1
|
Chintala S, Friedman SH. Preventing Protein Self-Association Through Strategic Covalent Modification. J Pept Sci 2025; 31:e70008. [PMID: 40047274 DOI: 10.1002/psc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Protein self-interaction leading to aggregation is a major challenge facing protein pharmaceuticals. It leads to a range of problems, including increases in immunogenicity and loss of activity. In this work, we describe an approach for blocking or antagonizing the quaternary interactions that drive self-association. We applied the approach to glucagon, a therapeutic peptide known for its propensity to form fibrils due to self-interaction. We synthesized a regio-pure common feedstock that allowed easy modification with potential blocking peptides that represented a range of chemical types (anionic, cationic, polar, and nonpolar). From these synthesized materials, we identified two modified glucagons that showed significant stabilization against fibril formation compared with unmodified glucagon. This was confirmed by three complementary biophysical techniques. Both successful modifications introduced excess net charge to glucagon, consistent with overall electrostatic repulsion being at the root of the observed fibrillation resistance. This approach can potentially be applied to other therapeutic proteins that suffer from the problems associated with self-association.
Collapse
Affiliation(s)
- Swetha Chintala
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, Missouri, USA
| | - Simon H Friedman
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Wang H, Jiao Y, Ma S, Li Z, Gong J, Jiang Q, Shang Y, Li H, Li J, Li N, Zhao RC, Ding B. Nebulized Inhalation of Peptide-Modified DNA Origami To Alleviate Acute Lung Injury. NANO LETTERS 2024; 24:6102-6111. [PMID: 38739578 DOI: 10.1021/acs.nanolett.4c01222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Yunfei Jiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shuaijing Ma
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Zhuoting Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jintao Gong
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Zhang H, Zhang Y, Zhang C, Yu H, Ma Y, Li Z, Shi N. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics 2023; 15:2093. [PMID: 37631307 PMCID: PMC10459450 DOI: 10.3390/pharmaceutics15082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides and proteins, two important classes of biomacromolecules, play important roles in the biopharmaceuticals field. As compared with traditional drugs based on small molecules, peptide- and protein-based drugs offer several advantages, although most cannot traverse the cell membrane, a natural barrier that prevents biomacromolecules from directly entering cells. However, drug delivery via cell-penetrating peptides (CPPs) is increasingly replacing traditional approaches that mediate biomacromolecular cellular uptake, due to CPPs' superior safety and efficiency as drug delivery vehicles. In this review, we describe the discovery of CPPs, recent developments in CPP design, and recent advances in CPP applications for enhanced cellular delivery of peptide- and protein-based drugs. First, we discuss the discovery of natural CPPs in snake, bee, and spider venom. Second, we describe several synthetic types of CPPs, such as cyclic CPPs, glycosylated CPPs, and D-form CPPs. Finally, we summarize and discuss cell membrane permeability characteristics and therapeutic applications of different CPPs when used as vehicles to deliver peptides and proteins to cells, as assessed using various preclinical disease models. Ultimately, this review provides an overview of recent advances in CPP development with relevance to applications related to the therapeutic delivery of biomacromolecular drugs to alleviate diverse diseases.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Yanfei Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Yinghui Ma
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Nianqiu Shi
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China
| |
Collapse
|
4
|
Rehmani S, McLaughlin CM, Eltaher HM, Moffett RC, Flatt PR, Dixon JE. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. J Control Release 2023; 360:93-109. [PMID: 37315695 DOI: 10.1016/j.jconrel.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Insulin regulates blood glucose levels, and is the mainstay for the treatment of type-1 diabetes and type-2 when other drugs provide inadequate control. Therefore, effective oral Insulin delivery would be a significant advance in drug delivery. Herein, we report the use of the modified cell penetrating peptide (CPP) platform, Glycosaminoglycan-(GAG)-binding-enhanced-transduction (GET), as an efficacious transepithelial delivery vector in vitro and to mediate oral Insulin activity in diabetic animals. Insulin can be conjugated with GET via electrostatic interaction to form nanocomplexes (Insulin GET-NCs). These NCs (size and charge; 140 nm, +27.10 mV) greatly enhanced Insulin transport in differentiated in vitro intestinal epithelium models (Caco2 assays; >22-fold increased translocation) with progressive and significant apical and basal release of up-taken Insulin. Delivery resulted in intracellular accumulation of NCs, enabling cells to act as depots for subsequent sustained release without affecting viability and barrier integrity. Importantly Insulin GET-NCs have enhanced proteolytic stability, and retained significant Insulin biological activity (exploiting Insulin-responsive reporter assays). Our study culminates in demonstrating oral delivery of Insulin GET-NCs which can control elevated blood-glucose levels in streptozotocin (STZ)-induced diabetic mice over several days with serial dosing. As GET promotes Insulin absorption, transcytosis and intracellular release, along with in vivo function, our simplistic complexation platform could allow effective bioavailability of other oral peptide therapeutics and help transform the treatment of diabetes.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Christopher M McLaughlin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Hoda M Eltaher
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol 2022; 13:1068495. [PMID: 36452220 PMCID: PMC9703138 DOI: 10.3389/fphar.2022.1068495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The intranasal route has emerged as a promising strategy that can direct delivery of drugs into the systemic circulation because the high-vascularized nasal cavity, among other advantages, avoids the hepatic first-pass metabolism. The nose-to-brain pathway provides a non-invasive alternative to other routes for the delivery of macromolecular therapeutics. A great variety of methodologies has been developed to enhance the efficiency of transepithelial translocation of macromolecules. Among these, the use of cell-penetrating peptides (CPPs), short protein transduction domains (PTDs) that facilitate the intracellular transport of various bioactive molecules, has become an area of extensive research in the intranasal delivery of peptides and proteins either to systemic or to brain compartments. Some CPPs have been applied for the delivery of peptide antidiabetics, including insulin and exendin-4, for treating diabetes and Alzheimer's disease. This review highlights the current status of CPP-driven intranasal delivery of peptide drugs and its potential applicability as a universal vehicle in the nasal drug delivery.
Collapse
Affiliation(s)
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
6
|
Wang F, Xie D, Lai W, Zhou M, Wang J, Xu R, Huang J, Zhang R, Li G. Autophagy responsive intra-intercellular delivery nanoparticles for effective deep solid tumor penetration. J Nanobiotechnology 2022; 20:300. [PMID: 35752856 PMCID: PMC9233833 DOI: 10.1186/s12951-022-01514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Deep tumor cells (cells in the center of solid tumors) play a crucial role in drug tolerance, metastasis, recurrence and microenvironment immune suppression. However, their deep location endows them with an untouched abdomen and makes them refractory to current treatments. Herein, we exploited the characteristic of higher autophagy in deep tumor cells than in superficial tumor cells and designed autophagy-responsive multifunctional nanoparticles (PGN) to enhance drug accumulation in deep tumor cells. PGNs were prepared by densely coating poly (lactic-co-glycolic acid) (PLGA) with cationic autophagy-responsive cell-penetrating peptide (GR9) and anionic 2,3-dimethylmaleic anhydride (DMA)-modified DSPE-PEG. The suitable nanoparticle size (122.4 nm) and charge-neutral surface (0.21 mV) of the NPs enabled long blood circulation. The hydrolysis of surface-anchored anionic DMA in the acidic microenvironment led to the exposure of the GR9 peptide and enhance tumor penetration. Once the PGN arrived in deep tumor cells with strong autophagy, GR9 was cut off by an autophagy shear enzyme, and the nanoparticles remained in the cells to undergo degradation. Furthermore, we prepared docetaxel (DTX) and chloroquine (CQ) loaded d-PGN. CQ inhibits autophagosome fusion with lysosomes, resulting in autophagosome accumulation, which further enhances the sensitivity of d-PGN to autophagy and their deep tumor retention. In vivo experiments showed that drug-loaded d-PGN achieved excellent antitumor efficacy with a peak inhibition rate of 82.1%. In conclusion, autophagy-responsive multifunctional nanoparticles provide a novel potential strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Jie Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Jingbing Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao Road, Chongqing, China.
| |
Collapse
|
7
|
Tomono T, Yagi H, Kanemoto S, Ukawa M, Miyata K, Shigeno K, Sakuma S. Acquisition of Absorption-enhancing Abilities of Cationic Oligopeptides with Short Chain Arginine Residues through Conjugation to Hyaluronic Acid. Int J Pharm 2022; 616:121519. [DOI: 10.1016/j.ijpharm.2022.121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
8
|
Korivi M, Huang YW, Liu BR. Cell-Penetrating Peptides as a Potential Drug Delivery System for Effective Treatment of Diabetes. Curr Pharm Des 2021; 27:816-825. [PMID: 33076803 DOI: 10.2174/1381612826666201019102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND/PURPOSE Type 2 diabetes (T2D) is characterized by hyperglycemia resulting from the body's inability to produce and/or use insulin. Patients with T2D often have hyperinsulinemia, dyslipidemia, inflammation, and oxidative stress, which then lead to hypertension, chronic kidney disease, cardiovascular disease, and increased risk of morbidity and mortality (9th leading cause globally). Insulin and related pharmacological therapies are widely used to manage T2D, despite their limitations. Efficient drug delivery systems (DDS) that control drug kinetics may decrease side effects, allow for efficient targeting, and increase the bioavailability of drugs to achieve maximum therapeutic benefits. Thus, the development of effective DDS is crucial to beat diabetes. METHODS Here, we introduced a highly bioavailable vector, cell-penetrating peptides (CPPs), as a powerful DDS to overcome limitations of free drug administration. RESULTS CPPs are short peptides that serve as a potent tool for delivering therapeutic agents across cell membranes. Various cargoes, including proteins, DNA, RNA, liposomes, therapeutic molecules, and nanomaterials, generally retain their bioactivity upon entering cells. The mechanisms of CPPs/cargoes intracellular entry are classified into two parts: endocytic pathways and direct membrane translocation. In this article, we focus on the applications of CPPs/therapeutic agents in the treatment of diabetes. Hypoglycemic drugs with CPPs intervention can enhance therapeutic effectiveness, and CPP-mediated drug delivery can facilitate the actions of insulin. Numerous studies indicate that CPPs can effectively deliver insulin, produce synergistic effects with immunosuppressants for successful pancreatic islet xenotransplantation, prolong pharmacokinetics, and retard diabetic nephropathy. CONCLUSION We suggest that CPPs can be a new generation of drug delivery systems for effective treatment and management of diabetes and diabetes-associated complications.
Collapse
Affiliation(s)
- Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409-1120, United States
| | - Betty R Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
9
|
Keum T, Noh G, Seo JE, Bashyal S, Lee S. In Vitro and Ex Vivo Evaluation of Penetratin as a Non-invasive Permeation Enhancer in the Penetration of Salmon Calcitonin through TR146 Buccal Cells and Porcine Buccal Tissues. Pharmaceuticals (Basel) 2020; 13:ph13110408. [PMID: 33233392 PMCID: PMC7700664 DOI: 10.3390/ph13110408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Buccal tissues are considered one of the potential alternative delivery route because of fast drug absorption and onset of action due to high vascularization and a non-keratinized epithelial membrane. In this study, the effect of Penetratin on the permeation of salmon calcitonin (sCT), a model macromolecular peptide drug, through TR146 buccal cells and porcine buccal tissues has been evaluated. To observe permeation profile of sCT, TR146 buccal cells were treated with Alexa 647 conjugated sCT (Alexa 647-sCT) with different concentrations of fluorescein isothiocyanate -labeled Penetratin (FITC-Penetratin) ranging from 0 to 40 μM, and analyzed using flow cytometry and confocal laser scanning microscopy. Intracellular penetration of FITC-Penetratin rapidly increased at low concentrations from 0 to 15 μM and it gradually increased at concentrations above 15 μM. Intracellular penetration of Alexa 647-sCT enhanced with the increase of FITC-Penetratin concentration. When TR146 cell layers and buccal tissues were co-treated with sCT and Penetratin as permeation enhancer, the flux of sCT increased as per Penetratin concentration. Compared to the control, 12.2 μM of Penetratin enhanced the flux of sCT in TR146 cell layers and buccal tissues by 5.5-fold and 93.7-fold, respectively. These results strongly suggest that Penetratin may successfully act as a non-invasive permeation enhancer for macromolecular peptide drug delivery through buccal routes.
Collapse
Affiliation(s)
- Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (T.K.); (G.N.); (J.-E.S.); (S.B.)
- Center for Forensic Pharmaceutical Science, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (T.K.); (G.N.); (J.-E.S.); (S.B.)
- Center for Forensic Pharmaceutical Science, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (T.K.); (G.N.); (J.-E.S.); (S.B.)
| | - Santosh Bashyal
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (T.K.); (G.N.); (J.-E.S.); (S.B.)
- Center for Forensic Pharmaceutical Science, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (T.K.); (G.N.); (J.-E.S.); (S.B.)
- Center for Forensic Pharmaceutical Science, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-580-6655
| |
Collapse
|
10
|
Cppsite 2.0: An Available Database of Experimentally Validated Cell-Penetrating Peptides Predicting their Secondary and Tertiary Structures. J Mol Biol 2020; 433:166703. [PMID: 33186582 DOI: 10.1016/j.jmb.2020.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
One of the biggest barriers in drug and vaccine development is to find an effective delivery system. Cell-penetrating peptides (CPPs) play a crucial role for delivery of biological cargoes and pass them through the membranes. Several databases have been developed for therapeutic peptides as potential drug candidates and delivery vehicles. A rapid growth has occurred in many patents and research articles on CPPs as therapeutic peptides. To save time and cost in laboratories, prediction and design of CPPs before in vitro/in vivo experiments using computational methods and online web servers are rational. Various online web servers which provide prediction of CPPs including CellPPD, CPPpred, CPPred-RF and MLCPP, and also different curated databases that present validated information of CPPs such as CPPsite 2.0 have been developed up to now. Two methods including CellPPD and CPPpred were applied to predict and design potent CPPs. CPPsite 2.0 is a user-friendly updated database that provides various information about CPPs and contains 1855 entries. This database provides comprehensive information on experimentally tested CPPs and prediction of their secondary and tertiary structures to realize their structure-function relationship. Furthermore, each entry presents information of a CPP including chirality, origin, nature of peptide, sub-cellular localization, uptake mechanism and efficiency, amino acid composition, hydrophobicity, and physicochemical properties. One of main goals of CPPsite 2.0 database is to provide the latest datasets of CPPs for analysis and development of CPP prediction methods. CPPsite 2.0 is freely available at https://webs.iiitd.edu.in/raghava/cppsite.
Collapse
|
11
|
Østergaard M, Mishra NK, Jensen KJ. The ABC of Insulin: The Organic Chemistry of a Small Protein. Chemistry 2020; 26:8341-8357. [DOI: 10.1002/chem.202000337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mads Østergaard
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Narendra Kumar Mishra
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
12
|
Excipient-free pulmonary insulin dry powder: Pharmacokinetic and pharmacodynamics profiles in rats. J Control Release 2020; 323:412-420. [PMID: 32325175 DOI: 10.1016/j.jconrel.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022]
Abstract
A novel pure insulin spray-dried powder for DPI product (Ins_SD) was studied with respect to physico-chemical stability, in vitro respirability, bioavailability, activity and tolerability. Ins_SD powder exhibited a very high in vitro respirability, independently of the DPI product preparation (manual or semi-automatic). Physico-chemical characteristics of Ins_SD powder remained within the pharmacopoeia limits during 6 months of storage at room temperature. PK/PD profiles were measured in rats that received the pulmonary powders by intratracheal insufflation and compared with Afrezza inhalation insulin. Due to the low drug powder mass to deliver, both insulin powders were diluted with mannitol. Insulin from Ins_SD was promptly absorbed (tmax 15 min and Cmaxx4.9 ± 1.5 mU/ml). Afrezza had a slower absorption (tmax 30 min and Cmax of 1.8 ± 0.37 mU/ml). After glucose injection, Ins_SD determined a rapid reduction of glucose level, similar to Afrezza. As reference, insulin subcutaneous injection showed a long-lasting hypoglycemic effect due to the slow absorption that prolonged insulin plasma level. In summary, Ins_SD product is suitable for post-prandial glucose control, providing a convenient and compliant product, in particular in the event of using a disposable device. Albeit the product has to be stored in fridge, its stability at room temperature allows the diabetic individual to carry the daily dose in normal conditions.
Collapse
|
13
|
Gomes Dos Reis L, Traini D. Advances in the use of cell penetrating peptides for respiratory drug delivery. Expert Opin Drug Deliv 2020; 17:647-664. [PMID: 32138567 DOI: 10.1080/17425247.2020.1739646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory diseases are leading causes of death in the world, still inhalation therapies are the largest fail in drug development. There is an evident need to develop new therapies. Biomolecules represent apotential therapeutic agent in this regard, however their translation to the clinic is hindered by the lack of tools to efficiently deliver molecules. Cell penetrating peptides (CPPs) have arisen as apotential strategy for intracellular delivery that could theoretically enable the translation of new therapies.Areas covered: In this review, the use of CPPs as astrategy to deliver different molecules (cargoes) to treat lung-relateddiseases will be the focus. Abrief description of these molecules and the innovative methods in designing new CPPs is presented. The delivery of different cargoes (proteins, peptides, poorly soluble drugs and nucleic acids) using CPPs is discussed, focusing on benefits to treat different respiratory diseases like inflammatory disorders, cystic fibrosis and lung cancer.Expert opinion: The advantages of using CPPs to deliver biomolecules and poorly soluble drugs to the lungs is evident. This field has advanced in the past few years toward targeted intracellular delivery, although further studies are needed to fully understand its potential and limitations in vitro and in vivo.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019; 55:13657-13660. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell penetrating peptide (CPP), LK-3, causes a ca. 10-fold increase in the cell penetration of cyclosporin A (CsA) at nanomolar concentrations. The results of an in vivo dry eye mouse model demonstrated that a 100-fold lower dose of the CsA/LK-3 complex than that of Restasis® is sufficient to cause the same therapeutic effect.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Yan C, Gu J, Lv Y, Shi W, Wang Y, Liao Y, Deng Y. Caproyl-Modified G2 PAMAM Dendrimer (G2-AC) Nanocomplexes Increases the Pulmonary Absorption of Insulin. AAPS PharmSciTech 2019; 20:298. [PMID: 31456109 DOI: 10.1208/s12249-019-1505-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Abstract
We aimed to investigate the absorption-enhancing effect (AEE) of caproyl-modified G2 PAMAM dendrimer (G2-AC) on peptide and protein drugs via the pulmonary route. In this study, G2 PAMAM dendrimer conjugates modified with caproic acid was synthesized, the pulmonary absorption of insulin as models with or without G2-AC were evaluated. The results indicated that G2-AC6 exhibited a greatest AEE for insulin in various caproylation levels of G2-AC. G2-AC6 could significantly enhance the absorption of insulin, and the AEE of G2-AC6 was concentration-dependent. In toxicity tests, G2-AC6 displayed no measurable cytotoxicity to the pulmonary membranes over a concentration range from 0.1% (w/v) to 1.0% (w/v). Measurements of the TEER and permeability showed that G2-AC6 significantly reduced the TEER value of CF and increased its Papp value. The results suggested that G2-AC6 could cross epithelial cells by means of a combination of paracellular and transcellular pathways. These findings suggested G2-AC6 at lower concentrations (below 1.0%, w/v) might be promising absorption enhancers for increasing the pulmonary absorption of peptide and protein drugs.
Collapse
|
16
|
Farouk F, Shamma R. Chemical structure modifications and nano-technology applications for improving ADME-Tox properties, a review. Arch Pharm (Weinheim) 2019; 352:e1800213. [DOI: 10.1002/ardp.201800213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Faten Farouk
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ahram Canadian University; Giza Egypt
| | - Rehab Shamma
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|
17
|
Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release 2018; 295:1-12. [PMID: 30579981 DOI: 10.1016/j.jconrel.2018.12.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
The use of biologics (peptide and protein based drugs) has increased significantly over the past few decades. However, their development has been limited by their short half-life, immunogenicity and low membrane permeability, restricting most therapies to extracellular targets and administration by injection. Lipidation is a clinically-proven post-translational modification that has shown great promise to address these issues: improving half-life, reducing immunogenicity and enabling intracellular uptake and delivery across epithelia. Despite its great potential, lipidation remains an underutilized strategy in the clinical translation of lead biologics. We review how lipidation can overcome common challenges in biologics development as well as highlight gaps in our understanding of the effect of lipidation on therapeutic efficacy, where increased research and development efforts may lead to next-generation drugs.
Collapse
Affiliation(s)
| | - John S Decker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Disassembling a cancer puzzle: Cell junctions and plasma membrane as targets for anticancer therapy. J Control Release 2018; 286:125-136. [PMID: 30030181 DOI: 10.1016/j.jconrel.2018.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
Despite an enhanced permeability and retention effect typical of many solid tumors, drug penetration is not always sufficient. Possible strategies for the drug delivery improvement are a modification of the tumor cell-to-cell junctions and usage of cell membrane permeabilization proteins. In this review we discuss epithelial cell junctions as targets for a combined anticancer therapy and propose new possible sources of such agents. We suggest considering viral and bacterial pathogens disrupting epithelial layers as plentiful sources of new therapeutic agents for increasing tumor permeability for other effector agents. We also observe the application of pore forming proteins and peptides of different origin for cytoplasmic delivery of anti-cancer agents and consider the main obstacles of their use in vivo.
Collapse
|
19
|
Rehmani S, Dixon JE. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides 2018; 100:24-35. [PMID: 29412825 DOI: 10.1016/j.peptides.2017.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/03/2023]
Abstract
Oral delivery of insulin and other anti-diabetic peptides is inhibited by low intestinal absorption caused by the poor permeability across cellular membranes and the susceptibility to enzymatic degradation in the gastrointestinal tract. Cell-penetrating peptides (CPPs) have been investigated for a number of years as oral absorption enhancers for hydrophilic macromolecules by electrostatic or covalent conjugation on in conjunction with nanotechnology. Endogenous cellular uptake mechanisms present in the intestine can be exploited by engineering peptide conjugates that transcytose; entering cells by endocytosis and leaving by exocytosis. Efficiently delivering hydrophilic and sensitive peptide drugs to safely transverse the digestive barrier with no effect on gut physiology using remains a key driver for formulation research. Here we review the use of CPP and transcytosis peptide approaches, their modification and use in delivering anti-diabetic peptides (with the primary example of Insulin and engineered homologues) by direct oral administration to treat diabetes and associated metabolic disorders.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
20
|
Kristensen M, Nielsen LH, Zor K, Boisen A, Christensen MV, Berthelsen J, Mørck Nielsen H. Cellular Effects and Delivery Propensity of Penetratin Is Influenced by Conjugation to Parathyroid Hormone Fragment 1-34 in Synergy with pH. Bioconjug Chem 2018; 29:371-381. [DOI: 10.1021/acs.bioconjchem.7b00687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Line Hagner Nielsen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Kinga Zor
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345C, DK-2800 Kgs. Lyngby, Denmark
| | | | - Jens Berthelsen
- Department
of International Health, Immunology and Microbiology, Faculty of Health
and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
21
|
Hu WW, Yeh CC, Tsai CW. The conjugation of indolicidin to polyethylenimine for enhanced gene delivery with reduced cytotoxicity. J Mater Chem B 2018; 6:5781-5794. [DOI: 10.1039/c8tb01408f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hydrophobic domains of conjugated peptides can stabilize their insertion into the cell membrane to promote transportation.
Collapse
Affiliation(s)
- Wei-Wen Hu
- Department of Chemical and Materials Engineering
- National Central University
- Taoyuan City
- Taiwan
- Center for Biocellular Engineering
| | - Chiao-Chun Yeh
- Department of Chemical and Materials Engineering
- National Central University
- Taoyuan City
- Taiwan
| | - Ching-Wei Tsai
- Department of Chemical and Materials Engineering
- National Central University
- Taoyuan City
- Taiwan
| |
Collapse
|
22
|
Park CK, Kim YH, Hwangbo S, Cho H. Photodynamic therapy by conjugation of cell-penetrating peptide with fluorochrome. Int J Nanomedicine 2017; 12:8185-8196. [PMID: 29184407 PMCID: PMC5689026 DOI: 10.2147/ijn.s148332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising alternative therapy that could be used as an adjunct to chemotherapy and surgery for cancer, and works by destroying tissue with visible light in the presence of a photosensitizer (PS) and oxygen. The PS should restrict tissue destruction only to the tumor and be activated by light of a specific wavelength; both of these properties are required. Arginine-rich peptides, such as cell-penetrating peptides, have membrane-translocating and nuclear-localizing activities, which have led to their application in various drug delivery modalities. Protamine (Pro) is an arginine-rich peptide with membrane-translocating and nuclear-localizing properties. The reaction of an N-hydroxysuccinimide (NHS) ester of rhodamine (Rho) and clinical Pro was carried out in this study to yield RhoPro, and a demonstration of its phototoxicity, wherein clinical Pro improved the effect of PDT, was performed. The reaction between Pro and the NHS ester of Rho is a solution-phase reaction that results in the complete modification of the Pro peptides, which feature a single reactive amine at the N-terminal proline and a single carboxyl group at the C-terminal arginine. This study aimed to identify a new type of PS for PDT by in vitro and in vivo experiments and to assess the antitumor effects of PDT, using the Pro-conjugated PS, on a cancer cell line. Photodynamic cell death studies showed that the RhoPro produced has more efficient photodynamic activities than Rho alone, causing rapid light-induced cell death. The attachment of clinical Pro to Rho, yielding RhoPro, confers the membrane-internalizing activity of its arginine-rich content on the fluorochrome Rho and can induce rapid photodynamic cell death, presumably owing to light-induced cell membrane rupture. PDT using RhoPro for HT-29 cells was very effective and these findings suggest that RhoPro is a suitable candidate as a PS for solid tumors.
Collapse
Affiliation(s)
- Chul-Kyu Park
- Department of Physiology, College of Medicine, Gachon University, Incheon
| | - Yong Ho Kim
- Department of Physiology, College of Medicine, Gachon University, Incheon
| | - Suhyun Hwangbo
- School of Materials Science & Engineering, Chonnam National University, Gwangju, South Korea
| | - Hoonsung Cho
- School of Materials Science & Engineering, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
23
|
Khandia R, Munjal A, Kumar A, Singh G, Karthik K, Dhama K. Cell Penetrating Peptides: Biomedical/Therapeutic Applications with Emphasis as Promising Futuristic Hope for Treating Cancer. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.677.689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Barbari GR, Dorkoosh FA, Amini M, Sharifzadeh M, Atyabi F, Balalaie S, Rafiee Tehrani N, Rafiee Tehrani M. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. Int J Nanomedicine 2017; 12:3471-3483. [PMID: 28496323 PMCID: PMC5422456 DOI: 10.2147/ijn.s116063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A simple and reproducible water-in-oil (W/O) nanoemulsion technique for making ultrasmall (<15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano-sized (50 nm) water pools of the W/O nanoemulsion serve as “nano-containers and nano-reactors”. The entrapped polymer chains of CS inside these “nano-reactors” are covalently cross-linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs. These NPs possess excessive swelling properties in aqueous medium and preserve integrity in all pH ranges due to chemical cross-linking with PEG. A potent and newly developed cell-penetrating peptide (CPP) is further chemically conjugated to the surface of the NPs, leading to development of a novel peptide-conjugated derivative of CS with profound tight-junction opening properties. The CPP-conjugated NPs can easily be loaded with almost all kinds of proteins, peptides and nucleotides for oral delivery applications. Feasibility of this nanoparticulate system for oral delivery of a model peptide (insulin) is investigated in Caco-2 cell line. The cell culture results for translocation of insulin across the cell monolayer are very promising (15%–19% increase), and animal studies are actively under progress and will be published separately.
Collapse
Affiliation(s)
| | | | | | - Mohammad Sharifzadeh
- Department of Pharmacology, School of Pharmacy, Tehran University of Medical Sciences
| | | | | | - Niyousha Rafiee Tehrani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
25
|
Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochim Biophys Acta Gen Subj 2017; 1861:848-859. [PMID: 28132897 DOI: 10.1016/j.bbagen.2017.01.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS). METHODS Antibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated. RESULTS P14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens. CONCLUSIONS The potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections. GENERAL SIGNIFICANCE This study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides.
Collapse
|
26
|
Pescina S, Sala M, Padula C, Scala MC, Spensiero A, Belletti S, Gatti R, Novellino E, Campiglia P, Santi P, Nicoli S, Ostacolo C. Design and Synthesis of New Cell Penetrating Peptides: Diffusion and Distribution Inside the Cornea. Mol Pharm 2016; 13:3876-3883. [PMID: 27676095 DOI: 10.1021/acs.molpharmaceut.6b00658] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of cell penetrating peptides (CPPs) has been challenged in recent years for drug delivery to ocular tissues for the targeting of both anterior and posterior segments. The enhancement of trans-corneal transport for anterior segment targeting is a very important issue possibly leading to important outcomes on efficacy and to the opportunity of topical administration of molecules with unfavorable penetration properties. The aim of the present work was the design and synthesis of new CPPs, deriving from the structure of PEP-1 peptide. Synthesized peptides were labeled with 5-carboxyfluorescein (5-FAM), and their diffusion behavior and distribution inside the cornea were evaluated by a validated ex vivo model and a confocal microscopy approach. Newly synthesized peptides showed similar corneal permeation profiles as PEP-1 (Papp = 0.75 ± 0.56 × 10-6 cm/s), about 2.6-fold higher than 5-FAM (Papp = 0.29 ± 0.08 × 10-6 cm/s) despite the higher molecular weight. Confocal microscopy experiments highlighted the tendency of PEP-1 and its derived peptides to localize in the intercellular space and/or in the plasma membrane. Noteworthy, using penetratin as positive control, a higher trans-corneal permeation (Papp = 6.18 ± 1.46 × 10-6 cm/s) was evidenced together with a diffusion by intracellular route and a different accumulation between wings and basal epithelial cells, probably depending on the stage of cell development. Finally, PEP-1 and pep-7 proved to be safe and well tolerated when tested on human conjuctival cell line.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084 Fisciano (SA), Italy
| | - Cristina Padula
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084 Fisciano (SA), Italy
| | - Antonia Spensiero
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084 Fisciano (SA), Italy
| | - Silvana Belletti
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma , Via Volturno 39, 43126 Parma, Italy
| | - Rita Gatti
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma , Via Volturno 39, 43126 Parma, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Napoli, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084 Fisciano (SA), Italy
| | - Patrizia Santi
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Sara Nicoli
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II , Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
27
|
Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Kristensen M, Nielsen HM. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals. Tissue Barriers 2016; 4:e1178369. [PMID: 27358757 DOI: 10.1080/21688370.2016.1178369] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022] Open
Abstract
Non-injectable delivery of peptide and protein drugs is hampered by their labile nature, hydrophilicity, and large molecular size; thus limiting their permeation across mucosae, which represent major biochemical and physical barriers to drugs administered via e.g. the oral, nasal, and pulmonary routes. However, in recent years cell-penetrating peptides (CPP) have emerged as promising tools to enhance mucosal delivery of co-administered or conjugated peptide and protein cargo and more advanced CPP-cargo formulations are emerging. CPPs act as transepithelial delivery vectors, but the mechanism(s) by which CPPs mediate cargo translocation across an epithelium is so far poorly understood; both due to the fact that multiple factors influence the resulting uptake and trafficking mechanisms as well as to the complicated nature of sensitive studies of this. In addition to a proper mechanistic understanding, documentation of CPP-mediated delivery in higher animal species than rodent as well as extensive toxicological studies are necessary for CPP-containing non-injectable DDSs to reach the clinic.
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, Section for Biologics, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Section for Biologics, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
29
|
Kristensen M, Birch D, Mørck Nielsen H. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. Int J Mol Sci 2016; 17:E185. [PMID: 26840305 PMCID: PMC4783919 DOI: 10.3390/ijms17020185] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 01/21/2023] Open
Abstract
The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies.
Collapse
Affiliation(s)
- Mie Kristensen
- Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Ditlev Birch
- Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Hanne Mørck Nielsen
- Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Abstract
Transdermal delivery of drugs, a compelling route of systemic drug delivery, provides painless, reliable, targeted, efficient and cost effective therapeutic regimen for patients. However, its use is limited by skin barrier especially the stratum corneum barrier. Moreover, transdermal delivery of macromolecules remains a challenge. Naturally, varieties of physical methods, chemical enhancers and drug carriers have been used to counteract this limitation. Recently, transdermal peptides discovered as safer, more efficient and more specific enhancers could promote the delivery of macromolecules across the skin. Herein, the underlying transdermal peptides are included. Subsequently, we have discussed typical applications and the possible mechanism of two groups of biologically inspired transdermal peptide enhancers, namely cell penetration peptides and transdermal enhanced peptides.
Collapse
|
31
|
Simion V, Stan D, Constantinescu CA, Deleanu M, Dragan E, Tucureanu MM, Gan AM, Butoi E, Constantin A, Manduteanu I, Simionescu M, Calin M. Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells. ACTA ACUST UNITED AC 2016; 68:195-207. [PMID: 26748549 DOI: 10.1111/jphp.12513] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/29/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To prepare and characterize in vitro and in vivo lipid nanoemulsions (LN) loaded with curcumin (Cm) and functionalized with a cell-penetrating peptide. METHODS Curcumin-loaded lipid nanoemulsions (CmLN) functionalized with a nona-arginine peptide (R9-CmLN) have been obtained, characterized and optimized for size, entrapment efficiency and in vitro Cm release. The interaction of R9-CmLN with human endothelial cells (HEC) was investigated using cultured EA.hy926 cells, and in vivo biodistribution studies were performed using C57BL6 mice. KEY FINDINGS When used in therapeutically relevant concentration, R9-CmLN have low haemolytic activity, low cytotoxicity on HEC, and show anti-inflammatory effects by reducing the monocytes adhesion to TNF-α activated HEC. Moreover, HEC uptake and internalization of R9-CmLN was significantly higher compared to the non-functionalized CmLN. In vivo biodistribution studies in mice revealed a higher accumulation of R9-CmLN in the liver and the lungs compared to CmLN and the body clearance of the both nanoformulations after 72 h. CONCLUSIONS Cell-penetrating peptides-functionalized CmLN have superior characteristics compared to their non-functionalized counterparts: are more efficiently internalized by the cells, produces anti-inflammatory effects in HEC and when administrated intravenously in mice exhibit increased accumulation in the liver and the lungs, suggesting their potential therapeutic applications in different inflammatory pathologies localized in the liver or the lungs.
Collapse
Affiliation(s)
- Viorel Simion
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Daniela Stan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Cristina Ana Constantinescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.,Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mariana Deleanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.,Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Monica Madalina Tucureanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Ana-Maria Gan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Manuela Calin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
32
|
Zaro JL, Shen WC. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1538-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery. Int J Cell Biol 2015; 2015:537560. [PMID: 26448753 PMCID: PMC4581573 DOI: 10.1155/2015/537560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer.
Collapse
|
34
|
Li H, Tsui TY, Ma W. Intracellular Delivery of Molecular Cargo Using Cell-Penetrating Peptides and the Combination Strategies. Int J Mol Sci 2015; 16:19518-19536. [PMID: 26295227 PMCID: PMC4581311 DOI: 10.3390/ijms160819518] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/11/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cell-penetrating peptides (CPPs) can cross cellular membranes in a non-toxic fashion, improving the intracellular delivery of various molecular cargos such as nanoparticles, small molecules and plasmid DNA. Because CPPs provide a safe, efficient, and non-invasive mode of transport for various cargos into cells, they have been developed as vectors for the delivery of genetic and biologic products in recent years. Most common CPPs are positively charged peptides. While delivering negatively charged molecules (e.g., nucleic acids) to target cells, the internalization efficiency of CPPs is reduced and inhibited because the cationic charges on the CPPs are neutralized through the covering of CPPs by cargos on the structure. Even under these circumstances, the CPPs can still be non-covalently complexed with the negatively charged molecules. To address this issue, combination strategies of CPPs with other typical carriers provide a promising and novel delivery system. This review summarizes the latest research work in using CPPs combined with molecular cargos including liposomes, polymers, cationic peptides, nanoparticles, adeno-associated virus (AAV) and calcium for the delivery of genetic products, especially for small interfering RNA (siRNA). This combination strategy remedies the reduced internalization efficiency caused by neutralization.
Collapse
Affiliation(s)
- Hua Li
- Department of Basic Medical Science, Huzhou University School of Medicine, Huzhou 313000, China.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Tung Yu Tsui
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Wenxue Ma
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0820, USA.
| |
Collapse
|
35
|
Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B, Zhou J, Zhong H. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 2015; 23:1980-91. [PMID: 26181841 DOI: 10.3109/10717544.2015.1043472] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biodegradable polymer nanoparticle drug carriers are an attractive strategy for oral delivery of peptide and protein drugs. However, their ability to cross the intestinal epithelium membrane is largely limited. Therefore, in the present study, cell-penetrating peptides (R8, Tat, penetratin) and a secretion peptide (Sec) with N-terminal stearylation were introduced to modify nanoparticles (NPs) on the surface to improve oral bioavailability of peptide and protein drugs. In vitro studies conducted in Caco-2 cells showed the value of the apparent permeability coefficient (Papp) of the nanoparticles co-modified with Sec and penetratin (Sec-Pen-NPs) was about two-times greater than that of the nanoparticles modified with only penetratin (Pen-NPs), while the increase of transcellular transport of nanoparticles modified together with Sec and R8 (Sec-R8-NPs), or Sec and Tat (Sec-Tat-NPs), was not significant compared with nanoparticles modified with only R8 (R8-NPs) or Tat (Tat-NPs). Using insulin as the model drug, in vivo studies performed on rats indicated that compared to Pen-NPs, the relative bioavailability of insulin for Sec-Pen-NPs was 1.71-times increased after ileal segments administration, and stronger hypoglycemic effects was also observed. Therefore, the nanoparticles co-modified with penetratin and Sec could act as attractive carriers for oral delivery of insulin.
Collapse
Affiliation(s)
- Siqi Zhu
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Shuangxi Chen
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Yuan Gao
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Feng Guo
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Fengying Li
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Baogang Xie
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Jianliang Zhou
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Haijun Zhong
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| |
Collapse
|
36
|
Kristensen M, de Groot AM, Berthelsen J, Franzyk H, Sijts A, Nielsen HM. Conjugation of cell-penetrating peptides to parathyroid hormone affects its structure, potency, and transepithelial permeation. Bioconjug Chem 2015; 26:477-88. [PMID: 25611217 DOI: 10.1021/bc5005763] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delivery of therapeutic peptides and proteins by the use of cell-penetrating peptides (CPPs) as carriers has been suggested as a feasible strategy. The aim of the present study was to investigate the effect of conjugating a series of well-known CPPs to the biologically active part of parathyroid hormone, i.e., PTH(1-34), and to evaluate the effect with regard to secondary structure, potency in Saos-2 cells, immunogenicity, safety, as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative to covalent conjugation was compared with regard to the transepithelial permeation. CPP-conjugated PTH(1-34) fusion peptides were successfully expressed in Escherichia coli and purified from inclusion bodies. No clear correlation between the degree of secondary structure of the CPP-conjugated PTH(1-34) fusion peptides and their potency was found, albeit a general decrease in permeation was observed for both N- and C-terminally CPP-conjugated PTH(1-34) as compared to native PTH(1-34). However, attachment of CPP to the N-terminus significantly increased permeation across Caco-2 cell monolayers as compared to the corresponding C-terminally CPP-conjugated PTH(1-34). In addition, the nonaarginine sequence proved to be the only CPP capable of increasing permeation when conjugated to PTH(1-34) as compared to co-administration of CPP and PTH(1-34). This enhancement effect was, however, associated with an unacceptably low level of cell viability. In conclusion, covalent conjugation of CPPs to PTH(1-34) influenced the secondary structure, potency, and transepithelial permeation efficiency of the resulting conjugate, and hence this approach appears not to be favorable as compared to co-administration when optimizing CPP-mediated permeation of PTH(1-34) across an intestinal epithelium.
Collapse
Affiliation(s)
- Mie Kristensen
- †Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anne Marit de Groot
- §Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University. Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jens Berthelsen
- ‡Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Henrik Franzyk
- ∥Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alice Sijts
- §Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University. Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Hanne Mørck Nielsen
- †Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
37
|
Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation. J Control Release 2015; 201:14-21. [PMID: 25592386 DOI: 10.1016/j.jconrel.2015.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 11/22/2022]
Abstract
Cell-penetrating peptides (CPPs), also referred to as protein transduction domains (PTDs), can mediate the cellular uptake of a wide range of macromolecules including peptides, proteins, oligonucleotides, and nanoparticles, and thus have received considerable attention as a promising method for drug delivery in vivo. Here, we report that CPP/PTDs facilitate the extravasation of fused proteins by binding to neuropilin-1 (NRP1), a vascular endothelial growth factor (VEGF) co-receptor expressed on the surface of endothelial and some tumor cells. In this study, we examined the capacity of the amphipathic and cationic CPP/PTDs, PTD-3 and TAT-PTD, respectively, to bind cells in vitro and accumulate in xenograft tumors in vivo. Notably, these functions were significantly suppressed by pre-treatment with NRP1-neutralizing Ab. Furthermore, co-injection of iRGD, a cyclic peptide known to increase NRP1-dependent vascular permeability, significantly reduced CPP/PTD tumor delivery. This data demonstrates a mechanism by which NRP1 promotes the extravasation of CPP/PTDs that may open new avenues for the development of more efficient CPP/PTD delivery systems.
Collapse
|
38
|
Rashid J, Absar S, Nahar K, Gupta N, Ahsan F. Newer devices and improved formulations of inhaled insulin. Expert Opin Drug Deliv 2014; 12:917-28. [DOI: 10.1517/17425247.2015.990436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Ouahab A, Cheraga N, Onoja V, Shen Y, Tu J. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery: in vitro study. Int J Pharm 2014; 466:233-45. [PMID: 24614579 DOI: 10.1016/j.ijpharm.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/10/2014] [Accepted: 03/02/2014] [Indexed: 01/08/2023]
Abstract
In order to create a pH-sensitive charge-reversal system for cell penetrating peptides (CPP) to prevent non-specific internalization of the drug; and concomitantly enhance the physical stability and tumor targetability of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles, two sets of novel PEG-PLA micelles were developed. Cell penetrating decapeptide arginine-glycine (RG)5 and a pH-sensitive masking decapeptide histidine-glutamic acid (HE)5 were conjugated at the PEG free end to produce pH sensitive with peptides outside micelles (PHPO), while the pH sensitive with peptides inside micelles (PHPI) are the micelles obtained with the two peptides conjugated to the free end of the PLA block. The polymers were successfully synthesized and characterized by (1)H NMR and GPC. The mixed micelles were prepared and characterized for their loading efficiency, particle size and zeta potential. The surface charge of PHPO was greatly affected by the pH of the solution and (RG)5:(HE)5 ratio at the surface. The pH value of the solution at which the surface charge of PHPO reversed could be manipulated by the feed ratio of (RG)5-PEG-PLA (RGO) and (HE)5-PEG-PLA (HEO), hence, HEO:RGO molar ratio of 45:55 was selected for tumor targeting. Docetaxel (DTX) was sufficiently solubilized by DTX-PHPO with a loading efficiency of 90.18 ± 1.65%. At pH 7.4, DTX loaded mPEG-PLA (DTX-PM) (41.2 ± 0.3 nm), DTX-PHPO (195.3 ± 1.9 nm) and DTX-PHPI (190.9 ± 4.5 nm) showed sustained DTX release of less than 55% within 48 h. However, at pH 6.8 DTX-PHPI released 87.29 ± 0.24%, while DTX-PHPO released 70.49 ± 0.39% of the initial DTX amount within 48 h. Moreover, the physical stability of DTX-PHPO was increased due to the electrostatic interaction of the two peptides. The cellular uptake of DTX-PHPO in SGC-7901 cells and the cell killing effect tested on MCF-7 cells were enhanced by 2 folds at pH 6.8 compared to pH 7.4. Hence, DTX-PHPO is highly pH-sensitive in mildly acidic pH and exhibited higher internalization, but DTX-PHPI exhibited accelerated release. Meanwhile, both formulations displayed low internalization and release at pH greater than 7. This pH sensitive charge reversal design can offer a promising safe carrier using both CPPs and PEG-PLA micelles.
Collapse
Affiliation(s)
- Ammar Ouahab
- Department of Pharmaceutics, China pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China..
| | - Nihad Cheraga
- Department of Pharmaceutics, China pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Vitus Onoja
- Department of Pharmaceutics, China pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Yan Shen
- Department of Pharmaceutics, China pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China..
| | - Jiasheng Tu
- Department of Pharmaceutics, China pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China..
| |
Collapse
|
40
|
Zhang P, Lock LL, Cheetham AG, Cui H. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment. Mol Pharm 2014; 11:964-73. [PMID: 24437690 PMCID: PMC3993903 DOI: 10.1021/mp400619v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Conjugation with a cell penetrating
peptide such as Tat presents
an effective approach to improve the intracellular accumulation of
molecules with low membrane permeability. This strategy, however,
leads to a reduced cellular entry of molecules that can cross cell
membrane effectively. We report here that covalent linkage of an additional
hydrophobic unit that mimics a hydrophobic domain near the Tat sequence
can further improve the cellular uptake of the parental conjugate
into cancer cells regardless of the membrane permeability of the unconjugated
molecule. Both fluorescent imaging and flow cytometry measurements
confirmed the effect of palmitoylation on the increased internalization
of the Tat conjugates with either 5-carboxyfluorescein (5-FAM), a
nonmembrane penetrating dye, or doxorubicin, an anticancer cancer
drug that can readily diffuse across cell membranes. In the case of
the Tat–doxorubicin conjugate, palmitoylation improves the
conjugate’s anticancer activity in both drug sensitive and
resistant cervical cancer cell lines. We further demonstrate that
modification of a Tat–5-FAM conjugate with a hydrophobic quencher
could not only efficiently quench the fluorescence outside of cancer
cell but also facilitate its entry into MCF-7 breast cancer cells.
These results highlight the importance of rational molecular design
of using peptide conjugation chemistry in cancer therapeutics and
diagnostics.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
41
|
Kwak SY, Yang JK, Kim JH, Lee YS. Chemical modulation of bioactive compounds via oligopeptide or amino acid conjugation. Biopolymers 2013; 100:584-91. [DOI: 10.1002/bip.22307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/29/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Seon-Yeong Kwak
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - Jin-Kyoung Yang
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| | - Jong-Ho Kim
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| |
Collapse
|
42
|
Nahar K, Gupta N, Gauvin R, Absar S, Patel B, Gupta V, Khademhosseini A, Ahsan F. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Pharm Sci 2013; 49:805-18. [PMID: 23797056 DOI: 10.1016/j.ejps.2013.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/03/2013] [Accepted: 06/07/2013] [Indexed: 01/14/2023]
Abstract
Delivery of therapeutic agents via the pulmonary route has gained significant attention over the past few decades because this route of administration offers multiple advantages over traditional routes that include localized action, non-invasive nature and favorable lung-to-plasma ratio. However, assessment of post administration behavior of inhaled pharmaceuticals-such as deposition of particles over the respiratory airways, interaction with the respiratory fluid and movement across the air-blood barrier-is challenging because the lung is a very complex organs that is composed of airways with thousands of bifurcations with variable diameters. Thus, much effort has been put forward to develop models that mimic human lungs and allow evaluation of various pharmaceutical and physiological factors that influence the deposition and absorption profiles of inhaled formulations. In this review, we sought to discuss in vitro, in vivo and ex vivo models that have been extensively used to study the behaviors of airborne particles in the lungs and determine the absorption of drugs after pulmonary administration. We have provided a summary of lung cast models, cascade impactors, noninvasive imaging, intact animals, cell culture and isolated perfused lung models as tools to evaluate the distribution and absorption of inhaled particles. We have also outlined the limitations of currently used models and proposed future studies to enhance the reproducibility of these models.
Collapse
Affiliation(s)
- Kamrun Nahar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chang M, Li X, Sun Y, Cheng F, Wang Q, Xie X, Zhao W, Tian X. Effect of Cationic Cyclopeptides on Transdermal and Transmembrane Delivery of Insulin. Mol Pharm 2013; 10:951-7. [DOI: 10.1021/mp300667p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingming Chang
- School of Pharmaceutical Science
and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Xiaohui Li
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian,
Liaoning 116024, China
| | - Yuming Sun
- School of Pharmaceutical Science
and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Fang Cheng
- School of Pharmaceutical Science
and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Qing Wang
- School of Pharmaceutical Science
and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Xiaohuan Xie
- School of Pharmaceutical Science
and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Weijie Zhao
- School of Pharmaceutical Science
and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Xin Tian
- Cancer
Research Institute, the
First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
44
|
Mohammad AK, Amayreh LK, Mazzara JM, Reineke JJ. Rapid Lymph Accumulation of Polystyrene Nanoparticles Following Pulmonary Administration. Pharm Res 2012; 30:424-34. [DOI: 10.1007/s11095-012-0884-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
45
|
Yu R, Zeng Z, Guo X, Zhang H, Liu X, Ding Y, Chen J. The TAT peptide endows PACAP with an enhanced ability to traverse bio-barriers. Neurosci Lett 2012; 527:1-5. [PMID: 22939769 DOI: 10.1016/j.neulet.2012.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potential therapeutic neuropeptide. The 11-amino acid human immunodeficiency virus TAT protein transduction domain is able to deliver protein cargoes across the cell membrane and the blood-brain barrier. A novel fusion protein PACAP-TAT, containing TAT at the C-terminus of PACAP was therefore produced and studied for the ability to cross blood barriers. The gene encoding PACAP-TAT was cloned into the expression vector pKYB, and the target peptide PACAP-TAT was purified using the Intein Mediated Purification with an Affinity Chitin-binding Tag (IMPACT) system. The results of cell assays showed that PACAP-TAT stimulated the cell viability of PAC1-CHO cells with the same potency as PACAP, which indicated that the fusion of TAT did not affect the ability of PACAP-TAT to activate the PACAP-specific receptor PAC1. The transfer efficiencies of PACAP-TAT and PACAP across the blood-brain barrier (BBB), blood-air barrier (BAB) and blood-testis barrier (BTB) were assayed using peptides labeled with fluorescein isothiocyanate (FITC). The results showed that PACAP-TAT traversed blood barriers with an efficiency approximately 2.5-fold greater than PACAP. Fluorescence microscopic examination showed that PACAP-TAT traversed the BBB significantly more efficiently than PACAP. Furthermore, intraperitoneal (i.p.) injection of PACAP-TAT induced a stronger inhibitory effect on food intake than PACAP (p<0.01, PACAP-TAT vs. PACAP), which indicated that TAT helped to increase the localization of PACAP-TAT in the brain. Preparation of PACAP-TAT with the enhanced ability to cross biological barriers will improve its route of administration and expand its scope of application.
Collapse
Affiliation(s)
- Rongjie Yu
- Bio-engineering Institute of Jinan University, Jinan University, Guangzhou, Guangdong, PR China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Oda K, Yumoto R, Nagai J, Katayama H, Takano M. Enhancement Effect of Poly(amino acid)s on Insulin Uptake in Alveolar Epithelial Cells. Drug Metab Pharmacokinet 2012; 27:570-8. [DOI: 10.2133/dmpk.dmpk-12-rg-002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Mo JX, Shi SJ, Zhang Q, Gong T, Sun X, Zhang ZR. Synthesis, transport and mechanism of a type I prodrug: L-carnitine ester of prednisolone. Mol Pharm 2011; 8:1629-40. [PMID: 21854030 DOI: 10.1021/mp100412z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aerosol glucocorticoid medications have become more and more important in treating BA (bronchial asthma). Although these agents are dosed to directly target airway inflammation, adrenocortical suppression and other systematic effects are still seen. To tackle this problem in a novel way, two L-carnitine ester derivatives of prednisolone (as the model drug), namely, PDC and PDSC, were synthesized to increase the absorption of prednisolone across the human bronchial epithelial BEAS-2B cells by the organic cation/carnitine transporter OCTN2 (SLC22A5) and then to slowly and intracellularly release prednisolone. The transport of prednisolone, PDC and PDSC into the human bronchial epithelial BEAS-2B cells was in the order PDSC > prednisolone > PDC at 37 °C. It was found that PDSC displayed 1.79-fold increase of uptake compared to prednisolone. Transport of PDSC by BEAS-2B was temperature-, time-, and Na(+)-dependent and saturable, with an apparent K(m) value of 329.74 μM, suggesting the involvement of carrier-mediated uptake. An RT-PCR study showed that organic cation/carnitine transporters OCTN1 and OCTN2 are expressed in BEAS-2B cells, but little in HEK293T cells. The order of uptake by HEK293T was prednisolone > PDC > PDSC. In addition, the inhibitory effects of organic cations such as L-carnitine, ergothioneine, TEA(+) and ipratropium on PDSC uptake in BEAS-2B cells were in the order L-carnitine > ipratropium > TEA(+) > ergothioneine, whereas their inhibitory effects on PDSC uptake in HEK293T cells were negligible. Finally, in vitro LPS-induced IL-6 production from BEAS-2B was more and longer suppressed by PDSC than prednisolone and PDC. All of these results suggested PDSC may be an attractive candidate for asthma treatment.
Collapse
Affiliation(s)
- Jing-xin Mo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Fei L, Ren L, Zaro JL, Shen WC. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. J Drug Target 2010; 19:675-80. [DOI: 10.3109/1061186x.2010.531729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Sarko D, Beijer B, Garcia Boy R, Nothelfer EM, Leotta K, Eisenhut M, Altmann A, Haberkorn U, Mier W. The pharmacokinetics of cell-penetrating peptides. Mol Pharm 2010; 7:2224-31. [PMID: 20845937 DOI: 10.1021/mp100223d] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cell-penetrating peptides (CPPs) are able to penetrate the cell membrane carrying cargoes such as peptides, proteins, oligonucleotides, siRNAs, radioisotopes, liposomes, and nanoparticles. Consequently, many delivery approaches have been developed to use CPPs as tools for drug delivery. However, until now a systematic analysis of their in vivo properties including potential tumor binding specificity for drug targeting purposes has not been conducted. Ten of the most commonly applied CPPs were obtained by solid phase peptide synthesis and labeled with (111)In or (68)Ga. Uptake studies were conducted using a panel of six tumor cell lines of different origin. The stability of the peptides was examined in human serum. Biodistribution experiments were conducted in nude mice bearing human prostate carcinoma. Finally, positron emission tomography (PET) measurements were performed in male Wistar rats. The in vitro uptake studies revealed high cellular uptake values, but no specificity toward any of the cell lines. The biodistribution in PC-3 tumor-bearing nude mice showed a high transient accumulation in well-perfused organs and a rapid clearance from the blood. All of the CPPs revealed a relatively low accumulation rate in the brain. The highest uptake values were observed in the liver (with a maximal uptake of 51 %ID/g observed for oligoarginine (R(9))) and the kidneys (with a maximal uptake of 94 %ID/g observed for NLS). The uptake values in the PC-3 tumor were low at all time points, indicating a lack of tumor specific accumulation for all peptides studied. A micro-PET imaging study with (68)Ga-labeled penetratin, Tat and transportan(10) (TP(10)) confirmed the organ distribution data. These data reveal that CPPs do not show evidence for application in tumor targeting purposes in vivo. However, CPPs readily penetrate into most organs and show rapid clearance from the circulation. The high uptake rates observed in vitro and the relatively low specificity in vivo imply that CPPs would be better suited for topical application in combination with cargoes which show passive targeting and dominate the pharmacokinetic behavior. In conclusion, CPPs are suitable as drug carriers for in vivo application provided that their pharmacokinetic properties are also considered in design of CPP drug delivery systems.
Collapse
Affiliation(s)
- Dikran Sarko
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Eiríksdóttir E, Mäger I, Lehto T, El Andaloussi S, Langel Ü. Cellular Internalization Kinetics of (Luciferin-)Cell-Penetrating Peptide Conjugates. Bioconjug Chem 2010; 21:1662-72. [DOI: 10.1021/bc100174y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Emelía Eiríksdóttir
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden, and University of Tartu, Institute of Technology, Tartu, Estonia
| | - Imre Mäger
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden, and University of Tartu, Institute of Technology, Tartu, Estonia
| | - Taavi Lehto
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden, and University of Tartu, Institute of Technology, Tartu, Estonia
| | - Samir El Andaloussi
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden, and University of Tartu, Institute of Technology, Tartu, Estonia
| | - Ülo Langel
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden, and University of Tartu, Institute of Technology, Tartu, Estonia
| |
Collapse
|