems for bioactive compounds has been intensively researched because of their special physicochemical characteristics. Peptides can be assembled using various preparation methods and can form several composite materials such as hydrogels, micelles, emulsions and particles. The composite material properties are determined by peptides, bioactive compounds and the construction methods employed. Herein, this paper provides a comprehensive review of the peptides used for active ingredients delivery, fabrication methods for creating delivery systems, structures, targeting characteristics, functional activities and mechanism of delivery systems, as well as their absorption and metabolism, which provided theoretical basis and reference for further research and development of functional composites.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
2
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
3
|
Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol 2022; 13:1068495. [PMID: 36452220 PMCID: PMC9703138 DOI: 10.3389/fphar.2022.1068495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The intranasal route has emerged as a promising strategy that can direct delivery of drugs into the systemic circulation because the high-vascularized nasal cavity, among other advantages, avoids the hepatic first-pass metabolism. The nose-to-brain pathway provides a non-invasive alternative to other routes for the delivery of macromolecular therapeutics. A great variety of methodologies has been developed to enhance the efficiency of transepithelial translocation of macromolecules. Among these, the use of cell-penetrating peptides (CPPs), short protein transduction domains (PTDs) that facilitate the intracellular transport of various bioactive molecules, has become an area of extensive research in the intranasal delivery of peptides and proteins either to systemic or to brain compartments. Some CPPs have been applied for the delivery of peptide antidiabetics, including insulin and exendin-4, for treating diabetes and Alzheimer's disease. This review highlights the current status of CPP-driven intranasal delivery of peptide drugs and its potential applicability as a universal vehicle in the nasal drug delivery.
Collapse
Affiliation(s)
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
4
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
5
|
Zhang J, Wang S, Cai H, Feng T, Liu Z, Xu Y, Li J. Hydrophobic ion-pairing assembled liposomal Rhein with efficient loading for acute pancreatitis treatment. J Microencapsul 2021; 38:559-571. [PMID: 34637365 DOI: 10.1080/02652048.2021.1993363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The present study aimed to develop liposomal Rhein by employing a hydrophobic ion-pairing technique (HIP) for improved pancreatitis therapy. METHODS F127 modified liposomal Rhein (F127-RPC-Lip) was prepared using a two-step process consisting of complexation first, followed by a film-ultrasonic dispersion step. The drug-phospholipid interaction was characterised by FT-IR and P-XRD. Particle size and morphology were investigated using DLS and TEM, respectively. Biodistribution and therapeutic efficacy of F127-RPC-Lip were evaluated in a rat model of acute pancreatitis. RESULTS F127-RPC-Lip achieved efficient drug encapsulation after complexation with lipids through non-covalent interactions and had an average hydrodynamic diameter of about 141 nm. F127-RPC-Lip demonstrated slower drug release (55.90 ± 3.60%, w/w) than Rhein solution (90.27 ± 5.11%) within 24 h. Compared with Rhein, F127-RPC-Lip exhibited prolonged systemic circulation time, superior drug distribution, and attenuated injury in the pancreas of rats post-injection. CONCLUSIONS HIP-assembled liposomes are a promising strategy for Rhein in treating pancreatitis.
Collapse
Affiliation(s)
- Jinjie Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Shuaishuai Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Huijie Cai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Tiange Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Zhilei Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,BGI College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaru Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Jianbo Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,BGI College, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Bashyal S, Seo JE, Choi YW, Lee S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J Control Release 2021; 338:644-661. [PMID: 34481926 DOI: 10.1016/j.jconrel.2021.08.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Despite many ongoing and innovative approaches, there are still formidable challenges in the clinical translation of oral peptide drugs into marketable products due to their low absorption and poor bioavailability. Herein, a novel nanocarrier platform was developed that employs a hydrophobic ion-pairing (HIP) of model peptide (insulin) and the anionic bile salt (sodium glycodeoxycholate, SGDC), and markedly improves intestinal absorption via the bile acid pathway. The developed HIP-nanocomplexes (C1 and C2) were optimized, characterized, and in vitro and in vivo evaluation were performed to assess oral efficacy of these system. The optimal molar ratios of C1 and C2-nanocomplexes were 30:1 and 6:1 (SGDC:insulin), respectively. Compared to the insulin solution, the C1 and C2 nanocomplexes significantly enhanced the permeation of insulin across the Caco-2 cell monolayers, with 6.36- and 4.05-fold increases in apparent permeability, respectively. Uptake mechanism studies were conducted using different endocytosis inhibitors and apical sodium-dependent bile acid transporter (ASBT)-transfected MDCK cells, which demonstrated the involvement of the energy-dependent ASBT-mediated active transport. Furthermore, the intrajejunal administration of C1 and C2 resulted in their pharmacological availabilities (PA) being 6.44% and 0.10%, respectively, indicating increased potential for C1, when compared to C2. Similarly, the PA and the relative bioavailability with intrajejunal administration of the C1 were 17.89-fold and 16.82-fold greater than those with intracolonic administration, respectively, confirming better jejunal absorption of C1. Overall, these findings indicate that the HIP-nanocomplexes could be a prominent platform for the effective delivery of peptides with improved intestinal absorption.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. Colloids Surf B Biointerfaces 2021; 208:112105. [PMID: 34536674 DOI: 10.1016/j.colsurfb.2021.112105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Diabetic foot ulcers (DFUs) that are not effectively treated could lead to partial or complete lower limb amputations. The lack of connective tissue growth factor (CTGF) and insulin-like growth factor (IGF-I) in DFUs results in limited matrix deposition and poor tissue repair. To enhance growth factor (GF) availability in DFUs, heparin (HN)-mimetic alginate sulfate/polycaprolactone (AlgSulf/PCL) double emulsion nanoparticles (NPs) with high affinity and sustained release of CTGF and IGF-I were synthesized. The NPs size, encapsulation efficiency (EE), cytotoxicity, cellular uptake and wound healing capacity in immortalized primary human adult epidermal cells (HaCaT) were assessed. The sonication time and amplitude used for NPs synthesis enabled the production of particles with a minimum of 236 ± 25 nm diameter. Treatment of HaCaT cells with up to 50 μg mL-1 of NPs showed no cytotoxic effects after 72 h. The highest bovine serum albumin EE (94.6 %, P = 0.028) and lowest burst release were attained with AlgSulf/PCL. Moreover, cells treated with AlgSulf/CTGF (250 ng mL-1) exhibited the most rapid wound closure compared to controls while maintaining fibronectin synthesis. Double-emulsion NPs based on HN-mimetic AlgSulf represent a novel approach which can significantly enhance diabetic wound healing and can be expanded for applications requiring the delivery of other HN-binding GFs.
Collapse
|
8
|
de Souza Von Zuben E, Eloy JO, Araujo VHS, Gremião MPD, Chorilli M. Insulin-loaded liposomes functionalized with cell-penetrating peptides: influence on drug release and permeation through porcine nasal mucosa. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Revealing the importance of carrier-cargo association in delivery of insulin and lipidated insulin. J Control Release 2021; 338:8-21. [PMID: 34298056 DOI: 10.1016/j.jconrel.2021.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic peptides upon oral administration is highly desired and investigations report that the cell-penetrating peptide (CPP) penetratin and its analogues shuffle and penetramax show potential as carriers to enhance insulin delivery. Exploring this, the specific aim of the present study was to understand the impact that their complexation with a lipidated or non-lipidated therapeutic cargo would have on the delivery, to evaluate the effect of differences in membrane interactions in vitro and in vivo, as well as to deduce the mode of action leading to enhanced delivery. Fundamental biophysical aspects were studied by a range of orthogonal methods. Transepithelial permeation of therapeutic peptide was evaluated using the Caco-2 cell culture model supplemented with epithelial integrity measurements, real-time assessment of the carrier peptide effects on cell viability and on mode of action. Pharmacokinetic and pharmacodynamic (PK/PD) parameters were evaluated following intestinal administration to rats and tissue effects were investigated by histology. The biophysical studies revealed complexation of insulin with shuffle and penetramax, but not with penetratin. This corresponded to enhanced transepithelial permeation of insulin, but not of lipidated insulin, when in physical mixture with shuffle or penetramax. The addition of shuffle and penetramax was associated with a lowering of Caco-2 cell monolayer integrity and viability, where the lowering of cell viability was immediate, but reversible. Insulin delivery in rats was enhanced by shuffle and penetramax and accompanied by a 10-20-fold decrease in blood glucose with immediate effect on the intestinal mucosa. In conclusion, shuffle and penetramax, but not penetratin, demonstrated to be potential candidates as carriers for transmucosal delivery of insulin upon oral administration, and their effect depended on association with both cargo and cell membrane. Interestingly, the present study provides novel mechanistic insight that peptide carrier-induced cargo permeation points towards enhancement via the paracellular route in the tight epithelium. This is different from the anticipated belief being that it is the cell-penetrating capability that facilitate transepithelial cargo permeation via a transcellular route.
Collapse
|
10
|
Zou JJ, Le JQ, Zhang BC, Yang MY, Jiang JL, Lin JF, Wu PY, Li C, Chen L, Shao JW. Accelerating transdermal delivery of insulin by ginsenoside nanoparticles with unique permeability. Int J Pharm 2021; 605:120784. [PMID: 34111544 DOI: 10.1016/j.ijpharm.2021.120784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022]
Abstract
Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.
Collapse
Affiliation(s)
- Jun-Jie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juan-Fang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Peng-Yu Wu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lu Chen
- Ocean College of Minjiang University, Fuzhou 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
11
|
Łagiewka J, Girek T, Ciesielski W. Cyclodextrins-Peptides/Proteins Conjugates: Synthesis, Properties and Applications. Polymers (Basel) 2021; 13:1759. [PMID: 34072062 PMCID: PMC8198514 DOI: 10.3390/polym13111759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides mostly composed of six, seven, or eight α-D-glucopyranose units with α-1,4-glycosidic bonds to form toroidal structures. The CDs possess a hydrophilic exterior and hydrophobic interior with the ability to form an inclusion complex, especially with hydrophobic molecules. However, most existing studies are about conjugation CDs with peptide/protein focusing on the formation of new systems. The CD-peptide/protein can possess new abilities; particularly, the cavity can be applied in modulation properties of more complexed proteins. Most studies are focused on drug delivery, such as targeted delivery in cell-penetrating peptides or co-delivery. The co-delivery is based mostly on polylysine systems; on the other hand, the CD-peptide allows us to understand biomolecular mechanisms such as fibryllation or stem cell behaviour. Moreover, the CD-proteins are more complexed systems with a focus on targeted therapy; these conjugates might be controllable with various properties due to changes in their stability. Finally, the studies of CD-peptide/protein are promising in biomedical application and provide new possibilities for the conjugation of simple molecules to biomolecules.
Collapse
Affiliation(s)
- Jakub Łagiewka
- Faculty of Mathematics and Natural Science, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave., 13/15, 42 201 Czestochowa, Poland; (T.G.); (W.C.)
| | | | | |
Collapse
|
12
|
Wong CYJ, Al-Salami H, Dass CR. β-Cyclodextrin-containing chitosan-oligonucleotide nanoparticles improve insulin bioactivity, gut cellular permeation and glucose consumption. J Pharm Pharmacol 2021; 73:726-739. [PMID: 33769519 DOI: 10.1093/jpp/rgaa052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The main objective of the present study was to develop a nanoparticulate drug delivery system that can protect insulin against harsh conditions in the gastrointestinal (GI) tract. The effects of the following employed techniques, including lyophilisation, cross-linking and nanoencapsulation, on the physicochemical properties of the formulation were investigated. METHODS We herein developed a nanocarrier via ionotropic gelation by using positively charged chitosan and negatively charged Dz13Scr. The lyophilised nanoparticles with optimal concentrations of tripolyphosphate (cross-linking agent) and β-cyclodextrin (stabilising agent) were characterised by using physical and cellular assays. KEY FINDINGS The addition of cryoprotectants (1% sucrose) in lyophilisation improved the stability of nanoparticles, enhanced the encapsulation efficiency, and ameliorated the pre-mature release of insulin at acidic pH. The developed lyophilised nanoparticles did not display any cytotoxic effects in C2C12 and HT-29 cells. Glucose consumption assays showed that the bioactivity of entrapped insulin was maintained post-incubation in the enzymatic medium. CONCLUSIONS Freeze-drying with appropriate cryoprotectant could conserve the physiochemical properties of the nanoparticles. The bioactivity of the entrapped insulin was maintained. The prepared nanoparticles could facilitate the permeation of insulin across the GI cell line.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley,Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| |
Collapse
|
13
|
Tannous M, Caldera F, Hoti G, Dianzani U, Cavalli R, Trotta F. Drug-Encapsulated Cyclodextrin Nanosponges. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2207:247-283. [PMID: 33113141 DOI: 10.1007/978-1-0716-0920-0_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, a number of nanocarriers, either inorganic or organic, have been developed to improve the delivery and therapeutic efficacy of various drugs. Drug delivery systems have attempted to overcome the undesirable pharmacokinetic problems encountered. Among the various nanomaterials that have been designed as potential nanocarriers, cyclodextrin-based polymers are of particular interest in this review.Cyclodextrins (CD) are a class of cyclic glucopyranose oligomers, obtained from starch by enzymatic action, with a characteristic toroidal shape that forms a truncated cone-shaped lipophilic cavity. The main common native cyclodextrins are named α, β, and γ which comprise six, seven, and eight glucopyranose units, respectively. Cyclodextrins have the capability to include compounds whose size and polarity are compatible with those of their cavity.Cyclodextrin-based cross-linked polymers, often referred to as "cyclodextrin nanosponges" (CDNSs), attract great attention from researchers for solving major bioavailability problems such as inadequate solubility, poor dissolution rate, and limited stability of some agents, as well as increasing their effectiveness and decreasing unwanted side effects.Registered patents about this novel system in various fields, different pharmaceutical applications, and classes of drugs encapsulated by CDNSs are detailed. The features outlined make CDNSs a promising platform for the development of innovative and advanced delivery systems.
Collapse
Affiliation(s)
- Maria Tannous
- Dipartimento di Chimica, Università di Torino, Torino, Italy.,Department of Chemistry, University of Balamand, Tripoli, Lebanon
| | | | - Gjylije Hoti
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | |
Collapse
|
14
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
15
|
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021; 29:365-386. [PMID: 32876505 DOI: 10.1080/1061186x.2020.1817042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of orally administered protein drugs is challenging due to their intrinsic unfavourable features, including large molecular size and poor chemical stability, both of which limit gastrointestinal (GI) absorption efficiency. Nanoparticles can overcome the GI barriers effectively and improve the oral bioavailability of proteins in the GI tract. They possess large surface area to volume ratio, and can facilitate the GI absorption of nanoparticles via the paracellular and transcellular routes. Nanoparticles can be prepared by various fabrication techniques that can encapsulate the fragile therapeutic proteins via hydrophobic bonding and electrostatic interaction. A desirable technique should involve minimal harsh conditions and encapsulate therapeutic proteins with preserved functionalities. The current review examines the characteristics of each preparation technique, and illustrates the examples of insulin-loaded nanoparticles that have been developed in each fabrication method. The following techniques, which include nanoprecipitation, hydrophobic conjugation, flash nanocomplexation, double emulsion, ionotropic gelation, and layer-by-layer adsorption, have been used to formulate ligand-modified nanoparticles for targeted delivery of insulin. Other techniques, including reduction, complex coacervation (polyelectrolyte complexation), hydrophobic ion pairing and emulsion solvent diffusion method, and sol-gel technology, were also discussed in the latter part of the review due to their extensive use in fabrication of insulin nanoparticles. This review also discusses the strategies that have been utilised during the formulation process to improve the stability and bioactivity of therapeutic proteins.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
16
|
Liu J, Ding X, Fu Y, Xiang C, Yuan Y, Zhang Y, Yu P. Cyclodextrins based delivery systems for macro biomolecules. Eur J Med Chem 2020; 212:113105. [PMID: 33385835 DOI: 10.1016/j.ejmech.2020.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Macro biomolecules are of vital importance in regulating the biofunctions in organisms, in which proteins (including peptides when mentioned below) and nucleic acids (NAs) are the most important. Therefore, these proteins and NAs can be applied as "drugs" to regulate the biofunctions from abnormal to normal. Either for proteins and NAs, the most challenging thing is to avoid the biodegradation or physicochemical degradation before they reach the targeted location, and then functions as complete functional structures. Hence, appropriate delivery systems are very important which can protect them from these degradations. Cyclodextrins (CDs) based delivery systems achieved mega successes due to their outstanding pharmaceutical properties and there have been several reviews on CDs based small molecule drug delivery systems recently. But for biomolecules, which are getting more and more important for modern therapies, however, there are very few reviews to systematically summarize and analyze the CDs-based macro biomolecules delivery systems, especially for proteins. In this review, there were some of the notable examples were summarized for the macro biomolecules (proteins and NAs) delivery based on CDs. For proteins, this review included insulin, lysozyme, bovine serum albumin (BSA), green fluorescent protein (GFP) and IgG's, etc. deliveries in slow release, stimulating responsive release or targeting release manners. For NAs, this review summarized cationic CD-polymers and CD-cluster monomers as NAs carriers, notably, including the multicomponents targeting CD-based carriers and the virus-like RNA assembly method siRNA carriers.
Collapse
Affiliation(s)
- Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Xin Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
17
|
Kristensen M, Guldsmed Diedrichsen R, Vetri V, Foderà V, Mørck Nielsen H. Increased Carrier Peptide Stability through pH Adjustment Improves Insulin and PTH(1-34) Delivery In Vitro and In Vivo Rather than by Enforced Carrier Peptide-Cargo Complexation. Pharmaceutics 2020; 12:E993. [PMID: 33092079 PMCID: PMC7589992 DOI: 10.3390/pharmaceutics12100993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Oral delivery of therapeutic peptides is hampered by their large molecular size and labile nature, thus limiting their permeation across the intestinal epithelium. Promising approaches to overcome the latter include co-administration with carrier peptides. In this study, the cell-penetrating peptide penetratin was employed to investigate effects of co-administration with insulin and the pharmacologically active part of parathyroid hormone (PTH(1-34)) at pH 5, 6.5, and 7.4 with respect to complexation, enzymatic stability, and transepithelial permeation of the therapeutic peptide in vitro and in vivo. Complex formation between insulin or PTH(1-34) and penetratin was pH-dependent. Micron-sized complexes dominated in the samples prepared at pH-values at which penetratin interacts electrostatically with the therapeutic peptide. The association efficiency was more pronounced between insulin and penetratin than between PTH(1-34) and penetratin. Despite the high degree of complexation, penetratin retained its membrane activity when applied to liposomal structures. The enzymatic stability of penetratin during incubation on polarized Caco-2 cell monolayers was pH-dependent with a prolonged half-live determined at pH 5 when compared to pH 6.5 and 7.4. Also, the penetratin-mediated transepithelial permeation of insulin and PTH(1-34) was increased in vitro and in vivo upon lowering the sample pH from 7.4 or 6.5 to 5. Thus, the formation of penetratin-cargo complexes with several molecular entities is not prerequisite for penetratin-mediated transepithelial permeation a therapeutic peptide. Rather, a sample pH, which improves the penetratin stability, appears to optimize the penetratin-mediated transepithelial permeation of insulin and PTH(1-34).
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
| | - Ragna Guldsmed Diedrichsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, IT-90128 Palermo, Italy;
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angew Chem Int Ed Engl 2020; 59:19787-19795. [DOI: 10.1002/anie.202008879] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhongmin Tang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Chuang Liu
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Na Kong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Omid C. Farokhzad
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
19
|
Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhongmin Tang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Chuang Liu
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Na Kong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Omid C. Farokhzad
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
20
|
Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target 2020; 28:882-903. [DOI: 10.1080/1061186x.2020.1759078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
21
|
Wong CY, Al-Salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. J Drug Target 2020; 28:585-599. [DOI: 10.1080/1061186x.2020.1726356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani. Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
22
|
Sun L, Le Z, He S, Liu J, Liu L, Leong KW, Mao HQ, Liu Z, Chen Y. Flash Fabrication of Orally Targeted Nanocomplexes for Improved Transport of Salmon Calcitonin across the Intestine. Mol Pharm 2020; 17:757-768. [PMID: 32011888 DOI: 10.1021/acs.molpharmaceut.9b00827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Salmon calcitonin (sCT) is a potent calcium-regulating peptide hormone and widely applied for the treatment of some bone diseases clinically. However, the therapeutic usefulness of sCT is hindered by the frequent injection required, owing to its short plasma half-life and therapeutic need for a high dose. Oral delivery is a popular modality of administration for patients because of its convenience to self-administration and high patient compliance, while orally administered sCT remains a great challenge currently due to the existence of multiple barriers in the gastrointestinal (GI) tract. Here, we introduced an orally targeted delivery system to increase the transport of sCT across the intestine through both the paracellular permeation route and the bile acid pathway. In this system, sCT-based glycol chitosan-taurocholic acid conjugate (GC-T)/dextran sulfate (DS) ternary nanocomplexes (NC-T) were produced by a flash nanocomplexation (FNC) process in a kinetically controlled mode. The optimized NC-T exhibited well-controlled properties with a uniform and sub-60 nm hydrodynamic diameter, high batch-to-batch reproducibility, good physical or chemical stability, as well as sustained drug release behaviors. The studies revealed that NC-T could effectively improve the intestinal uptake and permeability, owing to its surface functionalization with the taurocholic acid ligand. In the rat model, orally administered NC-T showed an obvious hypocalcemia effect and a relative oral bioavailability of 10.9%. An in vivo assay also demonstrated that NC-T induced no observable side effect after long-term oral administration. As a result, the orally targeted nanocomplex might be a promising candidate for improving the oral transport of therapeutic peptides.
Collapse
Affiliation(s)
- Lilong Sun
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China.,Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhicheng Le
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuran He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingyan Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Biomedical Engineering and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Lamson NG, Berger A, Fein KC, Whitehead KA. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng 2020; 4:84-96. [PMID: 31686002 PMCID: PMC7461704 DOI: 10.1038/s41551-019-0465-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg-1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg-1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg-1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg-1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells.
Collapse
Affiliation(s)
- Nicholas G Lamson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adrian Berger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
McCright JC, Maisel K. Engineering drug delivery systems to overcome mucosal barriers for immunotherapy and vaccination. Tissue Barriers 2019; 8:1695476. [PMID: 31775577 DOI: 10.1080/21688370.2019.1695476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mucosal surfaces protect our bodies from pathogens and external irritants using a system of biological barriers. Overcoming these barriers is a significant drug delivery challenge, particularly for immunotherapies that aim to modulate the local immune response. Reaching local lymphoid tissues and draining lymph nodes (LNs) requires crossing the mucus mesh, mucosal epithelium, and either targeting M cells covering lymphoid tissues or utilizing lymphatic transport that shuttles molecules and particulates from the periphery to the LN. We first highlight the barrier properties of mucus and mucosal epithelium, and the function of the mucosal immune system. We then dive into existing drug delivery technologies that have been engineered to overcome each of these barriers. We particularly focus on novel strategies for targeting lymphoid tissues, which has been shown to enhance immunotherapies and vaccinations, via directly targeting LNs, lymphatic vessels, and M cells that transport samples of mucosal content to the lymphoid tissues.
Collapse
Affiliation(s)
- Jacob C McCright
- Department of Bioengineering, University of Maryland College Park, College Park, MD, USA
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, MD, USA
| |
Collapse
|
25
|
Wong CY, Luna G, Martinez J, Al-Salami H, Dass CR. Bio-nanotechnological advancement of orally administered insulin nanoparticles: Comprehensive review of experimental design for physicochemical characterization. Int J Pharm 2019; 572:118720. [PMID: 31715357 DOI: 10.1016/j.ijpharm.2019.118720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic proteins are labile macromolecules that are prone to degradation during production, freeze-drying and storage. Recent studies showed that nanoparticles can enhance the stability and oral bioavailability of encapsulated proteins. Several conventional approaches (enzyme inhibitors, mucoadhesive polymers) and novel strategies (surface modification, ligand conjugation, flash nano-complexation, stimuli-responsive drug delivery systems) have been employed to improve the physiochemical properties of nanoparticles such as size, zeta potential, morphology, polydispersity index, drug release kinetics and cell-targeting capacity. However, clinical translation of protein-based nanoparticle is limited due to poor experimental design, protocol non-compliance and instrumentation set-up that do not reflect the physiological conditions, resulting in difficulties in mass production of nanoparticles and waste in research funding. In order to address the above concerns, we conducted a comprehensive review to examine the experimental designs and conditions for physical characterization of protein-based nanoparticles. Reliable and robust characterization is essential to verify the cellular interactions and therapeutic potential of protein-based nanoparticles. Importantly, there are a number of crucial factors, which include sample treatment, analytical method, dispersants, sampling grid, staining, quantification parameters, temperature, drug concentration and research materials, should be taken into careful consideration. Variations in research protocol and unreasonable conditions that are used in optimization of pharmaceutical formulations can have great impact in result interpretation. Last but not least, we reviewed all novel instrumentations and assays that are available to examine mucus diffusion capacity, stability and bioactivity of protein-based nanoparticles. These include circular dichroism, fourier transform infrared spectroscopy, X-ray diffractogram, UV spectroscopy, differential scanning calorimetry, fluorescence spectrum, Förster resonance energy transfer, NMR spectroscopy, Raman spectroscopy, cellular assays and animal models.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia; Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
26
|
Thiolated polymer and Cell-Penetrating Peptide dual-surface functionalization of mesoporous silicon nanoparticles to overcome intestinal barriers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Gastrointestinal Responsive Polymeric Nanoparticles for Oral Delivery of Insulin: Optimized Preparation, Characterization, and In Vivo Evaluation. J Pharm Sci 2019; 108:2994-3002. [DOI: 10.1016/j.xphs.2019.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
|
28
|
Chen W, Chen X, Liang Y, Lai J, Xia L, Wen L, Chen G. Dimension-shifting multifunctional biocompatible nanocomposites. SOFT MATTER 2019; 15:6626-6629. [PMID: 31389962 DOI: 10.1039/c9sm01222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A facile method to prepare dimension-shifting biocompatible multifunctional nanocomposites is described. The design is based on magnetic - and electrostatic - induced transitions from the dispersed state to the assembled state of zero-dimensional nanoparticles, resulting in dimension conversion.
Collapse
Affiliation(s)
- Weiquan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Huckaby JT, Parker CL, Jacobs TM, Schaefer A, Wadsworth D, Nguyen A, Wang A, Newby J, Lai SK. Engineering Polymer-Binding Bispecific Antibodies for Enhanced Pretargeted Delivery of Nanoparticles to Mucus-Covered Epithelium. Angew Chem Int Ed Engl 2019; 58:5604-5608. [PMID: 30811861 PMCID: PMC7259474 DOI: 10.1002/anie.201814665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Indexed: 11/10/2022]
Abstract
Mucus represents a major barrier to sustained and targeted drug delivery to mucosal epithelium. Ideal drug carriers should not only rapidly diffuse across mucus, but also bind the epithelium. Unfortunately, ligand-conjugated particles often exhibit poor penetration across mucus. In this work, we explored a two-step "pretargeting" approach through engineering a bispecific antibody that binds both cell-surface ICAM-1 and polyethylene glycol (PEG) on the surface of nanoparticles, thereby effectively decoupling cell targeting from particle design and formulation. When tested in a mucus-coated Caco-2 culture model that mimics the physiological process of mucus clearance, pretargeting increased the amount of PEGylated particles binding to cells by around 2-fold or more compared to either non-targeted or actively targeted PEGylated particles. Pretargeting also markedly enhanced particle retention in mouse intestinal tissues. Our work underscores pretargeting as a promising strategy to improve the delivery of therapeutics to mucosal surfaces.
Collapse
Affiliation(s)
- Justin T. Huckaby
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christina L. Parker
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tim M. Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Daniel Wadsworth
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Nguyen
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anting Wang
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jay Newby
- Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, CA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
30
|
Huckaby JT, Parker CL, Jacobs TM, Schaefer A, Wadsworth D, Nguyen A, Wang A, Newby J, Lai SK. Engineering Polymer‐Binding Bispecific Antibodies for Enhanced Pretargeted Delivery of Nanoparticles to Mucus‐Covered Epithelium. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justin T. Huckaby
- UNC/NCSU Joint Department of Biomedical Engineering University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Christina L. Parker
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Tim M. Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Daniel Wadsworth
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Alexander Nguyen
- UNC/NCSU Joint Department of Biomedical Engineering University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Anting Wang
- UNC/NCSU Joint Department of Biomedical Engineering University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| | - Jay Newby
- Department of Mathematical & Statistical Sciences University of Alberta Edmonton AB T6G 2G1 Canada
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
- UNC/NCSU Joint Department of Biomedical Engineering University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
- Department of Microbiology & Immunology University of North Carolina-Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
31
|
Li H, Zhang Z, Bao X, Xu G, Yao P. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf B Biointerfaces 2018; 170:136-143. [DOI: 10.1016/j.colsurfb.2018.05.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/08/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022]
|
32
|
Presas E, McCartney F, Sultan E, Hunger C, Nellen S, V. Alvarez C, Werner U, Bazile D, Brayden DJ, O'Driscoll CM. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control Release 2018; 286:402-414. [DOI: 10.1016/j.jconrel.2018.07.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
|
33
|
Fabiano A, Piras AM, Uccello-Barretta G, Balzano F, Cesari A, Testai L, Citi V, Zambito Y. Impact of mucoadhesive polymeric nanoparticulate systems on oral bioavailability of a macromolecular model drug. Eur J Pharm Biopharm 2018; 130:281-289. [PMID: 30006244 DOI: 10.1016/j.ejpb.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/22/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Nanoparticles (NP) only different in mucoadhesivity are compared for impact on drug oral bioavailability. Two polymeric NP types based on quaternary ammonium-chitosan (NP QA-Ch) and S-protected thiolated derivative thereof (NP QA-Ch-S-pro), respectively, containing the macromolecular drug model, FD4, were prepared by crosslinking each polymer with reduced MW hyaluronic acid. The structure of basic polymers was determined by H1NMR analysis. NP were similar in size (371 ± 38 vs. 376 ± 82 nm); polydispersity index (0.39 ± 0.08 vs. 0.41 ± 0.10); zeta potential (13.4 ± 0.9 vs. 11.9 ± 1.2 mV); reversible interactions with drug (bound drug, 67 vs. 66%); encapsulation efficiency (23 ± 5 vs. 23 ± 8%); release properties (15% released in 15 h in both cases); and apparent permeation across excised rat intestine (Papp, 8.8 ± 0.8 vs. 10 ± 1 cm/s). Then the differences in NP transport ratio through mucus (TR, 0.75 vs. 0.37) and adhesion to excised rat intestinal mucosa (adsorbed fraction, 23 ± 3 vs. 45 ± 2%) were ascribed to higher mucoadhesivity of NP QA-Ch-S-pro compared to NP QA-Ch. This directly influenced drug oral bioavailability in rats (Tmax, 1 vs. 2 h; AUC, 1.7 ± 0.3 vs. 2.9 ± 0.4 μg/mL min, for NP QA-Ch and NP QA-Ch-S-pro, respectively). Mucoadhesivity increases drug bioavailability by retaining NP at its absorption site and opposing its transit down the GI tract. Data on drug accumulation in rat liver allows the assertion that NP is absorbed by transcytosis across intestinal epithelium and transported from blood into liver by Kuppfer cells.
Collapse
Affiliation(s)
- Angela Fabiano
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Gloria Uccello-Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Andrea Cesari
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| |
Collapse
|
34
|
A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int J Biol Macromol 2018; 111:685-695. [DOI: 10.1016/j.ijbiomac.2018.01.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
|
35
|
Rehmani S, Dixon JE. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides 2018; 100:24-35. [PMID: 29412825 DOI: 10.1016/j.peptides.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/03/2023]
Abstract
Oral delivery of insulin and other anti-diabetic peptides is inhibited by low intestinal absorption caused by the poor permeability across cellular membranes and the susceptibility to enzymatic degradation in the gastrointestinal tract. Cell-penetrating peptides (CPPs) have been investigated for a number of years as oral absorption enhancers for hydrophilic macromolecules by electrostatic or covalent conjugation on in conjunction with nanotechnology. Endogenous cellular uptake mechanisms present in the intestine can be exploited by engineering peptide conjugates that transcytose; entering cells by endocytosis and leaving by exocytosis. Efficiently delivering hydrophilic and sensitive peptide drugs to safely transverse the digestive barrier with no effect on gut physiology using remains a key driver for formulation research. Here we review the use of CPP and transcytosis peptide approaches, their modification and use in delivering anti-diabetic peptides (with the primary example of Insulin and engineered homologues) by direct oral administration to treat diabetes and associated metabolic disorders.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
36
|
Liu R, Chang YN, Xing G, Li M, Zhao Y. Study on orally delivered paclitaxel nanocrystals: modification, characterization and activity in the gastrointestinal tract. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170753. [PMID: 29291067 PMCID: PMC5717641 DOI: 10.1098/rsos.170753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Drug nanocrystals (NCs) can improve the solubility and bioavailability of insoluble drugs for oral administration. However, the biocompatibility and mechanisms of transmittance of drug NCs through the intestinal epithelial tissue are still not well understood. In this work, the physico-chemical properties and interactions with biomolecules in oral delivery pathways, as well as the transmittance through mimical intestinal epithelial cells, of NCs of paclitaxel (PTX) are investigated. PTX was previously demonstrated to be an effective anti-cancer drug. It is found that maximum 1% (w/v) poly(styrenesulfonate) is sufficient to keep PTX NCs monodisperse in varied biological environments and presents no significant interaction with extracellular biomolecules for at least 24 h. The concentration of PTX NCs is kept carefully controlled to avoid serious toxicity to cells (10 µg ml-1 in our experiments but this also depends on NC size). The transmittance of PTX NCs through mimical intestinal epithelial reached 25% in 6 h, demonstrating its comparatively high oral bioavailability in the human body. This work demonstrates the great potential of PTX NC treated in oral delivery.
Collapse
Affiliation(s)
| | | | | | - Min Li
- Author for correspondence: Min Li e-mail:
| | | |
Collapse
|
37
|
Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264:247-275. [DOI: 10.1016/j.jconrel.2017.09.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022]
|
38
|
Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18462-18473. [PMID: 28497681 DOI: 10.1021/acsami.7b02457] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, we introduced a targeting polymer poly(ethylene glycol)-folic acid (PEG-FA) on the surface of polydopamine (PDA)-modified mesoporous silica nanoparticles (MSNs) to develop the novel nanoparticles (NPs) MSNs@PDA-PEG-FA, which were employed as a drug delivery system loaded with doxorubicin (DOX) as a model drug for cervical cancer therapy. The chemical structure and properties of these NPs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption/desorption, dynamic light scattering-autosizer, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The pH-sensitive PDA coating served as a gatekeeper. The in vitro drug release experiments showed pH-dependent and sustained drug release profiles that could enhance the therapeutic anticancer effect and minimize potential damage to normal cells due to the acidic microenvironment of the tumor. These MSNs@PDA-PEG-FA achieved significantly high targeting efficiency, which was demonstrated by the in vitro cellular uptake and cellular targeting assay. Compared with that of free DOX and DOX-loaded NPs without the folic targeting ligand, the FA-targeted NPs exhibited higher antitumor efficacy in vivo, implying that they are a highly promising potential carrier for cancer treatments.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Junpeng Nie
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Lv Xu
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Chaoyu Liang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Yunmei Peng
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Gan Liu
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Teng Wang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Lin Mei
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Laiqiang Huang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Xiaowei Zeng
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| |
Collapse
|
39
|
Agrawal AK, Kumar K, Swarnakar NK, Kushwah V, Jain S. “Liquid Crystalline Nanoparticles”: Rationally Designed Vehicle To Improve Stability and Therapeutic Efficacy of Insulin Following Oral Administration. Mol Pharm 2017; 14:1874-1882. [DOI: 10.1021/acs.molpharmaceut.6b01099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashish Kumar Agrawal
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab-160062, India
- James Graham
Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Kuldeep Kumar
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab-160062, India
| | - Nitin Kumar Swarnakar
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab-160062, India
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766-1854, United States
| | - Varun Kushwah
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab-160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab-160062, India
| |
Collapse
|
40
|
Gao L, Wang T, Jia K, Wu X, Yao C, Shao W, Zhang D, Hu XY, Wang L. Glucose-Responsive Supramolecular Vesicles Based on Water-Soluble Pillar[5]arene and Pyridylboronic Acid Derivatives for Controlled Insulin Delivery. Chemistry 2017; 23:6605-6614. [DOI: 10.1002/chem.201700345] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Gao
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Tingting Wang
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Keke Jia
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210023 P. R. China
| | - Xuan Wu
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Chenhao Yao
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Wei Shao
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210023 P. R. China
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
- Institute for Natural and Synthetic Organic Chemistry; Changzhou University; Changzhou 213164 P. R. China
| |
Collapse
|
41
|
Wu L, Liu M, Shan W, Cui Y, Zhang Z, Huang Y. Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration. Int J Pharm 2017; 520:216-227. [DOI: 10.1016/j.ijpharm.2017.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
42
|
Empowering the Potential of Cell-Penetrating Peptides for Targeted Intracellular Delivery via Molecular Self-Assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:265-278. [DOI: 10.1007/978-3-319-66095-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
44
|
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:355-366. [PMID: 27155131 DOI: 10.1016/j.addr.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The oral route is the preferred for the administration of drugs; however, it has some serious limitations. One of the main disadvantages is poor permeability across the intestinal barrier. Various approaches are currently being adopted to overcome this issue. In this review, we describe the alternatives that use peptides to enhance intestinal absorption. First, we define the various sources of peptide enhancers followed by the analysis of the absorption mechanism used. We then comment on the possible toxic effects derived from their use as permeation enhancers, as well as potential formulation strategies. Finally, the advantages and drawbacks of peptides as intestinal enhancers are examined.
Collapse
|
45
|
Safari M, Kamari Y, Ghiaci M, Sadeghi-Aliabadi H, Mirian M. Synthesis and characterization of insulin/zirconium phosphate@TiO 2 hybrid composites for enhanced oral insulin delivery applications. Drug Dev Ind Pharm 2016; 43:862-870. [PMID: 27489129 DOI: 10.1080/03639045.2016.1220573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO2 by sol-gel method to prepare Ins/ZrP@TiO2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO2-coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.
Collapse
Affiliation(s)
- Mostafa Safari
- a Department of Chemistry , Isfahan University of Technology , Isfahan , Iran
| | - Younes Kamari
- a Department of Chemistry , Isfahan University of Technology , Isfahan , Iran
| | - Mehran Ghiaci
- a Department of Chemistry , Isfahan University of Technology , Isfahan , Iran
| | - Hojjat Sadeghi-Aliabadi
- b Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences , Isfahan University of Medical Sciences , Isfahan , Iran.,c Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Mina Mirian
- d Department of Biothechnology, School of Pharmacy and Pharmaceutical Sciences , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
46
|
Anirudhan TS, Nair AS, Nair SS. Enzyme coated beta-cyclodextrin for effective adsorption and glucose-responsive closed-loop insulin delivery. Int J Biol Macromol 2016; 91:818-27. [PMID: 27296445 DOI: 10.1016/j.ijbiomac.2016.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
Abstract
Inconsistent dosage of insulin (INS) for type 2 diabetes patients lead to severe adverse effects like limb amputation, blindness and fatal hypo or hyper glycaemia. Hence, a drug delivery system (DDS) capable of consistent INS release by sensing changes in blood glucose level is essential. Herein, we report a glucose responsive DDS comprised of oleic acid-grafted-aminated beta cyclodextrin (OA-g-ACD) copolymer, coated with a dispersion of glucose oxidase (GOx) and catalase (CAT). The prepared DDS was characterised using FTIR, Optical Microscopy, H(1) NMR, DLS and SEM. Hydrophobicity and drug loading capacity was ascertained using contact angle measurements and confocal laser scanning microscopy (CLSM) respectively. Extent of swelling was observed to be a function of glucose concentration. INS release profile showed a cumulative release of 78.0 % after 240min. Flow cytometry studies revealed greater population of INS on HeLa cells indicating application of DDS as potential candidate for the intravenous administration of INS.
Collapse
Affiliation(s)
- T S Anirudhan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India.
| | - Anoop S Nair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Syam S Nair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India
| |
Collapse
|
47
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
48
|
Advances in the transepithelial transport of nanoparticles. Drug Discov Today 2016; 21:1155-61. [PMID: 27196527 DOI: 10.1016/j.drudis.2016.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Abstract
The intestinal epithelium represents a barrier to the delivery of nanoparticles (NPs). It prevents intact NPs from efficiently crossing the mucosa to access the circulation, thus limiting the successful application of NP-based oral drug delivery. Recent advances in nanotechnology have provided promising solutions to this challenge. This review describes the potential intestinal absorption pathways of NPs, including the transenterocytic pathway, paracellular pathway and M-cell-mediated pathway. NP properties that influence transcytosis are summarized; and the biodistribution of NPs after oral absorption is described and the future prospects of novel NPs are explored.
Collapse
|
49
|
Kristensen M, Nielsen HM. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals. Tissue Barriers 2016; 4:e1178369. [PMID: 27358757 DOI: 10.1080/21688370.2016.1178369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022] Open
Abstract
Non-injectable delivery of peptide and protein drugs is hampered by their labile nature, hydrophilicity, and large molecular size; thus limiting their permeation across mucosae, which represent major biochemical and physical barriers to drugs administered via e.g. the oral, nasal, and pulmonary routes. However, in recent years cell-penetrating peptides (CPP) have emerged as promising tools to enhance mucosal delivery of co-administered or conjugated peptide and protein cargo and more advanced CPP-cargo formulations are emerging. CPPs act as transepithelial delivery vectors, but the mechanism(s) by which CPPs mediate cargo translocation across an epithelium is so far poorly understood; both due to the fact that multiple factors influence the resulting uptake and trafficking mechanisms as well as to the complicated nature of sensitive studies of this. In addition to a proper mechanistic understanding, documentation of CPP-mediated delivery in higher animal species than rodent as well as extensive toxicological studies are necessary for CPP-containing non-injectable DDSs to reach the clinic.
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, Section for Biologics, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Section for Biologics, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
50
|
Liu M, Wu L, Zhu X, Shan W, Li L, Cui Y, Huang Y. Core–shell stability of nanoparticles plays an important role for overcoming the intestinal mucus and epithelium barrier. J Mater Chem B 2016; 4:5831-5841. [PMID: 32263756 DOI: 10.1039/c6tb01199c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stability of the core–shell structure plays an important role in the nanoparticles ability to overcome both the mucus and epithelium absorption barrier.
Collapse
Affiliation(s)
- Min Liu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Lei Wu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Xi Zhu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Wei Shan
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Cui
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| |
Collapse
|