1
|
Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic Potential and Mechanisms of Bee Venom Therapy: A Comprehensive Review of Apitoxin Applications and Safety Enhancement Strategies. Pharmaceuticals (Basel) 2024; 17:1211. [PMID: 39338374 PMCID: PMC11434713 DOI: 10.3390/ph17091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Apitoxin therapy (BVT-bee venom therapy) is an emerging complementary treatment utilizing bee venom for various medical conditions. This review explores the potential and therapeutic mechanisms of bee venom, focusing on its chemical composition and the methods for its extraction and purification to enhance safety while maintaining bioactivity. Bee venom contains amphipathic peptides such as melittin and apamin, enzymes like phospholipase A2, and bioamines including histamine and catecholamines, contributing to its pleiotropic effects. The therapeutic applications of bee venom span anti-inflammatory, analgesic, antimicrobial, antiviral, neuroprotective, anti-arthritic, and anti-cancer activities. Clinical and laboratory studies have demonstrated its efficacy in treating chronic and autoimmune diseases, pain management, and improving quality of life. The immunogenic properties of bee venom necessitate ongoing research to mitigate allergic reactions, ensuring its safe and effective use in medical practice. This review summarizes the current state of research on bee venom therapy, highlighting its potential benefits and future research directions.
Collapse
Affiliation(s)
- Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Aleksandra Spławska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
3
|
di Leandro L, Colasante M, Pitari G, Ippoliti R. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins (Basel) 2023; 15:699. [PMID: 38133203 PMCID: PMC10748335 DOI: 10.3390/toxins15120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.
Collapse
Affiliation(s)
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.d.L.); (M.C.); (G.P.)
| |
Collapse
|
4
|
Haque S, Hussain A, Joshi H, Sharma U, Sharma B, Aggarwal D, Rani I, Ramniwas S, Gupta M, Tuli HS. Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models. J Cancer Res Clin Oncol 2023; 149:17709-17726. [PMID: 37919474 DOI: 10.1007/s00432-023-05458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, 13306, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markendashwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
5
|
Yaacoub C, Wehbe R, Roufayel R, Fajloun Z, Coutard B. Bee Venom and Its Two Main Components-Melittin and Phospholipase A2-As Promising Antiviral Drug Candidates. Pathogens 2023; 12:1354. [PMID: 38003818 PMCID: PMC10674158 DOI: 10.3390/pathogens12111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Viruses are known to infect most types of organisms. In humans, they can cause several diseases that range from mild to severe. Although many antiviral therapies have been developed, viral infections continue to be a leading cause of morbidity and mortality worldwide. Therefore, the discovery of new and effective antiviral agents is desperately needed. Animal venoms are a rich source of bioactive molecules found in natural goods that have been used since ancient times in alternative medicine to treat a variety of human diseases. Recently, and with the onset of the COVID-19 pandemic, scientists have regained their interest in the possible use of natural products, such as bee venom (BV), as a potential antiviral agent to treat viral infections. BV is known to exert many therapeutic activities such as anti-proliferative, anti-bacterial, and anti-inflammatory effects. However, there is limited discussion of the antiviral activity of BV in the literature. Therefore, this review aims to highlight the antiviral properties of BV and its two primary constituents, melittin (MEL) and phospholipase A2 (PLA2), against a variety of enveloped and non-enveloped viruses. Finally, the innovative strategies used to reduce the toxicity of BV and its two compounds for the development of new antiviral treatments are also considered.
Collapse
Affiliation(s)
- Carole Yaacoub
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
| | - Rim Wehbe
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
- Faculty of Sciences III, Department of Biology, Michel Slayman Tripoli Campus, Lebanese University, Tripoli 1352, Lebanon
| | - Bruno Coutard
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
6
|
Sun M, Wu Y, Zhou Z, Liu S, Mao S, Li G. Co-delivery of EGCG and melittin with self-assembled fluoro-nanoparticles for enhanced cancer therapy. Aging (Albany NY) 2023; 15:204769. [PMID: 37277118 PMCID: PMC10292896 DOI: 10.18632/aging.204769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE Melittin (MPI) is a potential anticancer peptide due to its abilities of antitumor and immunomodulatory functions. Epigallocatechin-3-Ogallate (EGCG), a major extract of green tea, has shown great affinity for various types of biological molecules, especially for peptide/protein drugs. The aim of this study is to prepare a fluoro- nanoparticle (NP) formed by self-assembly of fluorinated EGCG (FEGCG) and MPI, and evaluate the effect of fluorine modification on MPI delivery and their synergistic antitumor effect. METHODS Characterization of FEGCG@MPI NPs was determined by dynamic light scattering (DLS) and transmission electron microscope (TEM). Biology functions of FEGCG@MPI NPs were detected by hemolysis effect, cytotoxicity, apoptosis, cellular uptake with confocal microscopy and flow cytometry. The protein expression levels of Bcl-2/Bax, IRF, STATT-1, P-STAT-1, and PD-L1 were determined via western blotting. A transwell assay and wound healing assay were used to detect the cell migration and invasion. The antitumor efficacy of FEGCG@MPI NPs was demonstrated in a subcutaneous tumor model. RESULTS Fluoro-nanoparticles could be formed by self-assembly of FEGCG and MPI, and fluorine modification on EGCG could ameliorate the side effect and delivery of MPI. The promoted therapeutics of FEGCG@MPI NPs could be achieved by regulating PD-L1 and apoptosis signaling, which might involve pathways of IRF, STAT-1/pSTAT-1, PD-L1, Bcl-2, and Bax in vitro. Moreover, FEGCG@MPI NPs could significantly inhibit the growth of tumor in vivo. CONCLUSIONS FEGCG@MPI NPs may offer a potential platform and promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yue Wu
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| | - Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College Nanjing, Nanjing 210008, Jiangsu Province, P.R. China
| | - Siyuan Liu
- Department of Hepatobiliary Surgery, Nanjing Medical University Nanjing, Nanjing 211166, Jiangsu Province, P.R. China
| | - Shuai Mao
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| |
Collapse
|
7
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Encapsulating melittin from animal venom by finely tuned charge compensation with polymer carriers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Han E, Kim D, Cho Y, Lee S, Kim J, Kim H. Development of Polymersomes Co-Delivering Doxorubicin and Melittin to Overcome Multidrug Resistance. Molecules 2023; 28:molecules28031087. [PMID: 36770754 PMCID: PMC9920864 DOI: 10.3390/molecules28031087] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) is one of the major barriers in chemotherapy. It is often related to the overexpression of efflux receptors such as P-glycoprotein (P-gp). Overexpressed efflux receptors inhibit chemotherapeutic efficacy by pumping out intracellularly delivered anticancer drugs. In P-gp-mediated MDR-related pathways, PI3K/Akt and NF-kB pathways are commonly activated signaling pathways, but these pathways are downregulated by melittin, a main component of bee venom. In this study, a polymersome based on a poly (lactic acid) (PLA)-hyaluronic acid (HA) (20k-10k) di-block copolymer and encapsulating melittin and doxorubicin was developed to overcome anticancer resistance and enhance chemotherapeutic efficacy. Through the simultaneous delivery of doxorubicin and melittin, PI3K/Akt and NF-κB pathways could be effectively inhibited, thereby downregulating P-gp and successfully enhancing chemotherapeutic efficacy. In conclusion, a polymersome carrying an anticancer drug and melittin could overcome MDR by regulating P-gp overexpression pathways.
Collapse
Affiliation(s)
- Eunkyung Han
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Doyeon Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Youngheun Cho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seonock Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
- Correspondence:
| |
Collapse
|
10
|
Zhang F, Yang P, Mao W, Zhong C, Zhang J, Chang L, Wu X, Liu H, Zhang Y, Gou S, Ni J. Short, mirror-symmetric antimicrobial peptides centered on "RRR" have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater 2022; 154:145-167. [PMID: 36241015 DOI: 10.1016/j.actbio.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The increasingly severe bacterial resistance worldwide pushes people to discover and design potential antibacterial drugs unavoidably. In this work, a series of short, mirror-symmetric peptides were designed and successfully synthesized, centered on "RRR" and labeled with hydrophobic amino acids at both ends. Based on the structure-activity relationship analysis, LWWR (LWWRRRWWL-NH2) was screened as a desirable mirror-symmetric peptide for further study. As expected, LWWR displayed broad-spectrum antibacterial activity against the standard bacteria and antibiotic-resistant strains. Undoubtedly, the high stability of LWWR in a complex physiological environment was an essential guarantee to maximizing its antibacterial activity. Indeed, LWWR also exhibited a rapid bactericidal speed and a low tendency to develop bacterial resistance, based on the multiple actions of non-receptor-mediated membrane actions and intra-cellular mechanisms. Surprisingly, although LWWR showed similar in vivo antibacterial activity compared with Polymyxin B and Melittin, the in vivo safety of LWWR was far higher than that of them, so LWWR had better therapeutic potential. In summary, the desirable mirror-symmetric peptide LWWR was promised as a potential antibacterial agent to confront the antibiotics resistance crisis. STATEMENT OF SIGNIFICANCE: Witnessing the growing problem of antibiotic resistance, a series of short, mirror-symmetric peptides based on the symmetric center "RRR" and hydrophobic terminals were designed and synthesized in this study. Among, LWWR (LWWRRRWWL-NH2) presented broad-spectrum antibacterial activity both in vitro and in vivo due to its multiple mechanisms and good stability. Meanwhile, the low drug resistance and toxicity of LWWR also suggested its potential for clinical application. The findings of this study will provide some inspiration for the design and development of potential antibacterial agents, and contribute to the elimination of bacterial infections worldwide as soon as possible.
Collapse
Affiliation(s)
- Fangyan Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
11
|
Al-Otaibi JS, Mary YS, Mary YS, Acharjee N, Churchill DG. Spectroscopic studies of 5-fluoro-1H-pyrimidine-2,4-dione adsorption on nanorings, solvent effects and SERS analysis. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
V F Esposito T, Rodríguez-Rodríguez C, Blackadar C, Haney EF, Pletzer D, E W Hancock R, Saatchi K, Häfeli UO. Biodistribution and Toxicity of Innate Defense Regulator 1018 (IDR-1018). Eur J Pharm Biopharm 2022; 179:11-25. [PMID: 36028151 DOI: 10.1016/j.ejpb.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Innate defense regulators (IDRs) are synthetic host-defense peptides (HDPs) with broad-spectrum anti-infective properties, including immunomodulatory, anti-biofilm and direct antimicrobial activities. A lack of pharmacokinetic data about these peptides hinders their development and makes it challenging to fully understand how they work in vivo since their mechanism of action is dependent on tissue concentrations of the peptide. Here, we set out to define in detail the pharmacokinetics of a well-characterized IDR molecule, IDR-1018. To make the peptide traceable, it was radiolabeled with the long-lived gamma-emitting isotope gallium-67. After a series of bench-top characterizations, the radiotracer was administered to healthy mice intravenously (IV) or subcutaneously (SQ) at various dose levels (2.5-13 mg/kg). Nuclear imaging and ex-vivo biodistributions were used to quantify organ and tissue uptake of the radiotracer over time. When administered as an IV bolus, the distribution profile of the radiotracer changed as the dose was escalated. At 2.5 mg/kg, the peptide was well-tolerated, poorly circulated in the blood and was cleared predominately by the reticuloendothelial system. Higher doses (7 and 13 mg/kg) as an IV bolus were almost immediately lethal due to respiratory arrest; significant lung uptake of the radiotracer was observed from nuclear scans of these animals, and histological examination found extensive damage to the pulmonary vasculature and alveoli. When administered SQ at a dose of 3 mg/kg, radiolabeled IDR-1018 was rapidly absorbed from the site of injection and predominately cleared renally. Apart from the SQ injection site, no other tissue had a concentration above the minimum inhibitory concentration that would enable this peptide to exert direct antimicrobial effects against most pathogenic bacteria. Tissue concentrations were sufficient however to disrupt microbial biofilms and alter the host immune response. Overall, this study demonstrated that the administration of synthetic IDR peptide in vivo is best suited to local administration which avoids some of the issues associated with peptide toxicity that are observed when administered systemically by IV injection, an issue that will have to be addressed through formulation.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Evan F Haney
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada; Asep Medical Holdings, Victoria, BC, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Zhukouskaya H, Blanco PM, Černochová Z, Čtveráčková L, Staňo R, Pavlova E, Vetrík M, Černoch P, Filipová M, Šlouf M, Štěpánek M, Hrubý M, Košovan P, Pánek J. Anionically Functionalized Glycogen Encapsulates Melittin by Multivalent Interaction. Biomacromolecules 2022; 23:3371-3382. [PMID: 35768319 DOI: 10.1021/acs.biomac.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed acid-functionalized glycogen conjugates as supramolecular carriers for efficient encapsulation and inhibition of a model cationic peptide melittin─the main component of honeybee venom. For this purpose, we synthesized and characterized a set of glycogens, functionalized to various degrees by several different acid groups. These conjugates encapsulate melittin up to a certain threshold amount, beyond which they precipitate. Computer simulations showed that sufficiently functionalized conjugates electrostatically attract melittin, resulting in its efficient encapsulation in a broad pH range around the physiological pH. Hemolytic assays confirmed in vitro that the effective inhibition of melittin's hemolytic activity occurs for highly functionalized samples, whereas no inhibition is observed when using low-functionalized conjugates. It can be concluded that functional glycogens are promising carriers for cationic molecular cargos or antidotes against animal venoms under conditions, in which suitable properties such as biodegradability and biocompatibility are crucial.
Collapse
Affiliation(s)
- Hanna Zhukouskaya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lucie Čtveráčková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Roman Staňo
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Vetrík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
14
|
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 2022; 22:895-909. [PMID: 35687355 DOI: 10.1080/14712598.2022.2088277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hossein Olfati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Wang A, Zheng Y, Zhu W, Yang L, Yang Y, Peng J. Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules 2022; 12:biom12010118. [PMID: 35053266 PMCID: PMC8773652 DOI: 10.3390/biom12010118] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Melittin (MEL) is a 26-amino acid polypeptide with a variety of pharmacological and toxicological effects, which include strong surface activity on cell lipid membranes, hemolytic activity, and potential anti-tumor properties. However, the clinical application of melittin is restricted due to its severe hemolytic activity. Different nanocarrier systems have been developed to achieve stable loading, side effects shielding, and tumor-targeted delivery, such as liposomes, cationic polymers, lipodisks, etc. In addition, MEL can be modified on nano drugs as a non-selective cytolytic peptide to enhance cellular uptake and endosomal/lysosomal escape. In this review, we discuss recent advances in MEL’s nano-delivery systems and MEL-modified nano drug carriers for cancer therapy.
Collapse
|
16
|
Nichols JM, Crelli CV, Liu L, Pham HV, Janjic JM, Shepherd AJ. Tracking macrophages in diabetic neuropathy with two-color nanoemulsions for near-infrared fluorescent imaging and microscopy. J Neuroinflammation 2021; 18:299. [PMID: 34949179 PMCID: PMC8697472 DOI: 10.1186/s12974-021-02365-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of diabetes and diabetic peripheral neuropathy continues to rise, and studies have shown that macrophages play an important role in their pathogenesis. To date, macrophage tracking has largely been achieved using genetically-encoded fluorescent proteins. Here we present a novel two-color fluorescently labeled perfluorocarbon nanoemulsion (PFC-NE) designed to monitor phagocytic macrophages in diabetic neuropathy in vitro and in vivo using non-invasive near-infrared fluorescent (NIRF) imaging and fluorescence microscopy. Methods Presented PFC-NEs were formulated with perfluorocarbon oil surrounded by hydrocarbon shell carrying two fluorescent dyes and stabilized with non-ionic surfactants. In vitro assessment of nanoemulsions was performed by measuring fluorescent signal stability, colloidal stability, and macrophage uptake and subsequent viability. The two-color PFC-NE was administered to Leprdb/db and wild-type mice by tail vein injection, and in vivo tracking of the nanoemulsion was performed using both NIRF imaging and confocal microscopy to assess its biodistribution within phagocytic macrophages along the peripheral sensory apparatus of the hindlimb. Results In vitro experiments show two-color PFC-NE demonstrated high fluorescent and colloidal stability, and that it was readily incorporated into RAW 264.7 macrophages. In vivo tracking revealed distribution of the two-color nanoemulsion to macrophages within most tissues of Leprdb/db and wild-type mice which persisted for several weeks, however it did not cross the blood brain barrier. Reduced fluorescence was seen in sciatic nerves of both Leprdb/db and wild-type mice, implying that the nanoemulsion may also have difficulty crossing an intact blood nerve barrier. Additionally, distribution of the nanoemulsion in Leprdb/db mice was reduced in several tissues as compared to wild-type mice. This reduction in biodistribution appears to be caused by the increased number of adipose tissue macrophages in Leprdb/db mice. Conclusions The nanoemulsion in this study has the ability to identify phagocytic macrophages in the Leprdb/db model using both NIRF imaging and fluorescence microscopy. Presented nanoemulsions have the potential for carrying lipophilic drugs and/or fluorescent dyes, and target inflammatory macrophages in diabetes. Therefore, we foresee these agents becoming a useful tool in both imaging inflammation and providing potential treatment in diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- James M Nichols
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlin V Crelli
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Hoang Vu Pham
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Jelena M Janjic
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| | - Andrew J Shepherd
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Ye R, Zheng Y, Chen Y, Wei X, Shi S, Chen Y, Zhu W, Wang A, Yang L, Xu Y, Peng J. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55902-55912. [PMID: 34793125 DOI: 10.1021/acsami.1c17618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melittin is a potential anticancer candidate with remarkable antitumor activity and ability to overcome tumor drug resistance. However, the clinical applications of melittin are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity after systemic administration. Here, a biocompatible and stable melittin-loaded lipid-coated polymeric nanoparticle (MpG@LPN) formulation that contains a melittin/poly-γ-glutamic acid nanoparticle inner core, a lipid membrane middle layer, and a polyethylene glycol (PEG) and PEG-targeting molecule outer shell was designed. The formulations were prepared by applying a self-assembly procedure based on intermolecular interactions, including electrostatic attraction and hydrophobic effect. The core-shell MpG@LPN presented high efficiency for melittin encapsulation and high stability in physiological conditions. Hemolysis and cell proliferation assays showed that the PEG-modified MpG@LPN had almost no hemolytic activity and nonspecific cytotoxicity even at high concentrations. The modification of targeting molecules on the MpG@LPNs allowed for the selective binding with target tumor cells and cytolytic activity via apoptosis induction. In vivo experiments revealed that MpG@LPNs can remarkably inhibit the growth of tumors without the occurrence of hemolysis and tissue toxicity. Results suggested that the developed MpG@LPN with a core-shell structure can effectively address the main obstacles of melittin in clinical applications and has great potential in cancer treatment.
Collapse
Affiliation(s)
- Ran Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuetan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wanxin Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Anqi Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liuxin Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Pharmacy and Chemistry, Dali University, Dali City 671000, P. R. China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Jia F, Chen P, Wang D, Sun Y, Ren M, Wang Y, Cao X, Zhang L, Fang Y, Tan X, Lu H, Cai J, Lu X, Zhang K. Bottlebrush Polymer-Conjugated Melittin Exhibits Enhanced Antitumor Activity and Better Safety Profile. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42533-42542. [PMID: 34472829 PMCID: PMC8784393 DOI: 10.1021/acsami.1c14285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite potency against a variety of cancers in preclinical systems, melittin (MEL), a major peptide in bee venom, exhibits non-specific toxicity, severe hemolytic activity, and poor pharmacological properties. Therefore, its advancement in the clinical translation system has been limited to early-stage trials. Herein, we report a biohybrid involving a bottlebrush-architectured poly(ethylene glycol) (PEG) and MEL. Termed pacMEL, the conjugate consists of a high-density PEG arrangement, which provides MEL with steric inhibition against protein access, while the high molecular weight of pacMEL substantially enhances plasma pharmacokinetics with a ∼10-fold increase in the area under the curve (AUC∞) compared to free MEL. pacMEL also significantly reduces hepatic damage and unwanted innate immune response and all but eliminated hemolytic activities of MEL. Importantly, pacMEL passively accumulates at subcutaneously inoculated tumor sites and exhibits stronger tumor-suppressive activity than molecular MEL. Collectively, pacMEL makes MEL a safer and more appealing drug candidate.
Collapse
Affiliation(s)
- Fei Jia
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Peiru Chen
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dali Wang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yehui Sun
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yuyan Wang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xueyan Cao
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lei Zhang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Fang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hao Lu
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Dabbagh Moghaddam F, Akbarzadeh I, Marzbankia E, Farid M, khaledi L, Reihani AH, Javidfar M, Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00085-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done.
Results
This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups.
Conclusions
Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.
Collapse
|
20
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
21
|
Zhou J, Wan C, Cheng J, Huang H, Lovell JF, Jin H. Delivery Strategies for Melittin-Based Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17158-17173. [PMID: 33847113 DOI: 10.1021/acsami.1c03640] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Melittin (MLT) has been studied preclinically as an anticancer agent based on its broad lytic effects in multiple tumor types. However, unsatisfactory tissue distribution, hemolysis, rapid metabolism, and limited specificity are critical obstacles that limit the translation of MLT. Emerging drug delivery strategies hold promise for targeting, controlled drug release, reduced side effects, and ultimately improved treatment efficiency. In this review, we discuss recent advances in the use of diverse carriers to deliver MLT, with an emphasis on the design and mechanisms of action. We further outline the opportunities for MLT-based cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Hao Huang
- Guo Life Science Center, Wuhan Shengrun Biotechnology Co. Ltd, Wuhan 430075, P.R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
22
|
Chain CY, Daza Millone MA, Cisneros JS, Ramirez EA, Vela ME. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front Chem 2021; 8:605307. [PMID: 33490037 PMCID: PMC7817952 DOI: 10.3389/fchem.2020.605307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.
Collapse
Affiliation(s)
- Cecilia Yamil Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Eduardo Alejandro Ramirez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| |
Collapse
|
23
|
Esser AK, Ross MH, Fontana F, Su X, Gabay A, Fox GC, Xu Y, Xiang J, Schmieder AH, Yang X, Cui G, Scott M, Achilefu S, Chauhan J, Fletcher S, Lanza GM, Weilbaecher KN. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Theranostics 2020; 10:7510-7526. [PMID: 32685002 PMCID: PMC7359087 DOI: 10.7150/thno.44523] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor-associated macrophages (TAMs) enhance tumor growth in mice and are correlated with a worse prognosis for breast cancer patients. While early therapies sought to deplete all macrophages, current therapeutics aim to reprogram pro-tumor macrophages (M2) and preserve those necessary for anti-tumor immune responses (M1). Recent studies have shown that c-MYC (MYC) is induced in M2 macrophages in vitro and in vivo where it regulates the expression of tumor-promoting genes. In a myeloid lineage MYC KO mouse model, MYC had important roles in macrophage maturation and function leading to reduced tumor growth. We therefore hypothesized that targeted delivery of a MYC inhibitor to established M2 TAMs could reduce polarization toward an M2 phenotype in breast cancer models. Methods: In this study, we developed a MYC inhibitor prodrug (MI3-PD) for encapsulation within perfluorocarbon nanoparticles, which can deliver drugs directly to the cytosol of the target cell through a phagocytosis independent mechanism. We have previously shown that M2-like TAMs express significant levels of the vitronectin receptor, integrin β3, and in vivo targeting and therapeutic potential was evaluated using αvβ3 integrin targeted rhodamine-labeled nanoparticles (NP) or integrin αvβ3-MI3-PD nanoparticles. Results: We observed that rhodamine, delivered by αvβ3-rhodamine NP, was incorporated into M2 tumor promoting macrophages through both phagocytosis-independent and dependent mechanisms, while NP uptake in tumor suppressing M1 macrophages was almost exclusively through phagocytosis. In a mouse model of breast cancer (4T1-GFP-FL), M2-like TAMs were significantly reduced with αvβ3-MI3-PD NP treatment. To validate this effect was independent of drug delivery to tumor cells and was specific to the MYC inhibitor, mice with integrin β3 knock out tumors (PyMT-Bo1 β3KO) were treated with αvβ3-NP or αvβ3-MI3-PD NP. M2 macrophages were significantly reduced with αvβ3-MI3-PD nanoparticle therapy but not αvβ3-NP treatment. Conclusion: These data suggest αvβ3-NP-mediated drug delivery of a c-MYC inhibitor can reduce protumor M2-like macrophages while preserving antitumor M1-like macrophages in breast cancer.
Collapse
|
24
|
Wang S, Zeng P, Zhu X, Lei C, Huang Y, Nie Z. Chimeric Peptides Self-Assembling on Titanium Carbide MXenes as Biosensing Interfaces for Activity Assay of Post-translational Modification Enzymes. Anal Chem 2020; 92:8819-8826. [DOI: 10.1021/acs.analchem.0c00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shigong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P.R. China
| | - Pan Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P.R. China
| | - Xiaohua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P.R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P.R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P.R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
25
|
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020; 15:675-704. [PMID: 32103936 PMCID: PMC7008395 DOI: 10.2147/ijn.s226186] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| |
Collapse
|
26
|
Aufschnaiter A, Kohler V, Khalifa S, Abd El-Wahed A, Du M, El-Seedi H, Büttner S. Apitoxin and Its Components against Cancer, Neurodegeneration and Rheumatoid Arthritis: Limitations and Possibilities. Toxins (Basel) 2020; 12:E66. [PMID: 31973181 PMCID: PMC7076873 DOI: 10.3390/toxins12020066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 02/03/2023] Open
Abstract
Natural products represent important sources for the discovery and design of novel drugs. Bee venom and its isolated components have been intensively studied with respect to their potential to counteract or ameliorate diverse human diseases. Despite extensive research and significant advances in recent years, multifactorial diseases such as cancer, rheumatoid arthritis and neurodegenerative diseases remain major healthcare issues at present. Although pure bee venom, apitoxin, is mostly described to mediate anti-inflammatory, anti-arthritic and neuroprotective effects, its primary component melittin may represent an anticancer therapeutic. In this review, we approach the possibilities and limitations of apitoxin and its components in the treatment of these multifactorial diseases. We further discuss the observed unspecific cytotoxicity of melittin that strongly restricts its therapeutic use and review interesting possibilities of a beneficial use by selectively targeting melittin to cancer cells.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, 106 91 Stockholm, Sweden;
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden; (V.K.); (S.K.)
| | - Shaden Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden; (V.K.); (S.K.)
| | - Aida Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, 12627 Giza, Egypt;
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116024, China;
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
- International Research Center for Food nutrition and safety, Jiangsu University, Zhenjiang 212013, China
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden; (V.K.); (S.K.)
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| |
Collapse
|
27
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
28
|
Immunological considerations and concerns as pertinent to whole eye transplantation. Curr Opin Organ Transplant 2019; 24:726-732. [PMID: 31689262 DOI: 10.1097/mot.0000000000000713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The advent of clinical vascularized composite allotransplantation (VCA), offers hope for whole eye transplantation (WET) in patients with devastating vison loss that fails or defies current treatment options. Optic nerve regeneration and reintegration remain the overarching hurdles to WET. However, the realization of WET may indeed be limited by our lack of understanding of the singular immunological features of the eye as pertinent to graft survival and functional vision restoration in the setting of transplantation. RECENT FINDINGS Like other VCA, such as the hand or face, the eye includes multiple tissues with distinct embryonic lineage and differential antigenicity. The ultimate goal of vision restoration through WET requires optimal immune modulation of the graft for successful optic nerve regeneration. Our team is exploring barriers to our understanding of the immunology of the eye in the context of WET including the role of immune privilege and lymphatic drainage on rejection, as well as the effects ischemia, reperfusion injury and rejection on optic nerve regeneration. SUMMARY Elucidation of the unique immunological responses in the eye and adnexa after WET will provide foundational clues that will help inform therapies that prevent immune rejection without hindering optic nerve regeneration or reintegration.
Collapse
|
29
|
Lyu C, Fang F, Li B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr Protein Pept Sci 2019; 20:240-250. [PMID: 29895240 DOI: 10.2174/1389203719666180612084615] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Melittin, a major component of bee venom, is a water-soluble toxic peptide of which a various biological effects have been identified to be useful in anti-tumor therapy. In addition, Melittin also has anti-parasitic, anti-bacterial, anti-viral, and anti-inflammatory activities. Therefore, it is a very attractive therapeutic candidate for human diseases. However, melittin induces extensive hemolysis, a severe side effect that dampens its future development and clinical application. Thus, studies of melittin derivatives and new drug delivery systems have been conducted to explore approaches for optimizing the efficacy of this compound, while reducing its toxicity. A number of reviews have focused on each side, respectively. In this review, we summarize the research progress on the anti-tumor effects of melittin and its derivatives, and discuss its future potential clinical applications.
Collapse
Affiliation(s)
- Can Lyu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
30
|
Dos Santos AP, de Araújo TG, Rádis-Baptista G. Nanoparticles Functionalized with Venom-Derived Peptides and Toxins for Pharmaceutical Applications. Curr Pharm Biotechnol 2019; 21:97-109. [PMID: 31223083 DOI: 10.2174/1389201020666190621104624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.
Collapse
Affiliation(s)
- Ana P Dos Santos
- Program of Post-graduation in Pharmaceutical Sciences (FFEO/UFC), Federal University of Ceara, Ceara, Brazil
| | | | | |
Collapse
|
31
|
Melittin Exerts Beneficial Effects on Paraquat-Induced Lung Injuries In Mice by Modifying Oxidative Stress and Apoptosis. Molecules 2019; 24:molecules24081498. [PMID: 30995821 PMCID: PMC6514788 DOI: 10.3390/molecules24081498] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.
Collapse
|
32
|
Vezeridis AM, de Gracia Lux C, Barnhill SA, Kim S, Wu Z, Jin S, Lux J, Gianneschi NC, Mattrey RF. Fluorous-phase iron oxide nanoparticles as enhancers of acoustic droplet vaporization of perfluorocarbons with supra-physiologic boiling point. J Control Release 2019; 302:54-62. [PMID: 30928487 DOI: 10.1016/j.jconrel.2019.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 01/24/2019] [Accepted: 03/11/2019] [Indexed: 01/19/2023]
Abstract
Perfluorocarbon emulsion nanodroplets containing iron oxide nanoparticles (IONPs) within their inner perfluorohexane (PFH) core were prepared to investigate potential use as an acoustically activatable ultrasound contrast agent, with the hypothesis that incorporation of IONPs into the fluorous phase of a liquid perfluorocarbon emulsion would potentiate acoustic vaporization. IONPs with an oleic acid (OA) hydrophobic coating were synthesized through chemical co-precipitation. To suspend IONP in PFH, OA was exchanged with perfluorononanoic acid (PFNA) via ligand exchange to yield fluorophilic PFNA-coated IONPs (PFNA-IONPs). Suspensions with various amounts of PFNA-IONPs (0-15% w/v) in PFH were emulsified in saline by sonication, using 5% (w/v) egg yolk phospholipid as an emulsifier. PFNA-IONPs were characterized with transmission electron microscopy (TEM), transmission electron cryomicroscopy (cryoTEM), and thermogravimetric analysis (TGA) with Fourier transform infrared spectroscopy (FTIR). IONP were between 5 and 10 nm in diameter as measured by electron microscopy, and hydrodynamic size of the PFH nanodroplets were 150 to 230 nm as measured by dynamic light scattering (DLS). Acoustic droplet vaporization of PFH nanodroplets (PFH-NDs) was induced using conversion pulses (100 cycle at 1.1 MHz and 50% duty cycle) provided by a focused ultrasound transducer, and formed microbubbles were imaged using a clinical ultrasound scanner. The acoustic pressure threshold needed for PFH-NDs vaporization decreased with increasing temperature and IONP content. PFH-NDs containing 5% w/v IONP converted to microbubbles at 42 °C at 2.18 MI, which is just above the exposure limits of 1.9 MI allowed by the FDA for clinical ultrasound scanners, whereas 10 and 15% emulsion vaporized at 1.87 and 1.24 MI, respectively. Furthermore, 5% IONP-loaded PFH-NDs injected intravenously into melanoma-bearing mice at a dose of 120 mg PFH/kg, converted into detectable microbubbles in vivo 5 h, but not shortly after injection, indicating that this technique detects NDs accumulated in tumors.
Collapse
Affiliation(s)
- Alexander M Vezeridis
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caroline de Gracia Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah A Barnhill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sejung Kim
- Department of Material Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhe Wu
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sungho Jin
- Department of Material Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jacques Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Robert F Mattrey
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC-MS/MS. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1226-S1235. [PMID: 30450981 DOI: 10.1080/21691401.2018.1536063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, citric acid-functionalized Fe3O4 magnetic nanoparticles (CA-MNPs) were prepared via a coprecipitation method and were fully characterized. Doxorubicin (DOX) and melittin (MEL), as anticancer agents, were loaded onto CA-MNPs surface through electrostatic interactions with the aim to achieve an effective co-delivery system for cancer therapy. The loading efficiency and in vitro release profiles of DOX and MEL were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS/MS step was performed in the selected reaction monitoring (SRM) mode which enabled simultaneous quantification of the analytes with high specificity and sensitivity. An excellent loading efficiency of about 100% was achieved for DOX and MEL in a drug to nanocarrier ratio of 1:10. The in vitro release of the drugs from CA-MNPs was evaluated for 8 h at pH 7.4, 5.5 and 4.5. The experimental results revealed that the release behaviour of both of the anticancer agents was strongly pH-dependent and significantly enhanced at pH 4.5. The in vitro MTT assay on MCF-7 breast cancer cell line exhibited a synergistic effect between DOX and MEL which led to substantially greater antitumor efficacy, compared to single administration of these anticancer agents at equivalent doses. The results indicated that the co-delivery system of (DOX/MEL)-loaded CA-MNPs is highly capable to be used in magnetically targeted cancer therapy.
Collapse
|
34
|
Jia HR, Zhu YX, Xu KF, Wu FG. Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin. Adv Healthc Mater 2018; 7:e1800380. [PMID: 29931753 DOI: 10.1002/adhm.201800380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/20/2018] [Indexed: 11/08/2022]
Abstract
Melittin (MEL) is recognized as a highly potent therapeutic peptide for treating various human diseases including cancer. However, the clinical applications of MEL are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity. Here, it is found that MEL can form a stable supramolecular nanocomplex of ≈60 nm with the photosensitizer chlorin e6 (Ce6), which after hyaluronic acid (HA) coating can achieve robust, safe, and imaging-guided tumor ablation. The as-designed nanocomplex (denoted as MEL/Ce6@HA) shows largely reduced hemolysis and selective cytolytic activity toward cancer cells. Upon laser irradiation, the loaded photosensitive Ce6 can synergistically facilitate the membrane-lytic efficiency of melittin and greatly increase the tumor penetration depth of the complexes in multicellular tumor spheroids. In vivo experiments reveal that MEL/Ce6@HA can realize enhanced tumor accumulation, reduced liver deposition, and rapid body clearance, which are beneficial for highly efficient and safe chemo-photodynamic dual therapy. This work develops a unique supramolecular strategy for optimized in vivo delivery of melittin and may have implications for the development of peptide-based theranostics.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
35
|
Li Y, Xu N, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W. Nanoscale Melittin@Zeolitic Imidazolate Frameworks for Enhanced Anticancer Activity and Mechanism Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22974-22984. [PMID: 29920061 DOI: 10.1021/acsami.8b06125] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cytolytic peptide melittin (MLT) is an important candidate of anticancer drug owing to its hemolytic properties. Nevertheless, its clinical applications are severely restricted as a result of its nonspecific toxicities like hemolysis. In this work, we reported MLT-loaded zeolitic imidazolate framework-8 (MLT@ZIF-8) nanoparticles (NPs). The formed MLT@ZIF-8 NPs not only possess excellent stability but also efficiently inhibit the hemolysis bioactivity of MLT. Confocal scanning imaging and cytotoxicity experiments revealed that as-synthesized MLT@ZIF-8 NPs exhibit enhanced cellular uptake and cytotoxicity toward cancer cells compared to MLT. The mechanism is well investigated by a series of transcriptome analysis, which indicates that MLT@ZIF-8 NPs can regulate the expression of 3383 genes, and the PI3K/Akt-regulated p53 pathway is involved in MLT@ZIF-8 NPs induced A549 cells apoptosis. Finally, MLT@ZIF-8 NPs exhibit enhanced antitumor activity than free MLT in vivo, while no obvious systemic toxicity has been found. This work emphasizes the great potential of utilizing MOF as a simple and efficient nanoplatform for deliverying cytolytic peptides in cancer treatment, and also the investigation on the antitumor mechanism could provide theoretical support for clinical usage of MLT.
Collapse
Affiliation(s)
- Yawei Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Na Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Wenhe Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Bin Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
| | - Jianxu Zhang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
| |
Collapse
|
36
|
Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng JP, Lovell JF, Chen J, Wu G, Yang K. Tumor Ablation and Therapeutic Immunity Induction by an Injectable Peptide Hydrogel. ACS NANO 2018; 12:3295-3310. [PMID: 29558107 DOI: 10.1021/acsnano.7b08148] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunosuppressive tumor microenvironments (TMEs) create tremendous obstacles for an effective cancer therapy. Herein, we developed a melittin-RADA32 hybrid peptide hydrogel loaded with doxorubicin (DOX) for a potent chemoimmunotherapy against melanoma through the active regulation of TMEs. The formed melittin-RADA32-DOX (MRD) hydrogel has an interweaving nanofiber structure and exhibits excellent biocompatibility, controlled drug release properties both in vitro and in vivo, and an enhanced killing effect to melanoma cells. A single-dose injection of MRD hydrogel retarded the growth of primary melanoma tumors by more than 95% due to loaded melittin and DOX, with concomitant recruitment of activated natural killer cells in the tumors. Furthermore, MRD hydrogel can activate dendritic cells of draining lymph nodes, specifically deplete M2-like tumor-associated macrophages (TAMs), and produce active, cytotoxic T cells to further defend the cells against remaining tumors, providing potent anticancer efficacy against subcutaneous and metastatic tumors in vivo. Multidose injection of MRD hydrogel eliminated 50% of the primary tumors and provided a strong immunological memory effect against tumor rechallenge after eradication of the initial tumors. Owing to its abilities to perform controlled drug release, regulate innate immune cells, deplete M2-like TAMs, direct anticancer and immune-stimulating capabilities, and reshape immunosuppressive TMEs, MRD hydrogel may serve as a powerful tool for anticancer applications.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Humans
- Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage
- Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry
- Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Peptides/administration & dosage
- Peptides/chemistry
- Peptides/pharmacology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- Structure-Activity Relationship
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jue-Ping Feng
- Department of Oncology, PuAi Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430034 , China
| | - Jonathan F Lovell
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | | | | | | |
Collapse
|
37
|
Qiao H, Fang D, Zhang L, Gu X, Lu Y, Sun M, Sun C, Ping Q, Li J, Chen Z, Chen J, Hu L, Di L. Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4569-4581. [PMID: 29336144 DOI: 10.1021/acsami.7b18809] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Melittin (Mel), one of the host defense peptides derived from the venom of honeybees, demonstrates substantial anticancer properties, which is attributed to augmenting reactive oxygen species (ROS) generation. However, little has been reported on its pro-oxidation capacity in cancer oxidation therapy. In this study, an ROS amplifying nanodevice was fabricated through direct complexation of two natural pro-oxidants, Mel and condensed epigallocatechin gallate (pEGCG). The obtained nanocomplex (NC) was further covered with phenylboronic acid derivatized hyaluronic acid (pHA) through the ROS-responsive boronate ester coordination bond to produce pHA-NC. Upon undergoing receptor-mediated endocytosis into cancer cells, the inner cores of pHA-NC will be partially uncovered once pHA corona is degraded by hyaluronidase and will then escape from the lysosome by virtue of cytolytic Mel. The elevated ROS level in the tumor cytoplasm can disrupt the boronate ester bond to facilitate drug release. Both Mel and pEGCG could synergistically amplify oxidative stress and prolong ROS retention in cancer cells, leading to enhanced anticancer efficacy. This ROS cascade amplifier based on selective coordination bond and inherent pro-oxidation properties of natural ingredients could detect and elevate intracellular ROS signals, potentiating to move the tumor away from its homeostasis and make the tumor vulnerable. Compared to previously reported chemosynthetic pro-oxidants, the ROS self-sufficient system, fully composed of natural medicine, from this study provides a new insight in developing cancer oxidation therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaochen Gu
- College of Pharmacy, University of Manitoba , 750 McDermot Avenue, Winnipeg, Manitoba R3E 0T5, Canada
| | | | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Qineng Ping
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|
38
|
Dutta R, Pyne A, Kundu S, Banerjee P, Sarkar N. Concentration-Driven Fascinating Vesicle-Fibril Transition Employing Merocyanine 540 and 1-Octyl-3-methylimidazolium Chloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9811-9821. [PMID: 28849933 DOI: 10.1021/acs.langmuir.7b02136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, anionic lipophilic dye merocyanine 540(MC540) and cationic surface-active ionic liquid (SAIL) 1-octyl-3-methylimidazolium chloride (C8mimCl) are employed to construct highly ordered fibrillar and vesicular aggregates exploiting an ionic self-assembly (ISA) strategy. It is noteworthy that the concentration of the counterions has exquisite control over the morphology, in which lowering the concentration of both the building blocks in a stoichiometric ratio of 1:1 provides a vesicle to fibril transition. Here, we have reported the concentration-controlled fibril-vesicle transition utilizing the emerging fluorescence lifetime imaging microscopy (FLIM) technique. Furthermore, we have detected this morphological transformation by means of other microscopic techniques such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and cryogenic-transmission electron microscopy (cryo-TEM) to gain additional support. Besides, multiwavelength FLIM (MW-FLIM) and atomic force microscopy (AFM) techniques assist us in knowing the microheterogeneity and the height profile of the vesicles, respectively. We have replaced the SAIL, C8mimCl, by an analogous traditional surfactant, n-octyltrimethylammonium bromide (OTAB), and it provides a discernible change in morphology similar to that of C8mimCl, whereas 1-octanol is unable to exhibit any structural aggregation and thus reveals the importance of electrostatic interaction in supramolecular aggregate formation. However, the SAILs having the same imidazolium headgroup with different chain lengths other than C8mimCl are unable to display any structural transition and determine the importance of the correct chain length for efficient packing of the counterions to form a specific self-assembly. Therefore, this study reveals the synergistic interplay of electrostatic, hydrophobic, and π-π stacking interactions to construct the self-assembly and their concentration-dependent morphological transition.
Collapse
Affiliation(s)
- Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| |
Collapse
|
39
|
Ross MH, Esser AK, Fox GC, Schmieder AH, Yang X, Hu G, Pan D, Su X, Xu Y, Novack DV, Walsh T, Colditz GA, Lukaszewicz GH, Cordell E, Novack J, Fitzpatrick JAJ, Waning DL, Mohammad KS, Guise TA, Lanza GM, Weilbaecher KN. Bone-Induced Expression of Integrin β3 Enables Targeted Nanotherapy of Breast Cancer Metastases. Cancer Res 2017; 77:6299-6312. [PMID: 28855208 DOI: 10.1158/0008-5472.can-17-1225] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Bone metastases occur in approximately 70% of metastatic breast cancer patients, often leading to skeletal injuries. Current treatments are mainly palliative and underscore the unmet clinical need for improved therapies. In this study, we provide preclinical evidence for an antimetastatic therapy based on targeting integrin β3 (β3), which is selectively induced on breast cancer cells in bone by the local bone microenvironment. In a preclinical model of breast cancer, β3 was strongly expressed on bone metastatic cancer cells, but not primary mammary tumors or visceral metastases. In tumor tissue from breast cancer patients, β3 was significantly elevated on bone metastases relative to primary tumors from the same patient (n = 42). Mechanistic investigations revealed that TGFβ signaling through SMAD2/SMAD3 was necessary for breast cancer induction of β3 within the bone. Using a micelle-based nanoparticle therapy that recognizes integrin αvβ3 (αvβ3-MPs of ∼12.5 nm), we demonstrated specific localization to breast cancer bone metastases in mice. Using this system for targeted delivery of the chemotherapeutic docetaxel, we showed that bone tumor burden could be reduced significantly with less bone destruction and less hepatotoxicity compared with equimolar doses of free docetaxel. Furthermore, mice treated with αvβ3-MP-docetaxel exhibited a significant decrease in bone-residing tumor cell proliferation compared with free docetaxel. Taken together, our results offer preclinical proof of concept for a method to enhance delivery of chemotherapeutics to breast cancer cells within the bone by exploiting their selective expression of integrin αvβ3 at that metastatic site. Cancer Res; 77(22); 6299-312. ©2017 AACR.
Collapse
Affiliation(s)
- Michael H Ross
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory C Fox
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Anne H Schmieder
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaoxia Yang
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Grace Hu
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Xinming Su
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yalin Xu
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah V Novack
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas Walsh
- Department of Surgery, Division of Public Health Sciences, St. Louis Breast Tissue Registry, Washington University School of Medicine, St. Louis, Missouri
| | - Graham A Colditz
- Department of Surgery, Division of Public Health Sciences, St. Louis Breast Tissue Registry, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel H Lukaszewicz
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth Cordell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua Novack
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Departments of Cell Biology & Physiology and Neuroscience, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri
| | - David L Waning
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Khalid S Mohammad
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Theresa A Guise
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
40
|
Li F, Mei H, Gao Y, Xie X, Nie H, Li T, Zhang H, Jia L. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017; 145:56-71. [PMID: 28843733 DOI: 10.1016/j.biomaterials.2017.08.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023]
Abstract
Tumor hypoxia is a common feature of the tumor microenvironment and has been regarded as one of the key factors in driving the emergence of drug resistance in solid tumors. To surmount the hypoxia-associated drug resistance, we fabricated the novel multifunctional liposomal complexes (ACLEP) that could co-deliver oxygen and molecular targeted drug to overcome the hypoxia-induced drug resistance in lung cancer. The ACLEP were fabricated with liposomes anchored with anti-EGFR aptamer-conjugated chitosan to co-administrate erlotinib and PFOB to EGFR-overexpressing non-small-cell lung cancer. Our results showed that the ACLEP possessed desired physicochemistry, good biostability and controlled drug release. The entrapped PFOB in nanoparticle facilitated the uptake of ACLEP in either normoxia or hypoxic condition. Comparing to those nanoparticles loading erlotinib alone, our innovative oxygen/therapeutic co-delivery system showed a promising outcome in fighting against hypoxia-evoked erotinib resistance both in vitro and in vivo. Hence, this work presents a potent drug delivery platform to overcome hypoxia-induced chemotherapy resistance.
Collapse
Affiliation(s)
- Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Hao Mei
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Huifang Nie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Tao Li
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Huijuan Zhang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
41
|
Jin H, Zhao G, Hu J, Ren Q, Yang K, Wan C, Huang A, Li P, Feng JP, Chen J, Zou Z. Melittin-Containing Hybrid Peptide Hydrogels for Enhanced Photothermal Therapy of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25755-25766. [PMID: 28714303 DOI: 10.1021/acsami.7b06431] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of biocompatible and efficacious anticancer biomaterials to achieve relatively low tumor recurrence rates is the main pursuit of cancer photothermal therapy (PTT). RADA16-I is a synthetic amphiphilic peptide with the sequence RADARADARADARADA that can self-assemble into a peptide nanofiber hydrogel. In this study, we synthesized a novel melittin-RADA32-indocyanine green (ICG) hydrogel ("MRI hydrogel"), which contains melittin in the peptide hydrogel backbone and ICG in the hydrogel matrix, for enhanced PTT of glioblastomas. The MRI hydrogel exhibited physiologic characteristics similar to those of the RADA16 hydrogel, while displaying concentration-dependent cytotoxicity to C6 glioma cells and photothermal effects. The in vivo biodistribution of the MRI hydrogel was visualized by near-infrared fluorescence and photoacoustic imaging. More importantly, in vivo PTT provided by the MRI hydrogel significantly reduced the tumor size and the tumor recurrence rate compared with the RADR16-ICG hydrogel and other controls, suggesting a synergistic effect of MRI hydrogel-carried melittin and ICG-based PTT treatment. Thus, MRI provides an alternative tool for the safe and efficient PTT treatment of tumors.
Collapse
Affiliation(s)
- Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Guifang Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Jianli Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Quanguang Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Kui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Pindong Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Jue-Ping Feng
- Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430034, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| |
Collapse
|
42
|
Janjic JM, Gorantla VS. Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS JOURNAL 2017; 19:1304-1316. [PMID: 28779380 DOI: 10.1208/s12248-017-0129-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Accidental and iatrogenic trauma are major causes of peripheral nerve injury. Healing after nerve injury is complex and often incomplete, which can lead to acute or chronic pain and functional impairment. Current assessment methods for nerve regeneration lack sensitivity and objectivity. There is a need for reliable and reproducible, noninvasive strategies with adequate spatial and temporal resolution for longitudinal evaluation of degeneration or regeneration after injury/treatment. Methods for noninvasive monitoring of the efficacy and effectiveness of neurotherapeutics in nerve regeneration or of neuropathic pain are needed to ensure adequacy and responsiveness to management, especially given the large variability in the patient populations, etiologies, and complexity of nerve injuries. Surrogate biomarkers are needed with positive predictive correlation for the dynamics and kinetics of neuroregeneration. They can provide direct real-time insight into the efficacy and mechanisms of individualized therapeutic intervention. Here, we review the state-of-the-art tools, technologies, and therapies in peripheral nerve injury and regeneration as well as provide perspectives for the future. We present compelling evidence that advancements in nanomedicine and innovation in nanotechnology such as nanotheranostics hold groundbreaking potential as paradigm shifts in noninvasive peripheral nerve imaging and drug delivery. Nanotechnology, which revolutionized molecular imaging in cancer and inflammatory disease, can be used to delineate dynamic molecular imaging signatures of neuroinflammation and neuroregeneration while simultaneously monitoring cellular or tissue response to drug therapy. We believe that current clinical successes of nanotechnology can and should be adopted and adapted to the science of peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, 415 Mellon Hall, Pittsburgh, Pennsylvania, 15282, USA. .,Chronic Pain Research Consortium, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 1602 E. Carson Street, Pittsburgh, Pennsylvania, 15203, USA.
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
43
|
The development of activatable lytic peptides for targeting triple negative breast cancer. Cell Death Discov 2017; 3:17037. [PMID: 29263848 PMCID: PMC5629628 DOI: 10.1038/cddiscovery.2017.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/14/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022] Open
Abstract
Cytolytic peptides are an emerging class of promising cancer therapeutics shown to overcome drug resistance. They eliminate cancer cells via disruption of the phospholipid bilayer of cell membranes, a mechanism that differentiates it from traditional treatments. However, applications of lytic peptides via systematic administration are hampered by nonspecific toxicity. Here, we describe activatable, masked lytic peptides that are conjugated with anionic peptides via a cleavable linker sensitive to matrix metalloproteinases (Ac-w-βA-e8-XPLG*LAG-klUklUkklUklUk-NH2; lower case letters in the sequences represent D-amino-acids, U=Aib, α-aminoisobutyric acid, *cleavage site). The peptides were activated upon being introduced into the triple negative breast cancer cell line MDA-MB-231, which overexpresses secreted matrix metalloproteinases, to selectively cleave the peptide linker. Our results indicate that the activatable design could be applied to improve the targeting ability of lytic peptides.
Collapse
|
44
|
Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017; 402:16-31. [PMID: 28536009 DOI: 10.1016/j.canlet.2017.05.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Melittin (MEL), a major peptide component of bee venom, is an attractive candidate for cancer therapy. This agent has shown a variety of anti-cancer effects in preclinical cell culture and animal model systems. Despite a convincing efficacy data against variety of cancers, its applicability to humans has met with challenges due to several issues including its non-specific cytotoxicity, degradation and hemolytic activity. Several optimization approaches including utilization of nanoparticle based delivery of MEL have been utilized to circumvent the issues. Here, we summarize the current understanding of the anticancer effects of bee venom and MEL on different kinds of cancers. Further, we also present the available information for the possible mechanism of action of bee venom and/or MEL.
Collapse
Affiliation(s)
- Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA; Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imtiaz A Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Mohamad Rady
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|
45
|
Lanza GM, Jenkins J, Schmieder AH, Moldobaeva A, Cui G, Zhang H, Yang X, Zhong Q, Keupp J, Sergin I, Paranandi KS, Eldridge L, Allen JS, Williams T, Scott MJ, Razani B, Wagner EM. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat. Am J Cancer Res 2017; 7:377-389. [PMID: 28042341 PMCID: PMC5197071 DOI: 10.7150/thno.16627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3+ CD45+ leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a clinically relevant rodent model.
Collapse
|
46
|
Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc Natl Acad Sci U S A 2016; 113:E6199-E6208. [PMID: 27681622 PMCID: PMC5068304 DOI: 10.1073/pnas.1608245113] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of disability and morbidity in the aging population. Joint injury leads to cartilage damage, a known determinant for subsequent development of posttraumatic OA, which accounts for 12% of all OA. Understanding the early molecular and cellular responses postinjury may provide targets for therapeutic interventions that limit articular degeneration. Using a murine model of controlled knee joint impact injury that allows the examination of cartilage responses to injury at specific time points, we show that intraarticular delivery of a peptidic nanoparticle complexed to NF-κB siRNA significantly reduces early chondrocyte apoptosis and reactive synovitis. Our data suggest that NF-κB siRNA nanotherapy maintains cartilage homeostasis by enhancing AMPK signaling while suppressing mTORC1 and Wnt/β-catenin activity. These findings delineate an extensive crosstalk between NF-κB and signaling pathways that govern cartilage responses postinjury and suggest that delivery of NF-κB siRNA nanotherapy to attenuate early inflammation may limit the chronic consequences of joint injury. Therapeutic benefits of siRNA nanotherapy may also apply to primary OA in which NF-κB activation mediates chondrocyte catabolic responses. Additionally, a critical barrier to the successful development of OA treatment includes ineffective delivery of therapeutic agents to the resident chondrocytes in the avascular cartilage. Here, we show that the peptide-siRNA nanocomplexes are nonimmunogenic, are freely and deeply penetrant to human OA cartilage, and persist in chondrocyte lacunae for at least 2 wk. The peptide-siRNA platform thus provides a clinically relevant and promising approach to overcoming the obstacles of drug delivery to the highly inaccessible chondrocytes.
Collapse
|
47
|
Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol 2016; 78:1113-1130. [DOI: 10.1007/s00280-016-3160-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 01/29/2023]
|
48
|
Shen J, Xin X, Liu T, Wang S, Yang Y, Luan X, Xu G, Yuan S. Ionic Self-Assembly of a Giant Vesicle as a Smart Microcarrier and Microreactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9548-9556. [PMID: 27564979 DOI: 10.1021/acs.langmuir.6b01829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Giant vesicles (1-10 μm) were constructed via a facile ionic self-assembly (ISA) strategy using an anionic dye Acid Orange II (AO) and an oppositely charged ionic-liquid-type cationic surfactant 1-tetradecyl-3-methylimidazolium bromide (C14mimBr). This is the first report about preparing giant vesicles through ISA strategy. Interestingly, the giant vesicle could keep the original morphology during the evaporation of solvent and displayed solid-like properties at low concentration. Moreover, giant vesicles with large internal capacity volume and good stability in solution could also be achieved by increasing the concentrations of AO and C14mimBr which contributed to the increase of the other noncovalent cooperative interactions. In order to facilitate comparison, a series of parallel experiments with similar materials were carried out to investigate and verify the driving forces for the formation of these kinds of giant vesicles by changing the hydrophobic moieties or the head groups of the surfactants. It is concluded that the electrostatic interaction, hydrophobic effect and π-π stacking interaction play key roles in this self-assembly process. Importantly, the giant vesicles can act as a smart microcarrier to load and release carbon quantum dot (CQD) under control. Besides, the giant vesicles could also be applied as a microrector to synthesize monodispersed Ag nanoparticles with diameter of about 5-10 nm which exhibited the ability to catalyze reduction of 4-nitroaniline. Therefore, it is indicated that our AO/C14mimBr assemblies hold promising applications in the areas of microencapsulation, catalyst support, and lightweight composites owing to their huge sizes and large microcavities.
Collapse
Affiliation(s)
- Jinglin Shen
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
- National Engineering Technology Research Center for Colloidal Materials, Shandong University , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| | - Teng Liu
- Institute of Materia Medica, Shandong Academy of Medical Sciences , Jinan 250062, People's Republic of China
| | - Shubin Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| | - Yingjie Yang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| | - Xiaoyu Luan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| | - Guiying Xu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
- National Engineering Technology Research Center for Colloidal Materials, Shandong University , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education , Shanda nanlu No. 27, Jinan, 250100, People's Republic of China
| |
Collapse
|
49
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
50
|
Utilization of Near-Infrared Fluorescent Imaging for Pharmaceutically Relevant Applications. Methods Mol Biol 2016; 1444:97-108. [PMID: 27283421 DOI: 10.1007/978-1-4939-3721-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Optical imaging can be utilized for several pharmaceutical applications involving near-infrared fluorescent (NIRF) dyes or NIRF moiety-containing products. Especially during the early phases of product development, NIRF dyes can be used as surrogates for drugs and optical imaging methods can be utilized to optimize the pharmaceutical product properties based on dye entrapment efficiency, in vitro dye release, cellular uptake, and in vivo biodistribution. Based on in vivo accumulation, product efficacy and toxicity can be evaluated in the early development stage. Compared to visible fluorescent dyes, NIRF offers advantages such as low background from formulation excipients as well as biological components.In this chapter, the utility of NIRF imaging methods for in vitro characterization (in vitro release and cellular uptake) and in vivo/ex vivo applicability of pharmaceutically relevant products is presented in detail. Specifically, the application of fluorescence imaging to characterize perfluorocarbon-based formulations for dye loading, in vitro release, cellular uptake, and in vivo imaging to assess target accumulation and biodistribution is discussed. These methods are widely applicable to other nanoparticle-based products involved in inflammation/cancer imaging and therapy. Overall, NIRF-based techniques are indispensible because they are relatively easy, fast, and cost effective to characterize and optimize pharmaceutical products at different stages of product development.
Collapse
|