1
|
Harakeh S, Akefe IO, Saber SH, alamri T, Al-Raddadi R, Al-Jaouni S, Tashkandi H, Qari M, Moulay M, Aldahlawi A, Abd Elmageed ZY, Mousa S. Nanoformulated 3'-diindolylmethane modulates apoptosis, migration, and angiogenesis in breast cancer cells. Heliyon 2024; 10:e23553. [PMID: 38187226 PMCID: PMC10770460 DOI: 10.1016/j.heliyon.2023.e23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background It is well-established that specific herbal plants contain natural active ingredients that have demonstrated anti-cancer potential. Therefore, they are considered highly beneficial as a potential adjuvant, alternative or complementary agent in anti-cancer therapy. However, the low chemical stability and limited bioavailability of 3, 3'-Diindolylmethane (DIM), a plant-derived compound used in clinical settings, limit its therapeutic applications. To overcome this challenge, researchers have focused on developing innovative approaches to improve DIM's biological activity, such as utilizing nanoformulations. Here, we investigated the potential benefits of coating DIM nanoparticles (DIM-NPs) with PEG/chitosan in the treatment of breast cancer. Our results demonstrate the molecular mechanism underlying the activity of DIM-NPs, highlighting their potential as an effective therapeutic strategy for breast cancer treatment. Methods DIM-PLGA-PEG/chitosan NPs were synthesised and characterised using dynamic light scattering (DLS) and evaluated the impact of these NPs on two breast cancer cell models. Results DIM-NPs had an average diameter of 102.3 nm and a PDI of 0.182. When treated with DIM-NPs for 48 h, both MCF7 and MDA-MB-231 cells displayed cytotoxicity at a concentration of 6.25 g/mL compared to untreated cells. Furthermore, in MDA-MB-231 cells, treatment with 2.5 μg/mL of DIM-NPs resulted in a significant decrease in cell migration, propagation, and angiogenesis which was further enhanced at 10 μg/mL. In chicken embryos, treatment with 5 μg/mL of DIM-NPs on day 2 led to a significant reduction in angiogenesis. Furthermore, this treatment induced cell death through a regulatory pathway involving the upregulation of Bax and p53, as well as the downregulation of Bcl-2. These results were supported by in-silico analysis of DIM's binding affinity to key proteins involved in this pathway, namely Bax, Bcl-2, and p53. Conclusion Our findings show that DIM-NPs induces apoptosis, inhibit migration, and reduce angiogenesis in breast cancer. However, further research using a preclinical cancer model may be necessary to determine the pharmacokinetics of DIM-NPs and ensure their safety and efficacy in vivo.
Collapse
Affiliation(s)
- Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isaac Oluwatobi Akefe
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Turki alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajaa Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al-Jaouni
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanaa Tashkandi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Qari
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zakariya Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, 71203, USA
| | - Shaker Mousa
- Vascular Vision Pharmaceuticals Co., Rensselaer, NY, 12144, USA
| |
Collapse
|
2
|
Harakeh S, Saber SH, Al-Raddadi R, Alamri T, Al-Jaouni S, Qari M, Qari Y, Haque S, Zawawi A, Ali SS, Elmageed ZYA, Mousa S. Novel curcumin nanoformulation induces apoptosis, and reduces migration and angiogenesis in liver cancer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:361-370. [PMID: 37524306 DOI: 10.1080/21691401.2023.2238756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 05/05/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Curcumin has been used in the treatment of several diseases; however, its low pharmacologic profile reduces its therapeutic use. Towards improving its biological activity, nanoformulations have emerged. Thus, we aimed to determine whether curcumin nanoparticles (Cur-NPs) coated with PEG/chitosan improve the treatment of liver cancer (LC) cells and underpin the molecular mechanisms underlying their anti-cancer activity. METHODS Cur-NPs were synthesised in the form of Cur-PLGA-PEG/chitosan NPs. The effect of Cur-NPs was assessed in HepG2 and Huh 7 LC cells and THLE-2 normal liver cells. RESULTS The size of synthesised Cur-NPS was determined in the standard range of 141.2 ± 47.5 nm. Compared to THLE-2 cells, LC cells treated with Cur-NPs exerted cytotoxicity at 6.25 µg/mL after 48h. Treatment of HepG-2 cells with 2.5 µg/mL of Cur-NPs inhibited cell migration and this inhibition was augmented at 10 µg/mL (p < 0.001). Treatment of chicken embryo with 5 µg/mL Cur-NPs reduced angiogenesis (p < 0.001) of 4-day-old embryos. The nanoformulation upregulated Bax and p53 and downregulated Bcl-2 in a concentration-dependent manner and subsequently induce apoptosis in HepG-2 cells. CONCLUSION Treatment of LC cells with Cur-NPs decreased cell proliferation, migration, and angiogenesis, and induced cell death by promoting the proapoptotic pathway.
Collapse
Affiliation(s)
- Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saber H Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rajaa Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al-Jaouni
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Qari
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yousef Qari
- Department of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad S Ali
- Anatomy Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of LA at Monroe, Monroe, LA, USA
| | - Shaker Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
3
|
Joshi P, Verma K, Kumar Semwal D, Dwivedi J, Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother Res 2023; 37:5435-5463. [PMID: 37649266 DOI: 10.1002/ptr.7983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the world's second leading cause of mortality and one of the major public health problems. Cancer incidence and mortality rates remain high despite the great advancements in existing therapeutic, diagnostic, and preventive approaches. Therefore, a quest for less toxic and more efficient anti-cancer strategies is still at the forefront of the current research. Traditionally important, curcumin commonly known as a wonder molecule has received considerable attention as an anti-cancer, anti-inflammatory, and antioxidant candidate. However, limited water solubility and low bioavailability restrict its extensive utility in different pathological states. The investigators are making consistent efforts to develop newer strategies to overcome its limitations by designing different analogues with better pharmacokinetic and pharmacodynamic properties. The present review highlights the recent updates on curcumin and its analogues with special emphasis on various mechanistic pathways involved in anti-cancer activity. In addition, the structure-activity relationship of curcumin analogues has also been precisely discussed. This article will also provide key information for the design and development of newer curcumin analogues with desired pharmacokinetic and pharmacodynamic profiles and will provide in depth understanding of molecular pathways involved in the anti-cancer activities.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Deepak Kumar Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
4
|
Tomeh MA, Hadianamrei R, Xu D, Brown S, Zhao X. Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9. Colloids Surf B Biointerfaces 2022; 216:112549. [PMID: 35636321 DOI: 10.1016/j.colsurfb.2022.112549] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Silk fibroin is an FDA approved biopolymer for clinical applications with great potential in nanomedicine. However, silk-based nanoformulations are still facing several challenges in processing and drug delivery efficiency (such as reproducibility and targetability), especially in cancer therapy. To address these challenges, robust and controllable production methods are required for generating nanocarriers with desired properties. This study aimed to develop a novel method for the production of peptide-functionalized magnetic silk nanoparticles with higher selectivity for cancer cells for targeted delivery of the hydrophobic anticancer agent ASC-J9. A new microfluidic device with a swirl mixer was designed to fabricate magnetic silk nanoparticles (MSNP) with desired size and narrow size distribution. The surface of MSNPs was functionalized with a cationic amphiphilic anticancer peptide, G(IIKK)3I-NH2 (G3), to enhance their selectivity towards cancer cells. The G3-MSNPs increased the cellular uptake and anticancer activity of G3 in HCT 116 colorectal cancer cells compared to free G3. Moreover, the G3-MSNPs exhibited considerably higher cellular uptake and cytotoxicity in HCT 116 colorectal cancer cells compared to normal cells (HDFs). Encapsulating ASC-J9 in G3-MSNPs resulted in augmented anticancer activity compared to free ASC-J9 and non-functionalized ASC-J9 loaded MSNPs within its biological half-life. Hence, functionalizing MSNPs with G3 enabled targeted delivery of ASC-J9 to cancer cells and enhanced its anticancer effect. Functionalization of nanoparticles with anticancer peptides could be regarded as a new strategy for targeted delivery and enhanced efficiency of anticancer drugs. Furthermore, the microfluidic device introduced in this paper offers a robust and reproducible method for fabrication of small sized homogenous nanoparticles.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S1 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
6
|
Beyaz H, Uludag H, Kavaz D, Rizaner N. Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:163-181. [PMID: 34287795 DOI: 10.1007/5584_2021_648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast cancer is the leading cancer type diagnosed among women in the world. Unfortunately, drug resistance to current breast cancer chemotherapeutics remains the main challenge for a higher survival rate. The recent progress in the nanoparticle platforms and distinct features of nanoparticles that enhance the efficacy of therapeutic agents, such as improved delivery efficacy, increased intracellular cytotoxicity, and reduced side effects, hold great promise to overcome the observed drug resistance. Currently, multifaceted investigations are probing the resistance mechanisms associated with clinical drugs, and identifying new breast cancer-associated molecular targets that may lead to improved therapeutic approaches with the nanoparticle platforms. Nanoparticle platforms including siRNA, antibody-specific targeting and the role of nanoparticles in cellular processes and their effect on breast cancer were discussed in this article.
Collapse
Affiliation(s)
- Huseyin Beyaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey.
| | - Hasan Uludag
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Doga Kavaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Biotechnology Research Center, Cyprus International University, Nicosia, Turkey
| | - Nahit Rizaner
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Biotechnology Research Center, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
7
|
Stiffness-tuneable nanocarriers for controlled delivery of ASC-J9 into colorectal cancer cells. J Colloid Interface Sci 2021; 594:513-521. [PMID: 33774407 DOI: 10.1016/j.jcis.2021.03.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS One of the main challenges in cancer therapy is the poor water solubility of many anticancer drugs which results in low bioavailability at the tumour sites and reduced efficacy. The currently available polymer-based anticancer drug delivery systems often suffer from low encapsulation efficiency, uncontrolled release, and lack of long-term stability. Herein, we report the development of novel stiffness-tuneable core-shell nanocarriers composed of naturally derived polymers silk fibroin (SF) and sodium alginate (SA) inside a liposomal shell for enhanced cellular uptake and controlled release of hydrophobic anticancer agent ASC-J9 (Dimethylcurcumin). It is anticipated that the stiffness of the nanocarriers has a significant effect on their cellular uptake and anticancer efficacy. EXPERIMENTS The nanocarriers were prepared by thin film hydration method followed by extrusion and cross-linking of SA to obtain a uniform size and shape, avoiding harsh processing conditions. The structural transformation of SF in the nanocarriers induced by SA crosslinking was determined using Fourier transform infrared (FTIR) spectroscopy. The size, zeta potential, morphology and stiffness of the nanocarriers were measured using dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Drug loading and release were measured using UV-Vis spectrophotometry. The cellular uptake and anticancer efficacy of the nanocarriers were studied in HCT 116 human colorectal adenocarcinoma cells and 3D tumour spheroids using high content microscopy. FINDINGS The synthesized nanocarriers had high encapsulation efficiency (62-78%) and were physically stable for up to 5 months at 4 ˚C. The release profile of the drug from the nanocarriers was directed by their stiffness and was easily tuneable by changing the ratio of SF to SA in the core. Furthermore, the designed nanocarriers improved the cellular uptake and anticancer activity of ASC-J9, and enhanced its tumour penetration in HCT 116 3D colorectal cancer spheroids. These findings suggest that the designed core-shell nanocarriers can be used as a highly efficient drug delivery system for cancer therapy.
Collapse
|
8
|
Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:biom11030392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
|
9
|
Priyadarshini S, Sonsudin F, Mainal A, Yahya R, Gopinath V, Vadivelu J, Alarjani KM, Al Farraj DA, Yehia HM. Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Tian H, Chou FJ, Tian J, Zhang Y, You B, Huang CP, Yeh S, Niu Y, Chang C. ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res 2021; 40:3. [PMID: 33390173 PMCID: PMC7780640 DOI: 10.1186/s13046-020-01760-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Early studies indicated that ASC-J9®, an androgen receptor (AR) degradation enhancer, could suppress the prostate cancer (PCa) progression. Here we found ASC-J9® could also suppress the PCa progression via an AR-independent mechanism, which might involve modulating the tumor suppressor ATF3 expression. METHODS The lentiviral system was used to modify gene expression in C4-2, CWR22Rv1 and PC-3 cells. Western blot and Immunohistochemistry were used to detect protein expression. MTT and Transwell assays were used to test the proliferation and invasion ability. RESULTS ASC-J9® can suppress PCa cell proliferation and invasion in both PCa C4-2 and CWR22Rv1 cells via altering the ATF3 expression. Further mechanistic studies reveal that ASC-J9® can increase the ATF3 expression via decreasing Glutamate-cysteine ligase catalytic (GCLC) subunit expression, which can then lead to decrease the PTK2 expression. Human clinical studies further linked the ATF3 expression to the PCa progression. Preclinical studies using in vivo mouse model also proved ASC-J9® could suppress AR-independent PCa cell invasion, which could be reversed after suppressing ATF3. CONCLUSIONS ASC-J9® can function via altering ATF3/PTK2 signaling to suppress the PCa progression in an AR-independent manner.
Collapse
Affiliation(s)
- Hao Tian
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jing Tian
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yong Zhang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chi-Ping Huang
- Sex Hormone Research Center, Department of Urology, China Medical University, Taichung, 404, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Sex Hormone Research Center, Department of Urology, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
11
|
Lazo S, Noren Hooten N, Green J, Eitan E, Mode NA, Liu Q, Zonderman AB, Ezike N, Mattson MP, Ghosh P, Evans MK. Mitochondrial DNA in extracellular vesicles declines with age. Aging Cell 2021; 20:e13283. [PMID: 33355987 PMCID: PMC7811845 DOI: 10.1111/acel.13283] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial free radical theory of aging suggests that accumulating oxidative damage to mitochondria and mitochondrial DNA (mtDNA) plays a central role in aging. Circulating cell‐free mtDNA (ccf‐mtDNA) isolated from blood may be a biomarker of disease. Extracellular vesicles (EVs) are small (30–400 nm), lipid‐bound vesicles capable of shuttling proteins, nucleic acids, and lipids as part of intercellular communication systems. Here, we report that a portion of ccf‐mtDNA in plasma is encapsulated in EVs. To address whether EV mtDNA levels change with human age, we analyzed mtDNA in EVs from individuals aged 30–64 years cross‐sectionally and longitudinally. EV mtDNA levels decreased with age. Furthermore, the maximal mitochondrial respiration of cultured cells was differentially affected by EVs from old and young donors. Our results suggest that plasma mtDNA is present in EVs, that the level of EV‐derived mtDNA is associated with age, and that EVs affect mitochondrial energetics in an EV age‐dependent manner.
Collapse
Affiliation(s)
- Stephanie Lazo
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Jamal Green
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Erez Eitan
- Laboratory of Neuroscience National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Qing‐Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Mark P. Mattson
- Laboratory of Neuroscience National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science National Institute on Aging National Institutes of Health Baltimore MD USA
| |
Collapse
|
12
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
13
|
Pandya N, Khan E, Jain N, Satham L, Singh R, Makde RD, Mishra A, Kumar A. Curcumin analogs exhibit anti-cancer activity by selectively targeting G-quadruplex forming c-myc promoter sequence. Biochimie 2020; 180:205-221. [PMID: 33188859 DOI: 10.1016/j.biochi.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Curcumin exhibits a broad spectrum of beneficial health properties that include anti-tumor and anti-cancer activities. The down-regulation of c-myc transcription via stabilizing the G-quadruplex structure formed at the promoter region of the human c-myc gene allows the repression in cancer growth. Small molecules can bind and stabilize this structure to provide an exciting and promising strategy for anti-cancer therapeutics. Herein, we investigated the interaction of Curcumin and its synthetic analogs with G-quadruplex DNA formed at the c-myc promoter by using various biophysical and biochemical assays. Further, its cytotoxic effect and mechanistic insights were explored in various cancer cell lines as well as in multicellular tumor spheroid (MCTS) model. The MCTS possesses almost similar microenvironment as avascular tumors, and micro-metastases can be used as a suitable model for the small molecule-based therapeutics development. Our study provides an expanded overview of the anti-cancer effect of a new Curcumin analog via targeting G-quadruplex structures formed at the promoter region of the human c-myc gene.
Collapse
Affiliation(s)
- Nirali Pandya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Lakshminarayana Satham
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rahul Singh
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
14
|
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front Pharmacol 2020; 11:487. [PMID: 32425772 PMCID: PMC7206872 DOI: 10.3389/fphar.2020.00487] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Curcuma longa is an important medicinal plant and a spice in Asia. Curcumin (diferuloylmethane) is a hydrophobic bioactive ingredient found in a rhizome of the C. longa. It has drawn immense attention in recent years for its variety of biological and pharmacological action. However, its low water solubility, poor bioavailability, and rapid metabolism represent major drawbacks for its successful therapeutic applications. Hence, researchers have attempted to enhance the biological and pharmacological activity of curcumin and overcome its drawbacks by efficient delivery systems, particularly nanoencapsulation. Research efforts so far and data from the available literature have shown a satisfactory potential of nanorange formulations of curcumin (Nanocurcumin), it increases all the biological and pharmacological benefits of curcumin, which was not significantly possible earlier. For the synthesis of nanocurcumin, an array of techniques has been developed and each technique has its own advantages and individual characteristics. The two most popular and effective techniques are ionic gelation and antisolvent precipitation. So far, many curcumin nanoformulations have been developed to enhance curcumin delivery, thereby overcoming the low therapeutic effects. However, most of the nanoformulation of curcumin remained at the concept level evidence, thus, several questions and challenges still exist to recommend the nanocurcumin as a promising candidate for therapeutic applications. In this review, we discuss the different curcumin nanoformulation and nanocurcumin implications for different therapeutic applications as well as the status of ongoing clinical trials and patents. We also discuss the research gap and future research directions needed to propose curcumin as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Taesun Min
- Faculty of Biotechnology, College of Applied Life Science, Sustainable Agriculture Research Institute (SARI) and Jeju International Animal Research Center (JIA), Jeju National University, Jeju, South Korea
| |
Collapse
|
15
|
Recent advances in novel drug delivery systems and approaches for management of breast cancer: A comprehensive review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Pourtalebi Jahromi L, Ghazali M, Ashrafi H, Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020; 6:e03451. [PMID: 32140583 PMCID: PMC7049635 DOI: 10.1016/j.heliyon.2020.e03451] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Poly (lactic-co-glycolic acid) has received much academic attention for developing nanotherapeutics and FDA has approved it for several applications. An important parameter that dictates the bioavailability and hence the biological effect of the drug is drug release from its delivering system. This study offers a comparative mathematical analysis of drug release from Poly (lactic-co-glycolic acid)–based nanoparticles to suggest a general model explaining multi-mechanistic release they provide. Methods Eight release models, zero order, first order, Higuchi, Hixson-Crowell, the square root of mass, the three-second root of mass, Weibull and Korsmeyer-Peppas, as well as the second degree polynomial equation were applied to 60 data sets. The models analysed regarding several types of errors, regression parameters and average Akaike information criterion. Results and discussion Most of the data sets present the highest R2, the lowest overall error and AIC for the Weibull model. Weibull model with the mean AIC = -36.37 and mean OE = 7.24 and the highest NE less than 5, 10, 15 and 20 % in most of the cases best fits the release data from various PLGA-based drug delivery systems that are studied. Weibull model seems to show enough flexibility to describe various release patterns PLGA provides.
Collapse
Affiliation(s)
| | - Mohammad Ghazali
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel) 2019; 11:E1855. [PMID: 31769416 PMCID: PMC6966668 DOI: 10.3390/cancers11121855] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.
Collapse
Affiliation(s)
- Lucia Salvioni
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Maria Antonietta Rizzuto
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Jessica Armida Bertolini
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Laura Pandolfi
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Miriam Colombo
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Davide Prosperi
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
- Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
19
|
Hu H, Zhou H, Zhen Z, Wu Z, Zhang R, Xu D. Methoxylpoly(ethylene glycol)‐retinoic acid Micelles Loaded with Dimethylcurcumin for Efficient Castration‐Resistant Prostate Cancer Therapy. ChemistrySelect 2019. [DOI: 10.1002/slct.201902562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hang Hu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
| | - Huan Zhou
- Center for Health Science and EngineeringTianjin Key Laboratory of Materials Laminating Fabrication and Interface Control TechnologySchool of Materials Science and EngineeringHebei University of Technology Tianjin 300130 P. R. China
- School of Mechanical EngineeringJiangsu University of Technology, Changzhou Jiangsu 213001 P. R. China
| | - Zihan Zhen
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
| | - Zhe Wu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
| | - Rong Zhang
- School of Materials Science & EngineeringChangzhou University Changzhou 213164 P. R. China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of BiomassChangzhou University Changzhou 213164 P. R. China
| |
Collapse
|
20
|
Bessone F, Argenziano M, Grillo G, Ferrara B, Pizzimenti S, Barrera G, Cravotto G, Guiot C, Stura I, Cavalli R, Dianzani C. Low-dose curcuminoid-loaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells. NANOTECHNOLOGY 2019; 30:214004. [PMID: 30654342 DOI: 10.1088/1361-6528/aaff96] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preventing recurrences and metastasis of prostate cancer after prostatectomy by administering adjuvant therapies is quite a controversial issue. In addition to effectiveness, absence of side effects and long term toxicity are mandatory. Curcuminoids (Curc) extracted with innovative techniques and effectively loaded by polymeric nanobubbles (Curc-NBs) satisfy such requirements. Curc-NBs showed stable over 30 d, were effectively internalized by tumor cells and were able to slowly release Curc in a sustained way. Significant biological effects were detected in PC-3 and DU-145 cell lines where Curc-NBs were able to inhibit adhesion and migration, to promote cell apoptosis and to affect cell viability and colony-forming capacity in a dose-dependent manner. Since the favourable effects are already detectable at very low doses, which can be reached at a clinical level, the actual drug concentration can be visualized and monitored by US or MRI, Curc-NBs can be proposed as an effective adjuvant theranostic tool.
Collapse
Affiliation(s)
- F Bessone
- Department of Drug Science & Technology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
22
|
Du M, Ouyang Y, Meng F, Zhang X, Ma Q, Zhuang Y, Liu H, Pang M, Cai T, Cai Y. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int J Pharm 2019; 561:274-282. [PMID: 30851393 DOI: 10.1016/j.ijpharm.2019.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
A polymer-lipid hybrid nanocarrier was developed to encapsulate psoralen (PSO) to improve its water solubility and bioavailability. The effects of PSO-loaded polymer-lipid hybrid nanoparticles (PSO-PLNs) on breast cancer MCF-7 cells were investigated. PSO-PLNs were prepared through a nanoprecipitation method and were optimized by a central composite design-response surface methodology using particle size and entrapment efficiency as indices. Dynamic light scattering and transmission electron microscopy analysis confirmed the physicochemical characterizations of PSO-PLNs, which had an average size of 93.44 ± 2.39 nm and a zeta potential of -27.63 ± 0.31 mV. In vitro drug release of PSO-PLNs was evaluated using dialysis and showed a delayed release compared with free PSO. The in vivo anticancer efficiency of PSO-PLNs was appreciated using a MCF-7 breast tumor model. Administration of PSO-PLNs showed similar antitumor efficacy but lower toxicity compared with doxorubicin. Our designed nanocarriers successfully optimized the pharmacokinetics of PSO via improved systemic delivery.
Collapse
Affiliation(s)
- Manling Du
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Ouyang
- Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou 510800, China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of TCM, Zhongshan, Guangdong 528400, China
| | - Xingwang Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qianqian Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hui Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mujuan Pang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Cancer Research Institute of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Tomeh MA, Hadianamrei R, Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int J Mol Sci 2019; 20:E1033. [PMID: 30818786 PMCID: PMC6429287 DOI: 10.3390/ijms20051033] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer is the second leading cause of death in the world and one of the major public health problems. Despite the great advances in cancer therapy, the incidence and mortality rates of cancer remain high. Therefore, the quest for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Curcumin, the active ingredient of the Curcuma longa plant, has received great attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In this review, a summary of the medicinal chemistry and pharmacology of curcumin and its derivatives in regard to anticancer activity, their main mechanisms of action, and cellular targets has been provided based on the literature data from the experimental and clinical evaluation of curcumin in cancer cell lines, animal models, and human subjects. In addition, the recent advances in the drug delivery systems for curcumin delivery to cancer cells have been highlighted.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
24
|
Teymouri M, Barati N, Pirro M, Sahebkar A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J Cell Physiol 2017; 233:124-140. [PMID: 27996095 DOI: 10.1002/jcp.25749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Dimethoxycurcumin (DiMC) is a synthetic analog of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic, and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, University of Perugia, Perugia, Italy
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Xu J, Lin H, Li G, Sun Y, Shi L, Ma WL, Chen J, Cai X, Chang C. Sorafenib with ASC-J9 ® synergistically suppresses the HCC progression via altering the pSTAT3-CCL2/Bcl2 signals. Int J Cancer 2016; 140:705-717. [PMID: 27668844 PMCID: PMC5215679 DOI: 10.1002/ijc.30446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
Abstract
Sorafenib is currently used as a standard treatment to suppress the progression of hepatocellular carcinoma (HCC), especially in advanced stages. However, patients who receive Sorafenib treatment eventually develop resistance without clear mechanisms. There is a great need for better efficacy of Sorafenib treatment in combination with other therapies. Here, we demonstrated that the treatment combining Sorafenib with ASC‐J9® could synergistically suppress HCC progression via altering cell‐cycle regulation, apoptosis and invasion. Mechanism dissection suggests that while Sorafenib impacts little or even slightly increases the activated/phosphorylated STAT3 (p‐STAT3), a key stimulator to promote the HCC progression, adding ASC‐J9® significantly suppresses the p‐STAT3 expression and its downstream genes including CCL2 and Bcl2. Interrupting these signals via constitutively active STAT3 partially reverses the synergistic suppression of Sorafenib‐ASC‐J9® combination on HCC progression. In vivo studies further confirmed the synergistic effect of Sorafenib‐ASC‐J9® combination. Together, these results suggest the newly developed Sorafenib‐ASC‐J9® combination is a novel therapy to better suppress HCC progression. What's new? Sorafenib is currently a standard treatment to suppress the progression of hepatocellular carcinoma (HCC). STAT3 activation may however play a role in the development of Sorafenib resistance. Following earlier studies suggesting that ASC‐J9® may alter activated p‐STAT3 signals to suppress prostate cancer metastasis, here the authors found that combining Sorafenib with ASC‐J9® may synergistically suppress HCC progression. Sorafenib had little impact on p‐STAT3, whereas ASC‐J9® significantly suppressed p‐STAT3 expression and its downstream genes, including CCL2 and Bcl2. Clinical studies using human HCC samples also demonstrated that higher expression of p‐STAT3 might be linked to the lower response to Sorafenib treatment.
Collapse
Affiliation(s)
- Junjie Xu
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Wen-Lung Ma
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| | - Jiang Chen
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Schmidt KT, Figg WD. The potential role of curcumin in prostate cancer: the importance of optimizing pharmacokinetics in clinical studies. Transl Cancer Res 2016; 5:S1107-S1110. [PMID: 30613476 DOI: 10.21037/tcr.2016.11.04] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Keith T Schmidt
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Shang Z, Li Y, Zhang M, Tian J, Han R, Shyr CR, Messing E, Yeh S, Niu Y, Chang C. Antiandrogen Therapy with Hydroxyflutamide or Androgen Receptor Degradation Enhancer ASC-J9 Enhances BCG Efficacy to Better Suppress Bladder Cancer Progression. Mol Cancer Ther 2015; 14:2586-94. [PMID: 26264279 DOI: 10.1158/1535-7163.mct-14-1055-t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
Abstract
Recent studies suggest that the androgen receptor (AR) might play important roles in influencing bladder cancer progression, yet its clinical application remains unclear. Here, we developed a new combined therapy with Bacillus Calmette-Guérin (BCG) and the AR degradation enhancer ASC-J9 or antiandrogen hydroxyflutamide (HF) to better suppress bladder cancer progression. Mechanism dissection revealed that ASC-J9 treatment enhanced BCG efficacy to suppress bladder cancer cell proliferation via increasing the recruitment of monocytes/macrophages that involved the promotion of BCG attachment/internalization to the bladder cancer cells through increased integrin-α5β1 expression and IL6 release. Such consequences might then enhance BCG-induced bladder cancer cell death via increased TNFα release. Interestingly, we also found that ASC-J9 treatment could directly promote BCG-induced HMGB1 release to enhance the BCG cytotoxic effects for suppression of bladder cancer cell growth. In vivo approaches also concluded that ASC-J9 could enhance the efficacy of BCG to better suppress bladder cancer progression in BBN-induced bladder cancer mouse models. Together, these results suggest that the newly developed therapy combining BCG plus ASC-J9 may become a novel therapy to better suppress bladder cancer progress.
Collapse
Affiliation(s)
- Zhiqun Shang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yanjun Li
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Minghao Zhang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. Department of Urology, Tianjin Third Central Hospital, Tianjin, China
| | - Jing Tian
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Ruifa Han
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Chih-Rong Shyr
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Edward Messing
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Shuyuan Yeh
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York.
| | - Chawnshang Chang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
28
|
Pistone S, Qoragllu D, Smistad G, Hiorth M. Formulation and preparation of stable cross-linked alginate-zinc nanoparticles in the presence of a monovalent salt. SOFT MATTER 2015; 11:5765-5774. [PMID: 26086433 DOI: 10.1039/c5sm00700c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polysaccharide-based nanoparticles can be formed, under the right conditions, when a counterion is added to a dilute polysaccharide solution. In this study, the possibility of preparing stable alginate nanoparticles cross-linked with zinc was investigated. The effects of the ionic strength of the solvent and the concentration of zinc were studied. The nanoparticles were characterized by dynamic light scattering, zeta potential and pH measurements. The results showed that an increase in the ionic strength of the solvent provided nanoparticles with considerably narrower size distributions compared to pure water, and a small size. The zinc content was shown to be an important factor for the formation of the nanoparticles. In fact, a critical zinc concentration was needed to obtain nanoparticles, and below this concentration particles were not formed. A stepwise increase in the amount of zinc revealed the process of formation of the nanoparticles. The stages of the nanoparticle formation process were identified, and differences according to the ionic strength of the solvent were also reported. Furthermore, the stability test of the most promising formulation showed a stability of over ten weeks.
Collapse
Affiliation(s)
- Sara Pistone
- SiteDel Group, School of Pharmacy, University of Oslo, Norway.
| | | | | | | |
Collapse
|
29
|
Raman microscopy for cellular investigations--From single cell imaging to drug carrier uptake visualization. Adv Drug Deliv Rev 2015; 89:71-90. [PMID: 25728764 DOI: 10.1016/j.addr.2015.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 12/11/2022]
Abstract
Progress in advanced therapeutic concepts requires the development of appropriate carrier systems for intracellular drug delivery. Consequently, analysis of interaction between carriers, drugs and cells as well as their uptake and intracellular fate is a current focus of research interest. In this context, Raman spectroscopy recently became an emerging analytical technique, due to its non-destructive, chemically selective and label-free working principle. In this review, we briefly present the state-of-the-art technologies for cell visualization and drug internalization. Against this background, Raman microscopy is introduced as a versatile analytical technique. An overview of various Raman spectroscopy investigations in this field is given including interactions of cells with drug molecules, carrier systems and other nanomaterials. Further, Raman instrumentations and sample preparation methods are discussed. Finally, as the analytical limit is not reached yet, a future perspective for Raman microscopy in pharmaceutical and biomedical research on the single cell level is given.
Collapse
|
30
|
Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 2014; 104:872-905. [PMID: 25546108 DOI: 10.1002/jps.24298] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022]
Abstract
Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | | | | | | | | |
Collapse
|