1
|
Modi D, Hussain MS, Ainampudi S, Prajapati BG. Long acting injectables for the treatment of prostate cancer. J Drug Deliv Sci Technol 2024; 100:105996. [DOI: 10.1016/j.jddst.2024.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
2
|
Zulbeari N, Ulrich Kristensen L, Mende S, Holm R. Temperature mapping of milling by dual centrifugation: A systematic investigation. Int J Pharm 2024; 666:124760. [PMID: 39332461 DOI: 10.1016/j.ijpharm.2024.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Using low quantities of drug compounds is often favorable in the early stages of drug development, especially for what require a large screening investigation to define the final formulation composition, such as nano- and microsuspensions. For that reason, the dual centrifugation approach has in the recent years been used due to its reproducible and fast-milling capacity with 40 samples in 2 mL vials simultaneously without the addition of cooling breaks due to a built-in cooling system. Nonetheless, heat can be dissipated into the samples during high-intensity milling, resulting in increased sample temperatures that potentially can affect thermolabile compounds and potential influence the obtained suspensions in the screening experiments if the used stabilizer has temperature dependent variations in the performance. Hence, a systematic investigation of the influence of different process parameters on the heat dissipation in samples during milling by the dual centrifugation approach was performed in the present study. It was found that the milling speed had the highest impact on the final sample temperature, but also other parameters, such as the bead loading, bead size, and placement in the centrifuge during milling had significantly influenced the final mean temperature of the milling media. Higher temperatures were obtained with higher bead loadings, i.e., 3000 mg milling beads/mL and milling speeds (1500 rpm), and when smaller milling beads, i.e., 0.1 mm, were used during production. The study further showed that higher temperatures were measured for samples located on the bottom disk during milling, and also when located on the outer placement on the sample disk. Upscale investigations showed immensely increased sample temperatures (almost up to boiling point) when samples were prepared under similar formulation parameters and milling speed as small-volume vials. Furthermore, the study indicated that the addition of drug compounds during suspension preparation decreased the final sample temperature compared to samples that only contained purified water due to energy absorption of the drug compound.
Collapse
Affiliation(s)
- Nadina Zulbeari
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Louise Ulrich Kristensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Stefan Mende
- NETZSCH-Feinmahltechnik GmbH, Sedanstrasse 70, 95100 Selb, Germany
| | - René Holm
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
3
|
Alidori S, Subramanian R, Holm R. Patient-Centric Long-Acting Injectable and Implantable Platforms─An Industrial Perspective. Mol Pharm 2024; 21:4238-4258. [PMID: 39160132 PMCID: PMC11372838 DOI: 10.1021/acs.molpharmaceut.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The increasing focus on patient centricity in the pharmaceutical industry over the past decade and the changing healthcare landscape, driven by factors such as increased access to information, social media, and evolving patient demands, has necessitated a shift toward greater connectivity and understanding of patients' unique treatment needs. One pharmaceutical technology that has supported these efforts is long acting injectables (LAIs), which lower the administration frequency for the patient's provided convenience, better compliance, and hence better therapeutical treatment for the patients. Furthermore, patients with conditions like the human immunodeficiency virus and schizophrenia have positively expressed the desire for less frequent dosing, such as that obtained through LAI formulations. In this work, a comprehensive analysis of marketed LAIs across therapeutic classes and technologies is conducted. The analysis demonstrated an increasing number of new LAIs being brought to the market, recently most as aqueous suspensions and one as a solution, but many other technology platforms were applied as well, in particular, polymeric microspheres and in situ forming gels. The analysis across the technologies provided an insight into to the physicochemical properties the compounds had per technology class as well as knowledge of the excipients typically used within the individual formulation technology. The principle behind the formulation technologies was discussed with respect to the release mechanism, manufacturing approaches, and the possibility of defining predictive in vitro release methods to obtain in vitro in vivo correlations with an industrial angle. The gaps in the field are still numerous, including better systematic formulation and manufacturing investigations to get a better understanding of potential innovations, but also development of new polymers could facilitate the development of additional compounds. The biggest and most important gaps, however, seem to be the development of predictive in vitro dissolution methods utilizing pharmacopoeia described equipment to enable their use for product development and later in the product cycle for quality-based purposes.
Collapse
Affiliation(s)
- Simone Alidori
- Independent Researcher, Havertown, Pennsylvania 19083, United States
| | - Raju Subramanian
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94403, United States
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Zulbeari N, Holm R. A Systematic Investigation of Process Parameters for Small-Volume Aqueous Suspension Production by the Use of Focused Ultrasonication. AAPS PharmSciTech 2024; 25:185. [PMID: 39138704 DOI: 10.1208/s12249-024-02907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Aqueous suspensions containing crystalline drug in the sub-micron range is a favorable platform for long-acting injectables where particle size can be used to obtain a desired plasma-concentration profile. Stabilizers are added to the suspensions and screened extensively to define the optimal formulation composition. In the initial formulation screening the amount of drug compound can be limited, necessitating milling methods for small-volume screening predictable for scale-up. Hence, adaptive focused ultrasound was investigated as a potential milling method for rapid small-volume suspensions by identifying the critical process parameters during preparation. Suspensions containing drug compounds with different mechanical properties and thereby grindability, i.e., cinnarizine, haloperidol, and indomethacin with brittle, elastic, and plastic properties, respectively, were investigated to gain an understanding of the manufacturing with adaptive focused acoustics as well as comparison to already established milling techniques. Using a DoE-design, peak incident power was identified as the most crucial process parameter impacting the milling process for all three compounds. It was possible to decrease the sizes of drug particles to micron range after one minute of focused ultrasound exposure which was superior compared to other milling techniques (e.g., non-focused ultrasound exposure). The addition of milling beads decreased the drug particle sizes even further, thus to a lower degree than other already established milling techniques such as milling by dual centrifugation. This study thereby demonstrated that adaptive focused ultrasonication was a promising method for rapid homogenization and particle size reduction to micron range for different compounds varying in grindability without altering the crystalline structure.
Collapse
Affiliation(s)
- Nadina Zulbeari
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - René Holm
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| |
Collapse
|
5
|
Jeong MY, Ho MJ, Park JS, Jeong H, Kim JH, Jang YJ, Shin DM, Yang IG, Kim HR, Song WH, Lee S, Song SH, Choi YS, Han YT, Kang MJ. Tricaprylin-based drug crystalline suspension for intramuscular long-acting delivery of entecavir with alleviated local inflammation. Bioeng Transl Med 2024; 9:e10649. [PMID: 39036080 PMCID: PMC11256175 DOI: 10.1002/btm2.10649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 07/23/2024] Open
Abstract
In order to ensure prolonged pharmacokinetic profile along with local tolerability at the injection site, tricaprylin-based drug crystalline suspension (TS) was designed and its local distribution, pharmacokinetics, and inflammatory response, were evaluated with conventional aqueous suspension (AS). As model drug particles, entecavir 3-palmitate (EV-P), an ester lipidic prodrug for entecavir (EV), was employed. The EV-P-loaded TS was prepared by ultra-sonication method. Prepared TS and conventional AS exhibited comparable morphology (rod or rectangular), median diameter (2.7 and 2.6 μm), crystallinity (melting point of 160-165°C), and in vitro dissolution profile. However, in vivo performances of drug microparticles were markedly different, depending on delivery vehicle. At AS-injected site, drug aggregates of up to 500 μm were formed upon intramuscular injection, and were surrounded with inflammatory cells and fibroblastic bands. In contrast, no distinct particle aggregation and adjacent granulation was observed at TS-injected site, with >4 weeks remaining of the oily vehicle in micro-computed tomographic observation. Surprisingly, TS exhibited markedly alleviated local inflammation compared to AS, endowing markedly lessened necrosis, fibrosis thickness, inflammatory area, and macrophage infiltration. The higher initial systemic exposure was observed with TS compared to AS, but TS provided prolonged delivery of EV for 3 weeks. Therefore, we suggest that the novel TS system can be a promising tool in designing parenteral long-acting delivery, with improved local tolerability.
Collapse
Affiliation(s)
- Min Young Jeong
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Joon Soo Park
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Hoetaek Jeong
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Jin Hee Kim
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Yong Jin Jang
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Doe Myung Shin
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Hye Rim Kim
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Woo Heon Song
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung UniversityBusanRepublic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| |
Collapse
|
6
|
Chatterjee AK. Discovery of novel anti-infective agents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:39-117. [PMID: 39034055 DOI: 10.1016/bs.apha.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Academic and other non-profit institutions have a long-term vision to improve human health where commercial interests can be limited for profit organizations. Medicinal chemistry to these diseases with no commercial benefit needs is well suited in the academic environment and this chapter outlines some work conducted at Calibr-Skaggs around antibiotic drug development that has led to initiation of multiple clinical trials over the last decade.
Collapse
Affiliation(s)
- Arnab K Chatterjee
- Calibr-Skaggs Institute of Innovation Medicines, Scripps Research, La Jolla, CA, United States.
| |
Collapse
|
7
|
Gupta AK, Eliasen AM, Andahazy W, Zhou F, Henson K, Chi V, Woods AK, Joseph SB, Kuhen KL, Wisler J, Ramachandruni H, Duffy J, Burrows JN, Vadas E, Slade A, Schultz PG, McNamara CW, Chatterjee AK. A Prodrug Strategy to Reposition Atovaquone as a Long-Acting Injectable for Malaria Chemoprotection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579395. [PMID: 38979188 PMCID: PMC11230151 DOI: 10.1101/2024.02.08.579395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.
Collapse
|
8
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Zulbeari N, Holm R. Is roller milling - the low energy wet bead media milling - a reproducible and robust milling method for formulation investigation of aqueous suspensions? Int J Pharm 2024; 651:123733. [PMID: 38142873 DOI: 10.1016/j.ijpharm.2023.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Long-acting injectables have shown to offer a prolonged release of a drug compound up to several months, providing the opportunity to increase patient compliance for treatment of long-term and chronic conditions. Different formulation technologies have already been utilized for long-acting injectables, and especially aqueous suspensions with crystalline drug particles in the sub-micron range have sparked an interest for future development of long-acting injectables. Wet bead milling is a common top-down process used to prepare nano- and microsuspensions of crystalline drug particles with the addition of surfactants in the dispersion medium, which are working as stabilizers to prevent agglomeration or crystal growth that ultimately may influence the physical stability of nano- and microsuspensions. To examine the reproducibility of the suspensions manufactured and the behavior of their physical stability, i.e., changes in particle sizes over time, low-energy roller mill was utilized for the manufacturing of nano- and microsuspensions in the present study. Investigated formulation parameters was stabilizer type and concentration and milling parameters varied in bead size and duration of milling. The obtained results demonstrated that the physical stability of suspensions containing the two model compounds, cinnarizine and indomethacin, was highly affected by the constitution of surfactant and processing. Various size classes were obtained and accompanied by high variations between the individual samples that indicated uneven and unpredictable milling by the low-energy roller mill, limiting the possibility to prepare reproducible and physical stable suspensions. Short-term stability studies revealed clear tendencies towards reversed Ostwald ripening of suspensions stabilized with poloxamer 188 that contained cinnarizine as the drug compound, and to a smaller extent suspensions containing indomethacin. Furthermore, X-ray Powder Diffraction confirmed no alteration of the drug compounds crystal structure after roller milling for multiple days.
Collapse
Affiliation(s)
- Nadina Zulbeari
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
11
|
Chen A, Cai P, Peng Y, Guo M, Su Y, Cai T. The role of alkyl chain length in the melt and solution crystallization of paliperidone aliphatic prodrugs. IUCRJ 2024; 11:23-33. [PMID: 37962472 PMCID: PMC10833388 DOI: 10.1107/s2052252523009582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method.
Collapse
Affiliation(s)
- An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Peishan Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yayun Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yuan Su
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
12
|
Subramanian R, Tang J, Zheng J, Lu B, Wang K, Yant SR, Stepan GJ, Mulato A, Yu H, Schroeder S, Shaik N, Singh R, Wolckenhauer S, Chester A, Tse WC, Chiu A, Rhee M, Cihlar T, Rowe W, Smith BJ. Lenacapavir: A Novel, Potent, and Selective First-in-Class Inhibitor of HIV-1 Capsid Function Exhibits Optimal Pharmacokinetic Properties for a Long-Acting Injectable Antiretroviral Agent. Mol Pharm 2023; 20:6213-6225. [PMID: 37917742 PMCID: PMC10698746 DOI: 10.1021/acs.molpharmaceut.3c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Lenacapavir (LEN) is a picomolar first-in-class capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) with a multistage mechanism of action and no known cross resistance to other existing antiretroviral (ARV) drug classes. LEN exhibits a low aqueous solubility and exceptionally low systemic clearance following intravenous (IV) administration in nonclinical species and humans. LEN formulated in an aqueous suspension or a PEG/water solution formulation showed sustained plasma exposure levels with no unintended rapid drug release following subcutaneous (SC) administration to rats and dogs. A high total fraction dose release was observed with both formulations. The long-acting pharmacokinetics (PK) were recapitulated in humans following SC administration of both formulations. The SC PK profiles displayed two-phase absorption kinetics in both animals and humans with an initial fast-release absorption phase, followed by a slow-release absorption phase. Noncompartmental and compartmental analyses informed the LEN systemic input rate from the SC depot and exit rate from the body. Modeling-enabled deconvolution of the input rates from two processes: absorption of the soluble fraction (minor) from a direct fast-release process leading to the early PK phase and absorption of the precipitated fraction (major) from an indirect slow-release process leading to the later PK phase. LEN SC PK showed flip-flop kinetics due to the input rate being substantially slower than the systemic exit rate. LEN input rates via the slow-release process in humans were slower than those in both rats and dogs. Overall, the combination of high potency, exceptional stability, and optimal release rate from the injection depot make LEN well suited for a parenteral long-acting formulation that can be administered once up to every 6 months in humans for the prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Raju Subramanian
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jennifer Tang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Bing Lu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Kelly Wang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen R. Yant
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - George J. Stepan
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Andrew Mulato
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Scott Schroeder
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Naveed Shaik
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Renu Singh
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Anne Chester
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Anna Chiu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Martin Rhee
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - William Rowe
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Bill J. Smith
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
13
|
Zulbeari N, Holm R. Wet bead milling by dual centrifugation - An approach to obtain reproducible and differentiable suspensions. Int J Pharm 2023; 646:123455. [PMID: 37776963 DOI: 10.1016/j.ijpharm.2023.123455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Aqueous nano- and microsuspensions containing poorly water-soluble, crystalline drug particles have in the recent years sparked an interest for the preparation of long-acting injectables (LAIs), which increase patient compliance for patients treated for long-term or chronic conditions. Nano- and microsuspensions are often prepared by top-down methods, such as wet bead milling, with the addition of stabilizers in the dispersion media, such as surfactants, which influence the particle sizes and physical stability of the suspension. To improve the efficacy of formulation screening for nano- and microsuspensions, dual centrifugation was utilized in this study whereby 40 samples could be manufactured simultaneously to support the formulation definition. Hence, the type and concentration of stabilizer as well as bead size and milling speed was investigated throughout the presented study, but also the ability of the method to produce consistent data was investigated. The obtained results demonstrated that the particle profile obtained after milling was very consistent from run to run and so was the observed stability data, i.e., running n = 1 experiment per combination could clearly be justified as a predictable approach for the formulation screening. The data also showed that the stabilizer, as well as its concentration highly influenced the physical stability of suspensions containing both the two investigated model compounds, i.e., both cinnarizine and indomethacin, where the biggest increase in particle sizes was observed within the first week. For short-term studies, polysorbate 20 was found to be a suitable stabilizer for suspensions of cinnarizine, whereas sodium dodecyl sulphate was more suitable for indomethacin suspensions immediately after the milling even with 1% (w/v) stabilizer solution, but not sufficient for short-term stability due to an insufficient stabilizer concentration. Smaller particles sizes could be achieved by milling the suspensions with the smallest bead sizes and at the highest speed of 1500 rpm without disrupting the crystal structure of the active pharmaceutical ingredient (API), which was confirmed by X-ray Powder Diffraction.
Collapse
Affiliation(s)
- Nadina Zulbeari
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
14
|
Tao R, Liu L, Xiong Y, Zhang Q, Lv X, He L, Ren F, Zhou L, Chen B, Wu K, Zhang Y, Chen H. Construction and evaluation of a phospholipid-based phase transition in situ gel system for brexpiprazole. Drug Deliv Transl Res 2023; 13:2819-2833. [PMID: 37160629 DOI: 10.1007/s13346-023-01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
The objective of this study was to develop phospholipid-based injectable phase transition in situ gels (PTIGs) for the sustained release of Brexpiprazole (Brex). Phospholipid (Lipoid S100, S100) and stearic acid (SA) were used as the gel matrix which was dissolved in biocompatible solvent medium-chain triglyceride (MCT), N-methyl pyrrolidone (NMP), and ethanol to obtain PTIGs solution. The Brex PTIG showed a solution condition of low viscosity in vitro and was gelatinized in situ in vivo after subcutaneous injection. Both in vitro release assay and in vivo pharmacokinetics study in SD rats displayed that Brex in PTIGs could achieve a sustained release, compared with brexpiprazole solution (Brex-Sol) or brexpiprazole suspension (Brex-Sus). The Brex-PTIGs had good degradability and biocompatibility in vivo with rare inflammation at the injection site. Among the three Brex-PTIG formulations, Brex-PTIG-3 with the SA in the formulation had the greatest gelation viscosity, the lowest initial release rate, and the most stable release profile with sustained release of up to 60 days. The above results indicated that, as a novel drug delivery system, the Brex-PTIGs offered a new option for the clinical treatment of patients with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Li Liu
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Yingxin Xiong
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Xiangyu Lv
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Linbo He
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Fang Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Lu Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Baoyan Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Kexin Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Yan Zhang
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China.
| | - Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China.
| |
Collapse
|
15
|
Sharma R, Yadav S, Yadav V, Akhtar J, Katari O, Kuche K, Jain S. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev 2023; 199:114901. [PMID: 37257756 DOI: 10.1016/j.addr.2023.114901] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sheetal Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Vivek Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Kaushik Kuche
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India.
| |
Collapse
|
16
|
Johnson AR, Ballard JE, Leithead A, Miller C, Faassen F, Zang X, Nofsinger R, Wagner AM. A Retrospective Analysis of Preclinical and Clinical Pharmacokinetics from Administration of Long-Acting Aqueous Suspensions. Pharm Res 2023; 40:1641-1656. [PMID: 36720831 DOI: 10.1007/s11095-023-03470-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023]
Abstract
Administration of long-acting injectable suspensions is an increasingly common approach to increasing patient compliance and improving therapeutic efficacy through less frequent dosing. While several long-acting suspensions have recently been marketed, parameters modulating drug absorption from suspension-based formulations are not well understood. Further, methods for predicting clinical pharmacokinetic data from preclinical studies are not well established. Together, these limitations hamper compound selection, formulation design and formulation selection through heavy reliance on iterative optimization in preclinical and clinical studies. This article identifies key parameters influencing absorption from suspension-based formulations through compilation and analysis of preclinical and clinical pharmacokinetic data of seven compounds marketed as suspensions; achievable margins for predicting the clinical dose and input rate from preclinical studies as a function of the preclinical species, the clinical injection location and the intended therapeutic duration were also established.
Collapse
Affiliation(s)
- Ashley R Johnson
- Sterile and Specialty Products, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Jeanine E Ballard
- Absorption, Distribution, Metabolism & Excretion, Merck & Co., Inc., West Point, PA, USA
| | - Andrew Leithead
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA
| | - Corin Miller
- Translational Imaging, Merck & Co., Inc., West Point, PA, USA
| | - Fried Faassen
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Xiaowei Zang
- Quantitative Pharmacology & Pharmacometrics, Merck & Co., Inc., West Point, PA, USA
| | - Rebecca Nofsinger
- Absorption, Distribution, Metabolism & Excretion, Merck & Co., Inc., West Point, PA, USA
| | - Angela M Wagner
- Sterile and Specialty Products, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| |
Collapse
|
17
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
18
|
Hugo Silva M, Hudson SP, Tajber L, Garin M, Dong W, Khamiakova T, Holm R. Osmolality of Excipients for Parenteral Formulation Measured by Freezing Point Depression and Vapor Pressure - A Comparative Analysis. Pharm Res 2023; 40:1709-1722. [PMID: 35460023 DOI: 10.1007/s11095-022-03262-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the difference in methods to determine the osmolality in solutions of stabilizers used for long-acting injectable suspensions. METHODS The osmolality was measured by freezing point depression and vapor pressure for 11 different polymers and surfactants (PEG 3350, 4000, 6000, 8000, 20,000, PVP K12, K17 and K30, poloxamer 188, 388 and 407, HPMC E5, Na-CMC, polysorbate 20 and 80, vitamin E-TPGS, phospholipid, DOSS and SDS) in different concentrations. RESULTS Independently of the measuring method, an increase in osmolality with increasing concentration was observed for all polymers and surfactants, as would be expected due to the physicochemical origin of the osmolality. No correlation was found between the molecular weight of the polymers and the measured osmolality. The osmolality values were different for PVPs, PEGs, and Na-CMC using the two different measurement methods. The values obtained by the freezing point depression method tended to be similar or higher than the ones provided by vapor pressure, overall showing a significant difference in the osmolality measured by the two investigated methods. CONCLUSIONS For lower osmolality values (e.g. surfactants), the choice of the measuring method was not critical, both the freezing point depression and vapor pressure could be used. However, when the formulations contained higher concentrations of excipients and/or thermosensitive excipients, the data suggests that the vapor pressure method would be more suited.
Collapse
Affiliation(s)
- Mariana Hugo Silva
- Pharmaceutical Product Development and Supply, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
- Department of Chemical Sciences, SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Dublin 2, College Green, Ireland
| | - Matthieu Garin
- Pharmaceutical Product Development and Supply, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Wenyu Dong
- Pharmaceutical Product Development and Supply, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Tatsiana Khamiakova
- Pharmaceutical Product Development and Supply, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - René Holm
- Pharmaceutical Product Development and Supply, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium.
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
19
|
Wang J, Liu J, Ding J, Li Q, Zhao Y, Gao D, Su K, Yang Y, Wang Z, He J. Creation of a ready-to-use brexpiprazole suspension and the inflammation-mediated pharmacokinetics by intramuscular administration. Eur J Pharm Biopharm 2023; 189:S0939-6411(23)00166-2. [PMID: 37364749 DOI: 10.1016/j.ejpb.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Brexpiprazole (BPZ), which is approved for the treatment of schizophrenia and major depressive disorder, has the potential to meet diverse clinical needs. This study aimed to develop a long-acting injectable (LAI) formulation of BPZ that could provide sustained therapeutic benefits. A library of BPZ prodrugs was screened through esterification, and BPZ laurate (BPZL) was identified as an optimal candidate. To achieve stable aqueous suspensions, a pressure- and nozzle size-controlled microfluidization homogenizer was utilized. The pharmacokinetics (PK) profiles, considering dose and particle size modulation, were investigated following a single intramuscular injection in beagles and rats. BPZL treatment resulted in sustained plasma concentrations above the median effective concentration (EC50) for 2∼3 weeks, without exhibiting an initial burst release. Histological examination of foreign body reaction (FBR) in rats revealed the morphological evolution of an inflammation-mediated drug depot, confirming the sustained release mechanism of BPZL. These findings provide strong support for the further development of a ready-to-use LAI suspension of BPZL, which could potentially enhance treatment outcomes, improve patient adherence, and address the clinical challenges associated with long-term regimens of schizophrenia spectrum disorders (SSD).
Collapse
Affiliation(s)
- Junji Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Junfeng Liu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Jingwen Ding
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Qin Li
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Yuan Zhao
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Dongxu Gao
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Keyi Su
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Zhefeng Wang
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Jun He
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China; National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
20
|
Sonntag E, Kolář J, Djukaj S, Lehocký R, Štěpánek F. Accelerated reactive dissolution model of drug release from long-acting injectable formulations. Eur J Pharm Biopharm 2023:S0939-6411(23)00156-X. [PMID: 37321329 DOI: 10.1016/j.ejpb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Long-acting injectable formulations represent a rapidly emerging category of drug delivery systems that offer several advantages compared to orally administered medicines. Rather than having to frequently swallow tablets, the medication is administered to the patient by intramuscular or subcutaneous injection of a nanoparticle suspension that forms a local depot from which the drug is steadily released over a period of several weeks or months. The benefits of this approach include improved medication compliance, reduced fluctuations of drug plasma level, or the suppression of gastrointestinal tract irritation. The mechanism of drug release from injectable depot systems is complex, and there is a lack of models that would enable quantitative parametrisation of the process. In this work, an experimental and computational study of drug release from a long-acting injectable depot system is reported. A population balance model of prodrug dissolution from asuspension with specific particle size distribution has been coupled with the kinetics of prodrug hydrolysis to its parent drug and validated using in vitro experimental data obtained from an accelerated reactive dissolution test. Using the developed model, it is possible to predict the sensitivity of drug release profiles to the initial concentration and particle size distribution of the prodrug suspension, and subsequently simulate various drug dosing scenarios. Parametric analysis of the system has identified the boundaries of reaction- and dissolution-limited drug release regimes, and the conditions for the existence of a quasi-steady state. This knowledge is crucial for the rational design of drug formulations in terms of particle size distribution, concentration and intended duration of drug release.
Collapse
Affiliation(s)
- Erik Sonntag
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jiří Kolář
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Suada Djukaj
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Róbert Lehocký
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Holm R, Lee RW, Glassco J, DiFranco N, Bao Q, Burgess DJ, Lukacova V, Alidori S. Long-Acting Injectable Aqueous Suspensions-Summary From an AAPS Workshop. AAPS J 2023; 25:49. [PMID: 37118621 DOI: 10.1208/s12248-023-00811-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Through many years of clinical application of long-acting injectables, there is clear proof that this type of formulation does not just provide the patient with convenience, but more importantly a more effective treatment of the medication provided. The formulation approach therefore contains huge untapped potential to improve the quality of life of many patients with a variety of different diseases. This review provides a summary of some of the central talks provided at the workshop with focus on aqueous suspensions and their use as a long-acting injectable. Elements as formulation, manufacturing, in vitro dissolution methods, in vitro and in vivo correlation, in silico modelling provide an insight into some of the current understandings, learnings, and not least gaps in the field.
Collapse
Affiliation(s)
- René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Robert W Lee
- Lubrizol Life Science, Health, CDMO Division, 3894 Courtney St., Bethlehem, Pennsylvania, 18017, USA
| | - Joey Glassco
- Lubrizol Life Science, Health: 9911 Brecksville Road, Cleveland, Ohio, 44141, USA
| | - Nicholas DiFranco
- Lubrizol Life Science, Health: 9911 Brecksville Road, Cleveland, Ohio, 44141, USA
| | - Quanying Bao
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10Th Street, Lancaster, California, 93534, USA
| | - Simone Alidori
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, Pennsylvania, 19426-2990, USA
| |
Collapse
|
22
|
Kotla NG, Pandey A, Vijaya Kumar Y, Ramazani F, Fisch A. Polyester-based long acting injectables: Advancements in molecular dynamics simulation and technological insights. Drug Discov Today 2023; 28:103463. [PMID: 36481584 DOI: 10.1016/j.drudis.2022.103463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Long-acting injectable (LAI) delivery technologies have enabled the development of several pharmaceutical products that improve patient health by delivering therapeutics from weeks to months. Over the last decade, due to its good biocompatibility, formulation tunability, wide range of degradation rates, and extensive clinical studies, polyester-based LAI technologies including poly(lactic-co-glycolic acid) (PLGA) have made substantial progress. Herein, we discuss PLGA properties with seminal approaches in the development of LAIs, the role of molecular dynamic simulations of polymer-drug interactions, and their effects on quality attributes. We also outline the landscape of various advanced PLGA-based and a few non-PLGA LAI technologies; their design, delivery, and challenges from laboratory scale to preclinical and clinical use; and commercial products incorporating the importance of end-user preferences.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Novartis Institutes for Biomedical Research (NIBR), Novartis Pharma AG, Basel 4002, Switzerland.
| | - Abhijeet Pandey
- Technical Research and Development, Novartis Pharma AG, Hyderabad 500081, India.
| | - Y Vijaya Kumar
- Technical Research and Development, Novartis Pharma AG, Hyderabad 500081, India
| | - Farshad Ramazani
- Technical Research and Development (TRD), Novartis Pharma AG, Basel 4002, Switzerland
| | - Andreas Fisch
- Technical Research and Development (TRD), Novartis Pharma AG, Basel 4002, Switzerland
| |
Collapse
|
23
|
Nguyen VTT, Darville N, Vermeulen A. Pharmacokinetics of Long-Acting Aqueous Nano-/Microsuspensions After Intramuscular Administration in Different Animal Species and Humans-a Review. AAPS J 2022; 25:4. [PMID: 36456852 DOI: 10.1208/s12248-022-00771-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
Formulating aqueous suspensions is an attractive strategy to incorporate poorly water-soluble drugs, where the drug release can be tailored to maintain desired release profiles of several weeks to months after parenteral (i.e., intramuscular or subcutaneous) administration. A sustained drug release can be desirable to combat chronic diseases by overcoming pill fatigue of a daily oral intake, hence, improving patient compliance. Although the marketed aqueous suspensions for intramuscular injection efficiently relieve the daily pill burden in chronic diseases, the exact drug release mechanisms remain to be fully unraveled. The in vivo drug release and subsequent absorption to the systemic circulation are influenced by a plethora of variables, resulting in a complex in vivo behavior of aqueous suspensions after intramuscular administration. A better understanding of the factors influencing the in vivo performance of aqueous suspensions could advance their drug development. An overview of the potential influential variables on the drug release after intramuscular injection of aqueous suspensions is provided with, where possible, available pharmacokinetic parameters in humans or other species derived from literature, patents, and clinical trials. These variables can be categorized into drug substance and formulation properties, administration site properties, and the host response towards drug particles. Based on the findings, the most critical factors are particle size, dose level, stabilizing excipient, drug lipophilicity, gender, body mass index, and host response.
Collapse
Affiliation(s)
- Vy Thi Thanh Nguyen
- Ghent University, Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| | - Nicolas Darville
- Pharmaceutical Product Development & Supply, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Antwerp, Belgium
| | - An Vermeulen
- Ghent University, Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| |
Collapse
|
24
|
Hugo Silva M, Kumar A, Hodnett BK, Tajber L, Holm R, Hudson SP. Impact of Excipients and Seeding on the Solid-State Form Transformation of Indomethacin during Liquid Antisolvent Precipitation. CRYSTAL GROWTH & DESIGN 2022; 22:6056-6069. [PMID: 36217420 PMCID: PMC9542716 DOI: 10.1021/acs.cgd.2c00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Long-acting injectables are a unique drug formulation strategy, providing a slow and sustained release of active pharmaceutical ingredients (APIs). In this study, a novel approach that combines liquid antisolvent precipitation with seeding to obtain a stable form of the API indomethacin while achieving the desired particle size distribution is described. It was proven that when a metastable form of indomethacin was initially nucleated, the rate of its transformation to the stable form was influenced by the presence of excipients and seeds (17.10 ± 0.20 μm), decreasing from 48 to 4 h. The final particle size (D50) of the indomethacin suspension produced without seeding was 7.33 ± 0.38 μm, and with seeding, it was 5.61 ± 0.14 μm. Additionally, it was shown that the particle size distribution of the seeds and the time point of seed addition were critical to obtain the desired solid-state form and that excipients played a crucial role during nucleation and polymorphic transformation. This alternative, energy-efficient bottom-up method for the production of drug suspensions with a reduced risk of contamination from milling equipment and fewer processing steps may prove to be comparable in terms of stability and particle size distribution to current industrially accepted top-down approaches.
Collapse
Affiliation(s)
- Mariana Hugo Silva
- Pharmaceutical
Product Development and Supply, Janssen
Research and Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
- Department
of Chemical Sciences, SSPC the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| | - Ajay Kumar
- Department
of Chemical Sciences, SSPC the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| | - Benjamin K. Hodnett
- Department
of Chemical Sciences, SSPC the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| | - Lidia Tajber
- School
of Pharmacy and Pharmaceutical Sciences and the Science Foundation
Ireland Research Centre for Pharmaceuticals (SSPC), Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - René Holm
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Sarah P. Hudson
- Department
of Chemical Sciences, SSPC the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| |
Collapse
|
25
|
Wilkinson J, Ajulo D, Tamburrini V, Gall GL, Kimpe K, Holm R, Belton P, Qi S. Lipid based intramuscular long-acting injectables: current state of the art. Eur J Pharm Sci 2022; 178:106253. [DOI: 10.1016/j.ejps.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
|
26
|
Manini G, Benali S, Mathew A, Napolitano S, Raquez JM, Goole J. Paliperidone palmitate as model of heat-sensitive drug for long-acting 3D printing application. Int J Pharm 2022; 618:121662. [PMID: 35292399 DOI: 10.1016/j.ijpharm.2022.121662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
In this work, two technologies were used to prepare long-acting implantable dosage forms in the treatment of schizophrenia. Hot-melt extrusion (HME) as well as fused deposition modelling (FDM) were used concomitantly to create personalized 3D printed implants. Different formulations were prepared using an amorphous PLA as matrix polymer and different solid-state plasticizers. Paliperidone palmitate (PP), a heat sensitive drug prescribed in the treatment of schizophrenia was chosen as model drug. After extrusion, different formulations were characterized using DSC and XRD. Then, an in vitro dissolution test was carried out to discriminate the formulation allowing a sustained drug release of PP. The formulation showing a sustained drug release of the drug was 3D printed as an implantable dosage form. By modulating the infill, the release profile was related to the proper design of tailored dosage form and not solely to the solubility of the drug. Indeed, different release profiles were achieved over 90 days using only one formulation. In addition, a stability test was performed on the 3D printed implants for 3 months. The results showed the stability of the amorphous state of PP, independently of the temperature as well as the integrity of the matrix and the drug.
Collapse
Affiliation(s)
- Giuseppe Manini
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium.
| | - Samira Benali
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Allen Mathew
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium
| |
Collapse
|
27
|
Ho MJ, Jeong MY, Jeong HT, Kim MS, Park HJ, Kim DY, Lee HC, Song WH, Kim CH, Lee CH, Choi YW, Choi YS, Han YT, Kang MJ. Effect of particle size on in vivo performances of long-acting injectable drug suspension. J Control Release 2021; 341:533-547. [PMID: 34902451 DOI: 10.1016/j.jconrel.2021.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Herein, entecavir-3-palmitate (EV-P), an ester prodrug of entecavir (EV), was employed as a model drug, and the effect of drug particle size on in vivo pharmacokinetic profiles and local inflammatory responses, and those associations were evaluated following intramuscular (IM) injection. EV-P crystals with different median diameters (0.8, 2.3, 6.3, 15.3 and 22.6 μm) were prepared using the anti-solvent crystallization method, with analogous surface charges (-10.7 ~ -4.7 mV), and crystallinity (melting point, 160-170 °C). EV-P particles showed size-dependent in vitro dissolution profiles under sink conditions, exhibiting a high correlation between the median diameter and Hixon-Crowell's release rate constant (r2 = 0.94). Following IM injection in rats (1.44 mg/kg as EV), the pharmacokinetic profile of EV exhibited marked size-dependency; 0.8 μm-sized EV-P particles about 1.6-, 3.6-, and 5.6-folds higher systemic exposure, compared to 6.3, 15.3, and 22.6 μm-sized particles, respectively. This pharmacokinetic pattern, depending on particle size, was also highly associated with histopathological responses in the injected tissue. The smaller EV-P particles (0.8 or 2.3 μm) imparted the larger inflammatory lesion after 3 days, lower infiltration of inflammatory cells, and thinner fibroblastic bands around depots after 4 weeks. Conversely, severe fibrous isolation with increasing particle size augmented the drug remaining at injection site over 4 weeks, impeding the dissolution and systemic exposure. These findings regarding the effects of formulation variable on the in vivo behaviors of long-acting injectable suspension, provide constructive knowledge toward the improved design in poorly water-soluble compounds.
Collapse
Affiliation(s)
- Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hoe Taek Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Seob Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hyun Jin Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Dong Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hyo Chun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Woo Heon Song
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Choong Hyun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
28
|
Guo X, Zhang M, Guo Y, Liu H, Yang B, Gou J, Yin T, Zhang Y, He H, Liu D, Tang X. Impact of jet pulverization and wet milling techniques on properties of aripiprazole long-acting injection and absorption mechanism research in vivo. Int J Pharm 2021; 612:121300. [PMID: 34793936 DOI: 10.1016/j.ijpharm.2021.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
This study aims to explore the influence of wet milling and jet pulverization on the aripiprazole microcrystalline long-acting injection. Crystal form and particle size distribution were taken as inspection indicators in vitro, and process parameters were optimized. The formulation prepared by wet milling (AMLAI-WM) was shown to undergo a slight conversion of crystal form by DSC, PXRD, TG, FT-IR and have a wider particle size distribution with D50 and Span values of 2.967 μm and 3.457 compared to the formulation fabricated by jet pulverization (AMLAI-JP) with 2.887 μm and 2.258 respectively. In addition, the in vitro release of AMLAI-WM was faster, whereby the pharmacokinetic data indicated that AMLAI-WM was absorbed more quickly within five days with AUC0-5d of 5243.7 μg·L-1·h and 4818.28 μg·L-1·h, respectively. Furthermore, no statistically significant differences in Cmax, tmax and AUC between AMLAI-JP and the commercial formulation (Abilify Maintena™) were found. The absorption mechanism was studied and showed a 1.4-fold later Tmax after depletion of macrophages and significantly lower Cmax and AUC after inhibiting angiogenesis, indicating inflammatory granuloma could facilitate drug plasma exposure. Overall, we demonstrated that jet pulverization was a good strategy for long-acting microcrystalline injection, and that the absorption behavior was affected by both particle size distribution and inflammatory granuloma.
Collapse
Affiliation(s)
- Xueting Guo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maolian Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yibin Guo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Yang
- Department of Traditional Chinese Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongchun Liu
- Department of Traditional Chinese Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
29
|
Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021; 38:1497-1518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023]
Abstract
Lipophilic conjugates (LCs) of small molecule drugs have been used widely in clinical and pre-clinical studies to achieve a number of pharmacokinetic and therapeutic benefits. For example, lipophilic derivatives of drugs are employed in several long acting injectable products to provide sustained drug exposure for hormone replacement therapy and to treat conditions such as neuropsychiatric diseases. LCs can also be used to modulate drug metabolism, and to enhance drug permeation across membranes, either by increasing lipophilicity to enhance passive diffusion or by increasing protein-mediated active transport. Furthermore, such conjugation strategies have been employed to promote drug association with endogenous macromolecular carriers (e.g. albumin and lipoproteins), and this in turn results in altered drug distribution and pharmacokinetic profiles, where the changes can be 'general' (e.g. prolonged plasma half-life) or 'specific' (e.g. enhanced delivery to specific tissues in parallel with the macromolecular carriers). Another utility of LCs is to enhance the encapsulation of drugs within engineered nanoscale drug delivery systems, in order to best take advantage of the targeting and pharmacokinetic benefits of nanomedicines. The current review provides a summary of the mechanisms by which lipophilic conjugates, including in combination with delivery vehicles, can be used to control drug delivery, distribution and therapeutic profiles. The article is structured into sections which highlight a specific benefit of LCs and then demonstrate this benefit with case studies. The review attempts to provide a toolbox to assist researchers to design and optimise drug candidates, including consideration of drug-formulation compatibility.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Tim Quach
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- PureTech Health, 6 Tide Street, Boston, MA, 02210, USA
| | - Chris Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Natalie Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
30
|
Jucker BM, Fuchs EJ, Lee S, Damian V, Galette P, Janiczek R, Macura KJ, Jacobs MA, Weld ED, Solaiyappan M, D'Amico R, Shaik JS, Bakshi K, Han K, Ford S, Margolis D, Spreen W, Gupta MK, Hendrix CW, Patel P. Multiparametric magnetic resonance imaging to characterize cabotegravir long-acting formulation depot kinetics in healthy adult volunteers. Br J Clin Pharmacol 2021; 88:1655-1666. [PMID: 34240449 PMCID: PMC9290983 DOI: 10.1111/bcp.14977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Cabotegravir long-acting (LA) intramuscular (IM) injection is being investigated for HIV preexposure prophylaxis due to its potent antiretroviral activity and infrequent dosing requirement. A subset of healthy adult volunteers participating in a Phase I study assessing cabotegravir tissue pharmacokinetics underwent serial magnetic resonance imaging (MRI) to assess drug depot localization and kinetics following a single cabotegravir LA IM targeted injection. METHODS Eight participants (four men, four women) were administered cabotegravir LA 600 mg under ultrasonographic-guided injection targeting the gluteal muscles. MRI was performed to determine injection-site location in gluteal muscle (IM), subcutaneous (SC) adipose tissue and combined IM/SC compartments, and to quantify drug depot characteristics, including volume and surface area, on Days 1 (≤2 hours postinjection), 3 and 8. Linear regression analysis examined correlations between MRI-derived parameters and plasma cabotegravir exposure metrics, including maximum observed concentration (Cmax ) and partial area under the concentration-time curve (AUC) through Weeks 4 and 8. RESULTS Cabotegravir LA depot locations varied by participant and were identified in the IM compartment (n = 2), combined IM/SC compartments (n = 4), SC compartment (n = 1) and retroperitoneal cavity (n = 1). Although several MRI parameter and exposure metric correlations were determined, total depot surface area on Day 1 strongly correlated with plasma cabotegravir concentration at Days 3 and 8, Cmax and partial AUC through Weeks 4 and 8. CONCLUSION MRI clearly delineated cabotegravir LA injection-site location and depot kinetics in healthy adults. Although injection-site variability was observed, drug depot surface area correlated with both plasma Cmax and partial AUC independently of anatomical distribution.
Collapse
Affiliation(s)
| | - Edward J Fuchs
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Katarzyna J Macura
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael A Jacobs
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ethel D Weld
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Meiyappan Solaiyappan
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Susan Ford
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | | - Craig W Hendrix
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Parul Patel
- ViiV Healthcare, Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Manini G, Deldime M, Benali S, Raquez JM, Goole J. Long-acting implantable dosage forms containing paliperidone palmitate obtained by 3D printing. Int J Pharm 2021; 603:120702. [PMID: 33989752 DOI: 10.1016/j.ijpharm.2021.120702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
In this work, the versatility of pressure extrusion-based printing (PEBP) was used as 3D printing process to create long-acting implantable dosage forms. Different release profiles were achieved based on the drug concentration, the way of preparation and the design of the final implants. Polycaprolactone (PCL) was used as the polymer to sustain the release of the loaded drug. Paliperidone palmitate (PP), a BCS Class II drug, used in the treatment of schizophrenia, was used as the model drug. Two PP concentrations (e.g. 5 and 10% w/w) as well as two methods of preparation before the 3D printing process, mortar and pestle and cryogenic milling, were evaluated. The amorphous state of PP was obtained by using cryogenic milling and it was maintained after printing. Two designs were printed by PEBP, a ring and a disk, to evaluate their impact on the release profile of PP. During the in vitro dissolution tests, the implant design, the amount of PP, as well as the crystalline or amorphous state of PP have shown to influence the drug release profile. During the successive steps of preparation of the long-acting implants, blends and raw materials were characterized by DSC and XRD.
Collapse
Affiliation(s)
- Giuseppe Manini
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium.
| | - Maud Deldime
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium
| | - Samira Benali
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium
| |
Collapse
|
32
|
Gomeni R, Bressolle-Gomeni F. Modeling Complex Pharmacokinetics of Long-Acting Injectable Products Using Convolution-Based Models With Nonparametric Input Functions. J Clin Pharmacol 2021; 61:1081-1095. [PMID: 33606280 PMCID: PMC8359850 DOI: 10.1002/jcph.1842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 11/11/2022]
Abstract
The interest in the development and the therapeutic use of long-acting injectable (LAI) products for chronic or long-term treatments has grown exponentially. The complexity and the multiphase drug release process represent serious issues for an effective modeling of the PK properties of LAI products. The objective of this article is to show how convolution-based models with piecewise-linear approximation of the nonlinear drug release function can provide an enhanced modeling tool for (1) characterizing the complex PK profiles of LAI formulations with completely different drug release properties, and (2) addressing key questions supporting the optimal development of LAI products by simulating the PK time course resulting from different dosing strategies. Convolution-based modeling and simulation were implemented in NONMEM, and 3 case studies were presented to assess the performances of this new modeling approach using PK data of LAI products developed using different technologies and administered using different routes: microsphere technology and aqueous nanosuspension intramuscularly administered and biodegradable polymer subcutaneously administered. The performance of the convolution-based modeling approach was compared with the performance of conventional parametric models using a reference data set on theophylline. The results of the comparison indicated that the nonparametric input function provided a more accurate description of the data either in terms of global measure of goodness of fit (ie, Akaike information criterion and Bayesian information criterion) or in terms of performance of the fitted model (ie, the percent prediction error on Cma x and AUC0-t ).
Collapse
Affiliation(s)
- Roberto Gomeni
- R&D Department, Pharmacometrica, Longcol, La Fouillade, France
| | | |
Collapse
|
33
|
Curia S, Ng F, Cagnon ME, Nicoulin V, Lopez-Noriega A. Poly(ethylene glycol)- b-poly(1,3-trimethylene carbonate) Amphiphilic Copolymers for Long-Acting Injectables: Synthesis, Non-Acylating Performance and In Vivo Degradation. Molecules 2021; 26:molecules26051438. [PMID: 33800940 PMCID: PMC7962012 DOI: 10.3390/molecules26051438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
This article presents the evaluation of diblock and triblock poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) amphiphilic copolymers (PEG-PTMCs) as excipients for the formulation of long-acting injectables (LAIs). Copolymers were successfully synthesised through bulk ring-opening polymerisation. The concomitant formation of PTMC homopolymer could not be avoided irrespective of the catalyst amount, but the by-product could easily be removed by gel chromatography. Pure PEG-PTMCs undergo faster erosion in vivo than their corresponding homopolymer. Furthermore, these copolymers show outstanding stability compared to their polyester analogues when formulated with amine-containing reactive drugs, which makes them particularly suitable as LAIs for the sustained release of drugs susceptible to acylation.
Collapse
|
34
|
Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
35
|
Schoretsanitis G, Baumann P, Conca A, Dietmaier O, Giupponi G, Gründer G, Hahn M, Hart X, Havemann-Reinecke U, Hefner G, Kuzin M, Mössner R, Piacentino D, Steimer W, Zernig G, Hiemke C. Therapeutic Drug Monitoring of Long-Acting Injectable Antipsychotic Drugs. Ther Drug Monit 2021; 43:79-102. [PMID: 33196621 DOI: 10.1097/ftd.0000000000000830] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The use of therapeutic drug monitoring (TDM) to guide treatment with long-acting injectable (LAI) antipsychotics, which are increasingly prescribed, remains a matter of debate. The aim of this review was to provide a practical framework for the integration of TDM when switching from an oral formulation to the LAI counterpart, and in maintenance treatment. METHODS The authors critically reviewed 3 types of data: (1) positron emission tomography data evaluating dopamine (D2/D3) receptor occupancy related to antipsychotic concentrations in serum or plasma; D2/D3 receptors are embraced as target sites in the brain for antipsychotic efficacy and tolerability, (2) pharmacokinetic studies evaluating the switch from oral to LAI antipsychotics, and (3) pharmacokinetic data for LAI formulations. Based on these data, indications for TDM and therapeutic reference ranges were considered for LAI antipsychotics. RESULTS Antipsychotic concentrations in blood exhibited interindividual variability not only under oral but also under LAI formulations because these concentrations are affected by demographic characteristics such as age and sex, genetic peculiarities, and clinical variables, including comedications and comorbidities. Reported data combined with positron emission tomography evidence indicated a trend toward lower concentrations under LAI administration than under oral medications. However, the available evidence is insufficient to recommend LAI-specific therapeutic reference ranges. CONCLUSIONS Although TDM evidence for newer LAI formulations is limited, this review suggests the use of TDM when switching an antipsychotic from oral to its LAI formulation. The application of TDM practice is more accurate for dose selection than the use of dose equivalents as it accounts more precisely for individual characteristics.
Collapse
Affiliation(s)
| | - Pierre Baumann
- Department of Psychiatry, University of Lausanne, Prilly-Lausanne, Switzerland
| | - Andreas Conca
- Department of Psychiatry, Central Hospital, Sanitary Agency of South Tyrol, Bolzano, Italy
| | - Otto Dietmaier
- Psychiatric Hospital, Klinikum am Weissenhof, Weinsberg, Germany
| | - Giancarlo Giupponi
- Department of Psychiatry, Central Hospital, Sanitary Agency of South Tyrol, Bolzano, Italy
| | - Gerhard Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina Hahn
- Department of Psychiatry and Psychotherapy, University of Frankfurt, Frankfurt, Germany
| | - Xenia Hart
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Gudrun Hefner
- Forensic Psychiatric Hospital, Vitos Klinik, Eichberg, Eltville, Germany
| | - Maxim Kuzin
- Psychiatric and Psychotherapeutic Private Clinic Clienia Schlössli, Academic Teaching Hospital of the University of Zurich, Oetwil am See, Switzerland
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Daria Piacentino
- Department of Psychiatry, Central Hospital, Sanitary Agency of South Tyrol, Bolzano, Italy
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Gerald Zernig
- Department of Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria ; and
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| |
Collapse
|
36
|
Nguyen V, Bevernage J, Darville N, Tistaert C, Van Bocxlaer J, Rossenu S, Vermeulen A. Linking In Vitro Intrinsic Dissolution Rate and Thermodynamic Solubility with Pharmacokinetic Profiles of Bedaquiline Long-Acting Aqueous Microsuspensions in Rats. Mol Pharm 2021; 18:952-965. [PMID: 33400546 DOI: 10.1021/acs.molpharmaceut.0c00948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pharmacokinetic (PK) profiles of a range of bedaquiline (BDQ) long-acting injectable (LAI) microsuspensions in rats after parenteral (i.e., intramuscular and subcutaneous) administration were correlated with the in vitro intrinsic dissolution rate (IDR) and thermodynamic solubility of BDQ in media varying in surfactant type and concentration to better understand the impact of different nonionic surfactants on the in vivo performance of BDQ LAI microsuspensions. All LAI formulations had a similar particle size distribution. The investigated surfactants were d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), poloxamer 338, and poloxamer 188. Furthermore, the relevance of medium complexity by using a biorelevant setup to perform in vitro measurements was assessed by comparing IDR and thermodynamic solubility results obtained in biorelevant media and formulation vehicle containing different surfactants in varying concentrations. In the presence of a surfactant, both media could be applied to obtain in vivo representative dissolution and solubility data because the difference between the biorelevant medium and formulation vehicle was predominantly nonsignificant. Therefore, a more simplistic medium in the presence of a surfactant was preferred to obtain in vitro measurements to predict the in vivo PK performance of LAI aqueous suspensions. The type of surfactant influenced the PK profiles of BDQ microsuspensions in rats, which could be the result of a surfactant effect on the IDR and/or thermodynamic solubility of BDQ. Overall, two surfactant groups could be differentiated: TPGS and poloxamers. Most differences between the PK profiles (i.e., maximum concentration observed, time of maximum concentration observed, and area under the curve) were observed during the first 21 days postdose, the time period during which particles in the aqueous suspension are expected to dissolve.
Collapse
Affiliation(s)
- Vy Nguyen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium.,Quantitative Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Jan Bevernage
- Drug Product Development, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Nicolas Darville
- Drug Product Development, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Christophe Tistaert
- Drug Product Development, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium
| | - Stefaan Rossenu
- Quantitative Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium.,Quantitative Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| |
Collapse
|
37
|
Nkanga CI, Fisch A, Rad-Malekshahi M, Romic MD, Kittel B, Ullrich T, Wang J, Krause RWM, Adler S, Lammers T, Hennink WE, Ramazani F. Clinically established biodegradable long acting injectables: An industry perspective. Adv Drug Deliv Rev 2020; 167:19-46. [PMID: 33202261 DOI: 10.1016/j.addr.2020.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa; Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa, XI, Democratic Republic of the Congo; Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Andreas Fisch
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Birgit Kittel
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Thomas Ullrich
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Jing Wang
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Rui Werner Maçedo Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Sabine Adler
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Twan Lammers
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland.
| |
Collapse
|
38
|
Gupta H, Panchal R, Acharya N, Mehta PJ. Controlled Parenteral Formulations: An Efficacious and Favourable Way to Deliver the Anti-psychotic Drugs. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216666191226143446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current paradigm of pharmaceutical formulations is focused on the controlled &
sustained delivery of a drug for the management of chronic impairments. Since these diseases need
daily and multiple intakes of the drug (i.e., twice or thrice a day) and missing a single dose, leads to
the poor therapeutic window which governs unpleasant pharmacological response and ultimately
patient in-compliance. All over the world, millions of patients are suffering from life-threatening
diseases; one of which is “psychosis”, which immensely requires prolong and sustain release of the
drug. Moreover, mainstay lacuna with antipsychotic medication is the reoccurrence of the symptoms,
and patient adherence on the therapy has been observed. These issues attract scientists to formulate
the Controlled Parenteral Antipsychotic (CPA). As per the literature search, significant work
has been performed on the development of Novel Controlled Parenteral Formulations (CPFs) for the
treatment of psychosis and especially focus has been given to microsphere, esterification, nanoformulation,
and salt-based formulation. Reports revealed that all of the above-mentioned formulations
have shown enormous potential to enhance the duration of a drug in the body for a longer period in a
controlled manner. The development of a drug in any form has shown a great impact on the patient’s
life, with tremendous productivity in the Pharma Market. As well as, this has raised the hope to get
more efficacious results of both the categories i.e., typical & atypical antipsychotics and limiting the
drawbacks of conventional antipsychotic drug delivery. Controlled formulations have also shown
the prominent solutions to handle one of the major obstacles that arises due to the Biopharmaceutical
Classification System (BCS). Drugs belonging to any of the BCS class can be utilized now with the
idea of CPF. In this context, the current paper relies on CPA’s strengths, weaknesses, opportunities,
and challenges followed by a compilation of attempt made by scientists on its formulations (microspheres,
salt-based, and nanoformulation) which will be one-stop-shop for the researchers working
globally in this field to make better improvement on the existing options for psychosis. In summary,
this review explains the concept of CPA as a promising option to treat psychosis.
Collapse
Affiliation(s)
- Harshita Gupta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Rutu Panchal
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Niyati Acharya
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Priti Jignesh Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
39
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
40
|
Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs. J Control Release 2020; 324:379-404. [PMID: 32461114 DOI: 10.1016/j.jconrel.2020.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
In spite of introduction of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) infection; inaccessibility and poor adherence to oral cART costs 10 in 100,000 death worldwide. Failure in adherence leads to viral rebound, emergence of drug resistance and anticipated HIV infection in high risk individuals. Various Long-acting antiretroviral (LA ARV) nanoformulations including nano-prodrug, solid drug nanoparticles (SDN), nanocrystals, aspherical nanoparticles, polymeric and lipidic nanoparticles have shown plasma/tissue drug concentration in the therapeutic range for several weeks during pre-clinical evaluation. LA ARV nanoformulations therefore have replaced cART as better alternative for the treatment of HIV infection. Cabenuva™ is recently approved by Health Canada containing LA cabotegravir+LA rilpivirine nanocrystals (ViiV healthcare) for once monthly administration by intramuscular route. The LA nanoformulation due to its nanosize insist on better stability, delivery to lymphatic, slow release into systemic circulation via lymphatic-circulatory system conjoint and secondary drug depot within infiltered immune cells at site of administration and systemic circulation in contrast to conventional drugs. However, the pharmacokinetic, biodistribution and efficacy of LA nanoformulations hinge onto physicochemical properties of the drugs and route of administration. Therefore, current review emphasizes on these contradistinctive factors that affects the reproducibility, safety, efficacy and toxicity of LA anti-HIV nanoformulations. Moreover, it expatiates on application of profuse nanoformulations for long-acting effect with promising preclinical discoveries and two clinical leads. To add on, utilization of physiology-based and mechanism-based pharmacokinetic modelling and in vivo animal models which could lead to enhanced safety and efficacy of LA ARV nanoformulations in humans have been included.
Collapse
|
41
|
Banoub MG, Bade AN, Lin Z, Cobb D, Gautam N, Dyavar Shetty BL, Wojtkiewicz M, Alnouti Y, McMillan J, Gendelman HE, Edagwa B. Synthesis and Characterization of Long-Acting Darunavir Prodrugs. Mol Pharm 2019; 17:155-166. [PMID: 31742407 DOI: 10.1021/acs.molpharmaceut.9b00871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) has improved the quality of life in patients infected with HIV-1. However, complete viral suppression within anatomical compartments remains unattainable. This is complicated by adverse side effects and poor adherence to lifelong therapy leading to the emergence of viral drug resistance. Thus, there is an immediate need for cellular and tissue-targeted long-acting (LA) ART formulations. Herein, we describe two LA prodrug formulations of darunavir (DRV), a potent antiretroviral protease inhibitor. Two classes of DRV prodrugs, M1DRV and M2DRV, were synthesized as lipophilic and hydrophobic prodrugs and stabilized into aqueous suspensions designated NM1DRV and NM2DRV. The formulations demonstrated enhanced intracellular prodrug levels with sustained drug retention and antiretroviral activities for 15 and 30 days compared to native DRV formulation in human monocyte-derived macrophages. Pharmacokinetics tests of NM1DRV and NM2DRV administered to mice demonstrated sustained drug levels in blood and tissues for 30 days. These data, taken together, support the idea that LA DRV with sustained antiretroviral responses through prodrug nanoformulations is achievable.
Collapse
|
42
|
Hobson JJ, Curley P, Savage AC, Al-Khouja A, Siccardi M, Flexner C, Meyers CF, Owen A, Rannard SP. Anhydrous nanoprecipitation for the preparation of nanodispersions of tenofovir disoproxil fumarate in oils as candidate long-acting injectable depot formulations. NANOSCALE ADVANCES 2019; 1:4301-4307. [PMID: 36134394 PMCID: PMC9417103 DOI: 10.1039/c9na00529c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 06/16/2023]
Abstract
The facile formation of drug nanoparticles in injectable/ingestible oils, of water-soluble antiretroviral tenofovir disoproxil fumarate, using a novel nanoprecipitation is presented with studies showing drug release into relevant aqueous media.
Collapse
Affiliation(s)
- James J Hobson
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Paul Curley
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Alison C Savage
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Amer Al-Khouja
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Charles Flexner
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
- Department of Medicine, The Johns Hopkins University School of Medicine 575 Osler Building, 600 N. Wolfe St. Baltimore MD 21287 USA
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
43
|
Long acting injectable formulations: the state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00449-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Werneke U. Conference proceedings of the 4th Masterclass Psychiatry: Transcultural Psychiatry - Diagnostics and Treatment, Luleå, Sweden, 22-23 February 2018 (Region Norrbotten in collaboration with the Maudsley Hospital and Tavistock Clinic London). Nord J Psychiatry 2018:1-33. [PMID: 30547691 DOI: 10.1080/08039488.2018.1481525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND According to estimates from the European Commission, Europe has experienced the greatest mass movement of people since the Second World War. More than one million refugees and migrants have arrived in the European Union in the past few years. Mental health and primary care professionals are more likely than ever to meet patients from different cultures and backgrounds. AIMS To equip mental health and primary care professionals with transcultural skills to deal with patients from unfamiliar backgrounds. METHOD Lectures and case discussions to explore the latest advances in the diagnosis and treatment of serious mental health problems in a transcultural context. RESULTS Lectures covered transcultural aspects of mental health problems, treatment in different cultural and ethnic contexts, and assessment of risk factors for self-harm and harm in migrant populations. CONCLUSIONS Clinicians require a sound grounding in transcultural skills to confidently and empathically deal with patients from unfamiliar backgrounds.
Collapse
Affiliation(s)
- Ursula Werneke
- a Department of Clinical Sciences, Division of Psychiatry, Sunderby Research Unit , Umeå University , Umeå , Sweden
| |
Collapse
|
45
|
Taylor DM, Velaga S, Werneke U. Reducing the stigma of long acting injectable antipsychotics - current concepts and future developments. Nord J Psychiatry 2018; 72:S36-S39. [PMID: 30688170 DOI: 10.1080/08039488.2018.1525638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Long acting injectable antipsychotics (LAI-APs) are considered a major advance in psychiatric treatment concerning treatment adherence and outcomes. Yet, both, doctors and patients remain sceptical. AIM To explain the rationale for using LAI-APs, review their effectiveness and explore barriers to use. METHOD Clinical overview of LAI-APs from the patient and doctor's perspective. RESULTS LAI-APs were developed to increase adherence to treatment, thereby improving treatment outcomes. LAI-APs may reduce the risk of relapse and hospitalisation. Yet, the evidence from the few meta-analyses available remains weak. Both patients and doctors may associate LAI-APs with stigma and coercion. Current means of improving adherence include more focus on the therapeutic relationship, better information, adverse effects minimisation and half-life extension of LAI-APs. Future means of improving adherence include novel administration techniques that abolish the need for injection. CONCLUSIONS For both, clinicians and drug developers, drug adherence remains a major target for improving treatment outcomes.
Collapse
Affiliation(s)
- David M Taylor
- a Pharmacy Department Denmark Hill , Maudsley Hospital , London , UK
- b King's College London Institute of Pharmaceutical Science , London , UK
| | - Sitaram Velaga
- c Department of Health Sciences , Lulea University of Technology , Lulea , Sweden
| | - Ursula Werneke
- d Department of Clinical Sciences, Division of Psychiatry, Sunderby Research Unit , Umeå University , Umeå , Sweden
| |
Collapse
|
46
|
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris DN. Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations. Pharmaceutics 2018; 10:E130. [PMID: 30104505 PMCID: PMC6161267 DOI: 10.3390/pharmaceutics10030130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
The present study evaluates the preparation of risperidone controlled release microspheres as appropriate long-acting injectable formulations based on a series of novel biodegradable and biocompatible poly(lactic acid)⁻poly(propylene adipate) (PLA/PPAd) polymer blends. Initially, PPAd was synthesized using a two-stage melt polycondensation method (esterification and polycondensation) and characterized by 1H-NMR, differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD) analyses. DSC and XRD results for PLA/PPAd blends (prepared by the solvent evaporation method) showed that these are immiscible, while enzymatic hydrolysis studies performed at 37 °C showed increased mass loss for PPAd compared to PLA. Risperidone-polyester microparticles prepared by the oil⁻water emulsification/solvent evaporation method showed smooth spherical surface with particle sizes from 1 to 15 μm. DSC, XRD, and Fourier-transformed infrared (FTIR) analyses showed that the active pharmaceutical ingredient (API) was dispersed in the amorphous phase within the polymer matrices, whereas in vitro drug release studies showed risperidone controlled release rates in all PLA/PPAd blend formulations. Finally, statistical moment analysis showed that polyester hydrolysis had a major impact on API release kinetics, while in PLA/PPAd blends with high PLA content, drug release was mainly controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Iatrou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
47
|
Ho MJ, Lee DR, Im SH, Yoon JA, Shin CY, Kim HJ, Jang SW, Choi YW, Han YT, Kang MJ. Design and in vivo evaluation of entecavir-3-palmitate microcrystals for subcutaneous sustained delivery. Eur J Pharm Biopharm 2018; 130:143-151. [PMID: 29940226 DOI: 10.1016/j.ejpb.2018.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/17/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
The objectives of this study were to formulate microcrystals of entecavir-3-palmiate (EV-P), a palmitic acid ester of entecavir (EV), and evaluate the influence of particle size on its pharmacokinetic behavior following subcutaneous (SC) injection. Systemic toxicity and local tolerability of the hepatitis B anti-viral suspension were further evaluated in normal rats. EV-P microcrystals possessing median diameters of 2.1, 6.3, and 12.7 µm were fabricated using anti-solvent crystallization technique with polysorbate 20 and polyethylene glycol 4000 as steric stabilizer. Dissolution rate of EV-P microcrystals was controlled by adjusting the particle size, under sink condition. Pharmacokinetic profiles of 2.1 µm-sized and 6.3 µm-sized EV-P microcrystals were quite comparable (1.44 mg/kg as EV), over 46 days in rats. The absorption rate and extent of EV after SC injection of 12.7 µm-sized microcrystals were significantly retarded, due to its slower dissolution rate in aqueous media. No single-dose systemic toxicity was observed after SC injection of high dose of EV-P microcrystal suspension (30-300 mg/kg as EV). The microcrystals were tolerable in the injected site, showing mild inflammatory responses at a dose of 30 mg/kg. Therefore, the novel microcrystal system with median particle size of below 6.3 µm is expected to be a unique long-acting system of the anti-viral agent, improving patient's compliance with chronic disease.
Collapse
Affiliation(s)
- Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Dae Ro Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Sung Hyun Im
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jeong A Yoon
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Chang Yong Shin
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Hyun Jung Kim
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Sun Woo Jang
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
48
|
Yang X, Yu B, Zhong Z, Guo BH, Huang Y. Nevirapine-polycaprolactone crystalline inclusion complex as a potential long-acting injectable solid form. Int J Pharm 2018; 543:121-129. [DOI: 10.1016/j.ijpharm.2018.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/24/2018] [Indexed: 11/16/2022]
|
49
|
Zhou T, Lin Z, Puligujja P, Palandri D, Hilaire J, Araínga M, Smith N, Gautam N, McMillan J, Alnouti Y, Liu X, Edagwa B, Gendelman HE. Optimizing the preparation and stability of decorated antiretroviral drug nanocrystals. Nanomedicine (Lond) 2018; 13:871-885. [PMID: 29553879 PMCID: PMC5992566 DOI: 10.2217/nnm-2017-0381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: While the therapeutic potential for current long-acting (LA) antiretroviral therapy (ART) is undeniable, ligand-decorated nanoformulated LA-ART could optimize drug delivery to viral reservoirs. The development of decorated ART hinges, however, on formulation processes and manufacture efficiencies. To this end, we compared manufacture and purification techniques for ligand-decorated antiretroviral drug nanocrystals. Materials & methods: Ligand-decorated nanoparticle manufacturing was tested using folic acid (FA) nanoformulated cabotegravir. Results: Direct manufacturing of FA-cabotegravir resulted in stable particles with high drug loading and monocyte–macrophage targeting. A one step ‘direct’ scheme proved superior over differential centrifugation or tangential flow filtration facilitating particle stability and preparation simplicity and efficiency. Conclusion: Direct manufacturing of FA nanoparticles provides a path toward large-scale clinical grade manufacturing of cell-targeted LA-ART.
Folic acid (FA) decoration on the surface of nanocrystals can be achieved by mixing FA conjugated poloxamer 407 (FA-P407) and native P407 in varied ratios followed by size reduction by homogenization and differential centrifugation or tangential flow filtration to remove excess unbound polymers. The optimized manufacturing scheme is by direct homogenization with predetermined quantity of FA conjugated P407. Direct manufacturing method yields stable homogenous nanoparticles with high drug loading.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pavan Puligujja
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mariluz Araínga
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathan Smith
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xinming Liu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
50
|
Jann MW, Penzak SR. Long-Acting Injectable Second-Generation Antipsychotics: An Update and Comparison Between Agents. CNS Drugs 2018; 32:241-257. [PMID: 29569082 DOI: 10.1007/s40263-018-0508-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a chronic medical condition with periods of remission and relapses over a patient's lifetime. Antipsychotic medications represent the mainstay of treatment for this disease. Long-acting injectable (LAI) formulations of antipsychotics are an attractive alternative to their oral counterparts, as they enhance patient adherence. A number of second-generation antipsychotics (SGAs) are available in LAI formulations. These include paliperidone, aripiprazole, olanzapine, and risperidone. This article reviews the most recently developed and approved of these formulations-aripiprazole monohydrate, aripiprazole lauroxil, and paliperidone palmitate. While all were initially available as once-monthly formulations, a paliperidone palmitate 3-monthly injection formulation has been approved and is the first LAI agent to extend the dosing administration beyond the typical monthly time period. In addition, aripiprazole lauroxil every 6-week and 8-week administration preparations have been developed. LAI preparations of the SGAs have all demonstrated superiority over placebo and are comparable to their oral counterparts in terms of safety and tolerability, if injection site reactions are not taken into account. First-generation antipsychotic LAI preparations (e.g., haloperidol decanoate) have recently been compared with SGA LAI agents, and both formulations demonstrated comparable efficacy with the expected adverse events seen with each drug. Despite their availability, barriers to the use of LAIs remain. Education of both patients and clinicians on the use of LAI formulations and the continued development of these agents are important steps in ensuring these medications are available to the patients they would be most likely to benefit.
Collapse
Affiliation(s)
- Michael W Jann
- Department of Pharmacotherapy, University of North Texas System College of Pharmacy (UNTSCP), University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Scott R Penzak
- Department of Pharmacotherapy, University of North Texas System College of Pharmacy (UNTSCP), University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| |
Collapse
|